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ABSTRACT The cumulative coherence condition serves as a valuable tool within the realm of Compressed
Sensing. However, its application to the ℓ1 − ℓ2-minimization model lacks thorough discussion. This paper
aims to address this gap by introducing a sufficient condition for stable recovery of sparse vectors under
the ℓ1 − ℓ2-minimization model, building upon the cumulative coherence condition. Moreover, employing
graphical analysis, this study contrasts our proposed sufficient condition with existing criteria for stable
recovery using both ℓ1−ℓ2-minimization and ℓ1-minimization models. Experimental data illustrate that our
proposed sufficiency conditions exhibit less stringent requirements compared to established conclusions.

INDEX TERMS ℓ1 − ℓ2-minimization, cumulative coherence, sparse signal, compressed sensing.

I. INTRODUCTION
In the domain of signal processing and information recovery,
compressed sensing has emerged as a groundbreaking
paradigm challenging traditional sampling methods. This
technique leverages the inherent sparsity or compressibility
of signals to accurately reconstruct them from a significantly
reduced number of measurements. Its potential spans diverse
disciplines, with applications ranging from imaging to wire-
less communications, including sampling theory [1], [2],
model recognition [3], [4], and sensor networks [5], [6].
For further insights into compressive sensing, please
consult [7], [8].

Compressed sensing primarily aims to reconstruct an
unknown high-dimensional sparse signal x ∈ Rn from lower-
dimensional y = Ax measurements, where A ∈ Rm×n with
m ≪ n. The most intuitive approach to reconstruct x is by
finding the sparsest signal within the feasible set of solutions,
leading to an ℓ0-minimization model:

min
x∈Rn

∥x∥0 subject to ∥y− Ax∥2 ≤ ϵ, (1)

where ϵ = 0 indicates a noiseless case, and ϵ ̸= 0 indicates
a noisy case.
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The ℓ0-minimization model is NP-hard, and thus com-
putationally it is not feasible in high-dimensional sets [9].
To solve this problem, various methods have been proposed
such as ℓ1-minimization model [9], [10], [11], [12],
[13], [14], ℓp-minimization model [15], [16], ℓ1−2-
minimization model [17], [18], [19], [20], [21], [22],
weighted ℓ1-minimization model [23] and other meth-
ods [24], [25], [26].

There are numerous results on the ℓ1-minimization model
in the literature. These results are mainly based on the
null space property [27], coherence [21], cumulative coher-
ence [14], Restricted Isometry Property(RIP) [9], [11], [12],
[13], [28] and restricted orthogonality constants [10].

Although the ℓ1-minimization model yields considerable
results, it is not exactly equivalent to the ℓ0-minimization
model [29], [30]. Hence, the ℓ1−ℓ2-minimizationmodel [17],
[19], [31] and ℓp-minimization model [15], [16] have been
proposed to replace the ℓ1-minimizationmodel under circum-
stances where it underperforms. The ℓ1 − ℓ2-minimization
model is as follows:

min
x∈Rn

∥x∥1 − ∥x∥2 subject to ∥y− Ax∥2 ≤ ϵ, (2)

where ∥x∥1 =
∑n

i=1 |xi|, ∥x∥2 =

√∑n
i=1 x

2
i .
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The ℓ1 norm, tends to produce sparse solutions during
the optimization process. This is because the ℓ1 norm is
not differentiable at zero, making it easier for optimization
algorithms to shrink some coefficients precisely to zero
during iterations, resulting in sparse solutions. On the other
hand, the ℓ2 norm, also known as the Euclidean norm, plays
a smoothing role in the optimization process, helping to
stabilize solutions and reduce overfitting. However, the ℓ2
norm itself does not tend to produce sparse solutions. When
combining the ℓ1 norm and the ℓ2 norm, i.e., the ℓ1 − ℓ2
minimization model, it is possible to balance the sparsity
and stability of the solution to some extent. Specifically, the
ℓ1 norm encourages sparsity in the solution, while the ℓ2
norm prevents the solution from becoming too complex or
overfitting the data.

In the literature [15], [16], like the ℓ1-minimization
model, the ℓ1 − ℓ2-minimization model is also solved
based on the null space property [17], coherence [21],
restricted orthogonality constants [18], and restricted isom-
etry property [18], [19].
The commonly used method to solve the ℓ1 − ℓ2-

minimization model is to use the difference of convex
function algorithm(DCA), which currently only ensures that
the algorithm’s sequence converges to the stable point of the
objective function. Reference [19] also indicated that when
appropriate parameter λ is selected, the clustering points
generated by the algorithm are sparse vectors.

