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ABSTRACT The increasing occurrence of Hypertension highlights the need for advanced predictive tools
in healthcare. This research proposes a novel approach that combines machine and deep learning for new
feature generation and hypertension prediction. We explore machine learning-based models: Random Forest
(RF), Logistic Regression (LR), Decision Tree (DT), XGBoost (XGB), and Gradient Boosting (GB) for new
Feature Prediction (FP) and integrated these predictions with the original dataset for training deep Long
short-term memory (LSTM) model. To evaluate the efficiency of the proposed approach, we compare all
models, predicting new features, with those in the existing study. The results demonstrate that the GB-based
FP + LSTM are standout performers. The GB-based FP + LSTM combination demonstrates the highest
accuracy at 98.48%. On the contrary, the LR-based FP + LSTM combination exhibits a lower accuracy
of 89.39%. The remaining combinations, including RF-based FP + LSTM, XGB-based FP + LSTM, and
DT-based FP + LSTM, showcase accuracies ranging from 95.45% to 97.97%. In practical terms, the high
F1-score of 98.48% is achieved by the combination of GB-based FP + LSTM, which implies a reliable
tool for clinicians to aid in early hypertension detection. These findings hold deep practical implications,
offering healthcare practitioners and policymakers a pathway to deploy accurate and timely hypertension
identification tools.

INDEX TERMS Hypertension, deep learning, machine learning, feature generation, healthcare, predictive
modeling.

I. INTRODUCTION
Hypertension, commonly known as high blood pressure,
represents a ubiquitous health condition with profound
implications for human well-being [1], [2]. The silent and
gradual onset of Hypertension often conceals its potential
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to wreak devastation on various physiological systems [3].
In addition, elevated blood pressure imposes a sustained
burden on the heart, arteries, and other vital organs, leading
to an increased risk of severe health complications such
as heart attacks, strokes, kidney dysfunction, and cognitive
decline [4]. The tricky nature of Hypertension, often asymp-
tomatic until advanced stages, underscores the critical need
for timely detection and intervention [5]. Likewise, detecting
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Hypertension at an early stage is not merely a matter of
monitoring numerical values; rather, it is a crucial step toward
preventing life-threatening outcomes. Specifically, early
identification enables healthcare professionals to implement
targeted interventions, ranging from lifestyle modifications
to pharmacological treatments, mitigating the progression
of Hypertension and reducing the risk of associated
complications.

Similarly, given the substantial impact of Hypertension on
human health, the imperative to develop effective detection
methods is clear. Most importantly, with its capacity to
analyze complex patterns in health data, machine learning
emerges as a promising avenue for revolutionizing hyper-
tension detection, potentially saving countless lives through
proactive and personalized healthcare interventions [6]. How-
ever, while essential, traditional blood pressure monitoring
methods often present challenges in continuous, real-time
assessment, making them less than optimal for timely
intervention.

Machine learning’s effectiveness in detecting Hyperten-
sion lies in its ability to analyze vast and diverse datasets,
extracting fine patterns and correlations that may elude
traditional diagnostic approaches [7], [8]. Likewise, unlike
conventional methods that rely on intermittent measure-
ments, machine learning algorithms can process continuous
physiological data streams, offering a more comprehensive
and dynamic assessment of blood pressure variations [9],
[10]. In addition, these algorithms can integrate information
from various sources, including wearable devices, electronic
health records, and lifestyle data, providing a holistic
understanding of an individual’s health status [11]. It is
important to note that machine learningmodels can also adapt
and evolve with emerging data, enhancing their predictive
capabilities over time. More precisely, the predictive power
of these algorithms, for instance, DTs and LR, is crucial
in identifying subtle deviations in physiological parameters
that may precede overt Hypertension, enabling early inter-
vention and personalized healthcare strategies. Moreover,
machine learning contributes to developing risk prediction
models, helping healthcare professionals stratify individuals
based on their likelihood of developing Hypertension,
optimizing resource allocation and prioritizing preventive
measures for those at higher risk. Machine learning can
change hypertension detection from reactive to proactive
healthcare [12], [13].

