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ABSTRACT We, humans, perceive the scene utilizing pre-learned language categories. Our vocabulary
system inherently possesses a hierarchy, aiding humans in understanding scenes at multiple levels. For
example, when a person passes by chairs and desks from a distance rather than interacting with them up
close, the objects are perceived from a broader perspective and recognized as furniture at a higher category
level. In this work, we propose a multi-level semantic segmentation data generation method based on a
scene-specific word tree to mimic human multi-level scene recognition. Multi-level semantic segmentation
data encompasses diverse levels of grouped segmented areas with different degrees of detail, from the
finest level of conventional semantic segmentation to coarser levels. Our scene-specific word trees leverage
linguistic hierarchies to group scene components by considering relationships between words present in the
scene. Furthermore, in the proposed data generation method, each word tree is constructed within a single
image, allowing us to group the objects into user-selected levels, taking into account the relative relationship
between objects in that scene. We demonstrate the effectiveness of our data generation method by building
a multi-level scene segmentation network and training the model with the generated dataset, which reflects
the scene-specific word tree.

INDEX TERMS Segmentation, semantic grouping, language hierarchy, dataset generation, multi-level
analysis.

I. INTRODUCTION
Humans typically perceive the scene with a single glance,
even when there are numerous objects or living beings
present. Normally, we do not pay attention to many details
of the scene unless we need to focus on a specific group.
For instance, when observing a scene like the upper image
of Figure 1, at first glance, we recognize that there are
pieces of furniture in the room like Level 2. However, as we
focus more, we begin to recognize the table and chair as
Level 1. Subsequently, in situations such as when using a
particular object, humans recognize each object separately,
such as the desk, chair, and seat as in the Level 0 scene.
In other words, humans perceive and group objects existing
in the same scene into different conceptual levels depending
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on the context. This unconscious grouping is related to
our pre-learned language categories. The ability to perceive
objects at multiple levels and group them, as we humans do,
can be utilized to implement agents such as mobile robots
with advanced intelligence capable of behaving like humans
according to the situation. The human-like visual intelligence
can be particularly useful when mobile robots are navigating
or moving. When a mobile robot intends to enter a building,
the robot needs to perceive the building at a coarse level from
a distance, and as it approaches, it needs to understand the
scene at a finer level to locate the door. Once the robot finds
the door, it needs to identify the door knob to open it and
enter. Therefore, we aim to implement visual intelligence for
computers that recognizes and groups objects into different
levels depending on the context, similar to how humans do.

For a computer to understand a scene or image, image
segmentation is a crucial task. With the rise of Convolutional
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FIGURE 1. Our proposed scene-specific word tree incorporated dataset examples. The objects in the finest level (b) are merged as the level increa-
ses (c, d). For example, ‘chair’ and ‘stool’ from (b) are merged into ‘seat’ in (c) and further merged into ‘furniture’ in (d). Moreover, ‘drawers’, ‘table’, and
‘bed’ on level 0 are merged into ‘furniture’ at level 2 in the end. Also, since we build a scene-specific word tree for generating multi-level, depending on
the scene configuration, grouping is done differently. For example, upper image objects are grouped more compared to the objects in the lower image,
which includes various types of objects.

Neural Network (CNN)-based image classification [1], [2],
[3], [4], large-scale ground-truth labeled datasets become
available which lead image segmentation methods to advance
as well. Accordingly, the necessity of large faithful semantic
segmentation datasets is also increasing. Even though there
have been various large-scale datasets with different levels of
objectiveness, range of details, and scene properties [5], [6],
[7], [8], [9], most of them are labeled with a single object per
pixel, making them unsuitable for training human cognitive
models that recognize objects at multiple levels. Therefore,
we propose a method for generating multi-level segmentation
datasets capable of recognizing and grouping objects within
the same scene into different levels depending on the context
by integrating pre-learned linguistic knowledge similar to
humans. Even though UPerNet [10] and All-Inclusive Multi-
Level Segmentation (AIMS) [11] proposed to segment areas
into multiple levels such as objects and parts, they do not
utilize the hierarchy of objects themselves. Our proposed
method utilizes object hierarchies and generates semantic
multi-level dataset, which can help teach the computer to
perceive the scene as humans do.

Recently, with the advent of Large Language Models
(LLMs) [12], [13], [14], the use of word semantic knowledge
has increased, and it has even become possible to solve
various problems on an open-vocabulary basis using learned
models. In addition, it has been integrated with data from
other domains such as images (Contrastive Language-Image
Pre-Training; CLIP [14]), making multi-modal applications
possible. However, LLMs, which learn given words as
feature points in the same space, cannot contain information
about superordinate words (hypernyms) and cannot han-
dle homonyms. Therefore, when building a scene-specific
word tree in our method, we not only utilize extensive
open-vocabulary word semantic information by applying

LLM but also it is based on an open word database
such as WordNet [15] when dealing with homonyms or
hypernyms. In other words, we propose a method that
combines a state-of-the-art learning-based approach and
a conventional word tree method that includes structured
language information to compensate for the shortcom-
ings of both methods and take advantage of each of
them.

