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ABSTRACT In the realm of sensor networks, the substantial rise in multimedia data production, covering
audio, video, and acoustic measurements, has expanded the scale of big data. Multimedia Sensor Networks
(MSN) excel in managing diverse sensor outputs, representations, and encoding across domains. Existing
models for event detection in sensor networks fall short in handling the sheer volume and speed of
these measurements from a Big Data perspective. This research work introduces ‘‘Saltus,’’ a model that
aligns multimedia data from sensor networks to a standardized feature space. Saltus employs a machine
learning-centric architecture to enhance data analysis possibilities. Crucially, the model integrates federated
learning to address the evolving landscape of sensor networks. This approach optimizes the collaborative
learning capabilities by allowing distributed nodes to train machine learning models locally, preserving
data privacy. Saltus emerges as a solution that not only streamlines multimedia data processing but also
establishes a more secure and privacy-preserving analytics framework in large-scale sensor networks. The
model signifies a step forward in integrating multimedia data into an easily analyzable format, leveraging
the advantages of federated learning in big data analytics.

INDEX TERMS Multimedia sensors, big data, machine learning, federated learning.

I. INTRODUCTION
In the domain of sensor networks, the management of Scalar
Sensor Networks(SSN) and Multimedia Sensor Networks
(MSN) is a critical distinction. Scalar sensors measure
physical parameters like temperature, humidity, and pressure,
while multimedia sensors extend their capabilities to encom-
pass image, video, and audio files within sensor nodes. MSN,
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particularly when integrated with Machine Learning(ML)
and image processing, offer enhanced effectiveness. The
potential of Wireless Multimedia Sensor Networks (WMSN)
is further amplified by wireless data transmission, facilitating
seamless communication within the network. Applications
of ML in MSN span diverse domains such as surveillance,
healthcare, environmental monitoring, emergency services,
localization systems, and unmanned aerial vehicles. ML,
synergizing with big data, has proven mutually beneficial,
enhancing training capabilities and simulating real-life con-
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ditions. This synergy enables the processing and analysis of
big data using ML models. This research work introduces
‘‘Saltus,’’ leveraging ML as a key component in processing
multimedia Big Data. Saltus is a user defined architecture
that transforms itself into a Big Data Management tool
improving storage, retrieval and analysis of Multimedia Big
Data.The Saltus architecture manages a Big Data database
system, efficiently processing, organizing, and storing results
for accessibility and utility within an MSN. ML has
revolutionizedmany daily life applications such as education,
healthcare [1], administration, resource management, and
many others using the powerful tools of computer vision,
natural language processing [2], sequence analysis, internet
of things [3] and cyber security [4]. On the other hand, Big
Data problems require fast and loss-free solutions to store and
retrieve huge volumes of data.

Representation learning, a recent focus in big data
research, plays a pivotal role in effectively classifying raw
data by encompassing feature selection, extraction, and
distance metric learning [5]. The integration of big data
into MSNs through the Saltus framework holds the promise
of enhancing outcomes using ML and image processing.
Challenges in managing data velocity, variety, volume,
and veracity necessitate innovative solutions for processing
heterogeneous formats. Addressing the dynamic landscape
of sensor networks, Saltus incorporates federated learning
techniques, bolstering collaborative learning capabilities and
ensuring data privacy in distributed nodes [6], [7]. This feder-
ated approach not only optimizes multimedia data processing
but also contributes to a more secure and privacy-preserving
analytics framework in large-scale sensor networks. The
introduction of big data into MSNs brings both opportunities
and challenges, necessitating the application of AI and
concepts like data integration to handle diverse data types
efficiently. The overload of data, particularly in the realm of
intelligent manufacturing and customer service predictions,
underscores the importance of advanced analytics and storage
solutions for effective decision-making in MSNs.

Big Data, being the product of the era of Information Tech-
nology, is an important factor in developing manufacturing
[8] industries and is also vital in maintaining the competition
between enterprises targeting economic growth [9]. Storage
and retrieval of unstructured data is a major problem faced by
MSN [10]. We understand the presence of NoSQL database
management systems is alone not sufficient to address many
issues related to Big Data. Existing ML techniques also face
limitations, such as their inability to scale to fit and process
the continuous inflow of data. We identified the following
problems faced by MSN and Big Data that the framework
of Saltus aims to solve.

• Lack of a standardized protocol for storing inferences
from ML projects within MSN, compounded by the
evolving landscape and the need for data privacy in
federated learning environments.