In sum, integrating machine learning algorithms in health-
care technology represents a paradigm shift in hypertension
detection. Machine learning has the potential to sift through
complex data sets, analyze patterns, and provide continuous
monitoring, opening new avenues for early detection and
personalized management of Hypertension. Subsequently,
these innovative solutions promise to revolutionize traditional
practices, offering a proactive approach that can significantly
impact patient outcomes. The synthesis of technology and
medical science enhances our understanding of Hyperten-
sion. Likewise, it propels us towards a future where timely

interventions, driven by machine learning insights, can save
lives and alleviate the burden of cardiovascular diseases.
This paper explores the potential of machine learning in
hypertension detection, emphasizing its role in healthcare
practices. Overall, the collaboration between healthcare
professionals and machine learning technologies stands
balanced to redefine the standards of care for Hypertension
and beyond.

A. CONTRIBUTIONS
This paper makes the following contributions:

• Feature Engineering with Machine Learning Clas-
sifier: To augment the feature set, RF, LR, DT, XGB,
and GB classifiers are trained on the original features.
Likewise, the predictions from this classifier are utilized
as additional features, providing the machine-learning
model with enhanced discriminatory power. Combining
LSTM, dense layers, and dropout regularization, this
architecture captures slight dependencies and improves
the model’s predictive performance for multi-class
hypertension classification.

• Improving Hypertension Prediction by Combining
Machine Learning and Deep Learning: This study
aims to improve hypertension prediction by combining
machine learning-based feature engineering and deep
learning-based prediction. The study found that the
combination of GB and LSTM models produced an
F1-score of 98.48%. These findings provide valuable
insights into the models’ performance across various
metrics.

B. PAPER ORGANIZATION
Section II provides the related work on hypertension.
Section III outlines the research methodology for hyperten-
sion detection. Section IV provides the experimental analysis,
results and discussion. Lastly, Section V concludes the work
and leads to the future directions.

II. RELATED WORK
A thorough examination of existing research is instrumental
in contextualizing the current landscape of hypertension
detection using machine learning. Recent years have wit-
nessed a surge in studies exploring the junction of healthcare
and artificial intelligence, with a particular focus on the
application of machine learning in hypertension management
[14], [15]. Notable contributions include research efforts
that leverage diverse datasets encompassing physiological
measurements, electronic health records, and lifestyle fac-
tors [16]. Likewise, studies have explored developing and
validating machine learning models capable of accurately
predicting blood pressure trends [17], [18]. Concurrently,
exploration of the integration of wearable devices and
machine learning algorithms for continuous blood pressure
monitoring showcases the potential for real-time health
assessments. Similarly, Smartwatches and smartphones with
wearable capabilities have been designed to measure blood
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pressure through photoplethysmography [19]. In addition,
advancements in feature engineering techniques, model
interpretability, and the utilization of deep learning archi-
tectures have spearheaded recent investigations [20]. While
these works collectively underscore the promise of machine
learning in hypertension detection, it is imperative to
critically evaluate their methodologies, limitations, and the
generalizability of their findings.

Building upon the foundation laid by previous research,
several studies have investigated integratingmachine learning
into clinical workflows for hypertension detection. Like-
wise, the integration of developing a predictive model
that seamlessly interfaces with electronic health records
provides clinicianswith real-time insights into patients’ blood
pressure trends [21], [22]. Furthermore, the interpretabil-
ity of machine learning models addresses the often-cited
challenge of understanding the decision-making process
[23], [24]. The author of the paper [1] introduced ExHypt-
Net, an innovative deep learning system using wearable
devices like smartwatches. It detects Hypertension through
photoplethysmography signals. These signals get treated
visually by ExHyptNet using EfficientNet, which is pre-
trained for PPG analysis. Heatmaps and attention processes
enhance interpretability for healthcare experts. ExHyptNet
surpasses current methods with high classification accuracy
in diagnosing Hypertension. Furthermore, its explainable
modules clarify the underlying reasoning. Thus, ExHyptNet
advances non-invasive hypertension detection significantly,
aiding clinical decisions with accuracy and transparency.
The suggested approach is positioned as a viable option
for non-invasive continuous blood pressure monitoring using
wearable technology, and the research also addresses the
significance of feature selection in improving the DNN
model’s performance.

