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ABSTRACT Mild cognitive impairment (MCI) is an early stage of Alzheimer’s disease (AD), which is
currently incurable. Early diagnosis of AD is essential for effective intervention since theWorld Alzheimer’s
Report 2015 predicted the number of cases will triple by 2050. The 18F-FDG PET imaging technique,
although effective in detecting metabolic activities in the brain, faces challenges such as low signal-to-noise
ratios and limited data availability, which complicates the extraction of necessary lesion information that is
effective for early stage MCI diagnose. To overcome these challenges, we introduce a novel deep learning-
based model, ResGLPyramid, that combines convolution operations, MobileViTv3, and a global-local
attention module (GLAM) block, to capture local and global representations. By utilizing a softened cross-
entropy (SCE) objective function, the model reduces overfitting, improves generalization, and enhances
the detection of subtle metabolic changes. The proposed model enhances the sensitivity and specificity of
Alzheimer’s detection by leveraging local- and long-range interactions among critical diagnostic features that
lead to more precise and efficient analyses. The experimental results show that the ResGLPyramid model
achieved an accuracy of 92.75%, sensitivity of 90.80%, and specificity of 94.14% in classifying MCI and
AD individuals. These results represent a 3.44% increase in accuracy and a 4.28% increase in specificity
while the sensitivity is slightly lower compared to state-of-the-art methods.

INDEX TERMS 18F-FDG PET, Alzheimer’s disease, deep learning, global feature representation, local
feature representation, MobileViT.

I. INTRODUCTION
Alzheimer’s Disease (AD) is a chronic and progressive
brain disorder, characterized by a form of dementia, that
gradually impairs cognitive abilities and eventually disrupts
the inherent skills to perform even the simplest tasks
[1]. As reported by the World Alzheimer’s Report 2015,
approximately 46.85 million people globally are affected by
AD and other forms of dementia, with projections indicating
that figure will double by 2030 and triple by 2050 [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno M. Garcia .

Mild cognitive impairment (MCI) represents a transitional
stage between normal cognition (NC) function and AD,
characterized by slightly reduced cognitive abilities that do
not significantly affect daily activities. Despite this, MCI
substantially increases the risk of developing dementia, high-
lighting the critical need for precise early detection methods
and effective interventions to slow symptom progression and
manage cognitive decline [3].

Diagnostic techniques such as magnetic resonance imag-
ing (MRI) [4], [5] and positron emission tomography (PET)
[6] are vital tools in detecting AD and MCI. MRI captures
structural and functional changes in the brain, while PET,
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particularly 18F-fluorodeoxyglucose PET (18F-FDG PET),
is more effective in the early stages of AD because it measures
metabolic activities at the tissue level [7], detecting decreases
in metabolic activities before structural changes occur [8].
However, PET faces several challenges: images often have
a low signal-to-noise ratio, contain repetitive information
among slices within the same class, and suffer from a lack
of sufficient data volume. These issues complicate the use
of deep learning (DL) models for accurate AD prediction,
underscoring the necessity for improved imaging techniques
and data handling to enhance the diagnosis and management
of AD and MCI [9], [10].

To address these challenges, DL approaches have become
essential for classifying and diagnosing neurological con-
ditions such as NC, MCI, and AD. Various studies have
employed DL models to enhance diagnostic accuracy. For
instance, Liu et al. [11] leveraged convolutional neural
network (CNN) layers, to extract features from brain slices,
processed by a gated recurrent unit (GRU), in order to
integrate inter-slice features, achieving an area under the
curve (AUC) of 95.3% for AD vs. NC and 83.9% for MCI vs.
NC. Ding et al. [12] applied the InceptionV3 model [13] with
ImageNet weights [14] for extraction of AD brain features,
achieving a detection rate of 87.5% for AD and 61% for
MCI. Zhang et al. [15] employed CNNs, pooling layers,
and fully connected networks (FCNs) to extract information
and correlate it with clinical scores, achieving an 84.2%
detection rate, which Kim et al. [16] improved to 91.02%
by substituting a global average pooling layer for FCNs to
classify AD and NC from multi-slice PET images. In the
preceding year, Song et al. [17] introduced a U-shaped
multi-scale architecture that effectively extracts inter-slice
and intra-slice features, enhancing the accuracy of AD and
NC classification to 92% and achieving 73.01% and 72.6%
accuracy for AD vs. MCI and MCI vs. NC, respectively.