• Development of an adaptive storagemechanism to selec-
tively store pertinent information, addressing the 3 Vs

(volume, variety, and veracity) inherent in the vast
audio-visual sensor data. This includes considerations
for federated learning and ensuring collaborative model
training without compromising individual node privacy.

• Catering to the requirements and opportunities for
small-scale data users within a federated learning frame-
work, offering cost-effective solutions for managing
databases storing audio-visual sensor measurements.

• Streamlining the study and processing of diverse
multimedia through the integration of ML within a
Big Data-supportive model, considering the federated
learning paradigm for decentralized learning and privacy
preservation.

• Demonstration of the utility of ML in enhancing the
efficiency of cross-domain areas, specifically database
management within MSN, with a focus on collaborative
federated learning and a secure approach.

Saltus framework contains major components such as
DRIEF (Data Representation for Information Extraction
Framework) and CFS (Compact Feature Space), Root mod-
ules, and a standardized Query Language. The integration of
multimedia data within sensor networks and its subsequent
processing through ML frameworks has garnered substantial
attention in recent literature. Reference [11] underscore the
effectiveness of MSN when coupled with ML and image pro-
cessing techniques, highlighting their applications in diverse
domains such as surveillance, healthcare, and environmental
monitoring. Their work emphasizes the need for scalable
and efficient methods to handle the large volumes and high
speeds at which multimedia data is generated within sensor
networks. To advance the field, [12] has introduced MSSN-
Onto, a model that addresses the challenges of event detection
and tracking in sensor networks. All of these studies show
how important it is to integrate machine learning algorithms
and align multimedia data with defined feature spaces.

In a recent study by Gentner [13], the study explores the
strategic influence of AI on the handling of large data sets
within the framework of Big Data and ML. They explain
the symbiotic relationship between big data and machine
learning, emphasizing how ML algorithms may enhance
training and simulate real-life situations. Additionally, this
study focuses on the utilization of Artificial Intelligence (AI)
to overcome challenges associated with the diversity, speed,
and quantity of data in sensor networks, in order to ensure
efficient management of multimedia data. The study authored
by Adam et al. [14] provides a comprehensive overview
of machine learning classifications, including supervised,
unsupervised, and reinforcement learning. It also illuminates
the diverse applications of machine learning in resource
management, education, healthcare, and administration. The
combination of these modern efforts provides a foundation
for understanding the coming together of large-scale data,
artificial intelligence, and the processing of multimedia data
in sensor networks.

The following section offers a thorough examination of
the Saltus framework, including its component elements and
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core design ideas. Section II describes the related works.
The dataset is described in Section III. This section also
contains the fundamental components of the framework,
specifically DRIEF (Data Representation for Information
Extraction Framework) and CFS (Compact Feature Space).
These components are essential for the process of processing
and organizing data. Sections IV and V offer a thorough
assessment of the CFS query language, analyzing its
efficiency in wireless sensor network (WSN) settings and
its suitability in various circumstances.Section VI describes
the applications. Section VII pertains to the findings and
deductions derived from the evaluation. Section VIII of
the study provides a concise overview of the framework’s
attributes, possible uses, and recommendations for future
investigation. The Saltus framework offers detailed insights
into each component, ensuring a thorough comprehension of
its architecture and benefits.

II. RELATED WORKS
In recent years, federated learning has emerged as a feasible
approach for collaborative model training on distributed
devices. Sensor networks have substantially profited from its
applications. This literature review explores the most recent
developments in federated learning techniques in the context
of sensor networks and evaluates their potential integration
with upcoming technologies. Particularly regarding impor-
tant topics like non-identically distributed data and privacy
preservation, the selected articles provide thorough insights
into the difficulties, approaches, and future possibilities of
federated learning. Advanced technologies such as mobile
edge computing and edge computing are also investigated by
researchers about federated learning. To improve the efficacy,
safety, and applicability of federated learning in situations
with little resources and constant change, they offer novel
approaches. These studies ultimately impact the field of
distributed sensor networks by paving the way for further
developments in federated learning methodologies.

Federated Learning: Challenges, Methods, and Future
Directions, a research by Li et al. [15], provides an exhaustive
overview of the challenges and approaches to federated
learning. It delves into the potential future directions of this
method and offers useful details about its limits and applica-
tions in many domains, such as sensor networks. This work
highlights the significance of federated learning in enabling
collaborative model training without centralizing data, how-
ever, it also raises concerns about possible privacy issues and
communication costs if not implemented effectively.