This author of the paper [25] suggests a revolutionary
method known as ‘‘risk stratification’’—a machine learning
model—to identify those who are more likely to develop
diabetes and Hypertension. This method allows healthcare
resources to be allocated efficiently to those who need them
the most. Through the collection of basic clinical test results,
medical history, and demographic data from a population
in a resource-constrained situation, the researchers created
and assessed a number of machine learning models for
risk prediction, including logistic regression and random
forest. When the trained models were tested on different test
datasets, they outperformed conventional risk stratification
techniques in scenarios with limited resources in terms
of accuracy. The model performed well and surpassed its
previous competitors with a gap of 13.5%, achieving 79.2%
in the limited environment. In particular, the random forest
model proved to be the best, with great accuracy, in predicting
the risk of Hypertension and diabetes.

In South Asia, where Hypertension is highly prevalent, the
author in this paper [26] looks into the implementation of
machine learning models for population-level hypertension
prediction. The research uses these models to combine

individual-level data from nationally representative surveys
carried out in Bangladesh, Nepal, and India in order to
identify important determinants linked to Hypertension. The
study trains and evaluates these models on the combined
dataset using a variety of machine learning algorithms,
including Decision Trees (DT), Random Forests (RF), Gra-
dient Boosting Machines (GB), Extreme Gradient Boosting
(XGB), Logistic Regression (LR), and Linear Discriminant
Analysis (LDA). The results reveal that machine learning
models can accurately predict Hypertension with a high
degree of accuracy on LDA, around 90%, with the models
with the greatest performance scores being XGBoost, GBM,
LR, and LDA. Overall, these advancements signify a
maturation of the field, moving beyond proof-of-concept
studies to practical implementations that could reshape
how Hypertension is detected and managed in real-world
healthcare settings.

The reviewed studies collectively highlight the potential of
machine learning for hypertension detection, monitoring, and
management in clinical and real-world settings. Likewise,
from predictive models seamlessly integrated into electronic
health records to deep learning architectures automating
feature extraction, the methodologies employed reflect a
dynamic and rapidly evolving field. The integration of
wearable devices, feature selection techniques, and ensemble
learning approaches further accentuate the multifaceted
nature of recent research efforts. However, as the field
progresses, it is essential to consider these machine learning
applications’ scalability, ethical implications, and interoper-
ability, ensuring seamless integration into existing health-
care infrastructures. This section explores recent studies,
explaining their contributions and limitations while setting
the stage for a comprehensive synthesis in the subsequent sec-
tions. In conclusion, this section provides a comprehensive
overview of the existing body of work, laying the groundwork
for the subsequent analysis and synthesis of state-of-the-
art approaches in hypertension detection through machine
learning methodologies. Table 1 presents the comparison
between previous techniques and the features of their dataset.

TABLE 1. Comparison of methods and datasets.
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III. RESEARCH METHODOLOGY
This study adopts a systematic approach to predicting Hyper-
tension using machine learning methodologies. Figure 1
outlines the steps and approach employed in this research.
In this research, the proposed methodology leveraged a
comprehensive health dataset designed for non-invasive
cardiovascular disease detection [27]. Likewise, the dataset
encompasses 657 records from 219 subjects, spanning an age
range of 20 to 89 years, and includes information on prevalent
conditions such as Hypertension and diabetes as shown in
equation 1.

S = 219

R = 657

Amin = 20 years old

Amax = 89 years old (1)

In addition, data acquisition followed standardized experi-
mental conditions, ensuring reliability. The study employed
the dataset to investigate photoplethysmograph signal quality
assessment thoroughly and sought to unveil the intrinsic
relationship between PPG waveforms and cardiovascular
diseases. This research used the latent characteristic infor-
mation embedded in PPG signals for early and noninvasive
screening of common CVDs, particularly Hypertension.
Subsequently, the dataset underwent a detailed preprocessing
phase to optimize it for subsequent analysis. Columns
associated with specific health conditions, namely Diabetes,
Cerebral Infarction, and Cerebrovascular Disease, were
systematically removed from the dataset, resulting in a
refined version referred to as dfnew. Likewise, categor-
ical columns, such as Sex(M/F) and Hypertension, were
then subjected to label encoding to transform them into
numerical representations, facilitating a seamless integration
of these variables into the analytical process. Following
preprocessing, a comprehensive Exploratory Data Analysis
was conducted to unveil the intricate relationships within the
dataset. Additionally, the correlation matrix, a fundamental
statistical tool, was computed to discern the strength and
direction of correlations between various variables. Similarly,
visualized through a heatmap, thismatrix played a pivotal role
in guiding feature selection for subsequent analysis, offering
insights into the interplay of different health parameters.
Moreover, feature selection aims to enhance the model’s
efficiency by focusing on themost relevant variables. Specific
columns, namely Heart Rate(b/m), Height(cm), subject ID,
and Num., were discreetly excluded to create a final, refined
dataset denoted as dfnewfinal. This meticulous feature
curation ensures that the subsequent machine learningmodels
are streamlined and adept at capturing the essential aspects
of blood pressure prediction. In addition, a critical analysis
of the distribution of the target variable. The dataset was
analyzed using different feature analysis techniques, after
which the dataset was shrunk to 7 features described in
Table 2.