Our study’s main contribution lies in employing the
cumulative coherence to solve the ℓ1 − ℓ2-minimization
model, a method scarcely explored by previous studies.
We propose a sufficient condition enabling stable recovery
of vectors under this model. Through graphical analysis,
we demonstrate that our condition is weaker than that
presented in [32, Theorem 1], representing the most extensive
upper bound known to us.

We introduce related concepts in Section II, present our
main results in Section III and its proofs are present in
appendix, compare our findings with existing conclusions
in Section IV, and conclude in Section V.
Notations: For x ∈ Rn, supp(x) = {i : xi ̸= 0} and

∥x∥0 indicates the number of non-zero elements in x. ∥x∥∞ =

max
i∈[n]

|xi| where [n] = {1, 2, 3, · · · , n}. s ∈ N+ and xmax(s) is

defined as the vector x with all but the largest s entries in
absolute value set to zero, and x−max(s) = x − xmax(s). For
y ∈ Rn, ⟨x, y⟩ =

∑n
i=1 xiyi. T ⊂ [n], xT is defined as the

vector (xT )i = xi, if i ∈ T and otherwise (xT )i = 0.

II. PRELIMINARY
In this section, we will make some necessary prepara-
tions. Firstly we introduce the more general concept of
ℓ1-coherence function, which incorporates the usual coher-
ence as the particular value s = 1 of its argument.
Definition 1 ([9]): Let A ∈ Rm×n be a matrix with

ℓ2-normalized columns A1, . . . ,An (that is, ∥Ai∥2 = 1 for
all i = 1, . . . , n). The cumulative coherence function

µ1(s) = µ1(A, s) of matrix A is defined for s ∈ [n− 1] by

µ1(s)=max
i∈[n]

max{
∑
j∈S

|⟨Ai,Aj⟩|, S ⊂ [n], card(S) = s, i /∈ S}

(3)

When the cumulative coherence of a matrix grows slowly,
we can informally say that the dictionary is quasi-incoherent.
The following lemmas are needed in the proof of our main
results and we list them below. Lemma 1 provides the main
properties of the cumulative coherence function, which has a
form similar to the RIP property.
Lemma 1 ([9]): Let A ∈ Rm×n be a matrix with

ℓ2-normalized columns and s ∈ [n]. For all s-sparse vectors
x ∈ Rn,

(1 − µ1(s− 1))∥x∥22 ≤ ∥Ax∥22 ≤ (1 + µ1(s− 1))∥x∥22. (4)

Lemma 2 provides another property of the cumulative
coherence function, which applies to two vectors where their
support sets do not intersect.
Lemma 2 ([14]): Suppose that x is s-sparse and y is

t-sparse; then,

|⟨Ax,Ay⟩ − ⟨x, y⟩| ≤ µ1(s+ t − 1)∥x∥2∥y∥2. (5)

Moreover, if supp(x) ∩ supp(y) = ∅, then

|⟨Ax,Ay⟩| ≤ µ1(s+ t − 1)∥x∥2∥y∥2. (6)

Lemma 3 provides the relationship between the ℓ1-norm and
the ℓ2-norm, as well as the non zero maximum and minimum
values of vector.
Lemma 3 ([11]): For any x ∈ Rn

∥x∥2 −
∥x∥1
√
n

≤

√
n
4

( max
1≤i≤n

|xi| − min
1≤i≤n

|xi|). (7)

III. MAIN RESULT
In this section, we propose a cumulative coherence condition,
which can ensure that the ℓ1 − ℓ2-minimization model can
stably restore vectors.
Theorem 1: Let s, s1, s2 be positive integers and let s1 ≥ s.

if

µ1(s1 − 1) +
η

8
√
2s1s2 − 4s2

√
s1

µ1(s1 + s2 − 1) < 1, (8)

where η = 2
√
2s1s2(8s + s2 − 4s1) −

√
s2(s2 + 8s − 20s1),

then the solution x of minimization (2) and the original signal
x satisfy

∥x − x∥2

≤
8s1s2

√
1 + µ1(s1 − 1)ϵ

α(1 − µ1(s1 − 1)) − βµ1(s1 + s2 − 1)

+
2s2

√
s1(1−µ1(s1−1))+γµ1(s1+s2 − 1)