The problem of non-identically scattered data, which is
commonly observed in sensor networks, is addressed in the
research, Efficient Federated Learning on Non-IID Data:
An Experimental Study, by Qinbin et al. [16]. This study
clarifies another important contribution. The study proposed
innovative approaches to enhance the efficacy of federated
learning in these scenarios, taking into consideration the
multiple sensor features and settings. This work extends
federated learning methodologies adapted to sensor network

requirements by improving the accuracy and efficacy of the
models.

In another study, FedCPF: An efficient-communication
federated learning approach for vehicular edge computing
in 6G communication networks, by Liu et al. [17] shows
how federated learning and edge computing interconnects
in future wireless networks. Quick and private processing
of massive amounts of sensor data was the focus of this
study. This fusion leverages cooperative model training from
federated learning and edge computing, which are close
to data sources, to enable real-time data processing with
low latency. This approach not only holds potential for 6G
networks, but it also proves that it can revolutionize the
processing of large-scale sensor data across several sectors.

Furthermore, Privacy-Preserving Machine Learning in
Federated Sensor Networks [18], addresses the important
subject of data privacy in sensor networks and federated
learning in general. By enabling collaborative model training
and guaranteeing the privacy of sensitive data through
the use of customized privacy-preserving techniques, this
study is a key step toward ensuring privacy in large-scale
sensor deployments. An essential component of the evolving
federated learning landscape, this privacy emphasizes the
necessity for robust protections for sensitive data to guarantee
data security and integrity.

Distributed Machine Learning Approaches for IoT and
Edge Analytics: A Review [19] examines distributed ML
techniques in depth, with an emphasis on IoT and edge ana-
lytics. To achieve more efficiency, the review delves into their
adaptability in managing massive volumes of sensor data and
emphasizes their possible interaction with federated learning.
This review paper emphasizes the importance of distributed
machine learning in addressing the challenges of large-scale
sensor installations, drawing on its ground-breaking work in
the edge computing and Internet of Things (IoT) domains.

Nevertheless, a novel framework is introduced in Dynam-
icNet: Efficient Federated Learning for Mobile Edge Com-
puting With Dynamic Privacy Budget and Aggregation
Weights [20], to ensure the efficacy and safety of federated
learning in mobile edge computing environments. This
method can handle resource constraints and privacy concerns
associated with processing sensor data while still allowing
cooperative model training makes it a considerable advance.
A major stride towards the realization of secure and efficient
model training paradigms, it demonstrates the potential to
streamline federated learning applications in contexts with
limited resources and high levels of change.

Various privacy-preserving methods are examined in the
work, A thorough analysis of privacy-preserving federated
learning: A taxonomy, review, and future directions [21],
to show how important they are for large-scale sensor
networks to keep data private and intact. By delving into
the significance of these methods, particularly regulatory
compliance, this analysis exposes how crucial they are for
safeguarding sensitive data amidst a multitude of sensor data.
This study offers a comprehensive overview of federated
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learning in data-sensitive situations, providing a roadmap for
academics and practitioners. It also examines the current state
of privacy-preserving techniques.

Another work, Adaptive Federated Learning and digital
twin for Industrial Internet of Things [22], on the other
hand, offers a tailored examination of federated learning
approaches aimed at IoT settings. Diverse sensor input,
dynamic network settings, and limited resources are some of
the key factors that this review tackles to guarantee accurate
and efficient model training. This work contributes to the
advancement of federated learning methods by addressing
the unique challenges of IoT environments, paving the way
for improved utilization of sensor data across different IoT
applications.

With a focus on big data computing and the Internet of
Things, the article,Edge Intelligence: The Confluence of edge
computing and artificial intelligence [23], delves into how
edge intelligence approaches function. Studying their critical
role in processing sensor data at the network edge, this survey
emphasizes their significance in reducing latency and saving
bandwidth—an essential component for federated learning
in dispersed sensor networks. To make sense of this fast
development, this paper does a great job of analyzing and
explaining the potential applications and implications of edge
intelligence for federated learning paradigms.