Despite these advancements, significant limitations persist
in the existing approaches. First, these methods often
fail to capture comprehensive features from PET images,
primarily extracting local features and overlooking crucial
global contextual information. This limitation hinders early
detection of AD, which is vital for effective intervention
and management. Secondly, many models struggle with
classification confidence, particularly when distinguishing
between closely related classes due to the subtle variations
in PET image features. The use of traditional cross-entropy
loss impairs this issue by not effectively managing data points
near the decision boundary. To address these challenges,
Chen et al. [18] shifted to a contrastive loss approach within
a double-attention-based CNN framework, although this
method demands extensive training time and relies heavily
on effective data augmentation strategies. These challenges
underline the need for ongoing development inDL techniques
to improve the robustness and accuracy of diagnosing AD and
MCI using PET imaging.

Addressing these constraints, the Vision Transformer
(ViT) model [19] presents a promising alternative with a

self-attention mechanism that captures long-range dependen-
cies, potentially outperforming traditional CNNs in feature
extraction. However, ViT faces challenges such as an induc-
tive bias problem and higher data requirements, which com-
plicates its application in the medical field where data acqui-
sition is severely restricted. Consequently, most approaches
employ supervised fine-tuning or self-supervised learning,
and although some adopt transfer learning, its effectiveness
is often limited by significant domain shifts [20], [21].To
overcome these challenges, researchers have explored com-
bining a CNN with ViT to leverage both local and global
feature extraction capabilities [22], [23], [24], although these
approaches demand significant computational resources.
Another innovative solution,MobileViT [25], targets efficient
operation on mobile and edge devices by balancing local and
global information processing with fewer model parameters,
but this design may not fully meet the accuracy requirements
for complex PET image classification of MCI and AD [26].
These efforts underscore the critical need for innovative
approaches that balance efficiency and precision in medical
imaging diagnostics.

In this paper, we introduce a novel DL model, ResGLPyra-
mid, consisting of the Tri-Convolutional-Transformer (TCT)
and Global Local Attention Module (GLAM) module,
designed to enhance the diagnosis of MCI and AD using PET
images. The proposed DL model combines the strengths of
the CNN, MobileViTv3, and GLAM module to address the
challenges inherent in PET imaging diagnostics. This model
is precisely structured to extract local and global features,
effectively solving the inductive bias problem associated with
traditional transformer models and markedly increasing AD
and MCI classification accuracy. Our significant contribu-
tions are as follows:

1) To improve the detection of MCI and AD by over-
coming the challenges of analyzing PET images with
a complex nature, we proposed ResGLPyramid which
incorporates TCT and GLAMmodules to process local
information and leverage global contextual understand-
ing effectively. ResGLPyramid employs patch-based
self-attention to capture long-range dependencies and
fuse them to expand the scope of model attributes.
This strategy allows for a comprehensive analysis by
capturing detailed and predominant patterns in PET
images and significantly helps themodel identify subtle
nuances associated with the early stage of AD to
overcome redundant information, boosting diagnostic
accuracy. The ResGLPyramid model achieved an
accuracy of 92.75% and specificity of 94.14% in
the classification of MCI and AD individuals, which
are 3.44% and 4.28% higher than the state-of-the-art
(SOTA) method [18]. The results show that predicted
regions of interest are interpretable and consistent with
the AD lesion region in clinical studies.

