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ABSTRACT Agriculture has been completely transformed by Deep Learning (DL) techniques, which allow
for quick object localization and detection. However, because weeds and crops are similar in color, form,
and texture, weed detection and categorization can be difficult. Advantages in object detection, recognition,
and image classification can be obtained with deep learning (DL), a vital aspect of machine learning (ML).
Because crops and weeds are similar, ML techniques have difficulty extracting and choosing distinguishing
traits. This literature review demonstrates the potential of various DL methods for crop weed identification,
localization, and classification. This research work investigates the present status of Deep Learning based
weed identification and categorization systems. The majority of research employs supervised learning
strategies, polishing pre-trained models on sizable, labeled datasets to achieve high accuracy. Innovations
are driven by the need for sustainable weed management methods, and deep learning is demonstrating
encouraging outcomes in image-based weed detection systems. To solve issues like resource scarcity,
population increase, and climate change, precision agriculture holds great promise for the integration of AI
with IoT-enabled farm equipment.

INDEX TERMS Agriculture, artificial intelligence, deep learning, weed detection, neural networks.

NOMENCLATURE
AI Artificial Intelligence.
ASFF Adaptive Spatial Feature Fusion.
CBAM Convolutional Block Attention Module.
CFFI Channel Feature Fusion with Involution.
CLAHE Contrast Limited Adaptive Histogram

Equalization.
DCGAN Deep Convolutional Generative

Adver-sarial Network.
DCNN Deep Convolutional Neural Network.
DL Deep Learning.
FPN Feature Pyramid Network.
GAN Generative Adversarial Network.
KNN K Nearest Neighbor.

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

M− Unet Multispectral U-net.
ML Machine Learning.
MSR Multi Scale Retinex.
MT− Unet Multispectral Thermal U-net.
RCNN Regional Convolutional Neural Network.
RF Random Forest.
Soft− NMS Soft-Non-Maximum Suppression.
SSR Single Scale Retinex.
SV M Support Vector Machine.
XGB eXtreme Gradient Boosting.

I. INTRODUCTION
Agriculture is the art and science of cultivating soil for the
growth of crops that will supply people with food, fiber, and
other goods to buy and consume [1], [2]. The global populace
is predicted to rise quickly to nine billion people by the
year 2050. To meet the projected demand, agricultural output
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needs to expand by nearly 70% [3]. Nevertheless, agriculture
encounters several substantial challenges, including the risk
of diseases, a critical shortage of cultivable land and water
resources, and the impact of a changing climate as well as
threats from weeds and pests [4]. Implementing intelligent
farming practices is essential to addressing the problems asso-
ciated with agricultural production including sustainability,
food security, productivity, and environmental impact [5].
Plants that spread quickly and negligently are known as

weeds, and they can negatively impact crop production and
quality [6]. They contend with crops for nutrients, water,
sunlight, and growth space, necessitating farmers to allo-
cate resources to control them [7]. To mitigate the impact
of weeds, various management tactics are employed, which
can be categorized into five main groups according to [8]:
‘‘preventative’’ (preventing weed establishment), ‘‘cultural’’
(preserving field cleanliness) to reduce the weed seed bank),
‘‘mechanical’’ (utilizing techniques such as mulching, till-
ing, and cutting), ‘‘biological’’ (employing natural enemies
like insects, grazing animals, or diseases), and ‘‘chemical’’
(using herbicides). Despite their effectiveness, each strat-
egy has drawbacks, typically being costly, time-consuming,
and labor-intensive. Additionally, control measures may have
adverse effects on the health of humans, plants, soil, animals,
or the environment [9]. Until now, various techniques and
technologies have been employed for weed detection.

II. TRADITIONAL METHODS AND CHALLENGES IN WEED
REMOVAL

1) Manual Inspection: Traditional weed detection involves
labor-intensive and time-consuming manual inspection
and removal by human workers. Despite its drawbacks,
this method is still utilized in certain situations.

2) Chemical herbicides: They are frequently used in agri-
culture to suppress weeds, however, their application
can have detrimental effects on the environment and be
non-selective, which could hurt crops as well as weeds.

3) Mechanical weed control techniques: Plowing, tilling,
and mechanical weeding equipment, are useful for get-
ting rid of weeds from fields, but they can be inaccurate
and harm crops.

4) Crop rotation: To increase soil fertility, nutrient levels,
and control weeds and pests, crop rotation is the prac-
tice of growing various crops one after another. The
distinct growth requirements of various crops, however,
may present difficulties for farmers.

5) Mulching: To efficiently inhibit the growth of weeds,
organic materials such as leaves, wood chips, or straw
are added to the soil [10], [11], [12].

Figure 1 depicts various weed management techniques.

A. LIMITATIONS OF TRADITIONAL WEED CONTROL
STRATEGIES
Herbicides work well to manage weeds, however because
of the shortcomings of traditional spraying systems, they

also have disadvantages [13]. Herbicide resistance, environ-
mental contamination, and ecological imbalance can result
from using the same class of herbicides repeatedly over time.
Overuse can lead to herbicide-resistant weed populations,
which lowers farmland biodiversity and dominates hard-
to-control weed species in agricultural settings. Negative
side effects from chemical pesticides include contaminating
ground and surface waters and releasing residues into the
food chain [14]. This puts the long-term sustainability of
the farming industry and biodiversity conservation at risk by
increasing contamination of the environment from agricul-
tural chemical inputs.

Because of the higher bulk density and compaction of
topsoil, little tillage or non-tillage can also raise the phy-
totoxicity of the soil. Reducing tillage may force farmers
to use additional pesticides and herbicides to counter these
risks. The criteria of soil quality, such as biological diver-
sity, soil structure, and water storage capacity, are negatively
impacted by overuse of tillage. Tillage causes soil erosion
and degradation by depriving microorganisms of carbon and
nitrogen resources. This leads to an increase in agricultural
contamination of the environment.

There are restrictions on other ground cover techniques
as well, like fire, mulching, and cattle grazing. Mulching
can induce soil alterations, be costly, and have allelopathic
impacts on crops if certain organic mulches are used [15].
Living mulches compete with other plants for nutrients and
water, they can stunt crop development and yield and raise
the danger of disease and pest infestation. Livestock grazing
can disperse weed seeds, harm non-target species and the
soil’s structure, and even result in an animal’s condition or
liveweight being lost.

Precision Weed Management (PWM) technology can be
integrated to reduce or eliminate these constraints, opening
the door where precision is the norm [16].

III. TECHNOLOGICAL PROGRESS IN WEED DETECTION
In expansive agricultural regions, the use of remote sensing
technology—such as drones and satellite imaging is essen-
tial for identifying and monitoring weed infestations [17].
By differentiating between weeds and crops, computer vision
and machine learning enhance weed detection, with accuracy
being continuously enhanced through training [18].
With cameras and automated equipment, robotic weed

eaters provide real-time weed detection and elimination,
which might cut down on manual labor and the need for
herbicides [19], [20], [21], [22].

With the use of precision agricultural technologies, such
as GPS-guided equipment, farmers may spray herbicides
selectively, sparing areas that are not affected by weed infes-
tations while focusing on those that are instruments for
chemical sensing that identify biological fingerprints, such
as changes in chlorophyll content, indicate the presence of
weeds [23], [24].

