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ABSTRACT Agriculture has been completely transformed by Deep Learning (DL) techniques, which allow
for quick object localization and detection. However, because weeds and crops are similar in color, form,
and texture, weed detection and categorization can be difficult. Advantages in object detection, recognition,
and image classification can be obtained with deep learning (DL), a vital aspect of machine learning (ML).
Because crops and weeds are similar, ML techniques have difficulty extracting and choosing distinguishing
traits. This literature review demonstrates the potential of various DL methods for crop weed identification,
localization, and classification. This research work investigates the present status of Deep Learning based
weed identification and categorization systems. The majority of research employs supervised learning
strategies, polishing pre-trained models on sizable, labeled datasets to achieve high accuracy. Innovations
are driven by the need for sustainable weed management methods, and deep learning is demonstrating
encouraging outcomes in image-based weed detection systems. To solve issues like resource scarcity,
population increase, and climate change, precision agriculture holds great promise for the integration of Al
with IoT-enabled farm equipment.

INDEX TERMS Agriculture, artificial intelligence, deep learning, weed detection, neural networks.

NOMENCLATURE M— Unet Multispectral U-net.
Al Artificial Intelligence. ML Machine Learning.
ASFF Adaptive Spatial Feature Fusion. MSR Multi Scale Retinex.
CBAM Convolutional Block Attention Module. MT— Unet  Multispectral Thermal U-net.
CFFI Channel Feature Fusion with Involution. RCNN Regional Convolutional Neural Network.
CLAHE  Contrast Limited Adaptive Histogram RF Random Forest.
Equalization. Soft— NMS  Soft-Non-Maximum Suppression.
DCGAN  Deep Convolutional Generative SSR Single Scale Retinex.
Adver-sarial Network. SV M Support Vector Machine.
DCNN  Deep Convolutional Neural Network. XGB eXtreme Gradient Boosting.
DL Deep Learning.
FPN Feature Pyramid Network. I. INTRODUCTION
GAN Generative Adversarial Network. Agriculture is the art and science of cultivating soil for the
KNN K Nearest Neighbor. growth of crops that will supply people with food, fiber, and

other goods to buy and consume [1], [2]. The global populace

The associate editor coordinating the review of this manuscript and is predicted to rise qu1ck.1y to nine billion .people by the
approving it for publication was Claudio Zunino. year 2050. To meet the projected demand, agricultural output
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needs to expand by nearly 70% [3]. Nevertheless, agriculture
encounters several substantial challenges, including the risk
of diseases, a critical shortage of cultivable land and water
resources, and the impact of a changing climate as well as
threats from weeds and pests [4]. Implementing intelligent
farming practices is essential to addressing the problems asso-
ciated with agricultural production including sustainability,
food security, productivity, and environmental impact [5].
Plants that spread quickly and negligently are known as
weeds, and they can negatively impact crop production and
quality [6]. They contend with crops for nutrients, water,
sunlight, and growth space, necessitating farmers to allo-
cate resources to control them [7]. To mitigate the impact
of weeds, various management tactics are employed, which
can be categorized into five main groups according to [8]:
“preventative” (preventing weed establishment), ““cultural”
(preserving field cleanliness) to reduce the weed seed bank),
“mechanical” (utilizing techniques such as mulching, till-
ing, and cutting), “biological” (employing natural enemies
like insects, grazing animals, or diseases), and ‘“‘chemical”
(using herbicides). Despite their effectiveness, each strat-
egy has drawbacks, typically being costly, time-consuming,
and labor-intensive. Additionally, control measures may have
adverse effects on the health of humans, plants, soil, animals,
or the environment [9]. Until now, various techniques and
technologies have been employed for weed detection.

Il. TRADITIONAL METHODS AND CHALLENGES IN WEED
REMOVAL

1) Manual Inspection: Traditional weed detection involves
labor-intensive and time-consuming manual inspection
and removal by human workers. Despite its drawbacks,
this method is still utilized in certain situations.

2) Chemical herbicides: They are frequently used in agri-
culture to suppress weeds, however, their application
can have detrimental effects on the environment and be
non-selective, which could hurt crops as well as weeds.

3) Mechanical weed control techniques: Plowing, tilling,
and mechanical weeding equipment, are useful for get-
ting rid of weeds from fields, but they can be inaccurate
and harm crops.

4) Crop rotation: To increase soil fertility, nutrient levels,
and control weeds and pests, crop rotation is the prac-
tice of growing various crops one after another. The
distinct growth requirements of various crops, however,
may present difficulties for farmers.

5) Mulching: To efficiently inhibit the growth of weeds,
organic materials such as leaves, wood chips, or straw
are added to the soil [10], [11], [12].

Figure 1 depicts various weed management techniques.

A. LIMITATIONS OF TRADITIONAL WEED CONTROL
STRATEGIES

Herbicides work well to manage weeds, however because
of the shortcomings of traditional spraying systems, they
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also have disadvantages [13]. Herbicide resistance, environ-
mental contamination, and ecological imbalance can result
from using the same class of herbicides repeatedly over time.
Overuse can lead to herbicide-resistant weed populations,
which lowers farmland biodiversity and dominates hard-
to-control weed species in agricultural settings. Negative
side effects from chemical pesticides include contaminating
ground and surface waters and releasing residues into the
food chain [14]. This puts the long-term sustainability of
the farming industry and biodiversity conservation at risk by
increasing contamination of the environment from agricul-
tural chemical inputs.

