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ABSTRACT Explainable artificial intelligence (XAI) techniques are used to understand the rationale behind
the decision-making of machine learning models. In addition to the need for model explainability, the
demand for an ever-growing number of multimodal features has dramatically increased model complexity.
This underscores the importance of precise feature selection to ensure high model accuracy. Using our
Approximate Inverse Model Explanations (AIME) technique, which currently presents the best XAI
capability in the field, this study incorporated a novel backward and forward deletion process. This pre-
assesses global feature importance by calculating and ordering their AIME-reported global importance.
Through the backward deletion process, it assesses model accuracy by progressively eliminating less
important features, resulting in a feature set configuration that guarantees the highest model accuracy. Then,
the forward deletion process further refines the feature set by discarding the least important features until the
he model’s accuracy declines, which reduces the computational burden and ensures optimal performance.
We applied our method to the detailed and expansive Multimodal Emotion Line dataset and leveraged 4,870
facial, voice, and spoken language features in the Google Colab Pro+ environment to demonstrate AIME’s
efficacy in enabling researchers to maximize both model explainability and performance: the holy grail of
XAI.

INDEX TERMS Approximate inverse model explanations (AIME), backward and forward deletion,
explainable artificial intelligence (XAI), feature selection, global feature importance.

I. INTRODUCTION
In the digital age, artificial intelligence (AI)-driven machine
learning (ML) is pivotal in driving progress in many areas,
such as automated driving, medical diagnostics, and financial
management. Because ML predictions empower and/or
replace modern human decision-making, the use of multi-
modal data to address nonlinear problem domains has gained
prominence owing to recent technological advancements.
As such, there is an increasing need for explainable AI (XAI)
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methods ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20]) that allow
users to understand the reasons behind otherwise opaque ML
predictions. Explainability is vital in modeling dependable
systems for public safety, and social wellbeing.

Our previously proposed approximate inverse model
explanation (AIME) method [21] derives an approximate
inverse operator that links black-box model predictions to
underlying data features. Using the training dataset, this
inverse operator is trained to reveal the local and global
contributions of features by mathematically analyzing their
impact on models’ prediction performance. Specifically,
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AIME utilizes linear algebra techniques to construct inverse
approximation operators between a model’s outputs and
input features. This enables numerical assessment and visu-
alization of the effects of individual features on prediction
results. Furthermore, AIME calculates the contribution of
each feature and ranks its importance accordingly. This
provides important feature selection indicators that enable
interpretability.

Various approaches have sought to improve model
accuracy while reducing computer and temporal costs.
To succeed, multimodal tasks require a method that can
manage large data sources while ensuring interpretability and
explainability. Our method provides strong interpretability,
even in the presence of multicollinearity, and is more robust
than traditional XAI techniques. Furthermore, the feature-
importance information derived by AIME can be used to
minimize computational costs by selecting only the most
necessary features to maximize accuracy. This is crucial
for efficient feature selection technologies, particularly for
applications with large datasets and complex model struc-
tures. AIME draws back the curtain to expose the rationale
underlying a model’s behavior, allowing for transparent and
targeted methods of improvement and efficiency. Moreover,
it allows scientists to support AI findings with traceable
explainability.

We further confirm this claim by adding a novel Syn-
ergistic Backward and Forward Deletion (SBFD) method
that is applied to AIME’s sorted list of feature importance.
To identify and utilize significant features from a complex
blend of multimodal data efficiently, AIME applies backward
deletion, which progressively eliminates non-contributing
features to maximize model accuracy. Forward deletion
further refines this list by discarding the least-important
remaining features until model accuracy is impacted. Then,
it backs up one step. Consequently, the required ML compu-
tations are minimized, superior performance is ensured, and
full XAI capability is retained.

SBFD advances our understanding of how multimodal
features contribute to the performance of ML models
through its systematic approach to feature selection and
elimination. It addresses the increasing complexity and
computational demands posed by large multimodal datasets
prevalent in several up-and-coming fields, such as emotion
recognition and social media analysis. The SBFD method
substantiates the role of XAI in practical applications and sets
a powerful precedent for future research in feature selection
methodologies.

Using the thoroughly extensive Multimodal Emotion Line
Dataset (MELD) [22], [23], we extracted 4,870 features (i.e.,
23 facial, 88 speeches, and 4759 utterances) and assessed the
global feature importance and accuracy of severalMLmodels
using our methods. Our study’s key contributions are:

• In addition to AIME’s previous superior XAI capability,
it can now guide researchers to the most efficient feature
selection configuration possible for maximum model
accuracy while minimizing computational costs.

• We provide strong empirical evidence of the benefits
and shortcomings of conventional ML methods and
demonstrate their AIME-guided improvements in real-
world tasks.

The remainder of this paper is organized as follows. Section II
reviews the previous studies that led us to this advancement,
and Section III presents an AIME overview. Section IV
then explains the SBFD process, and Section V presents
the experimental results of minimizing the number of
computations. Section VI follows with a discussion of our
interpretations and concludes the paper.