2) To the best of our knowledge, this is the first DL
model that employs label smoothing with cross-
entropy, referred to as softened cross-entropy (SCE),
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FIGURE 1. (a) Overview of the Proposed ResGLPyramid Model’s three stages, each with TCT modules. At the end of the
third stage, the GLAM module is integrated to apply channel and spatial attention to the deep-layer feature maps. (b) The
TCT module, consists of tri-convolution block and MobileViTv3 for extracting local and global contextual information and
fusing them. (c) All four attentions are applied to an input feature map at 256 × 8x8 to extract salient features related to
the metabolic activities across the brain.

to optimize the objective function in order to diagnose
AD’s early stage. This technique effectively increases
the distance between feature representations of differ-
ent classes while minimizing the gap within the same
class, enhancing the model’s robustness and accuracy
in distinguishing between closely related diagnostic
categories. This combination addresses the problem
of overfitting caused by highly similar PET image
slices. Compared to using only cross-entropy with
the ResGLPyramid model, the proposed combination
can achieve 6.5% higher accuracy in classifications
between AD and NC, 6.4% higher accuracy in
classifications betweenAD andMCI, and 6.23%higher
accuracy in classifications between NC and MCI. This
technique can be applied in various similar medical
fields and is beneficial for diverse diagnostic and
treatment scenarios.

The architectural design of the ResGLPyramid model
is well-suited to handling low-resolution PET images,
providing detailed and accurate diagnostic insights that are

essential in clinical environments where high fidelity in
image analysis is crucial. The proposed model enhances
diagnostic accuracy for AD and MCI as well as offers a
scalable and efficient solution adaptable to similar challenges
across various medical imaging fields by holding significant
potential for broad application in clinical practice, contribut-
ing to better patient outcomes through earlier and more
precise diagnosis.

The rest of this paper is organized as follows: Section II
presents the methodology of the proposed ResGLPyramid,
Section III analyzes and discusses the experimental results,
and Section IV provides concluding remarks.

II. PROPOSED METHODOLOGY
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)1

is a benchmark dataset widely recognized for its credibility
and extensive availability of imaging, genetic, and clinical
data. It facilitates robust research into the early detection and
progression of Alzheimer’s disease, and has been extensively

1https://adni.loni.usc.edu/
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FIGURE 2. Random brain 18F-FDG PET random patient slices of NC, MCI,
and AD.

TABLE 1. Demographics of the subjects in this study.

utilized in previous studies [16], [18], [27].We have collected
data from 720 subjects using 18F-FDG PET imaging, which
included 212 subjects diagnosed with AD, 290 with MCI,
and 218 with NC. Each subject underwent a 30-minute
dynamic 3D PET scan for six five-minute frames, initiated
30-60 minutes after intravenous injection of 185MBq ±

10% of 18F-FDG. Random sample images from each
class displayed in Figure 2 highlight the distinct imaging
characteristics observed in the stages of cognitive decline.
The preprocessing of these images was precisely performed
using the Statistical Parametric Mapping tool SPM12 [28],
and involved spatial normalization to the Montreal Neuro-
logical Institute (MNI) template, having a dimensions of
91 × 109 × 91 with a voxel size of 2 ×2 × 2mm3,
intensity normalization based on the global mean, and
skull stripping with a PET mask to isolate brain tissue,
followed by smoothing with a Gaussian filter of 8 mm
full width at half maximum (FWHM) [29]. This rigorous
standardization facilitates a uniform analysis framework
crucial for subsequent diagnostic evaluations detailed in
the demographic data and Mini-Mental State Examination
(MMSE) scores in Table 1.

To further improve neuroimaging accuracy, we developed
the ResGLPyramid model, shown in 1(a), which employs
the tri-convolution transformer (TCT) module with a residual
connection to effectively extract and integrate local and
global features throughout the analysis. The GLAM enhances
this process by refining neuroimaging data using atten-
tion mechanisms, culminating in comprehensive diagnostic
output through a multilayer perceptron (MLP) layer. This
integrated approach ensures precise and reliable diagnostic
predictions, advancing the field of neuroimaging in detecting
cognitive decline. The details of each component are as
follows.