Because of the higher bulk density and compaction of
topsoil, little tillage or non-tillage can also raise the phy-
totoxicity of the soil. Reducing tillage may force farmers
to use additional pesticides and herbicides to counter these
risks. The criteria of soil quality, such as biological diver-
sity, soil structure, and water storage capacity, are negatively
impacted by overuse of tillage. Tillage causes soil erosion
and degradation by depriving microorganisms of carbon and
nitrogen resources. This leads to an increase in agricultural
contamination of the environment.

There are restrictions on other ground cover techniques
as well, like fire, mulching, and cattle grazing. Mulching
can induce soil alterations, be costly, and have allelopathic
impacts on crops if certain organic mulches are used [15].
Living mulches compete with other plants for nutrients and
water, they can stunt crop development and yield and raise
the danger of disease and pest infestation. Livestock grazing
can disperse weed seeds, harm non-target species and the
soil’s structure, and even result in an animal’s condition or
liveweight being lost.

Precision Weed Management (PWM) technology can be
integrated to reduce or eliminate these constraints, opening
the door where precision is the norm [16].

Ill. TECHNOLOGICAL PROGRESS IN WEED DETECTION

In expansive agricultural regions, the use of remote sensing
technology—such as drones and satellite imaging is essen-
tial for identifying and monitoring weed infestations [17].
By differentiating between weeds and crops, computer vision
and machine learning enhance weed detection, with accuracy
being continuously enhanced through training [18].

With cameras and automated equipment, robotic weed
eaters provide real-time weed detection and elimination,
which might cut down on manual labor and the need for
herbicides [19], [20], [21], [22].

With the use of precision agricultural technologies, such
as GPS-guided equipment, farmers may spray herbicides
selectively, sparing areas that are not affected by weed infes-
tations while focusing on those that are instruments for
chemical sensing that identify biological fingerprints, such
as changes in chlorophyll content, indicate the presence of
weeds [23], [24].

Additionally, weed management apps utilizing image
recognition technology assist farmers in identifying and

VOLUME 12, 2024



D. G Pai et al.: DL Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review

IEEE Access

FIGURE 1. Various weed management techniques [26].

managing weeds, often based on photos provided by
users [25].

A. ROBOTIC TECHNOLOGY

Expected to transform farming, the agriculture robot, or agri-
bot, is driving an exponential increase in global investment
and research in robotics, science, and engineering [27].
Robots that carry out in-field weeding operations using com-
puter vision techniques are shown in Figure 2, 3,4 and 5.

FIGURE 2. BoniRob terrestrial robot [28].

FIGURE 3. Tertill weeding robot [29].

Several researchers have made progress in the devel-
opment of robotic systems for controlling and detecting
weeds, although the practical application is still a significant
challenge [30].

Reference [32] created a robot with dual-gimbal capabil-
ities, successfully identifying and targeting weeds indoors,
achieving a high hit rate of 97% with specific laser param-
eters. Reference [22] designed a weed-detecting robot using
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FIGURE 4. Solar powered weeding robot [31].

a Raspberry Pi microcontroller and achieved 92.9% accuracy
in identifying sugarcane crops among various weed species.
Reference [33] demonstrated the Adigo robot platform for
autonomous herbicide application. The Ladybird robot from
the University of Sydney, equipped with a spraying end actu-
ator and a machine learning algorithm, effectively controls
weeds with targeted herbicide application.

FIGURE 5. Agricultural robotic platform with four wheel steering for weed
detection [20].

[34] developed the AgBotll, a modular weeding robot that
identifies crops and weeds using image processing techniques
and removes weeds with different tools. Reference [35]
merged a multifunctional agricultural automated terrain vehi-
cle with the aerial survey capability of a small UAV to
achieve thorough weed management. Reference [36] pro-
posed a weeding robot that navigates autonomously in paddy
fields, disrupting soil to remove weeds and inhibiting their
growth. The Sinobot prototype, equipped with independently
steered wheels, was designed for weeding and route planning.

These advancements indicate progress in robotic weed
control, but practical implementation remains challenging.

B. PRECISION AGRICULTURE AND Al INTEGRATION

Precision agriculture combines the advancements of the
information age with an established agricultural sector [37].
It serves as a comprehensive crop management system,
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aiming to align input types and quantities with the specific
requirements of small sections within a farm field.

Although the objective is not novel, recent technologi-
cal developments have made precision agriculture feasible
in practical farming scenarios. Precision agriculture is fre-
quently identified by the enabling technologies, commonly
known as GPS (Global Positioning System) agriculture
or variable-rate farming [38]. Despite the significance of
devices, it becomes evident upon reflection that information
is the crucial element for achieving accuracy in farming
practices.

To enhance the efficiency of modern agriculture, the inte-
gration of drones for aerial applications is crucial. This
approach standardizes chemical spraying processes and
addresses the labor shortage in rural areas. The use of drones
ensures precise deposition of products on target areas, min-
imizing environmental losses. Reference [39] proposed that
UAVs enable the monitoring of individual plants and weed
patches, a capability previously unavailable.

References [40] and [41] presented a method involving
UAV imagery to apply herbicides selectively, demonstrating
the identification of weeds in row crops through aerial image
analysis.