Additionally, weed management apps utilizing image
recognition technology assist farmers in identifying and
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FIGURE 1. Various weed management techniques [26].

managing weeds, often based on photos provided by
users [25].

A. ROBOTIC TECHNOLOGY
Expected to transform farming, the agriculture robot, or agri-
bot, is driving an exponential increase in global investment
and research in robotics, science, and engineering [27].
Robots that carry out in-field weeding operations using com-
puter vision techniques are shown in Figure 2, 3, 4 and 5.

FIGURE 2. BoniRob terrestrial robot [28].

FIGURE 3. Tertill weeding robot [29].

Several researchers have made progress in the devel-
opment of robotic systems for controlling and detecting
weeds, although the practical application is still a significant
challenge [30].

Reference [32] created a robot with dual-gimbal capabil-
ities, successfully identifying and targeting weeds indoors,
achieving a high hit rate of 97% with specific laser param-
eters. Reference [22] designed a weed-detecting robot using

FIGURE 4. Solar powered weeding robot [31].

a Raspberry Pi microcontroller and achieved 92.9% accuracy
in identifying sugarcane crops among various weed species.
Reference [33] demonstrated the Adigo robot platform for
autonomous herbicide application. The Ladybird robot from
the University of Sydney, equipped with a spraying end actu-
ator and a machine learning algorithm, effectively controls
weeds with targeted herbicide application.

FIGURE 5. Agricultural robotic platform with four wheel steering for weed
detection [20].

[34] developed the AgBotII, a modular weeding robot that
identifies crops andweeds using image processing techniques
and removes weeds with different tools. Reference [35]
merged a multifunctional agricultural automated terrain vehi-
cle with the aerial survey capability of a small UAV to
achieve thorough weed management. Reference [36] pro-
posed a weeding robot that navigates autonomously in paddy
fields, disrupting soil to remove weeds and inhibiting their
growth. The Sinobot prototype, equipped with independently
steered wheels, was designed for weeding and route planning.

These advancements indicate progress in robotic weed
control, but practical implementation remains challenging.

B. PRECISION AGRICULTURE AND AI INTEGRATION
Precision agriculture combines the advancements of the
information age with an established agricultural sector [37].
It serves as a comprehensive crop management system,

VOLUME 12, 2024 113195



D. G Pai et al.: DL Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review

aiming to align input types and quantities with the specific
requirements of small sections within a farm field.

Although the objective is not novel, recent technologi-
cal developments have made precision agriculture feasible
in practical farming scenarios. Precision agriculture is fre-
quently identified by the enabling technologies, commonly
known as GPS (Global Positioning System) agriculture
or variable-rate farming [38]. Despite the significance of
devices, it becomes evident upon reflection that information
is the crucial element for achieving accuracy in farming
practices.

To enhance the efficiency of modern agriculture, the inte-
gration of drones for aerial applications is crucial. This
approach standardizes chemical spraying processes and
addresses the labor shortage in rural areas. The use of drones
ensures precise deposition of products on target areas, min-
imizing environmental losses. Reference [39] proposed that
UAVs enable the monitoring of individual plants and weed
patches, a capability previously unavailable.

References [40] and [41] presented a method involving
UAV imagery to apply herbicides selectively, demonstrating
the identification of weeds in row crops through aerial image
analysis.

The concept put out by [42] suggests that weed man-
agement tactics have evolved to use drones equipped with
cameras and Geographic Information Systems (GIS).

Improved results may be achieved by optimizing agri-
cultural activities linked to weed detection and eradication
through the combination of drones, robots, artificial intelli-
gence, and sensors, as proposed by [43], [44], [45], and [46].
Reference [47] argued that technology not only reduces

manual labor but also enhances food quality by utilizing
drones for various agricultural purposes.

C. UTILIZING DRONES FOR WEED CONTROL
The assertion made by [48] in the area of weed management
is that drones play a crucial role in detecting and identifying
weed patches efficiently. They use near-infrared and visible
light for crop condition assessment, offering a significant
advantage of reduced surveying time, especially among crop
rows. The capacity of UAVs to cover large areas quickly and
generate photographic images facilitates weed patch identi-
fication. The processing of these images involves advanced
technologies such as deep neural networks and convolutional
neural networks.

RGB, multispectral, and hyperspectral cameras are the
three primary types of cameras used in [49]’s research on
UAV-based weed identification. Still, other parameters like
drone kind, flight height, and camera resolution affect how
well these cameras identify weed patches. Differentiating
between crop seedlings and weeds is crucial for designing an
effective automated weedmanagement system. Specific UAV
models equipped with GPS and cameras, like the md4-1000
quadcopter, are employed for weed detection and mapping.
These systems utilize object-based image analysis (OBIA)

frameworks to create accurate herbicide application maps.
Color analysis methods have been implemented for detecting
specific weed types in various environmental conditions effi-
cacy and limits of unmanned aerial vehicle (UAV) technology
for weed seedling detection as affected by sensor resolution.

For example, in a vineyard field, a quadcopter UAV with
RGB photos mapped weed patches using an OBIA approach,
optimizing site-specific weed control. Reference [50] argued
that the md4-1000 quadcopter employs a weed mapping rule
set method to categorize crop rows, differentiate between
crop plants and weeds, and develop a weed infestation map.
This technique aims to reduce herbicide applications by tai-
loring doses based on observed weed infestation levels Weed
mapping in early-season maize fields using object-based
analysis of unmanned aerial vehicle (UAV) images. Figure 6
depicts an image of a drone utilized for data collection pro-
cedure in agricultural domain.

FIGURE 6. Pictures taken of the drone at various points during the data
collection procedure [51].

The detection capability of algorithms, indicating the accu-
racy in classifying pixels as crops or weeds, reaches 91%with
a spatial resolution of 21.6 mm/pixel.

Reference [52] carried out research on UAVs equipped
with visible and multispectral cameras, utilizing automated
OBIA approaches, effectively map weed patches such as
Johnsongrass.

Overall, the integration of drones and advanced imaging
technologies enhances the precision and efficiency of weed
management in agriculture.

IV. SENSOR TECHNIQUE IN WEED CONTROL
Reference [53] focused on digital video cameras called
Robocrop inter-row and Robocrop Inrow® that are used in
agricultural techniques to control weeds particular to a given
place. They help to reduce the amount of herbicide used
in spraying applications and to steer mechanical weeding
equipment. These methods use shape, color, and crop row
spacing data to increase classification rates for transplanted
crops. Variable herbicide rates depend on online sensors
for weed detection. Comparing field trials with traditional
application, cereal, and pea trials revealed average pesticide
savings of 24.6%, no yield reduction, and no variations in
weed density between lowered and standard dosage areas.

A. NON IMAGING SENSORS
Using spectral and height features, non-imaging sensors (e.g.,
spectrometers and fluorescence sensors) quantify weed spots
in fields [17].
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From the ultraviolet (UV) to the near-infrared (NIR), spec-
trum analyzers measure the strength of reflections at different
electromagnetic spectrum wavelengths [54]. Although they
can’t tell different species of plants apart, they can provide
information that can help separate plants from soil. The
reflectance of bare soil increases linearly from blue to near-
infrared light, whereas green leaves have low reflectivity in
the red and blue spectra and high reflectance in the green and
near-infrared wavelengths.