II. RELATED WORKS
This section reviews works we consider important in leading
to our research design and its objectives. Speith [17] used ante
and post hoc to categorize XAI. The former applies linear
regression, decision trees, and k-nearest neighbor methods
to introduce a transparent model that provides an ante-hoc
XAI. In contrast, the latter method applies model-specific
or -agnostic methods to provide XAI for complex and less
transparent models.

Model-specific methods have high interpretability but
limited applicability. For example, Grad-CAM [24] offers an
effective XAI for convolutional neural networks using feature
importance scores. Other model-specific interpretability
methods [25], [26], [27], [28] have also been used for deep
neural networks. Model-agnostic methods are categorized
into three types. The first uses a targeted black-box model
to understand its behavior by varying its input values and
training data using partial dependency plots [29], [30] to
visualize the feature impact on prediction results. Other
model-agnostic methods use conditional explanations [31],
such as sorted feature importance [32], leave-one-feature-
out (LOFO) [33] [34], and important features in the forward
direction, such as Local InterpretableModel-Agnostic Expla-
nations (LIME) [35] and SHapley Additive exPlanations
(SHAP) [36]. The third type solves black-box inverse
problems similar to AIME [21]. Table 1 shows a comparison
of the classification of the XAI methods.

Several studies on feature selection [37], [38], [39], [40]
have been published. For example, Yu and Liu [41] showed
that feature relevance alone is insufficient for assessing high-
dimensional data. Hence, they proposed a correlation-based
method for analyzing relevance and redundancy. Ambarwati
and Guyon [42] proposed a method of eliminating features
with low variance since they have low information content
and do not contribute to improving model accuracy. Guyon
and Elisseeff [43] proposed a univariate selection method
that evaluates the statistical association between features
and target variables and selects the most relevant among
them. Tibshirani’s Least Absolute Shrinkage and Selection
Operator (LASSO) [44] feature-selectionmethod employs L1
regularization to induce sparsity, effectively shrinking some
coefficients to zero and thereby selecting relevant features.
Battiti’s method [45] measures the interdependence between
features and target variables using mutual information
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TABLE 1. Examples of various XAI methods.

content, and the method proposed by Xiao et al. [46] selects
optimal features by aggregating votes from multiple models
and feature selection methods.

Kursa and Rudnicki [47] proposed a method that evaluates
feature importance using a Random Forest (RF) algorithm
and selects those that are clearly more important than random
noise. Haq et al. [48] proposed a feature clustering and
selection framework that combines multiple feature-ranking
methods.

Guyon et al. [49] proposed Recursive Feature Elimination
(RFE), which iteratively removes the least important features
from a model. Later, Freytes et al. [50] proposed an RFE
with cross-validation (RFECV) to determine automatically
the optimal number of features, and Liu and Sung [51]
provided the Recursive Feature Addition (RFA)model, which
adds features in the order of decreasing importance, selecting
only those that improve model accuracy. Notably, RFE [49],
RFECV [50], and RFA [51] tend to be computationally
expensive, as they are evaluated individually for accuracy.

Several forward and backward feature-selection meth-
ods [44] have been proposed. For example, Kohavi and
John [52] used a wrapper method to evaluate a subset
of features with a specific learning algorithm as part of
their evaluation function, which is specific to a particular
model and selects a combination of features that maxi-
mizes its predictive performance. In contrast, SBFD uses
XAI techniques and AIME to pre-assess the importance

of global features. This differs from Borboudakis and
Tsamardinos [53], who temporarily discarded variables that
were conditionally independent of the selected variable set,
depending on how these variables were reconsidered and
reintroduced to realize the intended algorithmic performance.
Siebers and Schmid [54] demonstrated similar methods
that encountered limitations when using artificial and real-
world datasets. Mao [55] proposed general Sequential
Forward Selection (SFS), which represents features in an
orthogonal space, where feature subset selection is performed
by incorporating Gram–Schmidt and Givens orthogonal
transformations into the general SFS and sequential backward
elimination (SBE) routines. Notably, these routines apply
relevance clustering (RC) to locally relevant features, which
differ from instance to instance. Domingos [56] proposed a
clustering-like approach to select a set of locally relevant
features that also differ from instance to instance, and
Kamalov et al. [57] applied a forward feature selection
algorithm that evaluates each feature in a dataset sequentially
and then, progressively selects the features that most improve
the model’s performance.

More recently, various additional methods have been
proposed. For example, Liu et al. [58] applied a feature
selection multi-agent reinforcement learning method, which
treats each feature as an independent agent, and the state of
the environment is represented by a statistical description,
auto-encoder, and graph convolutional network to improve
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TABLE 2. Examples of different methods of feature selection.

efficiency and accuracy. This method accelerates feature
selection by improving the reward system and extending the
search strategies.