For data generation, we utilize our proposed scene-specific
word tree-building method to reconstruct the existing scene
segmentation dataset with multiple levels of coarseness,
as shown in Figure 1. Given RGB scene images (column
(a) in Figure 1) and the corresponding scene segmentation
data (Level 0 segmentation data; column (b) in Figure 1), the
proposed method generates Level 1 and Level 2 segmentation
data (columns (c) and (d) in Figure 1, respectively). For
example, ‘chair’ and ‘stool’ from (b) are merged into ‘seat’
in (c), and in (d), they are merged into ‘furniture’. To respond
to the distinct scene configuration, we build a scene-specific
word tree, which is an individual word tree representing the
relationships of objects in each scene. Since the word tree
is composed of object labels existing in one image rather
than all the words in the dataset, the proposed method varies
the degree of grouping objects differently for each scene.
In other words, it enables a relative visual understanding
of each scene as perceived by human beings. For example,
when an armchair and a desk appear in one scene, they are
recognized as furniture in the next level, but when an armchair
and a stool appear in one scene, they are recognized as a
chair in the next level. Furthermore, we build a multi-level
scene segmentation grouping network and train it with our
scene-specific word tree incorporated datasets to demon-
strate the effectiveness of our proposed dataset generation
method.
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In summary, our contributions are as follows:

• Present a novel scene-specific word tree-building
method for generating the multi-level segmentation
dataset, which contains the hierarchy of each scene
driven from linguistic information.

• Propose a homonym handling method using pretrained
CLIP features.

• Propose a multi-level scene segmentation network that
outputs the coarser levels of semantic segmentation
labels containing the scene-specific word tree.

II. RELATED WORK
A. SEMANTIC SEGMENTATION DATASETS
Numerous datasets have been introduced for specific pur-
poses, such as object recognition [5], [16], [17], semantic
understanding of scenes [6], [7], [9], [18], and object parts
recognition [19], [20], [21], [22]. PASCAL VOC [5] and MS
COCO [6] are widely used large-scale datasets with pixel-
level labels. However, their annotations are limited to subsets
of existing foreground objects. There are several datasets
with denser annotation as well, for example, PASCAL-
context [23] includes pixel-wise labels for all training images
with more than 400 classes. Furthermore, SUN database [24]
for scene categorization, Cityscapes dataset [7] for semantic
understanding of urban street scenes, and NYU Depth
V2 [8] for various indoor scenes recorded by both RGB and
depth cameras from the Microsoft Kinect, were proposed.
Also, ADE20K [9], a densely annotated dataset with parts
information for scene parsing, was published. Although there
are many different datasets for semantic segmentation, most
of the datasets consist of single object labels per pixel, making
them unsuitable for training human visual intelligence to
recognize objects at different conceptual levels across scenes.

There are a few datasets that provide a tree structure
to represent the hierarchical relationship of objects. The
Mapillary Vistas 2.0 [25] and Cityscapes [7] datasets contain
images from an egocentric perspective in urban environments
such as roads. The PASCAL-Person-Part [26] and LIP [27]
datasets provide segmentation data for each part of the human
body, and the hierarchical relationship between them is
represented in a tree structure. However, since these datasets
represent the hierarchical relationship between objects in
a fixed tree structure, they are not segmented reflecting
scene characteristics such as the diversity of objects in
the scene. Therefore, we propose a method to generate
multi-level segmentation data based on creating different
object hierarchy trees considering the composition and
diversity of different objects across scenes (scene-specific
trees). Unlike existing datasets, where objects are grouped
into single hierarchical concepts irrespective of the scene,
our approach allows for context-aware cognition by grouping
objects differently into higher-level concepts depending on
the situation. This enables the generation of datasets that
facilitate human visual intelligence learning.

B. SCENE/SEMANTIC SEGMENTATION
CNN-based image classification such as AlexNet [1],
VGGNet [2], ResNet [3], and GoogLeNet [4] shows remark-
able results and those successes are extended for semantic
segmentation as well since they can be used for generating
pixel-wise labels. Noh et al. [28] introduced semantic
segmentation with encoder-decoder models. RefineNet [29]
applies a coarse-to-fine structure by multi-path refinement
network for utilizing all pixel information available. The
Pyramid Scene Parsing Network (PSPNet) [30] utilizes
spatial pooling at multiple grid scales and shows impressive
results. Zhang et al. [31] performed instance segmentation
based on semantic attention and scale complementary
network. SegFormer [32] utilizes a hierarchical transformer
encoder to output multi-scale features and lightweight
multilayer perception (MLP) decoders for combining those
features for representing both local and global attention.
However, the mentioned methods segment each pixel into a
single object concept; thus, they cannot implement human
visual intelligence to differentiate and recognize one scene at
different levels depending on the context. Recently, methods
for performingmulti-level scene segmentation have also been
proposed. Xiao et al. [10] proposed UPerNet for finer-level
segmentation, such as textures, parts, and material as well
as conventional object segmentation. AIMS [11] segments
areas into three levels: part, entity, and relation. Although
these two studies are calledmulti-level segmentation, they are
multi-task models that classify regions according to multiple
criteria rather than recognizing objects at different category
levels. SceneScript [33] generates scene models incorporat-
ing structured language commands using an autoregressive,
token-based approach. They employ LLM to understand
scenes; However, their method requires multiple images of
one scene with different angles for generating full 3D scenes,
and they do not group detected objects hierarchically.

A few studies considering the hierarchical relationship
between objects in scene segmentation have been con-
ducted. In [34], hierarchical cross-entropy (HXE) loss,
which reflects high-level object information, is used for
training based on a word tree that represents the relationship
between objects. Relationship-enhanced semantic graph
(ReSG) model [35] learns locally discriminative semantic
concepts. Mask2Former [36] improves the performance of
scene segmentation by considering the surrounding area of
an object from fine to coarse. The mentioned methods reflect
the hierarchical relationships of objects when performing
conventional scene segmentation, meaning they only leverage
the hierarchical nature of objects in a single-level segmen-
tation task. In contrast, Li et al. [37] proposed a model that
performs multi-level scene segmentation. However, in that
paper, a dataset containing multi-level object information
is not proposed, and experiments are only performed on a
dataset with object classes with an existing single hierarchy.
In other words, because the model is based on a single
object hierarchy rather than configuring a hierarchy that
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FIGURE 2. Segmentation comparison between our scene-specific tree and global tree. The results for two scenes selected from the ADE20K dataset are
shown in the left and right parts, respectively. For each image, the level 1 and 2 segmentation labels generated from the level 0 segmentation for the
scene in the left column are listed as rows. (Top: based on our scene-specific tree, Bottom: based on a global tree).

takes into account the situation of each scene, scene-specific
characteristics such as relationships with surrounding objects
are not reflected.