TABLE 2. Feature description.

This dataset detects Hypertension from its root cause,
blood pressure; it consists of blood pressure readings, includ-
ing Systolic and Diastolic Blood Pressure. BMI measures
the fat stored in the body that may lead to heart issues due
to high cholesterol. These are the main indicators that can
help identify Hypertension in comparison to other datasets
that mostly focus on diabetes, uric acid smoking details,
etc. Furthermore, Hypertension was undertaken to address
potential issues related to data imbalance. The distribution
ratios for each category within the variable were quantified,
shedding light on the prevalence of different hypertensive
cases. Specifically, this analysis was visually represented
through a count plot, providing a comprehensive overview of
the distribution of hypertension cases within the dataset. The
dataset was then systematically divided into two components:
features (X) and the target variable (y). This division is
essential for subsequent model training and evaluation,
ensuring that the developed models can generalize effectively
to unseen data. More precisely, filling these values with
zeros was employed to handle any missing values within the
dataset. This step ensures completeness in the dataset and sets
the stage for a comprehensive analysis. Thesemethodological
steps, including dataset preprocessing, exploratory data
analysis, feature selection, and data splitting, provide a strong
foundation for subsequent phases of the study. Importantly,
the curated dataset is now poised for developing, training,
and evaluating machine learning models to predict blood
pressure. Figure 2 provides the correlation coefficients (CC)
between various dataset features. It measures the strength
and direction of linear relationships between two variables.
Furthermore, it shows the degree of association between each
feature, with negative values indicating a negative correlation
and positive values indicating a positive correlation. The CC
between age and Hypertension is -0.16, which indicates a
weak negative correlation. Old age is slightly associated with
a lower risk of Hypertension, but this relationship is not very
strong. Similarly, the CC between weight and blood pressure
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FIGURE 1. Proposed Methodology for Feature Prediction, Feature Addition, and Hypertension Prediction.

is around 0.2, indicating a weak positive correlation. Higher
weight is slightly associated with higher blood pressure, but
this relationship is not very strong.

A. ML MODELS WITH DL MODEL
Algorithm 1 presents an overview of the entire pipeline
of the proposed approach, which begins with collecting
data and preprocessing it. The results are then analyzed
using evaluation metrics, and subsequently, the confusion
matrix and ROC curves are extracted. This study examined
machine learning models such as RF, LR, DT, XGB, and
GB for Feature Prediction (FP). The predictions from these
models were then combined with the original dataset and
utilized for training with LSTM. Subsequently, an RF, LR,
DT Classifier, XGB, and GB classifiers were employed to
enhance the model’s predictive capabilities. Likewise, the
features were flattened, and the classifier was trained on the
training set (Xtrain, ytrain). Subsequently, predictions from the
RF, LR, DT, XGB, and GB models were incorporated as
additional features. These predictions were combined with
the original feature set, and sequences were padded for
input data. The resulting combined and padded sequences,
Xtrain_padded and Xtest_padded, were reshaped for compatibility
with a LSTM network. Subsequently, a sequential neural
network model, consisting of an LSTM layer followed
by densely connected layers, was defined for multi-class
classification. In addition, the model architecture included an
input shape corresponding to the padded sequences. Dropout
regularization was introduced to prevent overfitting, and
the output layer utilized the softmax activation function to