A. CONV STEM
The purpose of Conv Stem is to reduce the computational
load, highlight essential features, prevent overfitting, and

FIGURE 3. An illustration of the TCB block that consists of depth-wise
separabale, simple and point-wise convolution for local spatial features
extraction.

detect features at multiple scales [30]. Given the properties
of the image, we selected a small kernel size of 3 × 3 for
convolution, with a stride of 2 and padding of 1. The number
of output channels, denoted as C , is set to 64. This initial
step is particularly effective in processing neuroimages,
which often contain redundant information, thus enabling
the extraction of relevant features. Subsequently, batch
normalization (BN) is applied, followed by a 3 × 3 max
pooling operation to produce X ∈ RC×

H
2 ×

W
2 , where X

represents the output features from this block,H is the height
andW is the width of the input image. These features are then
fed into a three-stage network comprising of TCT modules
for further processing.

B. THE PROPOSED TCT MODULE
The tri-convolution transformer (TCT) module as shown
in 1(b), integrates three convolution blocks to encode local
information alongside patch-based self-attention mecha-
nisms for capturing global context and fusing them. This
synthesis is essential in a clinical environment for accurate
diagnosis of AD [24], because it provides a nuanced view
of both specific regions of interest (ROIs) and broader
brain structures, including cerebrospinal fluid and the
hippocampus. The TCT module enhances this process by
incorporating residual connections that facilitate information
flow via skip paths, thus improving integration efficiency.
Structurally, the network is designed with three stages: the
first two stages contain two TCT modules each, while the
final stage includes three TCT modules. This configuration
produces feature maps with increasing channel dimensionsC
of 64, 128, and 256 across the stages, allowing detailed and
comprehensive extraction and integration of both local and
global information critical for AD diagnosis.

1) LOCAL FEATURE EXTRACTOR
The clinical heterogeneity of AD and the different absorption
rates cause PET scans to vary among individuals which
complicates diagnosis. We apply the TCB as shown in
Figure 3, to capture range of features from different regions of
the brain, enhancing detection of subtle pathological changes.
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FIGURE 4. An illustration of the transformer block. This block first
unfolded the inputs features then employs normalization (NORM),
multi-head self-attention (MHSA), and a feed forward network (FFN) for
global representation extraction and then folded them back into the
same dimension as the input.

This helps to minimize data redundancy and prioritizes
critical diagnostic features, leading to precise and efficient
analysis. Themodule processes features with dimensionsC×
H
L ×

W
L , and L values of 4, 8, and 16. The processing begins

with depth-wise separable convolution (DWConv), followed
by a 3× 3 kernel convolution, and inference with point-wise
convolution using a 1 × 1 kernel. The first two stages of this
sequence incorporate batch normalization and the Gaussian
error linear unit (GELU) activation function to enhance
feature integration, as detailed in Equations 1-3. After the
final convolution, batch normalization is applied in isolation,
setting the stage for the subsequent attention mechanism. The
output from this attention block is then seamlessly integrated
with residual output, optimizing the feature processing
workflow for detailed and effective analysis.

XL = Gelu (BN (DWConv3×3(X ))) (1)

XL = Gelu (BN (Conv3×3(XL))) (2)

XL = BN (Conv1×1(XL)) (3)

where XL is the local feature map.

2) GLOBAL FEATURE EXTRACTOR AND FUSION
We utilize the MobileViTv3 [31] module to employ
spatial inductive bias to consistently capture long-range
feature dependencies across spatial pixels and patch order,
as depicted in Figure 1(b). That figure illustrates the process
of global information extraction and fusion. Locally extracted
features from the TCB undergo convolution through depth-
wise 3 × 3 and point-wise 1 × 1 convolutions, resulting in
output XL ∈ RD×

H
L ×

W
L with channel dimensionD and spatial

dimension H . These features are then fed into a transformer
block, detailed in Figure 4, where XL is segmented into N-
ordered, non-overlapping patches p, reshaping the dimension
to D× p× N , with p representing the area of each patch
(wh), and N , the total number of patches (WHp ). Each
patch, with height h and width w not exceeding the kernel
size k , passes through normalization (Norm), multi-head
self attention (MHSA), and feed-forward network (FFN)
layers. After processing, these patches are reassembled back
into the original dimension to produce XTrans, which is
further processed through depth-wise convolution to generate
XG. Extracted features XL and XG are then concatenated
during the fusion step and subsequently processed with

point-wise 1 × 1 convolution to produce XTCT, with
dimensions RC×

H
L ×

W
L , where XTCT, XTrans, and XG denote

the outputs from their respective processes. The sequence of
operations from capturing long-range dependencies to final
output of the feature maps is outlined in equations 4 to 11,
highlighting the comprehensive fusion of local and global
information within the TCT module.