Hamad [59] presented a comprehensive review of the
feature selection literature, summarizing strategies such as
filters, wrappers, meta-heuristics, and embedding. Notably,
nature-inspired algorithms (e.g., particle swarm, grey wolf,
bats, genetic, whelk, and ant colony)were assessed. The study
confirmed that feature selection approaches were indeed
important in reducing ML model complexity. Moreover,
these methods often improve simulation performance. Wang
and Zhou [60] challenged several of the new perspectives
designed to improve the performance of multi-label fea-
ture selection in ML data mining applications. Jemai and
Zarrad [61] provided a review of credit risk assessment
capabilities in the financial industry and proposed a new engi-
neering direction that leverages univariate feature selection,
which chooses features based on their relevancy to the target
variable. Additionally, they examined Recursive Feature
Elimination (RFE), a method that progressively removes
the least important features based on the performance
of the classifier. Similarly, Feature Importance Decision
(FID) trees assess the influence of features on final model
decisions, and the information value (IV) method assesses
how much information a feature provides for the targeted

prediction outcomes using a forward selection algorithm.
Kamalov et al. [57] examined the efficiency and effectiveness
of a simple forward selection algorithm in the context of
linear regression, showing that it requires significantly less
computation time than the all-search algorithm. Furthermore,
it is versatile when facing heterogeneous datasets.

Our new AIME implementation overcomes the compu-
tational cost problems and other limitations of RFE [49],
RFECV [50], and others while retaining a superior XAI
capability. Table 2 presents a classification comparison of
these feature selection methods.

III. AIME OVERVIEW
Here, we provide an overview of AIME, where
Section III-A discusses the creation of the core approximate
inverse operator, and Section III-B describes how AIME is
used to obtain global feature importance.

A. DERIVING THE APPROXIMATE INVERSE OPERATOR
Fig. 1 presents an overview of how to derive an approximate
inverse operator, where X is a matrix of training data of
arbitrary dimensions, m× n, and m is the number of features.
n is the number of samples, and Ŷ is a matrix of k × n,
where k is the number of classes. Y denotes the training data,
and Ŷ denotes the estimation results of the ML model for
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FIGURE 1. AIME used to construct approximate inverse operators [21].

X . Although it is typical to input Ŷ to show the behavior
of the ML model in XAI, as shown in Fig. 1, in this
study, X and Y (X_train and Y_train) are given as inputs to
obtain the pure feature importance of any ML model. Our
objective is to extract only the importance of features. Hence,
we can use Y as instead of Ŷ to derive those that contribute
the most.

By learning these data, a black-box model function, f (x),
is created, which outputs estimate y for input data instance
x. The X and Y matrices are then viewed as representing the
behavior of f (x), where each x must be an m− dimensional
vector. A dataset with a similar or resampled distribution to
X can be used. X and Y are used to generate the approximate
inverse operator, A†, of the black-box model, expressed by
formulae (1), (2), (3), (4), and (5) in [21]:

X = A†Y , (1)

XŶ T = A†YY T , (2)

XY T
(
YY T

)−1
= A†

(
YY T

)
(YY T )

−1
, (3)

A† = XY
(
YY T

)−1
= XY †, (4)

A† = XY T
(
YY T

)−1
= XY †, (5)

where Y T is the transpose matrix of Y , and Y † is its
Moore–Penrose generalized inverse [62], [63].A† can be used
to obtain an approximation x̂ of the original data x using A†y.

B. GLOBAL FEATURE IMPORTANCE
A† is a matrix of m × k , where m is the number of features,
and k is the number of classes. The calculation is explained in
Section IV-A. In this case, when the first column is obtained
and sorted in the order of increasing absolute values, the top
class can easily be identified. When the second column is
sorted, the second class is identified, and so forth.

FIGURE 2. Overview of the proposed synergistic backward and forward
deletion (SBFD) method.

IV. METHOD
In this section, we describe our backward and forward feature
deletion processes. Section IV-A presents an overview of the
method, Section IV-B presents the global feature importance
extraction function, Section IV-C presents the backward
feature deletion function, and Section IV-D presents the
forward feature deletion function.

A. BACKWARD–FORWARD OVERVIEW
Fig. 2 presents an overview of the proposed method in which
matrix X of the explanatory variables and matrix Y of the
objective variables are taken as input.

The method consists of a global feature-importance
extraction function, a backward feature deletion function, and
a forward feature deletion function. The output is matrix X ′

of the selected explanatory variables representing the selected
feature groups.

Matrices X and Y are used to identify important features
by using the AIME model, which derives the global
feature importance. Backward feature deletion sorts the
global features in order of importance and deletes the least
important ones until maximum accuracy is reached. Then,
the forward feature deletion function eliminates features
individually, beginning with the most important, measuring
the model accuracy, and eliminating those that do not reduce
performance. Notably, the experiments in Section IV show
that features may exist with high feature importance, which
reduces estimation accuracy. Matrix X ′ is the final feature
selection matrix.

During the backward selection phase, features are removed
in the order of decreasing importance based on the impor-
tance of the features derived from AIME. Specifically,
a threshold value, ε (initial value 0.1) is set, and its threshold
value is found at the highest model accuracy where only
features with importance (above the threshold value) are
retained. This process determines the final set of features with
the highest model contributions. The adjustment of ε in this
phase can be increased by increments of 0.1, thus limiting the
number of validations to a maximum of 10 and significantly
reducing the computational cost.

88700 VOLUME 12, 2024



T. Nakanishi et al.: Evolving Feature Selection: SBFD Method Utilizing Global Feature Importance

In the forward selection phase, additional accuracy ver-
ifications are conducted on the feature set obtained in the
backward selection phase. Here, the features are individually
removed, and the model’s accuracy is evaluated to determine
whether it improves as the features are deleted. Features for
which the accuracy does not improve or remains the same
are deemed unnecessary and are deleted. This ensures that
only the minimum necessary features remain in the final
model.