A plant’s spectrum response varies with its growth stage,
and the signal that is received is a blend of various plant
species and soil composition. Approaches to spectral iden-
tification are intricate and necessitate appropriate prior
knowledge, which is unavailable in the field. For weed
identification and quantification, chemometrics works well;
however, it is not effective for weed detection.

Optoelectronic sensors distinguish between the presence
and absence of plants by focusing on particular spectral
bands in the red/near-infrared (R/NIR) spectrum. In rows
of crops, these sensors can identify weeds in between the
rows. To calculate an index similar to the NDVI, commercial
sensors evaluate reflectance characteristics in the NIR and
R wavelengths.

The DetectSpray spot-spraying system and the Weed-
Seeker, GreenSeeker, WEEDit, and Crop Circle ACS-470 are
a few examples. When paired with a sprayer, these active
sensors indicate a high level of vegetation cover. Underes-
timating weed coverage is the most common inaccuracy that
has been reported.

Because of flavonol anthocyanins, polyphenols, and
chlorophyll, plants’ leaves generate fluorescent light, which
is detected by fluorescence sensors. While chlorophyll a and
b emit fluorescence in the red to the far-red range, UV light
causes blue-green fluorescence (BGF) to be stimulated in
leaves. Identification of plants can be done using the ratio
of BGF to CLa fluorescence, which has a strong relationship
with plant species.

B. IMAGING SENSORS
For more than thirty years, the use of image sensors for
weed identification has been an important area of research.
In agricultural fields, portable imaging and analysis tools like
RGB sensors and NDVI cameras have been used to identify
weed patches, distinguish weeds from crops, and identify
various weed species. The procedure entails capturing dig-
ital images, segmenting them, and then extracting plant
properties.

Using red and NIR wavelengths, [55] created a bi-spectral
camera to identify different species of weeds. They produced
high-resolution images with pixel sizes of 0.23 mm and a
classification accuracy of 95%. They also employed RGB
imagery and the active shape models (ASM) matching tech-
nique to get comparable outcomes. The RGB color space
was converted to HSI values to apply the color co-occurrence
method (CCM) for species differentiation.

Reference [56] classified soil with 100% accuracy and
detected weeds with over 90% accuracy in other circum-
stances. These systems are not yet commercially available,
despite their shown ability to distinguish between different
species of weeds. Certain devices, like the H-sensor, use
different pictures of the red and infrared wavebands taken
under active illumination to implement shape-based species
discrimination.

V. WEED MANAGEMENT APPLICATIONS
Below are the few innovative weed management apps that
bring enhanced control right to our fingertips [57].

1) Site of Action Lookup Tool:
Purpose: Swiftly identify the site of action (SOA)
of commonly used herbicides and diversify your
approach.
Available on: Android, iPhone, iPad

2) ID Weeds:
Purpose: Quickly and easily identify weeds with this
app from the University of Missouri, offering a list of
suspects based on characteristics.
Available on: Android, iPhone, iPad

3) Windfinder:
Purpose: A weather app displaying wind speed and
direction, crucial information for spray preparation.
Available on: Android, iPhone, iPad

4) Calibrate My Sprayer:
Purpose: User-friendly app by Clemson University for
sprayer calibration, optimizing weed control and mini-
mizing crop damage.
Available on: Android, iPhone, iPad

5) Agrian:
Purpose: Access chemical labels, including supple-
mental labels and updates, quickly. Note: Information
covers the entire U.S., and product registration varies
by state.
Available on: Android, iPhone, iPad

6) Mix Tank:
Purpose: Determine the right order for adding products
to the spray tank for compatibility, featuring integrated
weather data and GPS information in spray logs.
Available on: Android, iPhone, iPad

7) SpraySelect:
Purpose: Easily select the appropriate spray tip by
entering speed, tip spacing, and target rate, providing
a list of recommended tips.
Available on: Android, iPhone, iPad

VI. DEEP LEARNING
By incorporating hierarchical functions and adding depth to
data, deep learning (DL) is a technique that increases the
complexity of machine learning (ML). Because of its intricate
models, which enable large parallelization, it is very good at
addressing complicated issues [58]. When extensive datasets
are available, deep learning (DL) can improve classification
accuracy or decrease errors in regression studies. Depending
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on which network architecture is being utilized, DL might
consist of different components (Unsupervised Pre-trained
Networks, Convolutional Neural Networks, Recurrent Neural
Networks, and Recursive Neural Networks). It can handle
many different complicated data analysis problems due to
its huge learning capacity and hierarchical structure [59].
Although natural language processing (DL) is widely used in
systems that work with raster-based data, it may be used with
any type of data, including speech, audio, natural language,
weather data, and soil chemistry. Figure 7 depicts the CNN
architecture.

FIGURE 7. CNN architecture [60].

VII. IMPORTANCE OF DEEP LEARNING IN AGRICULTURE
Deep learning has found many applications in agriculture and
has changed various aspects of the field as mentioned below:

1) Crop monitoring and yield forecasting: Deep learning
models process data from drones, satellites, and IoT
devices to monitor crop health, detect disease, estimate
yields, and optimize irrigation and fertilization.

2) Weed and pest detection: Deep learning algorithms
help identify and differentiate plants from unwanted
plants (weeds) or pests, enabling targeted and precise
management strategies.

3) Crop disease detection: Deep learning models employ
plant image analysis to identify illnesses early on,
allowing for prompt intervention to avoid crop loss.

4) Soil HealthManagement in Harvest Automation: Tech-
nologies such as harvest automation and soil health
management, identify ripe crops and suggest crops that
are appropriate for specific soil types, increase agricul-
tural production, and lower labor expenses.

5) Climate Forecasting and Management: To forecast
climate change, deep learning models examine past
weather patterns and historical data. This information
helps farmers decide when to plant and harvest their
crops.

6) Optimization of supply chains: Deep learning enhances
distribution efficiency, cuts waste, and optimizes sup-
ply chains by evaluating a variety of data points, such
as demand forecasting and transportation logistics.

7) Genomics and breeding: By forecasting desired traits
and genetic combinations, deep learning assists in
genotype and phenotype prediction and speeds up agri-
cultural breeding procedures.

8) Precision Agriculture: Utilizing real-time data to
improve resource use and minimize environmental

effects, precision agriculture, grounded on deep learn-
ing, allows for the targeted application of resources
(fertilizers, herbicides, and water).

9) Market Analysis and Decision Making: Farmers may
make well-informed choices about crop selection and
production by employing deep learning to analyze mar-
ket trends, pricing data, and consumer preferences.

Figure 8 depicts the application of Deep Learning in
Agriculture.

FIGURE 8. Deep learning in agriculture.

VIII. EVOLUTION OF DEEP LEARNING IN WEED
DETECTION
Reference [61] quoted that the gathering of weed data and
weed management strategies are determined by sensing tech-
nologies. Weed data is essential for creating and comparing
weed identification techniques.