The concept put out by [42] suggests that weed man-
agement tactics have evolved to use drones equipped with
cameras and Geographic Information Systems (GIS).

Improved results may be achieved by optimizing agri-
cultural activities linked to weed detection and eradication
through the combination of drones, robots, artificial intelli-
gence, and sensors, as proposed by [43], [44], [45], and [46].

Reference [47] argued that technology not only reduces
manual labor but also enhances food quality by utilizing
drones for various agricultural purposes.

C. UTILIZING DRONES FOR WEED CONTROL

The assertion made by [48] in the area of weed management
is that drones play a crucial role in detecting and identifying
weed patches efficiently. They use near-infrared and visible
light for crop condition assessment, offering a significant
advantage of reduced surveying time, especially among crop
rows. The capacity of UAVs to cover large areas quickly and
generate photographic images facilitates weed patch identi-
fication. The processing of these images involves advanced
technologies such as deep neural networks and convolutional
neural networks.

RGB, multispectral, and hyperspectral cameras are the
three primary types of cameras used in [49]’s research on
UAV-based weed identification. Still, other parameters like
drone kind, flight height, and camera resolution affect how
well these cameras identify weed patches. Differentiating
between crop seedlings and weeds is crucial for designing an
effective automated weed management system. Specific UAV
models equipped with GPS and cameras, like the md4-1000
quadcopter, are employed for weed detection and mapping.
These systems utilize object-based image analysis (OBIA)
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frameworks to create accurate herbicide application maps.
Color analysis methods have been implemented for detecting
specific weed types in various environmental conditions effi-
cacy and limits of unmanned aerial vehicle (UAV) technology
for weed seedling detection as affected by sensor resolution.

For example, in a vineyard field, a quadcopter UAV with
RGB photos mapped weed patches using an OBIA approach,
optimizing site-specific weed control. Reference [50] argued
that the md4-1000 quadcopter employs a weed mapping rule
set method to categorize crop rows, differentiate between
crop plants and weeds, and develop a weed infestation map.
This technique aims to reduce herbicide applications by tai-
loring doses based on observed weed infestation levels Weed
mapping in early-season maize fields using object-based
analysis of unmanned aerial vehicle (UAV) images. Figure 6
depicts an image of a drone utilized for data collection pro-
cedure in agricultural domain.

FIGURE 6. Pictures taken of the drone at various points during the data
collection procedure [51].

The detection capability of algorithms, indicating the accu-
racy in classifying pixels as crops or weeds, reaches 91% with
a spatial resolution of 21.6 mm/pixel.

Reference [52] carried out research on UAVs equipped
with visible and multispectral cameras, utilizing automated
OBIA approaches, effectively map weed patches such as
Johnsongrass.

Overall, the integration of drones and advanced imaging
technologies enhances the precision and efficiency of weed
management in agriculture.

IV. SENSOR TECHNIQUE IN WEED CONTROL

Reference [53] focused on digital video cameras called
Robocrop inter-row and Robocrop Inrow(®) that are used in
agricultural techniques to control weeds particular to a given
place. They help to reduce the amount of herbicide used
in spraying applications and to steer mechanical weeding
equipment. These methods use shape, color, and crop row
spacing data to increase classification rates for transplanted
crops. Variable herbicide rates depend on online sensors
for weed detection. Comparing field trials with traditional
application, cereal, and pea trials revealed average pesticide
savings of 24.6%, no yield reduction, and no variations in
weed density between lowered and standard dosage areas.

A. NON IMAGING SENSORS
Using spectral and height features, non-imaging sensors (e.g.,

spectrometers and fluorescence sensors) quantify weed spots
in fields [17].

VOLUME 12, 2024



D. G Pai et al.: DL Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review

IEEE Access

From the ultraviolet (UV) to the near-infrared (NIR), spec-
trum analyzers measure the strength of reflections at different
electromagnetic spectrum wavelengths [54]. Although they
can’t tell different species of plants apart, they can provide
information that can help separate plants from soil. The
reflectance of bare soil increases linearly from blue to near-
infrared light, whereas green leaves have low reflectivity in
the red and blue spectra and high reflectance in the green and
near-infrared wavelengths.

A plant’s spectrum response varies with its growth stage,
and the signal that is received is a blend of various plant
species and soil composition. Approaches to spectral iden-
tification are intricate and necessitate appropriate prior
knowledge, which is unavailable in the field. For weed
identification and quantification, chemometrics works well;
however, it is not effective for weed detection.

Optoelectronic sensors distinguish between the presence
and absence of plants by focusing on particular spectral
bands in the red/near-infrared (R/NIR) spectrum. In rows
of crops, these sensors can identify weeds in between the
rows. To calculate an index similar to the NDVI, commercial
sensors evaluate reflectance characteristics in the NIR and
R wavelengths.

The DetectSpray spot-spraying system and the Weed-
Seeker, GreenSeeker, WEED:it, and Crop Circle ACS-470 are
a few examples. When paired with a sprayer, these active
sensors indicate a high level of vegetation cover. Underes-
timating weed coverage is the most common inaccuracy that
has been reported.

Because of flavonol anthocyanins, polyphenols, and
chlorophyll, plants’ leaves generate fluorescent light, which
is detected by fluorescence sensors. While chlorophyll a and
b emit fluorescence in the red to the far-red range, UV light
causes blue-green fluorescence (BGF) to be stimulated in
leaves. Identification of plants can be done using the ratio
of BGF to CLa fluorescence, which has a strong relationship
with plant species.