The combination of these two phases allows for efficient
and effective feature selection at a lower computational
cost than traditional feature selection methods; the feature
importance information obtained by using AIME further
improves the efficiency of this process and provides the
advantage that it can be rapidly applied to high-dimensional
datasets and provides the advantage of rapid application, even
for high-dimensional datasets.

Fig. 3 contains the SBFD method’s pseudocode. The
inputs include X_train, y_train, X_test , y_test , and
the outputs are feature-selected selected_X_train, and
selected_X_test . In Step 1, initialization takes place, which
checks the data format and converts labels to a single
format.

One-hot encoding is used because AIME requires it
for categorical variables. In Step 2, AIME calculates the
global feature importance and sorts the features accordingly.
Step 3 initializes the ML model and calculates the initial
accuracy of all features. Step 4 selects the features with
importance levels above the given threshold via the backward
deletion step to determine the feature set with the highest
accuracy threshold, ε In Step 5, forward deletion takes place,
where the features are individually removed, and the final
feature set is determined based on accuracy. Step 6 creates
selected_X_train and selected_X_test with the final selected
feature set. Step 7 returns the final result, selected_X_train
and selected_X_test .
Backward deletion roughly eliminates features of low

importance, and forward deletion verifies whether each
feature is contributory. Because forward deletion is time-
consuming, it is important to delete as many features as
possible beforehand using backward deletion. Thus, our
method works most efficiently when the difference in the
importance of each feature derived from AIME is large.
However, if the importance levels are approximately the
same, backward deletion does not function as efficiently.
Therefore, the feature importance of AIME can be used to
decide whether to continue or withdraw from this feature
selection method.

B. GLOBAL FEATURE IMPORTANCE EXTRACTION
This function calculates the global feature importance,
A†(m × k), of each feature from input matrices X (m × n)
and Y (k × n) for classification using the AIME model. Note
that ‘‘importance’’ reflects the contribution of a feature to
each class in a classification problem. Therefore, to sort them,
one contribution per feature must be derived. We offer two

FIGURE 3. Pseudo code of synergistic backward and forward deletion
(SBFD) method (the proposed method).

methods for this. The first takes the maximum value of each
feature, and the second takes the variance. The first method
considers a feature to be important if it is included in any
class with high importance. The second judges importance
based on its variance (high → high). The better method is
experimentally determined.

C. BACKWARD FEATURE DELETION
Fig. 4 illustrates the backward feature delineation process.

First, it uses matrices X (m × n) and Y (k × n) for
classification, ordered according to the importance of the
features. It then divides them into X_train for training
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FIGURE 4. Backward feature extraction function flow.

data, y_train for training labels, X_test for testing data,
and y_test for testing labels. Next, ε is initialized to zero
tosettheglobal feature importance. Then, features with low
global feature importance (ε< 0.1) are eliminated to derive
model accuracy. This is repeated at every 0.1 level of accuracy
(or any appropriate value based on the given balance between
accuracy and computational complexity).

During the feature filtering step, the features in X_train
and X_test , which have a lower absolute importance than ε,
are removed. The ML model is then retrained using X ′_train
and y_train with the deleted features. In the evaluation
step, features with importance less than ε from the X_test
and y_test are removed, and the prediction accuracy is
recalculated. This process is repeated as ε incrementally
increases, which allows for efficient feature selection from
the least to the most important. The training and testing data
reconstructed using only the important features obtained here
are noted as X ′′_train and X ′′_test .

D. FORWARD FEATURE DELETION
Fig. 5 illustrates the forward feature deletion process.
Initially, the training dataset (X ′′_train) and test dataset
(X ′′_test) obtained in the previous backward feature detection
step are used. This process removes the i-th feature at each
step and generates a new X ′′

\i_train and X ′′
\i_test . Next,

the ML model is trained using these data, and the model
is evaluated with X ′′

\i_test and y_test . If the evaluated
accuracy is lower than the highest accuracy thus far, then
the feature set is retained. This process is repeated by
increasing i for all features, and finally, the feature set
with the highest accuracy is selected. As a reminder, the
number of training and evaluation cycles can be adjusted as
needed.

FIGURE 5. Forward feature extraction function flow.

V. EXPERIMENTS
Section V-A describes the experimental environment.
Section V-B describes the MELD feature extraction
dataset [24], [25], which was used in Experiments 2, 3 and
4. In Section V-C, we explain Experiment 1, which uses
15 of 26 UCI datasets [65] and all 3 ASU feature selection
datasets [64]. Although Kılıç et al. [66] used all 26 UCI
datasets, they are not publicly accessible. The 11 excluded
sets are SonarEW, Krvskp, M-of-n, Penglung, Vote, Exactly,
Exactly2, Pendigits, Clean1, Clean2, and WaveformEW.
The trends in time, cost, and feature selection between the
proposed method and other methods were thus analyzed
based on the available data. Table 3 shows the target datasets
and their numbers of features and samples. Section V-D
describes Experiment 2, in which the model was trained, and
the accuracy was verified based on the increasing order of
global feature importance from values of 5 to 30. Section V-
E describes Experiment 3, which compared the global feature
importance of the backward and forward deletion processes.
Section V-F then describes Experiment 4, which verified the
effectiveness of our method by comparing its accuracy with
that of other state-of-the-art feature selection methods.