XL = DWConv3×3(XF ) (4)

XL = Conv1×1(XL) (5)

XTrans = MHSA(LN(XL(p)) + XL(p) (6)

XTrans = FFN(LN(XTrans(p))) + XTrans(p) (7)

XG = DWConv3×3(XTrans) (8)

XGL = Fusion(XG,XL) (9)

XTCT = Gelu (XGL + XL + X) (10)

C. THE GLOBAL LOCAL ATTENTION MODULE (GLAM)
We incorporated the GLAM [32] into our network to enhance
representation learning and enrich embedding by applying
all attention i.e., local channel attention, global channel
attention, local spatial attention, and global spatial attention,
as shown in 1(c). The module captures the subtle early
signs by identifying hypometabolism in specific brain regions
and contextualizing these findings within the overall brain
metabolism. Initially applied in image retrieval challenges,
the GLAM module shows significant improvements by
employing a comprehensive approach to attention, utilizing
a weighted vector to optimize the attention process. In our
implementation, we adapted the traditional global average
pooling to adaptive average pooling for its effectiveness in
handling pooling tasks. Features from XTCT with a dimension
of 256 ×

H
16 ×

W
16 are the input for the GLAM block, where

local, global, and incoming features are equally weighted
by using wl ,wg and w before fusion. This integration allows
selective enhancement of the most informative features,
which are subsequently refined through adaptive average
pooling using a 1 × 1 kernel, achieving superior feature
extraction and pooling outcomes.

In the end, a two-layer multilayer perceptron (MLP) is
utilized to perform binary classification. The extracted XTCT
features are flattened and fed into the MLP, which comprises
dense layers with 128 and 2 hidden units, respectively. Each
layer is equipped with batch normalization and a GELU
activation function.

D. LOSS FUNCTION
Label smoothing is implemented to prevent overfitting
and to address the issue of redundant information across
slices [33], which helps the model avoid overconfidence in its
predictions. Our model employs the SCE loss function, from
the PyTorch Image Models library (TIMM) [34]. SCE loss,
for a batch of predictions x and the corresponding true labels
y, is evaluated by obtaining the log probabilities (LP) from
applying the log softmax function to the logits produced by
the model. Following this, the negative log likelihood (NLL)
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loss is computed for the actual class labels.

LPi = log(p(x)i) (11)

NLLLoss = −
1
N

N∑
i=1

log(p(x)yi ) (12)

where p(x)i =
exi∑K
j=1 e

xj , p(x)i is the probability of the i-th

element and K is the number of classes. N is the number of
instances in the batch, and yi denotes the true class for the i-th
instance.

To further refine the model’s predictions, label smoothing
is applied by averaging the log probabilities across all classes.
This ensures that the probability mass is evenly distributed
among all classes, contributing to a more balanced learning
process.

SmoothLoss =
1
N

N∑
i=1

LPi (13)

The final SCE loss is computed as a convex combination
of the NLL loss and Smooth Loss, with smoothing parameter
α adjusting the balance between these two components,
enhancing the model’s generalization capabilities.

SCELoss = (1 − α) · NLLLoss + α · SmoothLoss (14)

where α = 0.2 is the smoothing factor that balances the
trade-off between adhering to the true class distribution
and promoting probability distribution uniformity across all
classes.

III. EXPERIMENTS AND DISCUSSION
In this section, we discuss the experimental environment,
evaluation metrics, and experimental results obtained with
the proposed model, including a visualization of the results
and an ablation study to underscore the importance of each
component.