B. IMAGING SENSORS

For more than thirty years, the use of image sensors for
weed identification has been an important area of research.
In agricultural fields, portable imaging and analysis tools like
RGB sensors and NDVI cameras have been used to identify
weed patches, distinguish weeds from crops, and identify
various weed species. The procedure entails capturing dig-
ital images, segmenting them, and then extracting plant
properties.

Using red and NIR wavelengths, [S5] created a bi-spectral
camera to identify different species of weeds. They produced
high-resolution images with pixel sizes of 0.23 mm and a
classification accuracy of 95%. They also employed RGB
imagery and the active shape models (ASM) matching tech-
nique to get comparable outcomes. The RGB color space
was converted to HSI values to apply the color co-occurrence
method (CCM) for species differentiation.
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Reference [56] classified soil with 100% accuracy and
detected weeds with over 90% accuracy in other circum-
stances. These systems are not yet commercially available,
despite their shown ability to distinguish between different
species of weeds. Certain devices, like the H-sensor, use
different pictures of the red and infrared wavebands taken
under active illumination to implement shape-based species
discrimination.

V. WEED MANAGEMENT APPLICATIONS
Below are the few innovative weed management apps that
bring enhanced control right to our fingertips [57].
1) Site of Action Lookup Tool:
Purpose: Swiftly identify the site of action (SOA)
of commonly used herbicides and diversify your
approach.
Available on: Android, iPhone, iPad
2) ID Weeds:
Purpose: Quickly and easily identify weeds with this
app from the University of Missouri, offering a list of
suspects based on characteristics.
Available on: Android, iPhone, iPad
3) Windfinder:
Purpose: A weather app displaying wind speed and
direction, crucial information for spray preparation.
Available on: Android, iPhone, iPad
4) Calibrate My Sprayer:
Purpose: User-friendly app by Clemson University for
sprayer calibration, optimizing weed control and mini-
mizing crop damage.
Available on: Android, iPhone, iPad
5) Agrian:
Purpose: Access chemical labels, including supple-
mental labels and updates, quickly. Note: Information
covers the entire U.S., and product registration varies
by state.
Available on: Android, iPhone, iPad
6) Mix Tank:
Purpose: Determine the right order for adding products
to the spray tank for compatibility, featuring integrated
weather data and GPS information in spray logs.
Available on: Android, iPhone, iPad
7) SpraySelect:
Purpose: Easily select the appropriate spray tip by
entering speed, tip spacing, and target rate, providing
a list of recommended tips.
Available on: Android, iPhone, iPad

VI. DEEP LEARNING

By incorporating hierarchical functions and adding depth to
data, deep learning (DL) is a technique that increases the
complexity of machine learning (ML). Because of its intricate
models, which enable large parallelization, it is very good at
addressing complicated issues [58]. When extensive datasets
are available, deep learning (DL) can improve classification
accuracy or decrease errors in regression studies. Depending
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on which network architecture is being utilized, DL might
consist of different components (Unsupervised Pre-trained
Networks, Convolutional Neural Networks, Recurrent Neural
Networks, and Recursive Neural Networks). It can handle
many different complicated data analysis problems due to
its huge learning capacity and hierarchical structure [59].
Although natural language processing (DL) is widely used in
systems that work with raster-based data, it may be used with
any type of data, including speech, audio, natural language,
weather data, and soil chemistry. Figure 7 depicts the CNN
architecture.

input  conyolutional
layer relu layer

pooling

convolutional
layer

layer relu layer

softmax

1
pooling layer comnection
layer

la‘sr

FIGURE 7. CNN architecture [60].

VII. IMPORTANCE OF DEEP LEARNING IN AGRICULTURE
Deep learning has found many applications in agriculture and
has changed various aspects of the field as mentioned below:

1) Crop monitoring and yield forecasting: Deep learning
models process data from drones, satellites, and IoT
devices to monitor crop health, detect disease, estimate
yields, and optimize irrigation and fertilization.

2) Weed and pest detection: Deep learning algorithms
help identify and differentiate plants from unwanted
plants (weeds) or pests, enabling targeted and precise
management strategies.

3) Crop disease detection: Deep learning models employ
plant image analysis to identify illnesses early on,
allowing for prompt intervention to avoid crop loss.

4) Soil Health Management in Harvest Automation: Tech-
nologies such as harvest automation and soil health
management, identify ripe crops and suggest crops that
are appropriate for specific soil types, increase agricul-
tural production, and lower labor expenses.

5) Climate Forecasting and Management: To forecast
climate change, deep learning models examine past
weather patterns and historical data. This information
helps farmers decide when to plant and harvest their
crops.

6) Optimization of supply chains: Deep learning enhances
distribution efficiency, cuts waste, and optimizes sup-
ply chains by evaluating a variety of data points, such
as demand forecasting and transportation logistics.

7) Genomics and breeding: By forecasting desired traits
and genetic combinations, deep learning assists in
genotype and phenotype prediction and speeds up agri-
cultural breeding procedures.

8) Precision Agriculture: Utilizing real-time data to
improve resource use and minimize environmental
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effects, precision agriculture, grounded on deep learn-
ing, allows for the targeted application of resources
(fertilizers, herbicides, and water).