Thanks to developments in imaging techniques includ-
ing multispectral imaging, near-infrared imaging, and depth
imaging, interest in image-based weed identification has
increased. The development of novel algorithms for weed
identification tasks is facilitated by the availability of exten-
sive public datasets in the field [62], [63], [64].

Figure 9 depicts various approaches considered in weed
detection using deep learning.

Although the public datasets provide useful annotation
data and photos for benchmarking, they are not consistent
in terms of metadata reporting requirements or contextual
information. Comprehending the types of weeds is essential
to creating weed management strategies that work.

Inweed control scenarios, annotated dataset construction is
time-consuming and can result in overfitting and inadequate
diversity. Several data augmentation techniques, such as rota-
tion, random cropping, and generative approaches, have been
used to improve the quantity and quality of training sets to
solve this.

Depending on the identification method, different criteria
are used to evaluate the effectiveness of weed identification
algorithms. Based on the categorization of an input sample,
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FIGURE 9. Deep learning in weed detection.

four different outcomes for binary image classification can be
derived: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN).

Four categories of studies exist for weed identification:
categorization of weed images, detection of weed objects,
segmentation of weed objects, and segmentation of weed
instances.

IX. RELATED WORK
The accuracy of mapping infestations of maize weed was
evaluated by Villiers et al. [65] through the use of a multitem-
poral UAV and data from PlanetScope. During themid-to-late
stages of maize crop growth, they employed machine learn-
ing techniques such as support vector machine and random
forest to identify weeds. For PlanetScope, accuracy of less
than 49% was attained out of eight experiments. A greater
comprehension of the relationships between weeds andmaize
throughout their life cycles is necessary, which is the study’s
shortcoming.

In this research, Vijayalaksmi et al. [66], proposed a novel
crop-monitoring system based on machine learning-based
categorization and UAVs is presented. The proposed archi-
tecture is depicted in Figure 10. It uses CNN to track crops
in remote areas with below-average cultivation and local
climate, classifying them as either crops or weeds. Metrics
like accuracy, precision, and specificity are used to evaluate
the accuracy of the system.

FIGURE 10. Architecture for machine learning-based crop monitoring
system classification [66].

A lightweight YOLO v4-tiny model for weed detection in
maize seedlings is proposed in this paper [67]. Corn and weed
data photos were manually labeled and then separated into
three sets: test, validation, and training. The training set was
preprocessed and input into enhanced network models. After
training, the ideal weights were determined, and the models
were tested using the test set.

In an Australian chilli crop field, UAV photographs are
analyzed for weed identification. Three machine learning
algorithms are tested for this task: random forest (RF), sup-
port vector machine (SVM), and k-nearest neighbors (KNN).
Results for weed detection accuracy with UAV photos
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indicate 96%, 94%, and 63%, respectively, suggesting that
RF and SVM algorithms work well and are useful [68].
In soybean fields, the authors in this paper [69] used image

datasets to create an edge-based vision system for weed iden-
tification. After testing three CNN architectures—ResNet50,
MobileNet, and others—they discovered that a five-layer
CNN architecture had the greatest results in terms of per-
formance, lowest latency, and maximum accuracy of 97.7%.
Custom lightweight deep learning models were used in the
system’s design, and Raspberry Pi images were used for
training and inference. Precision, recall, and F1 score criteria
were used to assess the system’s correctness.

This study [70] focuses on object detection models in
inpasture environments, specifically weed identification.
Three dataset types were created using synthetic method-
ology. Tuning experiments improved model performance,
achieving over 95% accuracy for testing photos and 93%
mAP accuracy for training images. The leaf-based model
performed marginally better.

Figure 11 shows an illustration of deep learning and trans-
fer learning process.

FIGURE 11. Deep learning and transfer learning process illustration [70].

The study [71] proposes a multiscale detection and atten-
tion mechanism-based weed identification model called
EM-YOLOv4-Tiny, based on YOLOv4-Tiny. It uses a Fea-
ture Pyramid Network with an Efficient Channel Attention
module, soft Non-Maximum Suppression, and Complete
Intersection over Union loss. The model detects a single
image in 10.4 ms and achieves a 94.54% mAP, making it
suitable for rapid and precise weed identification in peanut
fields.

This paper [72] demonstrated the effectiveness of Deep
Convolutional Neural Networks (DCNN) in identifying
weeds in perennial ryegrass. AlexNet and VGGNet showed
similar performance on datasets with one weed species.
However, VGGNet showed the highest MCC values for mul-
tiple weed species, demonstrating increased precision and
improved F1 score.

The study [73] compared SVM and VGG16 classification
models using RGB picture texture data to categorize weeds
and crop species. The researchers used 3792 RGB photos
from a greenhouse and selected crucial features for prediction
models. Six crop species and four weeds were classified
using SVM and VGG16 classifiers. The VGG16 model had

an average f1-score of 93% to 97.5%, showing promising
outcomes for site-specific weed management in precision
agriculture. Figure 12 shows the Captured images of weed
species and crops from a greenhouse, preprocessed to extract
the green component, allowing for a better interpretation of
color references.

YOLOv4-Tiny and an improved model were used by the
authors to create a weed recognition framework that outper-
formed 33,572 labels for 1000 pictures, with a mean average
precision of 86.89% [74].

The study [75] used images of paddy crops and
broadleaved and sedge-type weeds to segment them using the
semantic segmentation models PSPNet, UNet, and SegNet.
PSPNet fared better than SegNet and UNet, suggesting its
potential for safe food production and weed control at the site
level. It may also be able to advise farmers on the appropriate
herbicides.

Utilizing data from an unmanned aerial aircraft in a
barley field, the study offers a rule-based approach for
classifying perennial weed data. The multispectral-thermal-
canopy-height model yielded the best F1 score when used
in conjunction with the Normalized Difference Vegetation
Index (NDVI) and U-net models [76].

The paper [77] offers a faster R-CNN-based technique
that uses the CBAM module and field photographs to detect
weeds in soybean seedlings. With VGG19 having the best
structure, the model gets an accuracy rate of 99.16% on
average. Using one hundred soybean data samples, the gen-
eralizability of the model is verified.

The authors in this paper [78] propose a pixel-level syn-
thesization data augmentation technique and a TIA-YOLOv5
network for weed and crop detection in complex field
environments. The pixel-level synthesization method creates
synthetic images, while the TIA-YOLOv5 network adds a
transformer encoder block and a channel feature fusion with
an involution strategy to increase sensitivity to weeds and
minimize information loss.

The study [79] uses a remotely piloted airplane to
map weed-occupied areas, calculate percentages, and pro-
vide field-based treatment and control measures. Data
is analyzed using R, QGIS, and PIX4D, with random
forest and support vector machine methods used for
classification.

The study [80] proposes a soybean field weed recognition
model using an enhanced DeepLabv3+ model, incorporating
a Swin transformer for feature extraction and a convolution
block attention module. The model outperformed tradi-
tional semantic segmentation models in identifying densely
distributed weedy soybean seedlings, with an average inter-
section ratio of 91.53%. The study suggests further use of
transformers in weed recognition.