Another work, Edge computing with artificial intelligence:
A Machine Learning Perspective [23], provides a similar
analysis, but from a machine learning viewpoint, with an
emphasis on how these techniques might be applied at the
wireless edge to process sensor data locally to aid in real-
time decision-making. By facilitating federated learning in
distributed sensor networks, these techniques enhance data
processing and analysis, which in turn promotes enhanced
responsiveness and efficiency in sensor-driven environments.
Researchers and practitioners alike will find this study
extremely useful since it elucidates the potential future
of distributed sensor networks through the interaction of
federated learning and machine learning at the wireless edge.
By looking at their critical role in processing sensor data at
the network edge, this review emphasizes their importance in
reducing latency and saving bandwidth—an essential com-
ponent for federated learning in dispersed sensor networks.
This review lays a strong groundwork for understanding the
field’s fast progress with its thorough analysis and insightful
explanations of the potential uses and implications of edge
intelligence for federated learning paradigms. The summary
of the literature review is shown in Table 1.

III. MATERIALS AND METHODS
A. DATASET
Our primary goal in this study is to integrate publicly
available information with big data and ML to simulate
real-world scenarios commonly seen in multimedia sensor
networks (MSN). To ensure that they are relevant to different
MSN application domains, the following datasets have been
carefully selected.

1) UrbanSound8K DATASET
Recorded in a wide variety of real-world settings, the
UrbanSound8K dataset is a massive compendium of typical
city noises. For MSN applications that use audio sensor
nodes, this is the ideal choice because it contains ten different
kinds of sounds, including sirens, street music, and drilling
noises. This set of recordings captures the ever-changing
urban environment by sounding very much like the acoustic
readings taken by sensor nodes.

2) UCF101 ACTION RECOGNITION DATASET
In video format, the UCF101 Action Recognition Dataset
displays 101 unique human actions. It is a popular dataset. Its
versatility makes it a good fit for applications that make use
of video sensor nodes in MSNs; it can measure everything
from sports to everyday motions to social interactions. The
real-time video recordings encompassed in this collection
capture the complexity of human behavior in many circum-
stances.

3) PhysioNet/CinC CHALLENGE DATASET
This collection includes electrocardiogram (ECG) records
of patients with cardiovascular disease. The dataset is
particularly relevant to MSN healthcare applications due
to the real-time physiological data it contains for analysis.
The collection provides ECG recordings that correspond
to physiological parameters that are made in real-time in
healthcare environments. Through the use of this dataset,
our study satisfies the particular needs of MSN healthcare
applications, enabling the creation of machine learning
models that can comprehend and evaluate measures related
to health.

These datasets have been selected with a keen focus on
their applicability to real-time scenarios within multimedia
sensor networks. By incorporating these diverse datasets into
our project, we aim to train and evaluate ML models that
can effectively handle the complexities of multimedia data
in MSN applications.

B. FRAMEWORK OF SALTUS FOR HANDLING BIG DATA
The framework of Saltus is shown in Fig.1. DRIFE and
CFS are the two vital abstractions of the Saltus framework.
DRIFE takes care of converting the input Big Data into
minimized features, and CFS is an efficient way of storing
and maintaining the structure of the DRIFE output. DRIEF
is a method employed in Saltus for converting unstructured
data into a structured format, enabling effective processing
and storage. CFS (Compact Feature Space) refers to the files
generated byDRIFE nodes, containingMLmodel predictions
and serving as a guide to multimedia content. These terms
will be elaborated upon in subsequent sections.A MSN can
be divided into different clusters [25]. Each cluster will be
handled by a DRIFE primary and several DRIFE nodes
corresponding to each application they represent. DRIFE is
centered on ML, and it interacts with its support units -
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TABLE 1. Literature review of recent papers in multimedia sensor networks.
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TABLE 1. (Continued.) Literature review of recent papers in multimedia sensor networks.

Root Stock and Root Pruner. Root Stock is an open-source
collection ofMLmodels with their learned weights, and Root
Pruner is an application that helps in fine-tuning the entities
in Stock by either limiting the weights or incorporating
additional data to improve generalization for a specific
application. The interactions can be in both directions. The
models in stock can be used for finetuning, and then the
finetuned models themselves can be a new entity in Stock.
Stock entries have both private and public views. Public is to
make the models available for everyone, while the private is
for the defined users alone.