A. EXPERIMENTAL ENVIRONMENT
Our experiments were conducted on a Windows system
equipped with 32 GB of RAM and an Nvidia RTX 3060 Ti
GPU, utilizing the PyTorch framework for its proficient
handling of neural networks. To optimize performance, we set
a batch size of 8 and an initial learning rate of 0.001, adjusted
by an exponential learning rate scheduler with a 0.95 decay
rate. We also used the Adam optimizer with beta coefficients
of 0.9 and 0.99 for weight adjustments. An early stopping
mechanismmonitored validation loss to mitigate over-fitting.
The dataset was divided into 80% for training, 10% for
validation, and 10% for testing. To ensure the model’s
reliability, we employed 10-fold cross-validation during the
training phase. The training was limited to 120 epochs to
prevent over-fitting while allowing the model to achieve
adequate learning depth. Data augmentation techniques such
as horizontal flipping, zooming, and random rotation were
applied to enhance the robustness of the training process.

B. EVALUATION METRICS
The model’s performance was assessed using several metrics,
such as specificity (Spec) to measure the proportion of
true negatives correctly identified, sensitivity (Sen) or True
Positive Rate (Tpr) to measure the proportion of true positives
correctly identified, F1-score to evaluate the harmonic mean
of precision and sensitivity to indicate the balance between
them, Accuracy (ACC) to assesses the overall correctness
of predictions, and AUC to predict the model’s ability
to discriminate between classes(values close to 1 indicate
excellent discrimination and values close to 0.5 suggest
random guessing). These metrics are vital for evaluating the
precision and reliability of the model and are defined as
follows:

ACC =
TP+ TN

TP+ TN + FP+ FN
(15)

Sen =
TP

TP+ FN
(16)

Spec =
TN

TN + FP
(17)

Pre =
TP

TP+ FP
(18)

False Positive Rate (Fpr)

=
FP

TN + FP
(19)

F1-Score = 2 ×
Pre × Sen
Pre + Sen

(20)

AUC =

n−1∑
i=1

(Fpri+1 − Fpri) · (Tpri + Tpri+1)
2

(21)

These metrics are calculated based on the counts of true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). The AUC is particularly derived from
the relationship between the Tpr and the Fpr, providing a
comprehensive view of model performance across different
thresholds and The variable n represents the total number of
data points on the Receiver Operating Characteristic (ROC)
curve.

C. EXPERIMENT RESULTS AND COMPARISON
The receiver operating characteristic (ROC) curves for
our proposed model is illustrated in Figure 6. We show
performance across three binary classifications: AD vs.
NC, AD vs. MCI, and MCI vs. NC. The highest AUC
recorded was 96.90% for the AD vs. NC classification, with
the AUC for AD vs. MCI and MCI vs. NC at 92.48%
and 93.08%, respectively. Notably, the ROC curve for AD
vs. MCI showed a steep rise between the false positive
rates of 0.1 and 0.6, highlighting the model’s sensitivity in
distinguishing between AD andMCI, thus yielding lower test
errors. Overall, the model effectively differentiated between
the most challenging cases. Table 2 shows the comparision
result of ACC, Sen, Spec and AUC with SOTA methods.
Our model demonstrated superior performance in most
cases of classifying AD vs. MCI, AD vs. NC, and MCI
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TABLE 2. Comparison of the proposed model with SOTA DL models on the ADNI database.

FIGURE 5. t-SNE visualizations for different classes: (a) AD vs. NC, (b) MCI vs. NC, and (c) AD vs. MCI.

vs. NC using deep neural network models, encompassing
both 3D and 2D approaches. However, a direct comparison
is limited by the variance in subject data across studies
and distant experimental protocols. To achieve a more fair
comparison, we utilize 10-fold cross-validation and present
the mean ±standard deviation of the classification results.
The inclusion of standard deviation highlights the associated
risk and variation in the results, ensuring a more robust
and reliable comparison. Previous 3D network studies by
Song et al. [17] and Gao et al. [35] reported lower accuracies

(92.1% and 88.8% respectively) for AD vs. NC due to
redundant information in 3D brain data volumes and the
high computational costs associated with training these
networks. Studies employing 2D slice images, however, such
as those by Kim et al. [16], Zhang et al. [15], Liu et al.
[11], Yonglin et al. [18], and Pan et al. [27] listed in
Table 2, provided more promising results, with improve-
ments in sensitivity, specificity, and accuracy in all cases,
particularly for difficult classifications like MCI vs. NC and
AD vs. MCI.
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FIGURE 6. ROC curves for the three binary classifications: MCI vs. NC,
AD vs. MCI and AD vs. NC.