9) Market Analysis and Decision Making: Farmers may
make well-informed choices about crop selection and
production by employing deep learning to analyze mar-
ket trends, pricing data, and consumer preferences.

Figure 8 depicts the application of Deep Learning in
Agriculture.

Weed
Detection
and Pest
Detection

/ Climate

| Forecasting |
and
M\anﬂneme.nt_. Precision
. Agriculture

FIGURE 8. Deep learning in agriculture.

VIil. EVOLUTION OF DEEP LEARNING IN WEED
DETECTION

Reference [61] quoted that the gathering of weed data and
weed management strategies are determined by sensing tech-
nologies. Weed data is essential for creating and comparing
weed identification techniques.

Thanks to developments in imaging techniques includ-
ing multispectral imaging, near-infrared imaging, and depth
imaging, interest in image-based weed identification has
increased. The development of novel algorithms for weed
identification tasks is facilitated by the availability of exten-
sive public datasets in the field [62], [63], [64].

Figure 9 depicts various approaches considered in weed
detection using deep learning.

Although the public datasets provide useful annotation
data and photos for benchmarking, they are not consistent
in terms of metadata reporting requirements or contextual
information. Comprehending the types of weeds is essential
to creating weed management strategies that work.

In weed control scenarios, annotated dataset construction is
time-consuming and can result in overfitting and inadequate
diversity. Several data augmentation techniques, such as rota-
tion, random cropping, and generative approaches, have been
used to improve the quantity and quality of training sets to
solve this.

Depending on the identification method, different criteria
are used to evaluate the effectiveness of weed identification
algorithms. Based on the categorization of an input sample,
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FIGURE 9. Deep learning in weed detection.

four different outcomes for binary image classification can be
derived: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN).

Four categories of studies exist for weed identification:
categorization of weed images, detection of weed objects,
segmentation of weed objects, and segmentation of weed
instances.

IX. RELATED WORK

The accuracy of mapping infestations of maize weed was
evaluated by Villiers et al. [65] through the use of a multitem-
poral UAV and data from PlanetScope. During the mid-to-late
stages of maize crop growth, they employed machine learn-
ing techniques such as support vector machine and random
forest to identify weeds. For PlanetScope, accuracy of less
than 49% was attained out of eight experiments. A greater
comprehension of the relationships between weeds and maize
throughout their life cycles is necessary, which is the study’s
shortcoming.

In this research, Vijayalaksmi et al. [66], proposed a novel
crop-monitoring system based on machine learning-based
categorization and UAVs is presented. The proposed archi-
tecture is depicted in Figure 10. It uses CNN to track crops
in remote areas with below-average cultivation and local
climate, classifying them as either crops or weeds. Metrics
like accuracy, precision, and specificity are used to evaluate
the accuracy of the system.

VOLUME 12, 2024
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FIGURE 10. Architecture for machine learning-based crop monitoring
system classification [66].

A lightweight YOLO v4-tiny model for weed detection in
maize seedlings is proposed in this paper [67]. Corn and weed
data photos were manually labeled and then separated into
three sets: test, validation, and training. The training set was
preprocessed and input into enhanced network models. After
training, the ideal weights were determined, and the models
were tested using the test set.

In an Australian chilli crop field, UAV photographs are
analyzed for weed identification. Three machine learning
algorithms are tested for this task: random forest (RF), sup-
port vector machine (SVM), and k-nearest neighbors (KNN).
Results for weed detection accuracy with UAV photos
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indicate 96%, 94%, and 63%, respectively, suggesting that
RF and SVM algorithms work well and are useful [68].

In soybean fields, the authors in this paper [69] used image
datasets to create an edge-based vision system for weed iden-
tification. After testing three CNN architectures—ResNet50,
MobileNet, and others—they discovered that a five-layer
CNN architecture had the greatest results in terms of per-
formance, lowest latency, and maximum accuracy of 97.7%.
Custom lightweight deep learning models were used in the
system’s design, and Raspberry Pi images were used for
training and inference. Precision, recall, and F1 score criteria
were used to assess the system’s correctness.

This study [70] focuses on object detection models in
inpasture environments, specifically weed identification.
Three dataset types were created using synthetic method-
ology. Tuning experiments improved model performance,
achieving over 95% accuracy for testing photos and 93%
mAP accuracy for training images. The leaf-based model
performed marginally better.

Figure 11 shows an illustration of deep learning and trans-
fer learning process.

Deep Learning

o | 000 [imme | B0

Weed
Images

0]

,- 1st layer ':>

Transfer Learning

Last layers

Weed
Images

‘ 1st layer '::>

2nd layer '::>

FIGURE 11. Deep learning and transfer learning process illustration [70].

The study [71] proposes a multiscale detection and atten-
tion mechanism-based weed identification model called
EM-YOLOV4-Tiny, based on YOLOv4-Tiny. It uses a Fea-
ture Pyramid Network with an Efficient Channel Attention
module, soft Non-Maximum Suppression, and Complete
Intersection over Union loss. The model detects a single
image in 10.4 ms and achieves a 94.54% mAP, making it
suitable for rapid and precise weed identification in peanut
fields.

This paper [72] demonstrated the effectiveness of Deep
Convolutional Neural Networks (DCNN) in identifying
weeds in perennial ryegrass. AlexNet and VGGNet showed
similar performance on datasets with one weed species.
However, VGGNet showed the highest MCC values for mul-
tiple weed species, demonstrating increased precision and
improved F1 score.