DRIFE configuration maintains the reliability of the data
after processing, and CFS configuration determines the
storage and usefulness of the processed Big Data. In the
Saltus framework, the two important factors that decide its
design are the users and the feature extraction algorithm
[26], [27]. Let us consider the case: The District Law
and Enforcement department faces a significant challenge
in efficiently utilizing deep learning-based face recognition
models for criminal suspect identification through CCTV
footage across the province. Presently, the conventional

methods involve either live tracking by officials or storing
videos for subsequent analysis, both of which are deemed
inefficient for the intended purpose. This underscores the
imperative for a system capable of leveraging robust ML
algorithms to produce and store results systematically, akin
to a Regional Database Management System [28], [29].

Moreover, the outcomes generated by ML systems are
often non-uniform and contingent on the context. Despite
the growing prevalence of such systems in various domains
[30], [31], [32], there is a conspicuous absence of established
frameworks addressing the need for a standardized approach
to organize and manage the diverse data outputs of ML
models [33], [34] in this specific application, as documented
in the existing literature.

At an abstract level, Saltus takes in input multimedia and
creates simplified files called CFS (Compact Feature Space).
It is to be noted that the input media is discarded after the
processing and DRIFE takes care of maintaining the identity
of the data that was inputted [35], [36]. Big Data Multimedia
is often considered unstructured data [37] as it is difficult to
arrange the images and videos into tables and relations. Saltus
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FIGURE 1. Proposed framework to integrate big data processing into large multimedia sensor networks.

also supports an effective way to convert unstructured data
multimedia into structured data. These structured data will be
based on information as well as a referencing system. It may
still not be possible to store these in tables, but it provides
the necessary structure to work them with relational database
management systems.

IV. PROCESSING TOOL OF SALTUS—DRIFE
Cleaning the data is an important step in maximizing the
removal of irrelevant information to the user. Some of the
prominent applications of data cleaning are in the fields of
environmental studies [38], transportation [39] medical data
[40], and structural engineering [41]. Data cleaning can be
done to the extreme that only the very specific requirements
of the user are satisfied by the system. Data Reduction
through Identification and Feature Reduction(DRIFE) is
the module that processes the input Big Data by reducing
them into features as reduced by the system. DFIFE
makes use of ML to apply predictions to the input data
and convert them into less memory requirements such as
data features. Using algorithms such as CNN, the input
live stream video can be converted into a set of features
that can be efficiently stored and used according to the
application the video is meant for. DRIFE handles the
input multimedia by applying the ML model to the data
and also by retaining informative components of the input.
Identity Module and Learning Module are the main units in
DRIFE. The Learning module is the representation of the

FIGURE 2. Work distribution inside DRIFE for handling dual tasks of data
identification and feature extraction.

ML algorithm, which is parameterized through a referenced
model and the corresponding weights. The learning module
does not store the ML code but internally references it with
the help of RootStock- which is the warehouse of machine
learning ML codes. The replica of these programs will be
called into DRIFE as specified for the purpose. The output of
the program corresponds to the Feature section in CFS files
as shown in Fig. 2.

Since Saltus does not retain the input data upon processing,
the requirement of knowing the overall nature of the input
is required for future purposes. The identity module is an
input mapping procedure that helps extract certain landmarks
from the input at the same time, does not burden the

88626 VOLUME 12, 2024



S. Remya et al.: Saltus–‘‘A Sudden Transition’’ Empowered by Federated Learning

FIGURE 3. Primary-secondary configuration of DRIFE for dealing with
work distribution and multiple ML models.

storage of users. Identifymodule have different data sampling
procedures such as:

• Head(n) or Tail(n): Extract the first ‘n’ or last ‘n’ mini-
mal sequences from the input multimedia respectively.

• Random(n): Extract randomly n minimal sequences
from the input.

• Custom([seq]): The custom sequences as specified by
the user through listing or programming.

• Compress(m): Compress the input by a fraction of ‘m’
and then follow up with any of the above sampling
methods.

The DRIFE organization in Saltus follows a primary-
secondary configuration as shown in Fig.3 for handling
multiple tasks as well as maintaining parallelism across the
jobs. Each DRIFE node can, almost, handle one ML task.
In an environment that requires pipelining of ML models
as well as distributing the workload of nodes, a primary
node integrates the functioning of secondary DRIFE nodes.
DRIFE nodes can concurrently write into the same or
different CFS files according to the configuration. A primary-
secondary configuration produces a primary file and results
in an integrated CFS file. The primary file describes the
configuration of each DRIFE secondary while the secondarys
store their results in CFS. The data part of the CFS will be
common across all the secondarys, while the feature part
varies according to the algorithm for feature extraction. The
concept of pipelining is discussed in the subsequent sections.