The study [81] trained convolutional neural networks
(CNNs) on images of various plant species, resulting in
a Top-1 accuracy of 77% to 98% in plant detection and weed
species discrimination, using three different CNNs( VGG16,
ResNet-50, and Xception)from a pool of 93,000 photos.
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TABLE 1. Challenges and gaps in crop and weed detection: Addressing dataset limitations and controlled environment studies.

Table 1 addresses dataset limitations and controlled envi-
ronmental studies.

This study [85] uses the Weed-ConvNet model to integrate
IoT and digital image processing for weed plant detection
in agriculture. The model achieves higher accuracy with col-
orsegmented images (0.978) than with grayscale-segmented
images (0.942).

This paper [87] presents a two-stage methodology
combining GANs and transfer learning to improve weed

identification in real environment images with complex back-
grounds. It analyzes the performance of DCGANs using
various architectural configurations, compares transfer learn-
ing approaches like Random, ImageNet, and Agricultural
datasets, and compares traditional and GAN-based data aug-
mentation techniques. The optimal configuration achieved
99.07% performance on a tomato and black nightshade
dataset, with other designs achieving similar results. Future
research should focus on larger, more complicated datasets.
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FIGURE 12. Captured images of weed species and crops from a greenhouse, preprocessed to extract the green
component, allowing for better interpretation of color references [73].

In order to enhance a weed dataset, this work [86] presents
WeedGan, a novel generative adversarial network. It gener-
ates synthetic images with low resolution, which are then
processed by ESRGAN to produce high resolution versions.
The process comprises gathering datasets, enhancing images,
identifying images, and evaluating them. The study vali-
dates the efficacy of the dataset using seven transfer learning
approaches.

The study [90] used device visualization and deep learn-
ing to detect weeds in wheat crop fields in real-time.
Using 6000 images from PMAS Arid Agriculture University
research farm, the study found that the PyTorch framework
outperformed other networks in terms of speed and accuracy.
The study also compared the inference time and detection
accuracy of various deep learning models, with the NVIDIA
RTX2070 GPU showing the best results.

This study [82] proposes an improved YOLOv4 model for
weed detection in potato fields. The model uses Depthwise
separable convolutions, convolutional block attention mod-
ule, K-means++ clustering algorithm, and image processing
techniques to improve detection accuracy. The model’s learn-
ing rate is modified using cosine annealing decay, and the
MC-YOLOv4 model has a 98.52% mAP value for weed
detection in the potato field.

A GCN graph was created using recovered weed CNN
characteristics and Euclidean distances. The GCN-ResNet-
101 strategy outperformed leading techniques, achieving
recognition accuracy scores of 97.80%, 99.37%, 98.93%,
and 96.51% on four weed datasets. This CNN feature-based
method is effective for real-time field weed control [91].

This research [92] proposes a crop row recognition system
using low-cost cameras to detect field variations. It uses
a deep learning-based method to segment crop rows and
extracts the central crop using a new central crop row selec-
tion algorithm. The system outperforms industry standards

in difficult field settings, demonstrating its effectiveness and
capacity for visual servoing.

Figure 13 shows different types of data collection methods.
The authors in this paper [93] developed a unique crop row
identification algorithm for visual servoing in agricultural
fields, outperforming the baseline by 37.66%. They identified
weed population and row discontinuities as the most chal-
lenging conditions. They also developed an EOR detector to
safely direct robots away from crop rows.

The paper [94] presents a system design for an autonomous
agricultural robot aimed at real-time weed identification,
potentially extending to other farming applications like weed
removal and plowing.

The research [95] presents a base model framework for
an instructor framework to improve semantic segmentation
models for crops and weeds in uncontrolled field settings.
It suggests using a teacher model trained on various tar-
get crops and weeds to instruct a student model, and a
meta-architecture to enhance performance.

Figure 14 depicts different models used for weed detection.
This study [96] proposes a multi-layer attention technique

using a transformer and fusion rule to interpret deep neu-
ral network decisions. The fusion rule integrates attention
maps based on saliency. The model uses the Plant Seedlings
Dataset (PSD) and Open Plant Phenotyping Dataset (OPPD)
to train and assess the model. Attention maps are marked with
red needs and misclassification information for cross-dataset
analyses. Modern comparisons show improved classification,
with an average gain of 95.42% for negative and posi-
tive explanations in PSD test sets and 97.78% and 97.83%
in OPPD evaluations. High-resolution information is also
included in visual comparisons.

This research [97] aims to develop a new crop row recogni-
tion technique using orthomosaic UAV photos. Using wheat
and nitrogen field trials, the new crop detection technique
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FIGURE 13. Different data collection methods used.

FIGURE 14. Different models used for weed detection.

based on least squares fitting was compared to the Hough
transformmethod. The new approach showed better crop row
detection accuracy (CRDA) for cotton nitrogen levels and
wheat nitrogen and water levels, outperforming the Hough
transform method.

The first RGB-D photo dataset for the semantic seg-
mentation of plant species in crop farming is presented by
the authors as WE3DS. The dataset consists of a bench-
mark, 2568 images, and hand-annotated ground-truth masks.
The trained models are capable of distinguishing between
10 weed species, seven crop species, and soil [98].
The authors [99] propose a new framework for data aug-

mentation based on the random image cropping and patching
(RICAP) technique for semantic segmentation and catego-
rization of weeds and crops as shown in Figure 15. The
framework enhances segmentation accuracies, with improve-
ments over the original RICAP. Experiments show that
the proposed method improves deep neural network mean
accuracy and intersection over union, but has limitations,
especially when using large training data.

The study evaluated deep learning-based weed identifica-
tion methods from RGB photographs of a bell pepper field.
The models, trained using different epochs and batch sizes,
achieved varying accuracy rates. InceptionV3, with 97.7%
accuracy, 98.5% precision, and 97.8% recall, outperformed
others, enabling accurate weed management integration with

image-based pesticide applicators [100]. Figure 16 shows the
presence of weeds in bell paper grown in polyhouse.

The study [101] reveals that deep learning CNN
(DL-CNN) models are effective in identifying broadleaf
weeds in turfgrasses. VGGNet was the best model for detect-
ing various broadleaf weeds in dormant bermudagrass, while
DetectNet was the best for detecting cutleaf evening primrose
in bahiagrass. These models have high recall values, strong
F1 scores, and overall accuracy, indicating their potential for
turfgrass weed detection.

The research carried out in this paper [102] used object
identification Convolutional Neural Networks to detect weed
species and differentiate between broadleaved and grasses.
YOLOv3 outperformed other networks for spotting grass
weeds. Faster R-CNN and YOLOv3 were outperformed by
GoogleNet and VGGNet. VGGNet was the most successful
for spotting grass and broadleaf plants in alfalfa.

The authors in this paper [103] recommend the RetinaNet-
based WeedNet-R model for sugar beet fields, enhancing
weed recognition accuracy without significant parameter
increase. They also implemented an untuned exponential
warmup schedule for the Adam optimizer and manually rela-
beled nearly 5,000 photos for object detection.