C. OBJECT RECOGNITION WITH SEMANTIC HIERARCHY
A husky dog is represented as a species of dog, which is
a mammal and, more broadly, a living creature. As such,
there are hierarchical associations between objects, and a
graph representing these relationships is often used for object
recognition. The Dual Accuracy Reward Trade-off Search
(DARTS) algorithm classifies object images into object cate-
gories based on semantic hierarchy [38]. The Hierarchy and
Exclusion (HEX) graph captures the subsumption, exclusion,
and overlap relationships between objects, and based on
these, an object classification model was proposed [39].
In [40], based on the hypernym relationships between words
from an open word database such as WordNet [15], semantic
hierarchy is constructed and utilized for scene parsing. Also,
Cao et al. [41] proposed a framework to measure the strength
of interactions among objects within an image. In these
studies, object segmentation/detection is performed on the
leaf nodes of the semantic hierarchy, so objects which
belong to the same superclass are not grouped together. Also,
since the hierarchy including the entire objects is created in
advance, so the correlations of objects in a specific scene are
hard to be known.

III. METHODOLOGY
A. MOTIVATION
As an initial step toward realizing human visual intelligence,
we propose a method to generate multi-level data. Our
motivation is to aggregate existing scene segmentation data
into multi-level segmentation data to actively make use of
a massive existing dataset. In particular, we consider the
fact that a person perceives a scene at multiple levels using
different criteria based on the type and composition of objects
present in the scene. This effect cannot be achieved using
existing global single-object word trees. In this context, our
contribution is that we propose a scene-specific word tree

generation technique that creates a word tree for each scene
rather than using a global tree applied to all scenes. Figure 2
shows the difference between the segmentation according to
the level applied with the global tree (lower) and those with
our scene-specific tree (upper). Using a global word tree for
multi-level scene segmentation applies the same level-setting
standard to all scenes. Specifically, a global word tree was
constructed using the hypernyms of objects at level 0(finest
level). Based on the global tree depth, and the labels existing
in each part were designated as levels 1 and 2 equally across
all the data. In this case, the unique object compositions of
individual scenes, such as the number and variety of existing
objects, cannot be reflected fully. For example, the left side
image of Figure 2 contains relatively similar objects, which
results in the entire scene being split into two level concepts
with a global tree. On the other hand, our scene-specific word
tree can address this issues by performing segmentation to
different degrees depending on the characteristics of each
scene.

B. SYNSET SELECTION WITH CLIP
Given an image, we aim to derive word-semantic relation-
ships between objects in the scene and group objects that
belong to similar categories. In order to find the relationship
between the objects, a scene-specific word tree is created
from input images and segmentation labels corresponding to
each of them, which are generated based on a public word
database such as WordNet [15]. The name of the object given
as the segmentation label is searched in the word database.
Since the WordNet database provides word information and
its hypernyms, we utilize this hypernym information to build
a scene-specific word tree.

WordNet handles homonyms of the word by assigning
different synsets to each homonym. For example, plant in
the WordNet has multiple synsets, one for vascular plants
and another for power plants. Selecting correct synset is
essential for generating plausible scene-specific word tree.
Figure 4 shows how wrong synset selection affects the
grouping of a scene-specific word tree. Suppose we have
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FIGURE 3. Illustration of the process for generating a scene-specific word tree. When the initial word ‘chair’ is given, the path formed by its
inherited hypernyms creates a subtree and serves as the starting point for tree generation. Subsequent words are given, and the paths formed by
their hypernyms merge with the existing subtrees to form the scene-specific word tree.

FIGURE 4. Illustration of how wrong synset selection affects grouping of
the scene-specific word tree. If the synset of ‘plant’ is selected incorrectly
(b), referring to a power plant, its inherited hypernyms are totally different
from the correct ones, resulting in semantically incorrect groupings.

a plant pot in the room for an indoor scene image. If the
synset of ‘plant’ is selected incorrectly (b), meaning a power
plant, its inherited hypernyms are totally different from the
correct ones, grouping semantically incorrect. As a result,
the common ancestor of ‘chair’ and ‘plant’ become ‘artifacts’
rather than ‘objects.’ Since most dataset label do not specify
which homonym they refer to in their label words, we propose
to utilize pretrained CLIP text and image features [14] to
handle this issue.

CLIP is a type of vision-language model (VLM) that learns
the mutual relationship between images and text by aligning
the information extracted from each data type in the same
space through Contrastive Learning [14]. The CLIP model is
trained so that the inferred image and text features have a high
cosine similarity in each image-text pair. Therefore, to fully
utilize the pretrained CLIP features, we crop the RGB images
according to the given per-pixel ground truth object labels.
Then, for each label word, there are cropped RGB images
corresponding to multiple objects in the scene.