In this study, we propose a 2D-slice AD neuroimage
prediction model to classify binary problem that synergizes
local and global features to refine early AD diagnosis.
There is very less features variation between the classes
which make diagnose difficult [18]. To obtain consistent
results across different types of samples, the samples should
be axial and selected from the mid slices of the brain.
It is also essential to ensure the same data preprocessing
and data distribution. The model’s architecture, combining
convolutional operations’ with self-attention mechanisms on
patches, markedly enhanced performance, especially in the
complex cases AD vs. MCI and MCI vs. NC. Notably, our
model showed accuracy and AUC improvements (3.44%
and 1.79%, respectively, for AD vs. MCI) as well as
sensitivity and specificity improvements (0.67% and 0.81%,
respectively) for MCI vs. NC in these difficult classifications,
underscoring the value of integrating local and global
information to effectively capture brain metabolic activities.
Although the AUC for AD vs. NC and MCI vs. NC were
slightly lower by 1.86% and 1.27% compared to other
methodologies this is due to more redundant information
present in the NC subjects [18]. Our model required less data
owing to the generalization capabilities of CNNs, suggesting
the potential for further improvements with more diverse
training datasets.

D. MODEL INTERPRETATION AND VISUALIZATION
1) FEATURE VISUALIZATION
t-distributed stochastic neighbor embedding (t-SNE) [37] is
a non-linear dimensionality reduction technique employed
to visualize high-dimensional features in low-dimensional
spaces. This method, illustrated in Figure 5, arranges similar
data points close to each other while positioning dissimilar
ones at a distance. It facilitates visualization of the feature
distribution of network predictions to assess the effectiveness
of the network in learning PET lesion features. 5(c)
illustrates AD vs. MCI clusters in close proximity, with some
points existing within the opposing cluster. This minimal
variation between the two class features complicates the
model’s predictive accuracy. Such a difficulty is mirrored in

clinical findings, emphasizing the challenge of distinguishing
between these conditions. For the classification of AD vs.
NC, 5(a) reveals optimally aggregated features, indicating
the model’s high sensitivity and precision. Meanwhile, 5(b)
displays well-defined clusters forMCI vs. NC, demonstrating
the model’s effectiveness in discriminating between these
closely related cases with very few data points positioned
within the alternate cluster.

2) MODEL INTERPRETATION
The class activation map is employed in our proposed model
to identify the regions of focus by following the methodology
outlined in [12]. Figure 7(a) presents heatmaps images of
AD slices, and 7(b), (c), and (d) illustrate the progression
from initial convolution features to deeper layer feature maps.
These colormaps, generated using the JET algorithm, clearly
highlight the model’s concentration on critical brain areas for
diagnosing AD, such as the posterior temporal lobe, posterior
cingulate cortex, hippocampus, thalamus, parahippocampal
gyrus, and supramarginal gyrus. The maps reveal a sharpened
focus on these regions as the model analyzes deeper layers.
Figure 7(e) displays heatmaps images from an MCI subject,
and 7(f), (g), and (h) show visualizations of the deeper
layers. Initially, broader regions were targeted compared to
the AD subjects, but as the depth increases, the focus narrows
distinctly to areas differentiating MCI from AD. These
include the superior parietal regions, angular gyrus, right
superior frontal gyrus, precuneus regions, marginal sulcus,
and bilateral postcentral regions. This focused sensitivity
aligns with clinical findings, confirming that results are both
visualizable and interpretable, ensuring themodel’s relevance
and applicability in clinical environments.