facilitate multi-class classification. The model was compiled
using the categorical cross-entropy loss function and the
Adam optimizer. Moreover, the model was trained using the
combined features with early stopping and model checkpoint
callbacks. During training, the best model based on validation
accuracy was saved. The training process involved 50 epochs
with a batch size of 32. The best model was loaded for
evaluation on the test set (Xtest_padded, ytest_categorical). The
selection and use of each of these techniques, namely loss
functions, gradient descent, activation functions, dropout, and
cross-entropy, were, of course, because they can contribute to
the solution of machine learning and deep learningmodels for
hypertension prediction. Every technique among them was
selected judiciously only if it has the potential to conclude
prediction errors, optimize model parameters, introduce nec-
essary non-linearity for complex data patterns, avoid overfit-
ting, and improve classification accuracy. These techniques,
however, collectively contributed to the reliability, scalability,
and interpretability of the hypertension prediction frame-
work, which are dynamic requirements for any application in
healthcare. Furthermore, model performance on the test set
was evaluated using various metrics. Predictions (ypred) were
compared against true labels (ytest_true), and metrics including
accuracy, precision, recall, and F1-score were computed.
The metrics provide a comprehensive assessment of the
model’s classification performance. The trained model’s
performance metrics, including accuracy, precision, recall,
F1-score, confusion matrix, and ROC curves, were calculated
and analyzed to gauge the effectiveness of the developed
machine-learning model in predicting Hypertension.
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FIGURE 2. Matrix showing the correlation among variables in the employed dataset.

1) RF-BASED FP AND LSTM
Random Forest (RF) is an effective ensemble learning
approach that combines many decision trees to enhance pre-
dictive accuracy and robustness. More specifically, RF works
by creating numerous decision trees using different subsets
of the dataset and taking the average or majority vote of
their predictions. Random forest has very little chance
of overfitting on high-dimensional data. Additionally, the
feature importance scores provided by RF are useful for
understanding complex relationships within the data and
choosing important features for prediction tasks.

ŷ = RF(x) =
1
N

N∑
i=1

Ti(x) (2)

Equation 2 shows how the random forest model combines
the multiple predictions of multiple decision trees.

2) GB-BASED FP AND LSTM
Gradient Boosting, known as GB, is a method in machine
learning that constructs a group of learners, usually decision
trees, one after the other. The goal is to reduce a loss
function by introducing models that address mistakes made
by the current models. GB continuously adjusts models to
the differences (or gradients) in the model’s forecasts, giving
rise to its name ‘‘gradient’’ boosting. This approach proves
successful for regression and classification assignments,
which frequently produce predictions.

ŷ = GB(x) =
K∑
k=1

fk (x) (3)

Gradient boosting combines the output of multiple
weak learners for the final prediction, as shown in
Equation 3.
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Algorithm 1 Hypertension Detection Algorithm
1: Input: Xtrain,Xtest, ytrain, ytest
2: Convert labels to categorical
3: Train a classifier:
4: any_classifier ← Classifier()
5: any_classifier .fit(Xtrain.reshape(Xtrain.shape[0],−1),
ytrain)

6: Use the classifier predictions as additional features:
7: any_train_predictions ←

any_classifier.predict(Xtrain.reshape(Xtrain)
8: any_test_predictions ←

any_classifier .predict(Xtest.reshape(Xtest)
9: Combine the original features with classifier predictions

10: Pad sequences for input data
11: Reshape data for LSTM input:
12: Xtrain_padded← Xtrain_padded.reshape((Xtrain_padded

Xtrain_padded)
13: Xtest_padded← Xtest_padded.reshape((Xtest_padded

Xtest_padded)
14: Define a simple neural network with LSTM and Dense

layers:
15: model← Sequential()
16: model.add(LSTM(8,activation="relu",

input_shape=(Xtrain_padded,Xtrain_padded)
17: model.add(Dense(64, activation="relu"))
18: model.add(Dense(64, activation="relu"))
19: model.add(Dropout(0.2))
20: model.add(Dense(32, activation="relu"))
21: model.add(Dense(4, activation="softmax"))
22: Compile the model:
23: model.compile(optimizer= ‘‘adam’’,

loss="categorical_crossentropy", metrics=["accuracy"])
24: Save the best model during training based on validation

accuracy
25: Train the neural network using the combined features

with early stopping and model checkpoint
26: Load the best model:
27: tf.keras.models.load_model(‘‘best_model.h5’’)
28: Evaluate the model on the test set:
29: y_pred ← model.predict(Xtest_padded)
30: y_pred_classes← np.argmax(y_pred, axis = 1)
31: y_test_true← np.argmax(ytest_categorical, axis = 1)
32: Calculate accuracy, precision, recall, and F1-score
33: Print the metrics

3) LR-BASED FP AND LSTM
Linear Regression (LR) is a learning method employed to
model the connection between a dependent variable, y and
one or more independent variables, x. It presupposes a
linear link between these variables and strives to discover
a suitable linear model by reducing the sum of squared
differences. LR is extensively utilized for forecasting results
and drawing conclusions because of its straightforwardness

and explainability.