Three deep learning-based image processing techniques
are compared in this study [104] to detect weeds in lettuce
fields. First, YOLOV3 is used for object identification, fol-
lowed by Mask R-CNN for instance segmentation, and last,
histograms of oriented gradients (HOG) as a feature descrip-
tor in the second. Remove non-photosynthetic elements using
the NDVI index. For edge detection and crop identification,
the methods additionally make use of CNN features and
masks.

The study [105] presents a method for identifying weed
species threatening tomato crops using RetinaNet neural net-
works for object detection. The technique was tested against
popular models like YOLOv7 and Faster-R Results showed
RetinaNet performed best with an AP ranging from 0.900 to
0.977, while Faster-RCNN and YOLOv7 also achieved good
results. The study suggests CNN-based weed recognition
techniques could be more relevant for real-time applications.
The research [106] aims to create a lightweight weed detect-
ing system for laser weeding robots using a dataset of 9,000
photos from six Pakistani fields. The YOLO5 single-shot
object detection model was chosen due to its superior perfor-
mance in predicting true positives and false negatives. The
model is used to identify and categorize crops and weeds,
with the YOLO model being the best choice due to its strong
performance in frame extraction and detection. The system
is implemented using an embedded Nvidia Xavier AGX chip
for high-performance and low-power operation.

The study [83] used multispectral data from UAVs to iden-
tify hawkweed leaves and flowers using traditional Machine
Learning techniques. Results showed that RF, KNN, and
XGB models accurately identified flowers at 0.65 cm/pixel,
demonstrating the potential of ML and remote sensing for
large-scale hawkweed detection.

VOLUME 12, 2024 113203



D. G Pai et al.: DL Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review

FIGURE 15. The proposed method divides an image region into horizontal and vertical parts, randomly selecting 6 images and labels from the
dataset, and cropping and patching these parts to create new images and labels [99].

FIGURE 16. Presence of weeds in bell paper grown in polyhouse [100].

The Faster R-CNN network model is proposed for weed
identification in cropping region images. It incorporates the
feature pyramid network (FPN) method for increased recog-
nition precision. The model combines the ResNeXt network
with FPN for feature extraction. Tests show a recognition
accuracy of over 95%, making it suitable for weed manage-
ment systems. The model outperforms the ResNet feature
extraction network in terms of quick and accurate target
recognition, demonstrating the high effectiveness of deep
learning techniques in this area [84].

This paper [107] introduces ‘‘DenseHHO’’, a deep learning
framework for weed identification using pre-trained CNNs.
The model’s architecture is chosen based on weed images
from sprayer drones, and the model’s hyperparameters are
automatically adjusted using HHO for binary class classifi-
cation.

Table 2 and 3 addresses the need for a deep learning
framework in detail.

The study [108] demonstrates that deep learning can indi-
rectly detect weeds by identifying vegetables. The strategy
involves detecting vegetable instances and creating bounding
boxes, then identifying plants growing outside these boxes
as weeds. Three deep learning models ( CenterNet, YOLO-
v3, and Faster R-CNN) were tested, with YOLO-v3 being
the best. YOLO-v3 failed to cover all vegetables due to
occlusion, with yellow dashed boxes representing missed
detection and yellow dashed boxes representing erroneous
detection as shown in Figure 17. The approach can be used in

FIGURE 17. YOLO-v3 failed to cover all vegetables due to occlusion, with
yellow dashed boxes representing missed detection and yellow dashed
boxes representing erroneous detection [108].

robotic weeders for machine vision control. Further research
is needed to refine the deep learning models for improved
accuracy in weed detection.

In this paper [109] the author addresses the issue of occlu-
sion, the Efficient Channel Attention Network ECA module
was incorporated into the Spatial Pyramid Pooling (SPP)
structure layer, which resolves the SPP layer’s channel com-
pression issue, and enhances PSPnet’s capacity to access
global context information and also uses a semi-supervised
semantic segmentation was used to increase the effectiveness
of small datasets.

A new Generative Adversarial Network called WeedGan
is introduced in the study to enhance weed recognition in
real-world photos of the cotton Weed ID15 dataset. Low
resolution synthetic images are produced by WeedGan and
then processed with ESRGAN to produce super-resolution
versions. In the cotton weed dataset, federated learning and
generative adversarial network principles are being applied
for the first time. The two-stage system enhances the reso-
lution and characteristics of generated synthetic images by
combining innovative generative adversarial networks with
transfer learning techniques [86].
The study [110] suggests three techniques to lessen the

requirement for manual image annotation. While the second
includes constructing false datasets from a single plant image
(dataset B) and genuine field datasets from several plants of
a single weed species (dataset C), the first requires altering
real image datasets (dataset A).
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TABLE 2. Challenges and gaps in crop and weed detection: Addressing the need for a deep learning framework.

This research [111] aims to use a deep learning model
to accurately identify weeds in rice crop images, achieving
real-time identification and low machine cost. A dataset of
rice and eight weed types is created, and a model called
WeedDet is proposed to address overlap issues. The authors
propose a new detection network, WeedDet, that outperforms

RetinaNet by 5.5% mAP and 5.6 frames per second, with
a high mAP of 94.1% and a frame rate of 24.3 fps. They
suggest using Det-ResNet to reduce detailed information loss
and ERetina-Head for more potent feature maps. The net-
work also outperforms YOLOv3 by slightly slower fps and
higher mAP.
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This study [112] developed deep-learning models for weed
development phase classification, focusing on Consolida
regalis weeds. Three models were created, each with a dif-
ferent backbone, using a weed dataset. The models were
trained using RetinaNet, YOLOv5 models, and Faster R-
CNN. The results showed Yolo had the highest precision in
identifying growth stages, while RetinaNet with ResNet-101-
FPN achieved the highest average precision. RetinaNet with
ResNet-101-FPN,the final model is suggested for real-time
performance.

This paper [113] analyzes the Faster Region-based Convo-
lutional Neural Network (RCNN) with ResNet-101, focusing
on weed classification and localization. The model’s perfor-
mance is influenced by anchor box generation. Enhancements
to scales and aspect ratios were made, resulting in the best
classification and localization for all weed classes, with a
24.95% enhancement in Chinee apple weed.

The study introduces Conditional Random Field (CRF)-
based post-processing for the ResNet-50 U-Net model as
shown in Figure 18, enhancing crop/weed segmentation
using a publicly available sunflower dataset. U-Net improves
accuracy in underrepresented weed classes and is ideal for
real-time weed detection due to its computational efficiency
and limited parameters. However, future work should explore
deep learning models to reduce misclassification [114].

FIGURE 18. U-Net architecture [114].

To detect crops from weeds in challenging natural situa-
tions, such as high weed concentrations on organic farms,
this research introduces a revolutionary crop signaling tech-
nique that uses machine vision. The technology is made for
a vision-based weeding robot with a micro-jet herbicide-
spraying system and uses a machine-readable signaling
chemical to create visual features [115].