To select the correct synset frommultiple candidate synsets
(homonyms) belonging to a given label word, we utilize the
CLIP image features described earlier and the hypernym sets

provided byWordNet [15] for each synset word. Specifically,
we use a function provided by the Python library NLTK,
which allows obtaining WordNet corpus information, to out-
put inherited hypernyms for given a synset. We calculate the
confidence values between the actual meaning of the object in
the image and each candidate synset to select the synset with
the highest confidence value. For obtaining confidence value,
the following three assumptions are made beforehand. First,
we assume that multiple synsets with different meanings have
different sister words and hypernyms. For example, the first
synset of plant has industrial plant as a sister word and
building complex as a hyernym, while the second synset has
flora as a sister word and organism as a hypernym. Therefore,
the cosine similarity between the CLIP text features of these
sister words or hypernyms and the CLIP image features of the
cropped object image can contribute to a confidence value
that indicates whether each candidate synset refers to the
object in that image. Second, we assume that the order of
the WordNet synset list reflects the frequency of word use in
everyday life, meaning that front-listed synsets are likely to
appear more often than the latter ones. For example, the word
grass usually means lawn rather than police informer in daily
life. Third, we assume that the synset selected by different
cropped object images for the same label word in succession
is likely to be the correct synset.

With the above first and second assumptions, we define the
cost function that calculates the confidence of each synset.
For word wi ∈ labels, if there are jmax number of candidate
synsets, one of candiate synsets is Synwij , and each cropped
image for wi is I kwi where k ∈ [1, kmax]. Here jmax is the
number of synonyms ofwi, and kmax is the number of cropped
images that contain wi. Sis[Syn

wi
j ] represents the sister word

of given synset Synwij and Hyp[Synwij ] is the hypernym of
given synset Synwij . Also for considering the synset order from
WordNet, we define the weight γj ∈ [1, 0.1] that weighsmore
for front synsets andweighs less for latter synsets with the gap
of 1/jmax . Therefore, confidence Conf of synset Synwij with
the image I kwi is as follows.

Conf (Synwij , I kwi )

= γj[λ1CLIPtext (Sis[Syn
wi
j ])) · CLIPimg(I kwi )

+ λ2CLIPtext (Hyp[Syn
wi
j ]) · CLIPimg(I kwi )] (1)
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Since we have kmax number of cropped object images
for each wi, we select the synset that has the highest
confidence value consecutively for I kwi . Here, we assign λ1
to be 0.25 and λ2 to be 0.75. When selecting a synset,
synsets whose inherited hypernyms contain words such as
psychologicalfeature or yangity are skipped. Because these
words cannot correspond to the meaning of objects present
within the scene. Also, the word glass’s synset is pre-assigned
since its transparency affects badly to CLIP features.

C. SCENE-SPECIFIC WORD TREE GENERATION
Since we select the appropriate synset for each word in the
previous step, we can acquire inherited hypernyms of the
word as well. These hypernym words become nodes forming
a path from a leaf node representing the corresponding
object to the root of the word tree. The connection of
words constituting this path is considered as a sub-word tree,
and after obtaining these sub-trees for all words, they are
combined to form a scene-specific word tree, as illustrated
in Figure 3. The figure briefly depicts the process of creating
a scene-specific word tree when the words ‘chair’, ‘plant’,
‘seat’, and ‘table’ are given in sequence. Notably, if a word
like ‘seat’ that corresponds to a node in the middle of the
existing subtree is given, the tree remains unchanged; and
if a word like ‘table’, where some of its hypernyms already
exist in the subtree, is given, the remainder of the path merges
below the lowest common hypernym.

The scene-specific tree samples generated through the
described process are shown in Figure 5. The figure visualizes
a scene-specific word tree generated for each image on the
left. Unlike a single global word tree, as scenes become more
complex, meaning there are diverse and numerous objects
within the image, the number of scene-specific word tree
nodes increases, making the structure more complex.

D. MULTI-LEVEL SEGMENTATION LABEL EXTRACTION
Generated word tree is utilized for extracting user-defined D
multi-level segmentation label. Let a scene-specific word tree
G = (V, E) of node size |V| = N and each node v ∈ V .
A directed graph G = (V, E) whereV is a set of vertices and E
is a set of directed edges. Each node v in the tree is associated
with the corresponding object name and information about
the area occupied by the object such as pixel coordinates.
D denotes the maximum level of the segmentation label we
want to extract, and G denotes a scene-specific word tree. D
is a value that determines how many levels of labels will be
extracted when applying the proposed data label generation
method. There is no maximum limit on how many times
the label extraction process can be performed within the
algorithm. However, as words are grouped into higher-level
concepts, they eventually fall under the top-level concept of
‘entity’. Empirically, when exceeding 3 levels, most of the
images are annotated as ‘entity’. Therefore, in this paper,
we set D to 3 W0 represents a set of segmentation labels
provided by the original dataset for a specific scene. In the
proposed data generation method, we generate a base word

Algorithm 1Multi-Level Segmentation Label Extraction
Input D > 0,G = (V, E),W0,Wb
Output Ld for d ∈ [0,D− 1]
1: Leaf (G) denotes leaf nodes of graph G
2: Root(G) denotes the root node of graph G
3: d ← 0
4: T← {v|v ∈W0, deg+(v) ̸= 0}
5: R← ∅
6: Ld ← ∅ for d ∈ [0,D− 1]
7: for v ∈ V do
8: if deg−(v) > 0, deg+(v) = 1, v /∈Wb then
9: Remove v from G // If the node has

a child node, the child node is
connected to the parent node of
the node as a child node.