The study [73] compared SVM and VGG16 classification
models using RGB picture texture data to categorize weeds
and crop species. The researchers used 3792 RGB photos
from a greenhouse and selected crucial features for prediction
models. Six crop species and four weeds were classified
using SVM and VGG16 classifiers. The VGG16 model had
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an average fl-score of 93% to 97.5%, showing promising
outcomes for site-specific weed management in precision
agriculture. Figure 12 shows the Captured images of weed
species and crops from a greenhouse, preprocessed to extract
the green component, allowing for a better interpretation of
color references.

YOLOv4-Tiny and an improved model were used by the
authors to create a weed recognition framework that outper-
formed 33,572 labels for 1000 pictures, with a mean average
precision of 86.89% [74].

The study [75] used images of paddy crops and
broadleaved and sedge-type weeds to segment them using the
semantic segmentation models PSPNet, UNet, and SegNet.
PSPNet fared better than SegNet and UNet, suggesting its
potential for safe food production and weed control at the site
level. It may also be able to advise farmers on the appropriate
herbicides.

Utilizing data from an unmanned aerial aircraft in a
barley field, the study offers a rule-based approach for
classifying perennial weed data. The multispectral-thermal-
canopy-height model yielded the best F1 score when used
in conjunction with the Normalized Difference Vegetation
Index (NDVI) and U-net models [76].

The paper [77] offers a faster R-CNN-based technique
that uses the CBAM module and field photographs to detect
weeds in soybean seedlings. With VGG19 having the best
structure, the model gets an accuracy rate of 99.16% on
average. Using one hundred soybean data samples, the gen-
eralizability of the model is verified.

The authors in this paper [78] propose a pixel-level syn-
thesization data augmentation technique and a TIA-YOLOV5S
network for weed and crop detection in complex field
environments. The pixel-level synthesization method creates
synthetic images, while the TIA-YOLOvV5 network adds a
transformer encoder block and a channel feature fusion with
an involution strategy to increase sensitivity to weeds and
minimize information loss.

The study [79] uses a remotely piloted airplane to
map weed-occupied areas, calculate percentages, and pro-
vide field-based treatment and control measures. Data
is analyzed using R, QGIS, and PIX4D, with random
forest and support vector machine methods used for
classification.

The study [80] proposes a soybean field weed recognition
model using an enhanced DeepLabv3+ model, incorporating
a Swin transformer for feature extraction and a convolution
block attention module. The model outperformed tradi-
tional semantic segmentation models in identifying densely
distributed weedy soybean seedlings, with an average inter-
section ratio of 91.53%. The study suggests further use of
transformers in weed recognition.

The study [81] trained convolutional neural networks
(CNNs) on images of various plant species, resulting in
a Top-1 accuracy of 77% to 98% in plant detection and weed
species discrimination, using three different CNNs( VGG16,
ResNet-50, and Xception)from a pool of 93,000 photos.
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TABLE 1. Challenges and gaps in crop and weed detection: Addressing dataset limitations and controlled environment studies.

Citation Aim of the Paper Models or Algorithms | Dataset Limitations

[68] Explores the efficiency of three ML al- | RF Images were taken from Chilli | The study, conducted in a controlled
gorithms in weed identification using | SVM Field, Australia environment, may not apply to
UAYV images. KNN different farms due to soil, weather,

and crop varieties.
Detection of weeds conducted during
the initial phase of crop development.

[77] Suggests an enhanced approach based | Faster R-CNN | Images were taken from a soy- | This study collects data on grassy and
on Faster R-CNN for detecting weed | algorithm bean field located in China broadleaf weeds at a small identifica-
presence in soybean seedlings. VGG19-CBAM tion scale.

[82] Suggest an enhanced model based on | Improved YOLOv4 al- | Images were taken from thetest | Data set collected from an experimen-
YOLOV4 for detecting weeds in potato | gorithm site in China tal field not from the real field.
fields.

[83] The study used multispectral data from | XGB New Zealand The study did not explore deep learn-
UAVs to identify hawkweed leaves and | SVM ing techniques using CNN and the
flowers using traditional machine learn- | RF data used is not publicly available,
ing techniques. KNN limiting reproducibility and analysis.

[84] Proposes a Faster R-CNN network | Faster RCNN V2 Plant Seedlings Dataset The paper lacks details on the poten-
architecture for identifying weeds in | FPN tial effects of lighting conditions or
cropping region images. Improved ResNeXt101 image quality on the model’s perfor-

mance.

[73] The study compared SVM and VGG16 | SVM Images were collected in | The study focuses on greenhouse con-
classification models using texture data | VGG16 the Waldron greenhouse at | ditions.
from RGB images for the classification North Dakota State University
of weed and crop species. (NDSU)

[78] Proposes the use of a pixel-level syn- | TIA-YOLOV5 Publicly available sugarbeet | Model is not tested on a real-time
thesis data augmentation approach and | CFFI dataset dataset.

a TIA-YOLOVS5 network for detecting | ASFF
weeds and crops in intricate pasture
conditions

[85] This study uses the Weed-ConvNet | IoT Public image dataset Not applicable
model to integrate IoT and digital im- | Weed-ConvNet
age processing for weed plant detection
in agriculture

[86] Introduces WeedGan, a new generative | WeedGAN Synthetic dataset + Public | Not tested on other crop datasets as
adversarial network, to augmentaweed | ESRGAN dataset well as on real field datasets.
dataset.