α(1−µ1(s1−1))−βµ1(s1+s2−1)
∥x−max(s1)∥1,

(9)

where α = 2
√
2s1s2−s2

√
s1, β = 2

√
2s1s2( 14 s2−s1+2s)−

√
s2( 14 s2 − 5s1 + 2s), γ = 8s1

√
s2 + s1 −

1
4 s2 − 2s.
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According to Theorem 1, we can easily obtain the
following theorem.
Theorem 2: Let s, s1, s2 be positive integers and let s1 ≥ s.

if

µ1(s1 − 1) +
η

8
√
2s1s2 − 4s2

√
s1

µ1(s1 + s2 − 1) < 1,

(10)

where η = 2
√
2s1s2(8s + s2 − 4s1) −

√
s2(s2 + 8s − 20s1),

then (2) with ϵ = 0 can accurately recover the s1-sparse
vector.

IV. COMPARISON OF BOUNDARY
In this section, we will indirectly compare condition (8)
with condition (18) in [32, Theorem 1] which is the weakest
condition we can find at present. First, as µ1(s) ≤ sµ,
we transform cumulative coherence scaling into coherence.
We know that

µ <
1

s1 − 1 + c(s1 + s2 − 1)
, (11)

where

c=
(2

√
2s1s2(8s+s2−4s1)−

√
s2(s2+8s−20s1))(s1+s2−1)

8
√
2s1s2−4s2

√
s1

guarantees the condition (8) in Theorem 1. We should note
that (11) is only a sufficient condition for (8), not a necessary
condition. Similarly,

µ <

√
s− 1

(2
√
s+

√
2 − 2)s−

√
s+ 1

(12)

guarantees condition (6) in [18, Theorem 1]. In addition,

µ <
1 − t

3s− 1 + (2s− 1)t
(13)

and

µ <
1

s+ a− 1 +
(
√
s+1)(s+a+b−1)

√
b−1

, (14)

guarantee the conditions in Theorem 1 and Theorem 2 respec-
tively in [31], where t = (

√
s+1

√
2s−1

)2.

µ <
4s− 1 −

√
8s+ 1

8s2 − 8s
, (15)

guarantees condition (18) in [32, Theorem 1]. Besides

µ <
1

2s− 1
, (16)

ensures that the ℓ1-minimization model can recover sparse
vectors. Next, we draw the relationship between the right
side of inequalities (11) to (16) according to sparsity.
We use T1 to T6 to represent the right-hand-side values of
inequalities (11) to (16), respectively. In the data experiment,
the parameters are set to s1 = 3s, s2 = s, a = 2,
b = 6. We draw a data graph when sparsity s ranged from
100 to 2000. From Figures 1 to 4, it can be seen that when
s increases, T1, to T6 gradually decrease; but T1 is always
larger than the others, include T5 which is the largest upper
bound that we can find at present.

FIGURE 1. s from 100 to 500.

FIGURE 2. s from 500 to 1000.

FIGURE 3. s from 1000 to 1500.

V. NUMERICAL EXPERIMENT
In this section, we conduct data experiments to verify that
model (2) can stably recover sparse vectors. The algorithm
we use can be found in reference [19].
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FIGURE 4. s from 1500 to 2000.

We conducted two sets of experiments on two different
sizes of measurement matrices A. Each group of experiments
conducted 100 experiments on different sparsity levels.
Among these 100 experiments, the ratio of the number of
successful restoration of sparse data to 100 was used as the
success rate of experimental restoration.

TABLE 1. In 100 experiments, the frequency of model (2) stably recovered
sparse data with measurement matrix A ∈ R80×100 and different sparse s.

In the first set of experiments, we used a Gaussian matrix
A ∈ R80×100 and sparsity values as s = 25, 30, 35, 40,
45 and 50. Its experimental results are shown in Table 1.
From Table 1, it can be seen that when the sparsity is 25, 30,
model (2) can fully recover sparse data. When the sparsity
is 35 and 40, the accuracy of model (2) in recovering sparse
data is also very high. However, when the sparsity is 50, the
ability of model (2) to recover sparse data is not ideal.

TABLE 2. In 100 experiments, the frequency of model (2) stably recovered
sparse data with measurement matrix A ∈ R60×100 and different sparse s.

In the second set of experiments, we used a Gaussian
matrix A ∈ R60×100 and sparsity values as s = 10, 15, 20,
25, 30 and 35. Its experimental results are shown in Table 2.
From Table 2, it can be seen that when the sparsity is 10, 15,
20, model (2) can fully recover sparse data. When the sparsity
is 25, the accuracy of model (2) in recovering sparse data is
also very high. However, when the sparsity is 30 and 35, the
ability of model (2) to recover sparse data is not ideal.