10: end if
11: end for
12: while d < D do
13: T′ = {v|v ∈ T, deg+(v) ̸= 0}
14: T′ = T′ ∪ {v|v ∈ T, v = Root(G)}
15: for v ∈ Leaf (G) where v ̸= Root(G) do
16: R = R ∪ {v}
17: Deliver node attributes to the parent node vp of

v // Combining the node’s object
area information into the parent
node’s object area information

18: T′ = T′ ∪ {vp}
19: end for
20: Ld = T ∪ Leaf (G)
21: T = T′

22: T′ = ∅
23: for v ∈ R do
24: Remove v from G // If the node has

a child node, the child node is
connected to the parent node of
the node as a child node.

25: end for
26: end while

tree Gb and define the set of words included in it as Wb.
Gb is a sub-tree that is built by merging paths composed
of hypernym words of each word belonging to W0 and
performing refinement by deleting all the nodes having one
child node. Gb can be seen as an essential word tree for all the
scenes in the original dataset. The indegree of v is denoted as
deg−(v) and its outdegree is denoted as deg+(v).
When a scene-specific word tree corresponding to an

image is given, redundant nodes are deleted from the word
tree and the segmentation labels composing each level are
extracted, following the procedure described in Algorithm 1.
For the words belonging to Gb, we do not delete them when
refining the scene-specific word tree so that the objects in
the scene can be grouped into meaningful upper categories
even in scenes with few types of objects. The words of
the base tree are considered crucial because they appear

VOLUME 12, 2024 88207



S. Kim, J. Park: Multi-Level Segmentation Data Generation Based on a Scene-Specific Word Tree

FIGURE 5. Samples of generated scene-specific word trees. A scene-specific word tree in the right column is generated from each input image in
the left column. Segmentation labels for each level are extracted from the scene-specific word tree. Green, yellow, and gray nodes represent level 0,
level 1, and level 2 segmentation labels, respectively.

relatively more frequently in the entire dataset. Therefore,
during tree trimming, the words of the base tree are prevented
from being removed. Therefore, by utilizing the base word
tree Gb, crucial words remain in the scene-specific word tree,
which helps global consistency across the entire dataset when
generating coarse-level scene segmentation results according
to the scene-specific word tree.

Ld a set of segmentation levels is extracted for each level
d . When a node is removed from G, if the node has a child
node, the child node is connected to the parent node of the
node as a child node (Algorithm 1 Lines 9 and 24). Delivering
a node’s attributes to a parent node stands for the process
of combining the node’s object area information into the
parent node’s object area information (Algorithm 1 Line 17).
A higher-level concept is created that includes lower-level
objects, thereby grouping objects within the same category.
Samples of segmentation labels for each level extracted from
each scene-specific word tree are shown in Figure 5.

E. MULTI-LEVEL SEGMENTATION DATA GENERATION AND
VISUALIZATION
Figure 6 shows examples of multi-level segmentation data
generated by our method. Each row in the figure shows
the scene image, level 0 segmentation label, and gener-
ated level 1 and 2 segmentation labels for the ADE20K,

PASCAL-Context, and Cityscapes datasets, respectively.
As the level increases, grouping of objects occurs, resulting
in coarser scene segmentation. Moreover, the proposed
multi-level extractionmethod is based on scene-specificword
trees, and the algorithm can handle complex multi-object
images as in the first row as well as single-object images
as in the second row by reflecting the scene-specific
characteristics. Also, for colorization, we want our dataset to
have 1) each object have a unique color, and 2) objects with
similar semantic meanings have similar colors. In order to
handle the above two requirements, we first build an entire
word tree G, that contains all the words across the dataset W,
which are total unions of all words for each scene image W.
Second, we utilize the graph layout method called Kamada-
Kawai algorithm [42] on 256 × 256 × 256 RGB space
for assigning colors. Kamada-Kawai cost function simulates
spring forces according to graph theoretical distances, and
each graph node is located to minimize this cost function.
In this way, we are able to color semantically similar objects
in the dataset with similar colors.

In the proposed data generation method, the part added to
the existing segmentation dataset is the word tree information
generated from no more than 20 words existing in each
scene image. Moreover, this information is generated and
deleted for each scene image when creating multi-level
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FIGURE 6. Examples of segmentation labels at each level with various datasets. First-row image is from ADE20K dataset [9], the second image is from
PASCAL-context dataset [23], and 3rd image is from Cityscapes dataset [7]. For all various types of images, our scene-specific word tree algorithm can
extract the appropriate word for each level. Since our level extraction is based on the scene-specific word tree, our algorithm can handle not only the
single object image (second row) but also complex multiple object image (first row).

segmentation label images, so there is no significant increase
in computational load or data volume. In the subsequent
sections, we will introduce a multi-level segmentation model
capable of learning from the generated multi-level scene
segmentation dataset to validate its effectiveness. We will
then proceed to discuss the findings through experimental
results.

IV. MULTI-LEVEL SEGMENTATION MODEL
Our proposed method builds multi-level segmentation data
based on generating scene-specific word tree. Coarse high-
level segmentation through appropriate grouping varies
depending on the characteristics of each scene, so network
learning for those grouping is needed for this purpose.
Therefore, we develop a model that can perform multi-level
scene segmentation based on the input RGB image alongwith
the conventional semantic segmentation result.