V. CASE STUDY
A. DESIGN OF CFS MANAGEMENT SYSTEM
Compact Feature Space are files written by DRIFE nodes that
contain the predictions of ML models mapped to the input
tape. CFS files provide structure to the required content of
multimedia by mapping sequences with independent param-
eters of the input, such as temporal and meta information.
CFS is ASCII encoded and contains references to the output
sequence files as paths or external links. An effective CFS
occupies very little disk space and acts as an ‘‘information
guide’’. It also acts as a summarizer of the application for
which saltus was designated.The CFS file structure and the

flowchart of the proposed Saltus framework are shown in
Fig. 4 and Fig. 5.

The Remote Sensor Management model is a sophisticated
system designed for handling data generated within a smart
city MSN. In this innovative approach, the data collected
by sensors distributed across the smart city is remotely
accessed and curated as feature spaces within dedicated
control centers. This involves the seamless integration of
various sensor outputs, such as audio, video, and acoustic
measurements, into standardized and easily interpretable
feature spaces. The control centers serve as centralized hubs
for managing and processing this wealth of data, allowing
for real-time analysis and decision-making. By accessing
and storing the sensor-generated data in the form of feature
spaces, the Remote Sensor Management model enhances
the efficiency of data handling and enables comprehensive
insights into the city’s dynamics. This model is pivotal for
smart city initiatives, offering a scalable and centralized
solution for the effective utilization of multimedia sensor data
in urban environments and this scenario is shown in Fig.6.

B. CFS QUERY LANGUAGE
As discussed before, the AI-generated data from the mul-
timedia tape can be mainly divided into Identity Module
Generations and Learning Module Generations. Some of the
important parameters in Identity Module Generations for a
video are:

• Metadata(Input Video): Created and modified times-
tamp, file format, location of data source and comments.

• Metadata(Generated): Created and modified timestamp,
file permissions, generation matrix(accuracy, f1 score,
bias estimates), input and model paths.

• Sampling(Input Video): Subsequence approximately
less than 10% of video, Head(n), Tail(n), Random(n),
Custom([seq.index*]), etc.

The feature part of CFS contains the ML outputs
organized about the independent variables. Some impor-
tant components in Learning Module Generations are
the features(AI-produced text, image, or any other data
formats), output(standalone or pipelined), and Fine-tuned
parameters(as referenced objects). Saltus uses the generalized
method of querying data. The two different types are read and
write operations. CFS file has separate fields for the identity
module(dspace) and learningmodule(fspace). Read andwrite
procedure can be done in both dspace and fspace.

C. EXAMPLE: DSPACE WRITE OPERATION
The dspace.write operation is fundamental to storing
comment-labeled sequences of input data within the system.
To store input data sequences with comments tagged inside
the system, the dspace.write function is essential. A sample
implementation of this operation would be to call the
dspace.write function with a randomly generated identifier
(random(5)) and some extra metadata in the form of
comments, with the ‘comments’ parameter set to ‘‘abc’’. The
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FIGURE 4. CFS file structure and constituent fields for data in CFS.

structure makes sure that the first five sets of input data are
saved with the given identifier and comments, which helps
with data management and retrieval.

dspace.write(random(5),comments=‘‘abc’’)

D. EXAMPLE: DSPACE READ OPERATION
Users can access specific data from the system using the
dspace.read function and its indexing and filtering features.
One common use case for dspace.read is to filter information
according to attributes like the last changed date. To retrieve
data when the year of modification is less than or equal to
2020, the query in the above example filters data based on
the modified date. This read operation makes use of indexing
and filtering to efficiently get pertinent project facts from the
system.

dspace.read(meta[modifiedDate.year() ≤ 2020])

E. EXAMPLE: FSPACE WRITE OPERATION
To enable machine learning (ML) predictions within the
system, the fspace.write action configures the application
of models to input data. Models and related conditions
or configurations are defined during this procedure, which
applies them to the input data stream. The above example
uses a pipeline setup to call the fspace.write function,
passing in two models (m1 and m2) to process the input
data. Furthermore, specific requirements are established for
each model, specifying that m1 should be associated with
the ‘genderPrediction’ model and m2 should be associated
with the ‘agePrediction’ model. This setup allows the
DRIFE (Data-Driven Intelligent Framework for Engineering)
operation to provide concurrency and filtering capabilities
through the sequential execution of models within the
pipeline.