[87] Proposes a method using GANs to | DCGAN Public dataset Study is evaluated on a relatively
generate synthetic images and transfer small dataset. Further research is
learning for early weed identification in needed to evaluate its performance on
agriculture. larger and more diverse datasets to test

its generalizability.

[88] Proposes an extensive dataset and | Semantic Segmentation | Sugar beet field Not Mentioned
benchmarks for semantic interpreta- | Panoptic Segmentation
tion of images in the farming sector, | Leaf Instance Segmen-
with high-quality annotations of crops, | tation
weeds, and crop leaves.

[89] Presents a plant dataset, Chicory Plant | YOLOv7 Lincoln beet dataset (UK) Not Mentioned
(CP), and tests deep weed object detec- Chicory Plant dataset (Bel-
tion using YOLOV7. gium)

Table 1 addresses dataset limitations and controlled envi-

ronmental studies.

This study [85] uses the Weed-ConvNet model to integrate
IoT and digital image processing for weed plant detection
in agriculture. The model achieves higher accuracy with col-
orsegmented images (0.978) than with grayscale-segmented
images (0.942).

This paper [87] presents a two-stage methodology
combining GANs and transfer learning to improve weed
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identification in real environment images with complex back-
grounds. It analyzes the performance of DCGANSs using
various architectural configurations, compares transfer learn-
ing approaches like Random, ImageNet, and Agricultural
datasets, and compares traditional and GAN-based data aug-
mentation techniques. The optimal configuration achieved
99.07% performance on a tomato and black nightshade
dataset, with other designs achieving similar results. Future
research should focus on larger, more complicated datasets.
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FIGURE 12. Captured images of weed species and crops from a greenhouse, preprocessed to extract the green
component, allowing for better interpretation of color references [73].

In order to enhance a weed dataset, this work [86] presents
WeedGan, a novel generative adversarial network. It gener-
ates synthetic images with low resolution, which are then
processed by ESRGAN to produce high resolution versions.
The process comprises gathering datasets, enhancing images,
identifying images, and evaluating them. The study vali-
dates the efficacy of the dataset using seven transfer learning
approaches.

The study [90] used device visualization and deep learn-
ing to detect weeds in wheat crop fields in real-time.
Using 6000 images from PMAS Arid Agriculture University
research farm, the study found that the PyTorch framework
outperformed other networks in terms of speed and accuracy.
The study also compared the inference time and detection
accuracy of various deep learning models, with the NVIDIA
RTX2070 GPU showing the best results.

This study [82] proposes an improved YOLOv4 model for
weed detection in potato fields. The model uses Depthwise
separable convolutions, convolutional block attention mod-
ule, K-means+-+- clustering algorithm, and image processing
techniques to improve detection accuracy. The model’s learn-
ing rate is modified using cosine annealing decay, and the
MC-YOLOv4 model has a 98.52% mAP value for weed
detection in the potato field.

A GCN graph was created using recovered weed CNN
characteristics and Euclidean distances. The GCN-ResNet-
101 strategy outperformed leading techniques, achieving
recognition accuracy scores of 97.80%, 99.37%, 98.93%,
and 96.51% on four weed datasets. This CNN feature-based
method is effective for real-time field weed control [91].

This research [92] proposes a crop row recognition system
using low-cost cameras to detect field variations. It uses
a deep learning-based method to segment crop rows and
extracts the central crop using a new central crop row selec-
tion algorithm. The system outperforms industry standards
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in difficult field settings, demonstrating its effectiveness and
capacity for visual servoing.

Figure 13 shows different types of data collection methods.
The authors in this paper [93] developed a unique crop row
identification algorithm for visual servoing in agricultural
fields, outperforming the baseline by 37.66%. They identified
weed population and row discontinuities as the most chal-
lenging conditions. They also developed an EOR detector to
safely direct robots away from crop rows.

The paper [94] presents a system design for an autonomous
agricultural robot aimed at real-time weed identification,
potentially extending to other farming applications like weed
removal and plowing.

The research [95] presents a base model framework for
an instructor framework to improve semantic segmentation
models for crops and weeds in uncontrolled field settings.
It suggests using a teacher model trained on various tar-
get crops and weeds to instruct a student model, and a
meta-architecture to enhance performance.

Figure 14 depicts different models used for weed detection.

This study [96] proposes a multi-layer attention technique
using a transformer and fusion rule to interpret deep neu-
ral network decisions. The fusion rule integrates attention
maps based on saliency. The model uses the Plant Seedlings
Dataset (PSD) and Open Plant Phenotyping Dataset (OPPD)
to train and assess the model. Attention maps are marked with
red needs and misclassification information for cross-dataset
analyses. Modern comparisons show improved classification,
with an average gain of 95.42% for negative and posi-
tive explanations in PSD test sets and 97.78% and 97.83%
in OPPD evaluations. High-resolution information is also
included in visual comparisons.