From these two sets of experiments, it can be inferred
that model (2) can stably recover sparse data. The ability of
model (2) to recover sparse data is related to the size of the
measurement matrix and the sparsity of the data. The more

measurement value there are, the smaller the sparsity, and the
stronger the ability of model (2) to recover sparse data.

VI. CONCLUSION
Building upon the concept of cumulative coherence, this
paper proposes a sufficient condition for the ℓ1 − ℓ2-
minimization model to stably recover vectors. We illustrate
through graphical representation that the upper bound of this
sufficient condition is weaker than the condition presented
in [32, Theorem 1], which currently stands as the weakest
condition available.

APPENDIX
Here we provide a detailed proof of Theorem 1.

Proof: Set h = x − x = (h1, h2, . . . .hn). Let S0 be the
set of indices of the s1 largest absolute value components
of h, S1 be the set of indices of the s2 largest absolute
value components of hSC0

, S2 be the set of indices of the
next s2 largest absolute-value components of hSC0

, and so on.
We assume that [n] is divided into S0, S1, · · · , Sl . From [18],
we know

∥h−max(s1)∥1 ≤ ∥hmax(s1)∥1 + 2∥x−max(s1)∥1 + ∥h∥2. (17)

Hence,

∥h−max(s1)∥
2
2

≤ ∥h−max(s1)∥1
∥hmax(s1)∥1

s1

≤
∥hmax(s1)∥1

s1
(∥hmax(s1)∥1 + 2∥x−max(s1)∥1 + ∥h∥2)

≤ ∥hmax(s1)∥
2
2 +

∥hmax(s1)∥2
√
s1

(2∥x−max(s1)∥1 + ∥h∥2) (18)

For i ≥ 1, according to (3),

∥hSi∥2 ≤
∥hSi∥1
√
s2

+

√
s2
4

(max
j∈Si

|hj| − min
j∈Si

|hj|)

Therefor, we have∑
i≥1

∥hSi∥2

≤
1

√
s2

∑
i≥1

∥hSi∥1 +

∑
i≥1

√
s2
4

(max
j∈Si

|hj| − min
j∈Si

|hj|)

=
1

√
s2

∑
i≥1

∥hSi∥1 +

√
s2
4

max
j∈S1

|hj|

−

√
s2
4

min
j∈Sl

|hj| +

l−1∑
i≥1

√
s2
4

(max
j∈Si+1

|hj| − min
j∈Si

|hj|)

≤
1

√
s2
(∥h−max(s)∥1 − (s1 − s) max

j∈S1
|hj|) +

√
s2
4

max
j∈S1

|hj|

(19)

Replacing s1 with s in formula (17), we can get

∥h−max(s)∥1 ≤ ∥hmax(s)∥1 + 2∥x−max(s)∥1 + ∥h∥2.
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Substituting above formula into (19), we obtain∑
i≥1

∥hSi∥2

≤
1

√
s2
(∥hmax(s)∥1 + 2∥x−max(s)∥1

+ ∥h∥2 − (s1 − s) max
j∈S1

|hj|) +

√
s2
4

max
j∈S1

|hj|

≤
1

√
s2
(∥hmax(s)∥1 + 2∥x−max(s1)∥1 + ∥h∥2)

+ (
√
s2
4

−
s1 − s
√
s2

) max
j∈S1

|hj|

≤
1

√
s2
(∥hmax(s1)∥1 + 2∥x−max(s1)∥1 + ∥h∥2)

+ (
√
s2
4

−
2(s1 − s)

√
s2

) max
j∈S1

|hj|

≤
1

√
s2
(
√
s1∥hmax(s1)∥2 + 2∥x−max(s1)∥1 + ∥h∥2)

+ (
√
s2
4

−
2(s1 − s)

√
s2

)
∥hmax(s1)∥2

√
s1

= (
√
s1
s2

+

√
s2

4
√
s1

−
2(s1 − s)
√
s1s2

)∥hmax(s1)∥2

+
1

√
s2
(2∥x−max(s1)∥1 + ∥h∥2)

= t∥hmax(s1)∥2 +
1

√
s2
(2∥x−max(s1)∥1 + ∥h∥2). (20)