The write operation specifies the model configuration to
be applied to the input tape. After the query runs, the referred
models are called into DRIFE and saved in a separate disc
space (RootStock). One crucial method for filtering and

giving DRIFE operations concurrency is pipelining. In this
case, m1 AND m2 indicate that m2 will be reached after
the output of model 1 has been filtered. The identical input
is sent concurrently to both models using the OR operator.
To generate ML predictions, logical AND and OR can be
joined appropriately.

F. EXAMPLE: FSPACE READ OPERATION
The fspace.read operation allows users to query and retrieve
specific observations from the system based on predefined
criteria, such as model confidence levels. In the provided
example, the fspace.read query filters observations based on
the confidence level of a particular model (m1), specifically
retrieving data where the confidence value is greater than
or equal to 0.9. This read operation enables users to
extract valuable insights from the system, such as highly
confident predictions generated by machine learning models.
Additionally, conditions related to output parameter types,
such as gender classification, can be incorporated into the
query to further refine the retrieved data.

fspace.read(m1.confidence() ≥ 0.9)
There is a list of all the observed data that have a model

confidence rating higher than 0.9. The kinds of output
parameters are among the additional requirements. For the
corresponding class labels in m1, it may also be gender =

0 or 1.

VI. APPLICATION OF SALTUS FRAMEWORK
Saltus, as previously indicated, is primarily designed to
handle Big Data by using machine learning to transform
them into a useful and easily understood representation.
The primary use case is data handling for multimedia
monitoring in a setting with constrained storage. When it
comes to controlling the predictions made by classification,
regression, or clustering approaches, Saltus can grow in
directions directed by advances in machine learning. This is
the hierarchy of a Saltus project: With access to numerous
sensor inputs, including a video camera, a hub serves as
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FIGURE 5. Flowchart of the proposed Saltus framework in a video centric multimedia network.

the mechanism for accumulating data. In addition to serving
as a data interface, a hub unifies the several sources and
groups them under one project. One hub may be home
to multiple initiatives. Facial recognition could serve as an
example project. No data is shared between projects; they are
all independent of one another. DRIFE clusters, specifically
created for that application’s performance, are found within
a project. The conditions that Saltus must meet are assessed

using a performance metric known as RF estimation. Listing
all of the RF entities is the initial stage in creating the CFS
system design. Table 2 illustrates the Requirement Factor
(RF), which is a numerical value that indicates Saltus’s
effectiveness on file ‘f’ as long as ‘f’ is small enough to assess
the client’s requirement. The norm of a vector containing x
requirements is determined by weighing each requirement
with the average performance of the machine learning model.
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FIGURE 6. Remote sensor management model - data generated in a smart city MSN remotely accessed and stored as
feature spaces in control centres.

TABLE 2. Requirement factor estimate for a face monitoring system.

TABLE 3. Benchmarking against baseline models.

TABLE 4. Real-world scenario simulations.

Saltus uses an approximation of the pre-evaluation called
RF. The performance and requirements of Saltus depend on
the user and the use case, meaning that it is a case-specific
application. How effectively Saltus performs on a range of
ML tasks may be ascertained using the value that RF offers.
Big Data ML integration can be customised with Saltus.
Due to the application’s requirement for a certain model’s
performance, each model’s RF values differ even when the
system employs the same set of ML models.

A. FRAMEWORK CHARACTERISTICS
The following features that contribute to improving the
practicality, security, and viability of MSN big data may be
seen based on the Saltus architecture standards.

• Increase the lifetime of sensor accessories. The data
processing portion is handled by the remote DRIFE
nodes, which greatly reduces the impact on the sensor
and its corresponding gateways and prolongs the
lifespan of sensor accessories.

• Minimise the number of sensors required. Each sensor
functions as a data gathering device on its own, so it is
not a concern about data handling expertise.

• Enhanced multimedia data security: DRIFE transforms
eachmultimedia reading into features unique to a certain
application. By being useless outside of the context of
the application they are used for, these features greatly
increase security and sharability.

• Edge device-friendly sensor data: The computational
and storage capacities of Edge devices are constrained.
Large amounts of sensor data cannot be directly manip-
ulated by edge devices. Because CFS files are feature-
oriented, highly compressed storage units customised
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TABLE 5. Federated learning performance.

TABLE 6. Privacy-preserving analysis.

to their intended application, they enable data to be
accessed by edge devices.