A. NETWORK ARCHITECTURE
The proposed model receives input of an RGB scene
image concatenated with the result of the typical scene
segmentation. We concatenate the RGB channels of the scene
image (HxWx3 in size) with the object class channels of
the segmented image (HxWxC in size, where C denotes the
number of entire object classes), resulting in an input size of
HxWx(3+C). Figure 7 shows our network structure, here we
colorize the segmentation label for better visualization. The
segmentation label images actually inputted to or outputted

FIGURE 7. Diagram of network structure. Given a scene image and a level
0 segmentation label, the proposed multi-level segmentation network
derives high-level segmentation results.

from the segmentation model use a binary format where
the value of the corresponding object class channel for
each pixel is 1, while the values of other channels are 0.
This format, with a size of HxWxC when C denotes the
total number of object classes, cannot be directly displayed
as an image. Therefore, we present images in the figure
using the colorization method described in Section III-E for
visualization. The result of any existing scene segmentation
model can be used as the input level 0 segmentation
along with the scene image, and multiple coarser-level
segmentation results are derived. Assuming that the user
wants a total of D levels of segmentation, segmentation
results for D-1 levels excluding level 0, which is entered
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as an input, are obtained. Once the unified score map for
all objects that make up D-1 levels is obtained, the object
with the highest score for each pixel of the partial score
map corresponding to each level is segmented. The proposed
multi-level segmentation model can be built by utilizing any
existing scene segmentation model. Network modification
is performed with different dimensions of input and output,
and parameters are initialized with a pre-trained model for
the same parts as the base segmentation model. Here, our
base model is Segformer [32], since the Segformer model
shows the most state-of-the-art performance, especially for
the ADE20K dataset.

B. LOSS FUNCTION
The multi-level segmentation model is trained using a unified
cross-entropy loss obtained by calculating and adding up the
cross-entropy loss for each level. Let y be the multi-level
segmentation results from the model, and ŷ be the ground-
truth. Denote the segmentation result for level d as yd and the
corresponding ground-truth as ŷd . The unified cross-entropy
loss L(y, ŷ) is the sum of the cross-entropy losses of each
level, Ld (yd , ŷd ), as follows:

L(y, ŷ) =
∑
d

Ld (yd , ŷd ) = −
∑
d

∑
i

ŷdi log y
d
i (2)

where Ld (yd , ŷd ) = −
∑

i∈[1,Nd ] ŷ
d
i log y

d
i denotes the

cross-entropy loss for level d ∈ [1,D − 1] and input data
index i ∈ [1,Nd ]. D and Nd represent the target number of
scene segmentation levels and the number of training data,
respectively. To uniformly enhance segmentation perfor-
mance across each level, we apply the unified cross-entropy
loss. Therefore, at coarser levels(e.g. level 2) where diverse
objects may belong to the same class and potentially confuse
the model, the segmentation performance improves with
multi-level output using a single network. This is attributed to
the network’s understanding of finer-level divisions, enabling
it to leverage this information when generating grouped
higher-level segmentation results. In other words, by training
the multi-level segmentation model using the unified loss
function, scene segmentation for each higher level is guided
to achieve better performance.

V. EXPERIMENTS
A. SEMANTIC SEGMENTATION
For the base scene segmentation model comprising our
multi-level segmentation model, we utilized a state-of-the-
art semantic segmentation method called SegFormer [32],
that has its encoder pre-trained on the ImageNet-1K
dataset [43], while the decoder is randomly initialized. Seg-
Former performs segmentation through a Mix Transformer
(MiT) encoder that analyzes coarse-to-fine features with
a hierarchical structure and an ALL-MLP decoder. MiT
models include MiT-B0 to MiT-B5, which have the same
architecture but different sizes, of which MiT-B5 is the
largest model. SegFormer-B5, based on the MiT-B5 encoder,
has the best performance among all SegFormer models.

We used the SegFormer-B5 model, which has the best
performance among SegFormer models that can reflect the
hierarchical relationship of objects through a hierarchical
encoder, as the backbonemodel in the following experiments.
The implementation details described in their paper were
followed. According to Algorithm 1, segmentation labels
for each of the D levels (here we define D as 3, therefore
level 0, level 1, and level 2) were extracted, and the extracted
labels were used for training our model with the unified loss
function (2).

For performance evaluation, the following metrics were
used: mean intersection over union (mIoU), mean accuracy
of each class (mAcc), and all pixel accuracy (aAcc). aAcc
evaluates performance in terms of the proportion of correctly
classified pixels, and this metric can be biased depending
on the results of a few object classes that occupy a large
area within the entire dataset. mAcc is the average of
the proportion of correctly classified pixels for each class,
allowing performance in reducing the effects of the biases
to be evaluated. mIoU is the average of the proportion of
correctly classified areas for each object instance, allowing
it to be spatially verified whether each object is actually well
classified. Therefore, we utilize all three of them to evaluate
performance in a balanced manner.

Data augmentation of random resizing, and random
cropping, and random horizontal flipping was performed,
and input images of 640 × 640 size were generated and
used for training. AdamW optimizer for 160K iterations was
used. The initial learning rate was established at 0.00006, and
the default ‘poly’ learning rate schedule was subsequently
employed with a factor of 1.0.

B. GENERATED DATASET ANALYSIS
Multi-level segmentation experiments were performed on
the ADE Challenge 2016, PASCAL-context, and Cityscapes
datasets. To demonstrate our approach’s flexibility, we select
three datasets with different characteristics. The ADE
Challenge 2016 dataset is mainly used as a benchmark
for comparing semantic segmentation performance for the
ADE20K dataset. ADE20K dataset is made for addressing
challenges of scene parsing, and it mainly consists of
indoor scenes with diverse object categories with pixel-level
annotations. The scene segmentation of 150 objects in the
ADE Challenge 2016 dataset was set as level 0 labels,
and segmentation data for the additional two levels were
generated through the proposed multi-level segmentation
data generation method based on a scene-specific word tree.
61 and 36 segmentation object labels were generated for
levels 1 and 2, respectively. Also, we utilize PASCAL-context
dataset, which is derived from a subset of PASCAL VOC
images, primarily focuses on object detection; therefore,
a large portion of the images contains primary salient main
objects and the context of background information around
them. The dataset contains both indoor and outdoor, but
the number of annotated object classes is relatively small.
For the PASCAL-context dataset, level 1 segmentation data
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TABLE 1. Segmentation evaluation on the datasets ADE Challenge 2016, PASCAL-context, and Cityscapes in terms of mean intersection over union (mIoU),
mean accuracy of each class (mAcc), and all pixel accuracy (aAcc).