A. EXPERIMENTAL ENVIRONMENT
This system was implemented in Python 3.10.12 on Google’s
Colab Pro+. Random forests were used as the target ML
model in Experiments 1 and 2, and RF [67] with a Light
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TABLE 3. Target dataset (sample size is based on data with missing
values removed).

Gradient Boosting Machine (LightGBM) [68] was used in
Experiment 3 because the comparisons are more difficult.
Note that any combination can be applied. Conversions to
RFs and one hot vectors were performed using scikit-learn-
1.2.2. AIME was implemented with numpy-1.25.2, pandas-
1.5.3, matplotlib-3.7.1, and seaborn-0.13.1. The results were
visualized using pandas-1.5.3 and matplotlib-3.7.1.

B. FEATURE EXTRACTION FROM MELD
The MELD multimodal dataset [24], [25], compiled for
emotion and personality recognition tasks was constructed
from scenes from the TV series Friends and comprises
1,400 dialog passages and 13,000 utterances. Each utterance
was annotated with the speaker’s emotion and intensity.
It also contains video frames, audio, and textual data.
This dataset is particularly suited to studies analyzing
complex scenarios in which emotion dynamics and social
contexts are intertwined. It is also an important resource
for understanding changes in emotions during conversations
and for studies combining multiple modes, such as natural
language processing, speech analysis, and facial expression
recognition.

Using py_feat 0.6.1 (23 features), the facial features’
pitch, roll, and yaw values were extracted as well as every
action unit (AU). The py_feat can extract only 20 AUs and
facial features such as pitch, roll yaw. AUs [69] comprise
a system developed by Ekman and Friesen to classify facial
muscle movements and are widely used to analyze emotional
expressions. Each AU corresponds to a specific facial muscle
movement and details subtle differences in emotions. For
example, AU1 represents an ‘‘eyebrow-raising’’ movement,
which may indicate surprise or questioning. Originally, AUs
were numbered from AU1 to AU58, but due to detailed facial
expressions or anatomical reasons, such as AU3, AU8, AU13,

FIGURE 6. Boxplots for each feature selection method.

AU19, AU21, and AU22, specific action units are not defined
or are represented by other composite action units, and thus
are absent.

We averaged the large features, AU 25 and 26, related
to mouth movements. Although we understand that speaker
identification and extraction should be performed, we used
this method to demonstrate its efficacy, as speaker identi-
fication is difficult in most situations. Voice features were
extracted from eGeMAPSv02 using opensmile-2.5.0 (88
features) [70], [71], andwords were extracted from utterances
from the ‘‘Utterance’’ metadata ofMELD andweighted using
term frequency–inverse document frequency (TF–IDF, 4,759
words/features).

Some MELD videos did not capture facial features and
were discarded. Consequently, 9,930 training and 325 test
data points were generated for a total of 4,870 features
including facial (23), voice (88), and utterance features
(4,759). Feature selection was then performed to predict
anger, disgust, fear, joy, neutrality, sadness, and surprise
emotions, as recommended by Ekman and Friesen [72],
which included negative, neutral, and positive states.

Bingöl et al. [73] extracted face and voice features from
participants’ audio–video data, trained each QoE estimation
model separately, and used data fusion techniques to
integrate face and voice datasets, thereby enabling improved
QoE estimation performance from the integration of the
resulting information. Although several of the most important
features of the QoE estimation system are discussed next,
their comprehensive use will be the subject of future
research.
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TABLE 4. Computation-time comparison of our method against other typical feature selection methods on 15 UCI datasets [66] and 3 ASU feature
selection datasets [67].

TABLE 5. Accuracy comparison of our method against other typical feature selection methods on 15 UCI datasets [66] and 3 ASU feature selection
datasets [67].

C. EXPERIMENT 1: COMPARISON OF COMPUTATIONAL
COST, ACCURACY, AND NUMBER OF FEATURE SELECTION
AMONG OUR METHOD AND PREVIOUS METHODS
WITH 15 UCI AND 3 ASU FEATURE SELECTION DATASETS
We compared the computation time, accuracy, and number
of features after feature selection between our SBFD method
and the main feature selection method from Experiment
1 using the dataset in Table 3. The measured computation
time, accuracy, and feature number after comparing the
methods are shown, respectively in Tables 4, 5, and 6.

The computation times in Table 4 show that the relatively
simple LASSO, variance threshold, and mutual information
methods did not require much time.

In contrast, the computation times for SBDF, forward
selection, backward selection, RFE, RFE-CV, and RFA
increased with the number of features and samples. This
was particularly true for forward feature selection and
RFE-CV, which, with thousands of features, are considered
unsuitable for feature selection. Although SBDF requires
more computation time due to backward deletion com-
pared with the forward and backward feature-selection
filtering methods, SBDF clearly became more efficient
with each increase in the number of features. Indeed, for
the 10,255 data elements (total of training and test data)
and the 4,870 features extracted from the MELD dataset
used in Experiments 2 and 3, SBDF’s backward feature
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TABLE 6. Number of features selected by our method compared against other typical feature selection methods on 15 UCI datasets [66] and 3 ASU
feature selection datasets [67].

selection worked effectively, and the number of samples was
large.