This research [97] aims to develop a new crop row recogni-
tion technique using orthomosaic UAV photos. Using wheat
and nitrogen field trials, the new crop detection technique
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FIGURE 13. Different data collection methods used.
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FIGURE 14. Different models used for weed detection.

based on least squares fitting was compared to the Hough
transform method. The new approach showed better crop row
detection accuracy (CRDA) for cotton nitrogen levels and
wheat nitrogen and water levels, outperforming the Hough
transform method.

The first RGB-D photo dataset for the semantic seg-
mentation of plant species in crop farming is presented by
the authors as WE3DS. The dataset consists of a bench-
mark, 2568 images, and hand-annotated ground-truth masks.
The trained models are capable of distinguishing between
10 weed species, seven crop species, and soil [98].

The authors [99] propose a new framework for data aug-
mentation based on the random image cropping and patching
(RICAP) technique for semantic segmentation and catego-
rization of weeds and crops as shown in Figure 15. The
framework enhances segmentation accuracies, with improve-
ments over the original RICAP. Experiments show that
the proposed method improves deep neural network mean
accuracy and intersection over union, but has limitations,
especially when using large training data.

The study evaluated deep learning-based weed identifica-
tion methods from RGB photographs of a bell pepper field.
The models, trained using different epochs and batch sizes,
achieved varying accuracy rates. InceptionV3, with 97.7%
accuracy, 98.5% precision, and 97.8% recall, outperformed
others, enabling accurate weed management integration with
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image-based pesticide applicators [100]. Figure 16 shows the
presence of weeds in bell paper grown in polyhouse.

The study [101] reveals that deep learning CNN
(DL-CNN) models are effective in identifying broadleaf
weeds in turfgrasses. VGGNet was the best model for detect-
ing various broadleaf weeds in dormant bermudagrass, while
DetectNet was the best for detecting cutleaf evening primrose
in bahiagrass. These models have high recall values, strong
F1 scores, and overall accuracy, indicating their potential for
turfgrass weed detection.

The research carried out in this paper [102] used object
identification Convolutional Neural Networks to detect weed
species and differentiate between broadleaved and grasses.
YOLOvV3 outperformed other networks for spotting grass
weeds. Faster R-CNN and YOLOv3 were outperformed by
GoogleNet and VGGNet. VGGNet was the most successful
for spotting grass and broadleaf plants in alfalfa.

The authors in this paper [103] recommend the RetinaNet-
based WeedNet-R model for sugar beet fields, enhancing
weed recognition accuracy without significant parameter
increase. They also implemented an untuned exponential
warmup schedule for the Adam optimizer and manually rela-
beled nearly 5,000 photos for object detection.

Three deep learning-based image processing techniques
are compared in this study [104] to detect weeds in lettuce
fields. First, YOLOV3 is used for object identification, fol-
lowed by Mask R-CNN for instance segmentation, and last,
histograms of oriented gradients (HOG) as a feature descrip-
tor in the second. Remove non-photosynthetic elements using
the NDVI index. For edge detection and crop identification,
the methods additionally make use of CNN features and
masks.

The study [105] presents a method for identifying weed
species threatening tomato crops using RetinaNet neural net-
works for object detection. The technique was tested against
popular models like YOLOvV7 and Faster-R Results showed
RetinaNet performed best with an AP ranging from 0.900 to
0.977, while Faster-RCNN and YOLOvV7 also achieved good
results. The study suggests CNN-based weed recognition
techniques could be more relevant for real-time applications.
The research [106] aims to create a lightweight weed detect-
ing system for laser weeding robots using a dataset of 9,000
photos from six Pakistani fields. The YOLOS single-shot
object detection model was chosen due to its superior perfor-
mance in predicting true positives and false negatives. The
model is used to identify and categorize crops and weeds,
with the YOLO model being the best choice due to its strong
performance in frame extraction and detection. The system
is implemented using an embedded Nvidia Xavier AGX chip
for high-performance and low-power operation.

The study [83] used multispectral data from UAVs to iden-
tify hawkweed leaves and flowers using traditional Machine
Learning techniques. Results showed that RF, KNN, and
XGB models accurately identified flowers at 0.65 cm/pixel,
demonstrating the potential of ML and remote sensing for
large-scale hawkweed detection.

113203



IEEE Access

D. G Pai et al.: DL Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review

Sample images from datasets
images labels

patched image

Generated image

Sample images from datasets
g labels

patched label

FIGURE 15. The proposed method divides an image region into horizontal and vertical parts, randomly selecting 6 images and labels from the
dataset, and cropping and patching these parts to create new images and labels [99].

FIGURE 16. Presence of weeds in bell paper grown in polyhouse [100].

The Faster R-CNN network model is proposed for weed
identification in cropping region images. It incorporates the
feature pyramid network (FPN) method for increased recog-
nition precision. The model combines the ResNeXt network
with FPN for feature extraction. Tests show a recognition
accuracy of over 95%, making it suitable for weed manage-
ment systems. The model outperforms the ResNet feature
extraction network in terms of quick and accurate target
recognition, demonstrating the high effectiveness of deep
learning techniques in this area [84].

This paper [107] introduces “DenseHHO’, a deep learning
framework for weed identification using pre-trained CNNs.
The model’s architecture is chosen based on weed images
from sprayer drones, and the model’s hyperparameters are
automatically adjusted using HHO for binary class classifi-
cation.

Table 2 and 3 addresses the need for a deep learning
framework in detail.

The study [108] demonstrates that deep learning can indi-
rectly detect weeds b