FIGURE 8. Multi-level segmentation results. The left and right parts are the results for each sample selected from the ADE20K and PASCAL-context
datasets, respectively. The multi-level segmentation results when the scene image and level 0 segmentation labels in the first row are given, and the
ground-truth for comparison are shown in the left and right columns of the two lower rows, respectively.

consisting of 33 objects and level 2 segmentation data
consisting of 24 objects, and theywere generated based on the
original semantic segmentation label consisting of 59 objects
(excluding the ‘background’). Lastly, we utilize Cityscapes
dataset, which focuses on semantic understanding of urban
street scenes; therefore, its diversity is mainly applied to
50 different cities, seasons, and weather conditions, not to
the various object categories. For the Cityscapes dataset,
the segmentation results for 27 object labels were used as
level 0 data, excluding the following ones that overlap with
other labels or do not indicate the type of physically existing
object: ‘unlabeled’, ‘ego vehicle’, ‘rectification border’, ‘out
of roi’, ‘static’, ‘dynamic’, ‘license plate’, and ‘polegroup’.
The level 1 and level 2 scene segmentation data generated
from the level 0 data consist of 15 and 11 object labels,
respectively. The list of objects for each level generated for
the datasets is listed in Tables 3, 4, and 5. Using the generated
multi-level segmentation data, we trained our model to derive
coarser scene segmentation results of levels 1 and 2, given

the combined input of an RGB image and level 0 scene
segmentation results.

C. EXPERIMENTAL RESULTS
1) SEGMENTATION PERFORMANCE
The numerical performance of the proposed multi-level
segmentation model is listed in Table 1. The test accuracy
for each level was calculated separately for each level
segmentation output. To analyze the performance of the
multi-level segmentation model introduced in Section IV
(Multi-level in the table), we borrowed the SegFormer [32]
structure and conducted experiments to perform single-level
segmentation for level 1 and level 2, respectively, for per-
formance comparison (Single-level in the table). We refrain
from comparing existingmulti-level segmentation algorithms
because previous approaches primarily segment objects and
their parts at a finer level, whereas our method segments
objects and groups them into semantically coarser (higher)
level chunks, serving a different goal in comparison.
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According to the experimental results, the single-level
model outperformed the multi-level model in level 1 seg-
mentation; while the multi-level model exhibited superior
performance in level 2 segmentation. In the case of level 1,
the multi-level model maintains the backbone model of
SegFormer [32] and modifies the last layers for multi-
task learning, so it is considered that performance was
lowered by performing two tasks with a model of the same
complexity. However, in the case of level 2, performance
improved in the multi-level model compared to the
single-level model. This is believed to be because, in the
multi-level segmentation, level 2 segmentation is performed
with level 1 segmentation simultaneously, which provides
some level of guidance to level 2 segmentation, especially
when areas with different visual characteristics are grouped
into the same label at level 2. For each dataset, level 2 seg-
mentation performance was higher than level 1 segmentation
performance. We hypothesize that this is due to the fact that
as the scene is divided into larger sections with higher-level
concepts, different objects with various visual characteristics
are grouped under a single label, making it challenging for
the network to learn. In particular, for all datasets used in
the experiments, our model showed mIoU performance of
more than 70% for each level (especially over 80% for the
ADE Challenge 2016 dataset), and it was confirmed that
the dataset built by our data generation method reflecting
the characteristics of the scene, can be effectively
learned.

2) QUALITATIVE ANALYSIS
We also visualized the results of multi-level segmentation
based on the trained model, as shown in Figure 8. Each sam-
ple was selected from ADE Challenge 2016 and PASCAL-
context datasets, and the level 1 and level 2 segmentation
results were derived from our multi-level segmentation
model. Each data sample is visualized by listing the
segmentation results along with the inputs (RGB image
and the level 0 segmentation). As shown in the figure,
it was verified that our model performed well in level 1 and
level 2 segmentation, which grouped objects belonging
to the same category based on both given scene and
level 0 segmentation results.

Most parts of the ADE Challenge 2016 sample results
listed on the left of the figure were segmented correctly,
but the ‘trade name’ object in level 0 was recognized as
‘device’ rather than ‘relation’ in level 1. The ‘trade name’
should be an ‘abstraction’ at level 2, but it was recognized
as ‘instrumentality’ in our model. However, the result
proved that our model performed qualitatively better than
the numerical results of the quantitative test, as the results
were not entirely incorrect by common sense standards.
The visualized results listed on the right side of the figure
show that our multi-level segmentationmodel performedwell
compared to the ground truth, also on the PASCAL-context
dataset.

FIGURE 9. Multi-level output vs. single-level output model. Given the RGB
image and ground-truth level 0, our multi-level model shows better
grouping compared to the ablated single-level model.

TABLE 2. Segmentation evaluation using predicted level 0 segmentation
results as inputs on the dataset ADE Challenge 2016.