Hence, even after 24 h of running Google Colab Pro+,
forward feature selection, backward feature selection, RFE,
and RFE-CV could not complete the feature selection task.

Table 5 lists the accuracy of each method depending on
the dataset. Among the methods, SBDF showed good overall
accuracy, which is discussed in more detail later in this paper.
Table 6 lists the number of features after feature selection for
each method. The variance threshold and backward feature
selection were unable to select features from this dataset.
In contrast, the RFA method selected a very small number
of features. Forward feature selection and RFA were deemed
suitable for removing large numbers of features. Each of the
other methods also extracted the necessary features.

Figure 6 presents a boxplot to validate the accuracy
of each method further. After comparing the effectiveness
of our proposed SBDF and other methods, we can see
that the median accuracy of SBDF was very high and
exceeded that of many of the other methods. In particular,
comparedwith the variance threshold andmutual information
(k = 5), the SBDF consistently exhibited high accuracy.
Furthermore, the SBDF boxplot is narrower than that of many
other methods, indicating less variation in accuracy across
datasets. This implies that the SBDF performs consistently
well. Furthermore, our model produced fewer outliers and
fewer cases with extremely low accuracy compared to the
other methods. This suggests that SBDF provides stable
performances on many datasets. This indicates that our
method is capable of relatively stable feature selection from
any dataset.

Table 7 shows the results of pairwise t-testing SBDF and
the other methods’ accuracy. The results show no statisti-

TABLE 7. Comparison of p-values from pairwise t-tests evaluating
previous feature selection methods and the proposed synergistic
backward and forward deletion (SBFD) method. This table demonstrates
the statistical significance of the differences between SBFD and existing
feature selection techniques.

cally significant differences, apart from mutual information
(k= 5). This implies that the behavior of each method differs
depending on the dataset. Table 8 shows the general linear
model (GLM) results for dataset, method, and precision. The
HeartEW, Lymphography, Semeion, SpectEW, and Vehicle
datasets had a significant negative impact on accuracy.
No significant methods were found apart from mutual infor-
mation, which was negatively and significantly correlated.
However, the effect of SBDF was positive, although not
significant, relative to the other methods; SBDF performed
well overall but may not be significant enough to show a
noticeable difference.

Based on our experiments, the results show that the
proposed SBFD method is positively correlated with the
other feature selection methods regarding accuracy, but the
correlations are not statistically significant. This result may

VOLUME 12, 2024 88705



T. Nakanishi et al.: Evolving Feature Selection: SBFD Method Utilizing Global Feature Importance

TABLE 8. Results of generalized linear model (GLM) analysis showing the significance of differences between various feature selection methods and the
proposed synergistic backward and forward deletion (SBFD) method across different datasets. This table highlights the statistical significance and
effectiveness of SBFD compared with existing techniques.

FIGURE 7. Differences in accuracy depend on the number of global
feature importance and feature importance from the most to the least
important (in the case of seven emotions).

FIGURE 8. Differences in accuracy depend on the number of global
feature importance and feature importance from the most important to
the least important (in the case of the three states).

FIGURE 9. Results of backward deletion for seven emotions.

FIGURE 10. Results of backward deletion for three states.
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FIGURE 11. Results of forward deletion for seven emotions.

be attributed to the variable performance of the feature
selection methods depending on the dataset. In particular,
with the exception of mutual information (k = 5), no statisti-
cally significant differences were identified among the other
methods. However, the boxplot results confirm that SBFD
maintains a relatively stable and high level of accuracy. This
supports the conclusion that SBFD is an effective method that
can provide stable accuracy, regardless of the dataset.

D. EXPERIMENT 2: VISUALIZATION OF THE DIFFERENCE
IN ACCURACY WHEN INCREASING THE NUMBER OF
FEATURES IN ORDER OF GLOBAL FEATURE IMPORTANCE
In this experiment, AIME extracted the global feature
importance, and methods, which generate the maximum
value, variance, and importance for each feature were applied
to the RF model.

Because AIME is model-agnostic, it can be applied to
any AI or ML model; therefore, RF and Light GBM were
examined in this study. As examined in [21], AIME derives
stable explanations comparedwith LIME [36] and SHAP [37]
for CNNs and Light GBM. Therefore, if the predictive value
of ML is not low, it does not significantly affect global
feature importance. This is because the approximate inverse
operator is obtained using X and Ŷ . Furthermore, as shown

in Section III-A, it is possible to derive the global feature
importance by assuming an idealML result that does not exist
when using X and Y [74]. Therefore, when using AIME, one
of the XAIs in these cases, it is a model-agnostic method
that can derive a more stable global feature importance
than LIME [36] and SHAP [37]. Hence, Y instead of Ŷ
can be used to obtain an ideal global feature importance,
as discussed in Section III-A. Because obtaining the global
feature importance can also be proposed as one method [74],
which ML model is appropriate, is not discussed here.