• Images and videos that are unstructured must be trans-
formed into a structured format that can be efficiently
handled and stored usingDRIEF. Unstructured data does
not naturally fit into a tabular representation, where each
data point is assigned to a distinct row and column.
To extract significant features from unstructured data,
DRIEF employs cutting edge methods from artificial
intelligence and neural networks. By capturing the
fundamental traits and patterns seen in the data, these
features make it possible to represent the data as
organised entities. DRIEF allows unstructured data to
be transformed into feature vectors, which may be
stored and manipulated in an approach comparable to
structured data formats: rows and columns.

VII. RESULTS AND DISCUSSIONS
In the context of MSN and big data analytics, we provide
an in-depth evaluation of the proposed Saltus model in
this section, comparing it to baseline models, conventional
ML models, current techniques, and federated learning
approaches. We contrasted Saltus’s performance with that
of the Random Forest Model and the Conventional SVM
baseline models. As seen in Table 3, Saltus regularly beat
these baseline models in terms of accuracy (96%), precision
(92%), recall (98%), and F1 score (95%), demonstrating its
efficacy in managing a variety of sensor outputs in MSN.

Saltus performed exceptionally well in simulations of
real-world situations, showcasing its resilience to changes
in volume, speed, and type of sensor. Baseline Models
performed moderately, but Saltus, which is displayed in
Table 4, demonstrated high adaptability and efficiency
in managing various scenarios, making it appropriate for
dynamic MSN contexts.

Furthermore, the contrast with conventional machine
learning models, such as Decision Tree and Logistic Regres-
sion, demonstrated Saltus’s effectiveness in federated learn-
ing. Concerning typical ML models, Saltus demonstrated
its efficiency in collaborative learning over-dispersed sensor
nodes, as demonstrated in Table 5, where it obtained a faster
convergence rate (100 iterations), lower communication
overhead (80 MB), and higher model accuracy (92%).

TABLE 7. Scalability and resource utilization.

TABLE 8. Comparative analysis with federated learning approaches.

When compared to other techniques, such as Differential
Privacy and Homomorphic Encryption, Saltus showed better
privacy-preserving abilities. As demonstrated in Table6,
Saltus guarantees the security of sensitive data in MSN
with a data privacy measure of 95% and resilience against
adversarial attacks at 92%. This is an important factor in
privacy-sensitive applications.

Saltus performed better than other approaches employing
Traditional Database and NoSQL Database when it came to
scalability and resource utilisation. According to Table 7,
Saltus demonstrated a high degree of scalability and an effi-
cient utilisation of resources (90%), rendering it appropriate
for MSN deployments on larger scales.

In comparison with federated learning approaches, Saltus
surpassed FedAvg and FedProx in terms of convergence
time (120 iterations), model accuracy (93%), and com-
munication efficiency (90 MB). Saltus leverages federated
learning optimally, ensuring collaborative model training
without compromising data privacy as in Table 8. These
results collectively affirm that Saltus not only outperforms
baseline models and traditional ML approaches but also
excels in privacy preservation, scalability, and federated
learning efficiency. The ability of the model to real-world
scenarios positions it as a robust solution for multimedia
data processing in large-scale sensor networks, marking a
significant advancement in the field.

VIII. CONCLUSION
In conclusion, this research work has presented a novel
approach to address the challenges of Big Data processing
and storage in the current era of extensive digital infras-
tructure. By harnessing the power of AI and ML, we have
proposed a method that focuses on storing and processing
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only the necessary data, thereby mitigating the issue of
data overload. Streamlining the management of massive
amounts of Big Data at their point of origin is central to our
proposed architecture, Saltus. The DRIFE processing method
and the CFS storage files are the two main features that
we have presented. With DRIFE, you may transform media
files like photos and movies into more manageable feature
representations for storage and analysis. CFS functions as
a concise manual, condensing the essential information and
offering an organized depiction of the facts. Saltus helps
mitigate the difficulties related to the gradual accumulation
of Big Data by tackling the data volume at its origin.
With this method, not only is data processing and storage
made more efficient, but storage infrastructure is also made
less burdened and sensor devices are made to work better.
Although Saltus provides a great Big Data management
solution, it’s important to keep in mind that its usefulness
can vary depending on the specific requirements and the
performance of the ML model. An effective evaluation tool,
the requirement factor estimate allows users to determine how
effectively Saltus meets their specific needs.
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