E. ABLATION STUDIES
In this section, we detail the ablation studies conducted to
evaluate the individual contributions of different components
within our proposed model. Initially, the model was trained
using only triconvolutional blocks (TCB) with traditional
cross-entropy (CE) loss to establish a baseline. To mitigate
the issue of redundant information between slices and to curb
overfitting, we incorporated SCE loss. Subsequently, global
features were derived from locally encoded features using a
transformer, enhancing the model’s performance. The final
integration involved the GLAM at the end of the backbone
network to extract and refine features into 256×1×1 vectors,
which were then processed through the MLP layer.

1) ABLATION EXPERIMENTS
• Effectiveness of the TCB and SCE Loss: Table 3
shows the results for each model component with
mean ±standard deviation of the classification metrics.
Incorporating TCB with SCE loss improved the AUC
by 6.5% for AD vs. NC, by 6.7% for AD vs. MCI, and
by 6.2% for MCI vs. NC. This enhancement indicates
the TCB effectively generalizes features, reducing the
tendency to overfit.
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TABLE 3. The ablation study of w/o SCE, w/o global features, and w/o the GLAM.

FIGURE 7. Illustration of deep layer features yielded by ResGLPyramid model. From AD slices (a) shows heatmaps images,
whereas (b), (c), and (d) show colormaps of deep-layer features; from MCI slices (e) shows heatmaps images, whereas (f), (g),
and (h) show colormaps from deep layers of the proposed model.

• Global Feature Integration: Further enhancements
were observed when global features were extracted
and fused with local features, capturing long-range
dependencies. This step notably increased the AUC by
11% for AD vs. NC, 9.8% for AD vs. MCI, and 9.5%
for MCI vs. NC. The integration of global features is
pivotal for diagnosing early stages of AD, demonstrating
the critical role of comprehensive feature analysis in
capturing brain metabolic activity.

• The GLAM Contribution: The GLAM applied to
features from the backbone network, significantly
extracted relevant information through focused attention

mechanisms and adaptive average pooling, achieving
feature dimensions at 256×1×1. This enhancement led
to a 5.58% increase in AUC for AD vs. NC and further
gains of 4.68% and 4.55% for AD vs. MCI and MCI vs.
NC, respectively. The results underscore the importance
of last-stage features in diagnosing early-stage MCI of
AD.

2) EFFECT OF SCE FUNCTION
Figure 8 illustrates how varying the Alpha parameter in
the SCE function affects the AUC results across different
binary classifications. Increasing α values generally led to
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FIGURE 8. AUC results when increasing Alpha for smoothing in each
binary case.

a degradation of results in a non-linear manner. For AD vs.
NC, significant decreases highlight the distinct differences
between these conditions, aligning with clinical findings.
However, the variations for AD vs. MCI and MCI vs.
NC were less pronounced, with optimal results achieved at
an alpha of 0.2, emphasizing the sensitivity of the model to
the parameter settings.

These ablation studies validate the effectiveness of each
integrated component and parameter adjustment in our
model, illustrating their collective impact on enhancing
the diagnostic accuracy for Alzheimer’s disease and its
precursors.

IV. CONCLUSION
In this paper, we introduced the ResGLPyramidmodel, which
is designed to diagnose early stages of Alzheimer’s disease
using 18F-FDG PET. The model incorporates TCT modules,
including convolution operations, MobileViTv3, and skip
connections, enabling it to capture local region specifics and
global contextual information on metabolic activities across
the brain. We employed softened cross entropy to mitigate
overfitting and enhance the model’s generalizability. Exper-
imental results show the ResGLPyramid model achieved
an accuracy of 92.75% and a specificity of 94.14% in the
classification of MCI and AD individuals, which is higher
compared to the SOTA method. Despite inherent variability
in medical data causing minor performance fluctuations,
using cross-validation enhances reliability by minimizing
dataset bias. In the future, we will further refine the model’s
ability to distinguish among the three diagnostic classes by
enhancing its feature extraction capabilities. Additionally,
we will boost AD detection rates and explore the application
of this approach across different imaging modalities. This
future work will enhance the diagnostic precision and utility
of the ResGLPyramid model in a clinical environment.
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