Training and accuracy measurements were conducted
using between 5 and 30 added features. The seven emotions
are shown in Fig. 7, and the three states are shown in Fig. 8.
RF represents the random forest-sorted features, AIME MAX
represents the sorted features based on their maximum value
after deriving the global feature importance, and AIME Var
represents them based on maximum variance. AIME MAX
achieved maximum accuracy.

The peaks in Figs. 7 and 8 fall within 100 features, which
implies that even if many features are extracted as multimodal
data, only a few are truly effective. Therefore, the backward
feature deletion process effectively reduces the number of
training and accuracy verifications needed for top model
performance.
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FIGURE 12. Results of backward deletion for three states.

In Fig. 8, the peaks change erratically, indicating that
a larger set of features cannot be assumed to improve
ML accuracy. Hence, the forward feature deletion process
effectively determines the features that increase accuracy the
most.

Throughout the experiments, maximum accuracy was
found to be low because the extracted features were selected
for interpretability. If only accuracy were to be considered,
InstructERC [75], which uses a large language model and
full embedding, would be the best-performing XAI method
at the time of this study. The application of AIME to complex
models is a subject for future work.

E. EXPERIMENT 3: VERIFICATION OF THE BEHAVIOR OF
SYNERGISTIC BACKWARD AND FORWARD DELETION
METHOD UTILIZING GLOBAL FEATURE IMPORTANCE
METHOD
The results of the backward feature deletion are shown in
Figs. 9 and 10 respectively for the seven emotions and
the three states cases. Both show the results of deletion
at decrements of 0.1, from 4,870 to 0. As Fig. 9 shows,

the highest accuracy (0.316) was obtained for the cases
with 52 and 34 features, and Fig. 10 shows the highest
accuracy (0.372) was obtained for the cases with 20 features.
Hence, most of the 4,870 features did not contribute to
discriminating between emotions and states, and only 100 or
less contributed to discrimination. This process noticeably
reduced the computational complexity of subsequent forward
deletion processes.

From these results, we show that real-time decision-
making can be achieved, even with the computational costs
of discriminating the top features and streamlining the
datasets. The red lines in Figs. 11 and 12 indicate the
maximum accuracies of the backward deletion process.
The bar graph shows the accuracy when the features on
the horizontal axis are deleted. If the accuracy is below
the red line, the feature can be judged as significantly
effective in determining the emotion or state. Conversely,
if the accuracy is above the red line, the feature is
eliminated, and the accuracy increases; therefore, the feature
can be judged as insignificantly effective in determining
the emotion or state. Based on the results shown in
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FIGURE 13. Visualization of contributions for the top 20 features and seven emotions after feature selection.

FIGURE 14. Visualization of contributions for the top 20 features and three states after feature selection.

TABLE 9. Our method compared against other typical feature selection methods in seven emotions (random forest).

Fig. 11, ‘‘mfcc1v_sma3nz_amean’’ and many other features
exceeded the red line, and 32 total features were judged to
be valid. As shown in Fig. 12, ‘‘AU12’’ and the others were
above the red line, and 16 were selected at the end. These

findings indicate that even if the maximum AIME value of
global feature importance is high, f features alone probably
remain unsuitable for determining the proper prediction
result.
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TABLE 10. Our method compared against other typical feature selection methods in three states (random forest).

TABLE 11. Our method compared against other typical feature selection methods in seven emotions (LightGBM).

TABLE 12. Our method compared against other typical feature selection methods in three states (LightGBM).

TABLE 13. The results of this study show the advantages, disadvantages, and positioning of usage cases of the synergistic backward and forward
deletion method (SBFD) and other methods.

Fig. 13 shows the feature selection results after the
backward deletion process and the forward deletion process

for the seven-emotion case, and Fig. 14 shows that of the
three-state case.
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F. EXPERIMENT 4: COMPARISON OF ACCURACY WITH
EXISTING REPRESENTATIVE FEATURE SELECTION METHOD
Table 9 compares the number of features and accuracy values
of our method with a typical feature selection method for
the problem of estimating seven emotions with an RF model.
Table 10 does the same for the three states. Table 11 compares
the number of features and accuracy values between our
method and the state-of-the-art LightGBM XAI method for
the seven emotions, and Table 12 does the same for the three
states. RFE and RFECV are not listed in the tables because
the LightGBM results could not be derived, even after
24 h of operating in the Google Colab Pro+ environment.
The global feature importance provided by AIME and the
deletion processes enables our method to greatly reduce
computational costs. For cases of mutual information, the
number of features cannot be determined; hence, they were
set to 1,000, 500, and 50.

Our method was clearly the most accurate, apart from
LightGBM’s seven emotion estimation performance in
Table 11, for which its recursive feature addition (RFA)
was more accurate. However, the feature it selected was
‘‘F0 semitoneFrom27.5 Hz_sma3nz_percentile80.0,’’ which
corresponds to voice pitch. We believe that it is purely
coincidental that the emotions were identifiable only by the
pitch of the human voice in this case.