It follows from Lemma 1, Lemma 2 and above inequality
that

⟨Ah,Ahmax(s1)⟩

= ⟨Ahmax(s1),Ahmax(s1)⟩ + ⟨A
∑
i≥1

hSi ,Ahmax(s1)⟩

≥ (1 − µ1(s1 − 1))∥hmax(s1)∥
2
2

+

∑
i≥1

(⟨hSi , hmax(s1)⟩−µ1(s1+s2−1)∥hmax(s1)∥2∥hSi∥2)

= (1 − µ1(s1 − 1))∥hmax(s1)∥
2
2

− µ1(s1 + s2 − 1)∥hmax(s1)∥2
∑
i≥1

∥hSi∥2

≥ (1−µ1(s1−1))∥hmax(s1)∥
2
2−µ1(s1+s2−1)∥hmax(s1)∥2

· (t∥hmax(s1)∥2 +
1

√
s2
(2∥x−max(s1)∥1 + ∥h∥2))

= (1 − µ1(s1 − 1) − tµ1(s1 + s2 − 1))∥hmax(s1)∥
2
2

−
1

√
s2

µ1(s1+s2−1)∥hmax(s1)∥2(2∥x−max(s1)∥1+∥h∥2).

(21)

From Cauchy-Schwarz inequality and Lemma 1 again,
we get

⟨Ah,Ahmax(s1)⟩ ≤ 2ϵ
√
1 + µ1(s1 − 1)∥hmax(s1)∥2.

Combining the above two inequalities and applying
condition (8), it holds that

∥hmax(s1)∥2 ≤
2
√
1 + µ1(s1 − 1)ϵ

1 − µ1(s1 − 1) − tµ1(s1 + s2 − 1)

+
µ1(s1 + s2 − 1)(2∥x−max(s1)∥1 + ∥h∥2)

√
s2(1 − µ1(s1 − 1) − tµ1(s1 + s2 − 1))

.

Inequality (18) and the above inequality give

∥h∥22 = ∥hmax(s1)∥
2
2 + ∥h−max(s1)∥

2
2

≤ 2∥hmax(s1)∥
2
2 +

∥hmax(s1)∥2
√
s1

(2∥x−max(s1)∥1 + ∥h∥2)

≤ (
√
2∥hmax(s1)∥2 +

1

2
√
2s1

(2∥x−max(s1)∥1 + ∥h∥2))2

≤ (
2
√
2(1 + µ1(s1 − 1))ϵ

1 − µ1(s1 − 1) − tµ1(s1 + s2 − 1)

+ (

√
2µ1(s1 + s2 − 1)

√
s2(1−µ1(s1−1)−tµ1(s1+s2−1))

+
1

2
√
2s1

)

· (2∥x−max(s1)∥1 + ∥h∥2))2. (22)

Hence,

(1 −

√
2µ1(s1+s2 − 1)

√
s2(1−µ1(s1−1) − tµ1(s1+s2 − 1))

−
1

2
√
2s1

)∥h∥2

≤
2
√
2(1 + µ1(s1 − 1))ϵ

1 − µ1(s1 − 1) − tµ1(s1 + s2 − 1)

+ (

√
2µ1(s1 + s2 − 1)

√
s2(1 − µ1(s1 − 1) − tµ1(s1 + s2 − 1))

+
1

2
√
2s1

)

· (2∥x−max(s1)∥1). (23)

From condition (8), we have

∥h∥2 ≤
8
√
s1s2(1 + µ1(s1 − 1))ϵ

a− b
2
√
s2(1 − µ1(s1 − 1)) + e

c− d
∥x−max(s1)∥1

=
8s1s2

√
1 + µ1(s1 − 1)ϵ

α(1 − µ1(s1 − 1)) − βµ1(s1 + s2 − 1)

+
2s2

√
s1(1−µ1(s1−1))+γµ1(s1+s2−1)

α(1−µ1(s1−1)) − βµ1(s1 + s2 − 1)
∥x−max(s1)∥1,

(24)

where a = (2
√
2s1s2−

√
s2)(1−µ1(s1−1)), b = ((2

√
2s1s2−

√
s2)t + 4

√
s1)µ1(s1 + s2 − 1), c = (2

√
2s1s2 −

√
s2)(1 −

µ1(s1 −1)), d = ((2
√
2s1s2 −

√
s2)t+4

√
s1)µ1(s1 + s2 −1),

e = (8
√
s1 − 2

√
s2t)µ1(s1 + s2 − 1) □
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