Crop signaling is a novel idea that enables automated
onfarm plant care tasks by creating a machine-readable sig-
nal on crop plants at planting. Under excitation lights, the

fluorescence crop signaling material excites fluorochrome,
which facilitates its easy detection by machine vision algo-
rithms. Systemic markers, plant labels labeled with fluo-
rescence signaling compounds, expressing a fluorescence
gene through agrobacterium transformation into plants, and
topical markers are the four crop signaling techniques
that have been successfully applied. Promising outcomes
emerged from in-field trials, with 100% and 99.7% classi-
fication accuracy, respectively, and low false positive error
rates. This method could assist in removing technical obsta-
cles in the way of completely automated weed-control
robots [116].

The authors developed an automatedmethod formeasuring
maize seedling growth using RGB imagery from unmanned
aerial vehicles (UAVs). They improved the color difference
between young and old leaves, created a maize seedling cen-
ter detection index, and used morphological processing and a
dual-threshold technique to eliminate weed noise. The study
calculates quantity, canopy coverage, emergence uniformity,
and rate of maize emergence [117].

The authors propose a method using drone photos to
automatically identify weeds using Convolutional Neural
Networks and unsupervised training data. The technique
involves finding crop rows, and weeds growing between
them, creating a training dataset, and creating a Deep Learn-
ing model. This method is robust and adaptive, allowing for
field adaptation without feature selection [118].

CRowNet is a deep network designed for crop row recog-
nition in UAV photos, a crucial task in precision agriculture
as depicted in Figure 19. It uses Convolutional Neural Net-
works to analyze images and recognize crop rows based on
their visual characteristics. Compared to other approaches
like semantic segmentation and Hough transform, CRowNet
outperformed them in terms of Intersection over Union (IoU)
scores. In a maize field with shadows, CRowNet achieved an
IoU score of 93.58% for crop rows in a beet field [119].

This research proposes a method using GANs to gener-
ate synthetic images and transfer learning for early weed
identification in agriculture. It compares the performance
of different architectural configurations and conventional vs.
GAN-based data augmentation strategies for weed detection.
The methodology combines different techniques for early
weed identification, addressing the lack of real-world datasets
in agricultural areas [87].

This research [120] proposes a method using GANs to gen-
erate synthetic images and transfer learning for early weed
identification in agriculture. It compares the performance of
different architectural configurations and conventional vs.
GAN-based data augmentation strategies for weed detection.
The methodology combines different techniques for early
weed identification, addressing the lack of real-world datasets
in agricultural areas.

Using a single-leaf labeling method, the research [121]
provides a deep-learning methodology for crop seedling
detection in challenging field situations. Examined on a
dataset of four crops, the technique demonstrated excellent
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FIGURE 19. Flowchart for crop row detection with CNN (CRowNet) [119].

accuracy under dense planting circumstances and enhanced
the model’s mAP 0.5 by 1.2%, resolving difficulties with
missed detection. Farmers can gain from this strategy by
increasing crop output and decreasing weed interference, and
it is more appropriate for high-density farms.

The research carried out in the paper [122] introduces
a metaheuristic optimization method for weed detection in
wheat fields. It uses an optimal voting ensemble model,
ADSCFGWO algorithm for feature selection, and transfer
learning for feature extraction. The method outperforms cur-
rent optimization techniques, with a detection accuracy of
97.70%, F-score of 98.60%, specificity of 95.20%, and sen-
sitivity of 98.40%.

In order to facilitate the development of visual perception
algorithms for tasks such as semantic segmentation, panoptic
segmentation, leaf instance segmentation, and plant and leaf
recognition, the paper [88] provides a sizable dataset and
standards for semantic interpretation of agricultural imagery.
Using You Only Look Once version 7 (YOLOv7), the arti-
cle [89] tests deep weed object detection on a new weed
and crop dataset named Chicory Plant (CP). Using more
than 3000 RGB photos of chicory plantings, the dataset
provides 12,113 bounding box annotations. With strong
mAP@0.5 scores, theYOLOv7model surpasses other YOLO
variations in CP and LB. Figure 20 represents the weed
detection process invloving labeling images using Roboflow
tool and training using YOLOv7 model.

According to the paper [123], machine learning techniques
are used to assess the normal RGB or 4-channel NIR + RGB
images that serve as the input for weed detection on robots.
To improve the model’s ability to accurately and precisely
detect weeds, the authors train it on a large dataset of cotton
crop weeds (which can subsequently be applied to many dif-
ferent crops). Here, the authors employed a machine learning
algorithm with an accuracy of up to 90% to 95% as the SSD
MobileNet model.

A deep learning segmentation model that can differentiate
between different plant species at the pixel level is presented

FIGURE 20. The weed detection process involves labeling images with
the Roboflow tool, training the YOLOv7 model, and detecting weeds in
the input images, resulting in a final output map [89].

FIGURE 21. DUAL PSPNet scheme [110].

in this paper [110]. Targeting species of grass, broadleaf, and
crop, three datasets were created. Real field photos made up
the first dataset, single-species plots made up the second,
and artificially generated images made up the third. An addi-
tional classification loss was added to a PSPNet architecture
to create a semantic segmentation architecture as shown in
Figure 21. The research shows that augmenting the real
field images dataset with other datasets improves network
performance without human annotation, surpassing the state-
of-the-art method.

The Figure 22 shows various steps involved in weed detec-
tion using deep learning.

X. ANALYSIS OF THE RELATED WORKS
Dataset limitations are revealed by the identified research
papers on weed detection in agriculture. The majority of
studies rely on datasets gathered from particular experimen-
tal fields or controlled environments, which restricts the
applicability of their conclusions to a variety of real-world
agricultural scenarios. These artificial settings might not
accurately capture the diversity found in various geographic
regions, soil types, weather patterns, and crop types.

Furthermore, some study’s inability to make their datasets
publicly available compromises the reproducibility and com-
parability of their findings across various research projects.
To overcome these dataset constraints, further research is
required that integrates more representative and diverse
datasets that depict the intricacies of real-world agricultural
contexts. Figure 23 depicts different models or algorithms
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FIGURE 22. Steps involved in weed detection using deep learning.

FIGURE 23. Different models or algorithms used for weed detection in
agricultural fields.

used for weed detection in agricultural fields and Figure 24
depicts various types of crops used for the study.

Despite advancements in deep learning andmachine vision
technology, research onweed detection in agriculture concen-
trates on specific or limited crops. Given their great diversity,
the proposedmodel’s narrow scope raises questions regarding
their application in other agricultural environments, requiring
the creation of extended models to recognize and classify
weeds in different crops.

FIGURE 24. Different crops used for the study.

Creating models that can adapt to different crops and field
conditions can significantly enhance the practical utility of
weed detection systems in various agricultural settings.

XI. CROP STUDY INSIGHTS: MODALITY AND DATA
COLLECTION METHODS IN FOCUS
A key strategy for combating herbicide misuse is site-specific
weed management (SSWM), which focuses on weed control
implementation, decision-making algorithms for herbicide
administration, and crop and weed detection systems [124],
[125]. According to [126], high spatial resolution images
are ideal for precision weed management and customizable
spraying systems. Digital image-based weed detection is
a crucial technological tool for precise weed identification
and localization in agricultural areas. Conventional machine
learning is utilized in wheat fields to detect weeds which
frequently call for manual characteristics including color,
position, morphology, and texture. These techniques, how-
ever, are sensitive to sample variation, have a high time
complexity, and are ineffective for multi-scale object detec-
tion tasks [127], [128]. Deep learning approaches based on
CNNs have significantly improved recognition efficiency in
weeds detection. The Figure 25 depicts the visual representa-
tion of words based on frequency and relevance.