In LightGBM, feature selection can be performed indi-
rectly through its feature fraction and the model training
process. However, the results in Table 12 confirm that
our method improved accuracy more than LightGBM did.
Moreover, being based on importance, our feature selection
is effective even when feature selection or dimensionality
reduction are provided by the baseline ML model.

VI. DISCUSSION AND CONCLUSION
The results of Experiment 1 enabled us to compare our SBFD
with previous major feature-selection methods on various
datasets. Owing to the different behaviors of the different
datasets, no statistically significant differences could be
derived; however, the boxplots confirm that our SBFD
consistently achieves good accuracy.

The results of Experiment 2 demonstrate that using the
maximum value of the global feature importance from AIME
is effective for feature selection and that the backward
deletion process, in which features are individually deleted
in order from the smallest global feature importance, is effec-
tive.We also found that the global feature importance reduces
accuracy from the top of the list instead of doing so steadily
and gradually from the bottom. Therefore, the forward
deletion process is essential, and feature discrimination can
be complex.

The results of Experiment 3, based on Experiment 2,
show that our global feature importance method with
backward and forward deletion works well for all features.
Because almost features can be eliminated by backward
deletion, we also confirmed that removing them individually

by forward deletion reduces the computational cost of
verification.

The results of Experiment 4 show that, in most cases,
our method is more accurate than contemporary feature
selection methods. For data of 4,870 dimensions, the RFE
and RFECV methods could not complete the job even after
24 hours of processing. Hence, inferentially, AIME can be
assumed to contribute to the reduction in computational costs
because our method completed the process. Furthermore,
AIME continues to provide feature selection with high
interpretability, and the cases of seven emotions and three
states (Figs. 12 and 13) confirm this.

Mamieve et al. [76] proposed an attention-based fusion
framework that combines features from facial expressions
and speech signals. This approach involves extracting rele-
vant features from both modalities and applying an attention
mechanism to fuse these features effectively. The system
was trained and evaluated on standard emotion recognition
datasets, and we will support such multimodal features by
applying our method in the future.

Table 13 summarizes the advantages, disadvantages, and
uses of our method and the results of the experiments.
Although our proposed SBFD did not show significant
improvements in statistical tests, the boxplots show that the
results are stable for all datasets. We believe that the reason
for the lack of statistical significance is that different datasets
have different writing methods, and we have shown here that
the AIME feature results are maximally different after SBFD
and that the computational efficiency and accuracy are higher
when backward deletion is successful. Compared with other
methods, ours’ combines backward and forward deletions.
As such, it can be considered a filter method. However, the
RFE, RFE-CV, and RFA methods use a glass-box model to
determine the important feature set by removing and adding
features using feature importance. We introduced AIME as
a model-agnostic XAI, and we used its feature importance
results to realize two phases: backward and forward deletion.
Hence, this contributes efficiently to reducing computational
complexity. Otherwise stated, AIME functions as both a
filter and a wrapper, and as a new feature selection method
effectively supports XAI in diverse systems.

Our results further demonstrate that despite the importance
of multimodal data, only a small fraction of features
contribute notably to prediction accuracy. However, our
method still has some limitations. For example, when the
most feature in which all features have approximately equal
contributions can be regarded as a situation where feature
selection does not need to be performed. For example,
when backward deletion clearly improves accuracy (see
Figs. 7 and 8), it is common to find a high variance in the
distribution of importance derived fromAIME, but withmany
features of low importance (see Figs. 5 and 6). This approach
is effective when the variance in the feature importance
derived from AIME is high, but it is not suitable when the
variance is low. When the variance in feature importance
is low, feature selection may not contribute to improved
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performance, as most features are equally important. From
our analysis, it is possible to determine whether backward
or forward deletions should be performed based on the
feature importance derived by AIME. Backward deletion
does not workwell with small variances in feature importance
because all features are deleted in the same epsilon or none
is deleted; in many cases, they are not deleted. Thus, many
features must be considered for forward deletion, which is
time-consuming. Conversely, however, a small variance in
feature importance may mean that all features have the same
importance, from which it may be concluded that feature
selection is unnecessary.

AIME’s computational order of magnitude given by Eq.
(5) is O(mnk + k2n + k3 + mk2), where the computational
order increases dramatically with the number of Y classes,
k . Conversely, in general forward feature selection, the com-
putational complexity increases at O(nm3) as the number of
features,m, increases. This indicates that with a large number
of features, the computation time increases. In practice, the
importance of forward features is inconsistent because feature
selection is often desired when the number of features, m,
is high. Therefore, it is critical to assess whether to adopt
AIME’s determination of feature importance, which is a
limitation.

Throughout the experiments, maximum accuracy was
found to be low because the extracted features were selected
for interpretability. If only accuracy were to be considered,
InstructERC [76], which uses a large language model and
full embedding, would be the best-performing XAI method
at the time of this study. The application of AIME to complex
models is a subject for future work.

Our study is the first substantial step in ensuring ML
accuracy while simultaneously preserving XAI, which is
a critical milestone in the field and paves the way for
more transparent and reliable decision-making processes.
Given the growing demand for transparent ML in healthcare,
finance, public policy-making, and elsewhere, this research
makes an essential contribution in many critical areas.
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