3) ABLATION STUDY
a: MULTI-LEVEL OUTPUT VS. SINGLE-LEVEL OUTPUT
We compared the results for each level segmentation obtained
from themulti-level model with the results from a single-level
model trained only on the corresponding level segmentation.
As mentioned in Table 1 and Section V-C1, our multi-level
model showed lower performance than the single-level
model at level 1 but higher performance at level 2. Here,
we visualized the scene segmentation results and qualitatively
compared the two models for each level. Figure 9 shows
the segmentation results of our multi-level output model and
the ablated single-level output model for comparison. Note
that the listed input RGB image and ground-truth level 0
image in Figure 9 were used as input for both models.
Our model yielded cleaner segmentation results than the
single-level model by reflecting the tendency to group similar
objects. We consider that learning grouping in multi-output
segmentation provides additional guidance for segmenting
objects with clearer boundaries. In particular, as shown in the
figure, the ‘bed’ at level 0 should be grouped from ‘furniture’
to ‘furnishing’ as it progresses to levels 1 and 2. In our multi-
level segmentation model, it can be confirmed that the result
of level 2 is recognized correctly with the guidance of level 1,
while in the single-level model, it is recognized as ‘furniture’
even at level 2 and is not grouped.

b: REAL-WORLD INPUT ANALYSIS
Additional performance evaluation was conducted for the
case where real-world level 0 segmentation is given to
our multi-level segmentation model. Assuming we have the
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TABLE 3. ADE dataset object list.

TABLE 4. PASCAL-context dataset object list.

TABLE 5. Cityscapes dataset object list.

existing semantic segmentation model output as level 0 input,
which may not be perfect compared to the ground truth.
We call such level 0 segmentation labels as predicted level 0
for our model. Here, we performed scene segmentation using
SegFormer [32] and Mask2Former [36], respectively, and
used the resulting images as the predicted level 0 input.
Figure 10 shows the qualitative comparison of ground-truth
level 0 input results and predicted level 0 input results. For
a given RGB scene image on the left in Figure 10, the
first row includes the ground-truth level 0 input and the
level 1 and 2 outputs generated from it. The second and third
rows contain the SegFormer and Mask2Former prediction
level 0 inputs and the level 1 and 2 outputs generated from
them, respectively. As shown in the SegFormer predicted
level 0 input, it can be observed that the ‘skyscrapper’ and

‘building’ labels were recognized as amix for the area labeled
‘building’ in the ground-truth. For this flawed SegFormer
level 0 input, our multi-level segmentation model produced
clean output. However, they were recognized as lower-level
concepts ‘building’ and ‘structure’ rather than ‘structure’
and ‘artifact’ at ground-truth levels 1 and 2, respectively.
Nevertheless, it can be concluded that the grouping performed
well, as this phenomenon occurred by compensating for the
imperfect segmentation performance of input level 0.

In the case of Mask2Former level 0 input(third row of
Figure 10), the performance of predicted level 0 can be
seen as better than the ground-truth. Two different buildings
were recognized separately as ‘skyscrapper’ and ‘building’
according to their visual characteristics. It can be seen that our
multi-level segmentation model performs relative grouping
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FIGURE 10. Real-word input analysis for the scene on the left. Level 1
and 2 segmentation results according to different level 0 inputs along
with the RGB image are listed. (First row: ground-truth level 0, Second
row: author-pretrained SegFormer [32] result (level 0), Third row:
author-pretrained Mask2Former [36] result (level 0)).

according to the scene well based on the scene-specific
word tree even for level 0 inputs that are different from the
ground-truth, generating clean level 1 and 2 segmentation
results. Quantitative results that include this case can also be
confirmed in Table 2, which lists the numerically measured
segmentation results of levels 1 and 2 according to each
predicted level 0 input (achieving the performance of more
than 50% mIoU).

VI. CONCLUSION
We conducted a study to simulate human vision intelli-
gence that recognizes the scene with language hierarchy.
Specifically, we proposed a data generation method that
derives multi-level segmentation results by scene-specific
word tree generation. We also verified the effectiveness
of our proposed data by building a model that performs
multi-level segmentation for a given scene and evaluating the
model using the data generated by the proposed method. The
proposed data generation method is versatile, so it can be
applied to any other scene segmentation dataset, which may
expand the potential capabilities of our scene-specific word
tree. The method we proposed will serve as a starting point
for implementing the visual intelligence of a person who
‘understands’ a given scene according to the situation rather
than ‘looking’ at a given scene fragmentarily by combining
structured linguistic knowledge with scene segmentation.
In particular, the proposed multi-level segmentation that
incorporates the hierarchy of object words is a source
technology that can be used for situation-based scene
understanding in various fields. Specifically, the proposed

method will enable scene recognition for mobile robots
according to the distance from the target point or object
recognition for robot manipulators performing at various
categorical levels depending on the task type.

However, in the process of generating label data, it was
difficult to select a dictionary definition for the object in the
image in the case of an object with a homonymous name.
To solve this, we introduced a method to select the most
similar definition by comparing the visual information of
the hypernym text and the corresponding object using CLIP
features. Nevertheless, the effectiveness of the proposed
method with a broader vocabulary than currently utilized
needs to be verified, necessitating further research.

VII. FUTURE WORK
In future work, we plan to apply our multi-level scene
segmentation model to help operate mobile robots. When the
camera moves, as in the case of a mobile robot, different
widths of the same scene are captured depending on the
Depth of Field in photography. By employing multi-level
scene segmentation using the proposed model, objects with
different degrees of detail can be recognized depending on the
distance even when looking at the same scene. Specifically,
we consider to implement for the scenario when a mobile
robot enters a house. The proposed model will be applied
to differentiate between recognizing the entire house as a
separate entity from the background when it is viewed from
a distance, and identifying finer details such as doors and
windows as the robot approaches for entry.
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