XII. THE SCARCITY OF DATA AND POTENTIAL
SOLUTIONS
Researchers have investigated diverse approaches to tackle
the issue of data scarcity in agricultural systems. The first
is data augmentation, which enhances the quality of images
by applying geometric and color transformations. The sec-
ond tactic is transfer learning, which is using knowledge
gained in one context to another, frequently in agricultural
settings. Weed identification and disease categorization sys-
tems have been made more functional with the use of modern
architectures such as Xception, ResNet, VGGNets, Incep-
tion, or DenseNet. GenerativeAdversarial Networks (GANs),
which generate synthetic data from preexisting datasets, con-
stitute the third tactic.

In several fields, including the creation of synthetic sam-
ples of plants and the classification of plant illnesses in
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TABLE 3. Challenges and gaps in crop and weed detection: Addressing the need for a deep learning framework (contd..).

FIGURE 25. Word cloud, visual representation of words based on frequency and relevance.

authentic settings, Deep Convolutional GAN (DCGAN) has
demonstrated encouraging outcomes. For instance, a neural
network design with two stages was utilized to achieve a final
accuracy of 93.67% using conventional data augmentation
and GANs approaches.

However, more experimental results are needed to fully
understand the effectiveness of these deep learning-based
techniques. As GANs are a relatively young topic, more
through empirical investigations comparing various designs

and setups in comparable benchmarks are also required.
Overall, these methods offer promising solutions for address-
ing data scarcity in agricultural systems.

A. DATA AUGMENTATION
Utilizing modified versions of current data or producing syn-
thetic data from existing data, data augmentation techniques
expands the actual amount of available data. It is used to apply
random, realistic data transformations like flipping or rotating
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images, to a model’s training sets to increase their diversity.
By providing variants of the data that the model would meet
in the real world, data augmentation techniques help deep
learning models become more accurate and robust.

On the other hand, data augmentation may be detrimental
if it produces inferior prediction outcomes. It’s vital to find
equilibrium between bias and variance and experiment with
different combinations of data augmentation to determine
which works best for the issue statement to prevent this.

When a model fits too closely to the training dataset and is
unable to generalize, this is known as overfitting.

The data’s variability, the model’s potential for gen-
eralization, the reduction of overfitting, the cost savings
associated with gathering and labeling extra data, and the
enhanced prediction accuracy of the deep learning model
are all advantages of data augmentation. However, because
augmented datasets contain the biases of current datasets,
mechanismsmust be put in place tomonitor and evaluate their
quality.

Adding Gaussian noise, brightness, hue, contrast, satura-
tion, flipping, rotating, scaling, cropping, and translating are
examples of common data augmentation techniques. Data
augmentation can greatly increase the accuracy of deep learn-
ing models by creating methods to reduce bias and boost
neural network learning capacity.

B. GENERATIVE ADVERSARIAL NETWORK
A deep learning architecture known as a Generative Adver-
sarial Network (GAN) pits two neural networks against one
another in an attempt to produce more genuine new data from
a given dataset [129]. Up until it is unable to discriminate
between fake and original data, the predicting network gen-
erates newer, better versions of the fake data values in an
attempt to ascertain whether the generated data is part of the
original dataset.

Mathematical formulas and the relationship between the
generator and discriminator serve as the foundation for GAN
models. The simplest model, known as vanilla GAN [130],
generates data variation without feedback. By introducing
conditionality, conditional GAN enables the production of
tailored data. Using transposed convolutions to upscale data
distribution and convolutional layers for data classification,
deep convolutional GAN incorporates convolutional neural
networks (CNNs) into GANs. The goal of super-resolution
GANs (SRGANs) [131] is to upsample low-resolution pho-
tos to high resolution while preserving detail and quality.
Laplacian PyramidGANs (LAPGANs) employ a hierarchical
method with several generators and discriminators operating
at various sizes or resolutions to divide the problem into
stages. The procedure starts with producing a low-resolution
image, whose quality increases as the GAN phases advance.

C. TRANSFER LEARNING
By using knowledge from a related area, transfer learning
helps learners in one domain become better. To comprehend

why transfer learning is feasible, we might take inspira-
tion from non-technical, real-world events. Take the case of
two individuals who aspire to become proficient pianists.
While one individual has never played an instrument before,
the other has played the guitar for a long time and has
a vast knowledge of music. A person with a strong foun-
dation in music will be able to pick up the piano more
quickly because they will be able to use their prior under-
standing of music to the challenge of learning how to play
the instrument. An individual can effectively apply knowl-
edge from a previously acquired task to acquire a related
task [132].

XIII. DISCUSSION
Regarding the identification and classification of crop weeds,
the Deep Learningmodel works incredibly well. RGB images
are captured for most research using a digital camera; some
use multi-spectral or hyper-spectral data. By using detec-
tion accuracy as the primary parameter, researchers train the
model using supervised learning techniques. The application
of new technology and different spectrum indices are two
areas where there is still opportunity for advancement. Vast
datasets are required for weeds and crops, however, the cost
of annotating these vast datasets is high. This issue can
be solved by using weakly supervised or semi-supervised
techniques. Large datasets can be produced for automated
weed detection systems using deep learning techniques and
Generative Adversarial Networks (GAN). Nevertheless, class
imbalance is present in most datasets, which causes biases
and over-fitting. To address this issue, future research should
use class-balancing classifiers, cost-sensitive learning, or data
redistribution. The main objective is to increase crop yields
while reducing expenses.

XIV. FUTURE SCOPE
Further studies in this area could enhance intercropping mod-
els for smallholder farmers by adding more sensors and
cloud computing, integrating a larger range of color spaces,
vegetation indexes, and spectral bands, and expanding their
use to other crops for yield prediction and disease detection.
One interesting direction for the development of intelligent
weeding technology is the integration of machine learning
algorithms with robotic systems, which will increase the
efficiency of weed detection and removal.

Subsequent investigation could improve real-time herbi-
cide administration by integrating more weed species in
pastures and refining models of deep convolutional neural
networks for weed identification in turfgrass species.

WeedGan is a suggested semantic segmentation model that
might be made better by adding new versions, growing the
dataset, and improving training results on real-world datasets.
Both the study’s coverage of weed species and the experimen-
tal field settingmight be lacking in disruptive elements. Down
the line, more research is necessary to determine whether
the performance of the suggested data augmentation strategy
decreases with larger training photos.
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XV. CONCLUSION
The research publications on identification and categoriza-
tion of weed species using deep learning in value crops are
reviewed in this study. The majority of research employs
supervised learning strategies and uses plant datasets to refine
pretrained models. When enough labeled data is provided,
high accuracy can be reached. However, the excellent accu-
racy and processing speed achieved by current research are
limited to tiny datasets. Future work should focus on class
imbalance issues, weed growth phase identification, large-
scale datasets with a variety of crop and weed species,
efficient detection approaches, and comprehensive field test-
ing for commercial deployments.
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