ŷ = β0 + β1x1 + β2x2 + . . .+ βpxp (4)

Linear Regression calculates the coefficients (β) that
reduce the sum of variances between the y values and those
predicted by the linear model. This leads to a formula for
forecasting y using x values, as shown in Equation 4.

4) XGB-BASED FP AND LSTM
XGBoost (Extreme Gradient Boosting) is a state-of-the-art
algorithm of gradient boosting technique accelerated for
improved speed and performance. The procedure produces
an ensemble of weak learners (mostly decision trees) at each
step with optimized objectives instead of minimizing the loss
function gradient. Through its two-stage boosting strategy, its
ability to regularize training via L1/L2, and its ability to aid in
parallel processing, the XGBoost method is highly efficient
and effective in both regression and classification tasks. Enter
Sklearn. It is scalable, and at the same time, it has gained wide
adoption in machine learning competitions.

ŷ = XGB(x) =
K∑
k=1

fk (x) (5)

It utilizes the output of numerous weak learners to predict
a final output for the input X shown in Equation 5 by adding
each weak learner successively to minimize the overall loss
function gradient.

5) DT-BASED FP AND LSTM
A decision tree (DT) is one of the most valued supervised
learning algorithms, and it is mostly used for both classifier
and regression tasks. It does so recursively into space areas
defined by feature values with the goal of making impurity
(classification) and variance (regression) decrease at every
node. Along every branch, the last element is a prediction
or result. Decision trees are close and in clear, logical form
and can address both kinds of data, such as numeric and
categorical data. Consequently, they need to be fitted on more
variability with complex datasets.

f (x) = sign

(
n∑
i=1

wixi + b

)
(6)

The decision tree output f(x) shown in Equation 6 is mostly
used for classification when signs are placed in the equation
to show the classes end up being positive (1) or negative (0).

B. EMPLOYED TECHNIQUES
1) LOSS FUNCTION
Cross-entropy loss functions have been chosen due to their
good performance in the discriminator’s job of separat-
ing the two sets. Cross-entropy measures the difference
between the actual probability distribution of the labels
and the model-deduced probability distribution, which is
very relevant for the binary classification problem of new
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hypertensive detection in this study. It aids in fine-tuning
the model by applying a large amount of penalty on the
wrong classification, helping in the overall enhancement
of the accuracy and convergence rate; the loss function is
represented in Equation 7.

Categorical Cross-Entropy Loss = −
1
N

N∑
i=1

C∑
j=1

yij log(pij)

(7)

2) OPTIMIZATION
The use of gradient descent as the chosen optimization
algorithm is because it is basic to almost every training
of neural networks through minimizing the loss function.
We chose the Adam optimizer, which is a modification of
gradient descent that is better than AdaGrad and RMSProp.
The Adam optimizer adapts the learning rate derived per each
identity; thus, it is appropriate for the current dataset, which
can have noisy and sparse gradients. To make it easier to
understand, the research carried out to identify non-stationary
objectives and increase the model’s convergence speed was
the deciding factor. Equation 8 represents the optimization
parameter adam.

θt+1 = θt −
α√
v̂t + ϵ

m̂t (8)

3) ACTIVATION FUNCTION
For the layers or neurons in the hidden layers of the
LSTM network, the Rectified Linear Unit (ReLU) was used,
represented in Equation 9. CNN is used because it does not
suffer from the vanishing gradient problem like most deep
networks, and ReLU is used because of its simplicity and
usefulness in handling the gradient disappearance problem.
The addition of non-linearity by ReLU allows the model
to learn some of these more advanced patterns in order to
enhance the model’s capacity to capture the nature of the data
pertaining to hypertension.

ReLU(x) = max(0, x) (9)

4) REGULARIZATION
To reduce the issues of overfitting, the dropout regularization
was incorporated into the model. It is based on the idea
of dropout, which means that during the training session,
a number of neurons are temporarily switched off randomly
so that the deep neural network learns more about features
that will be suitable for generalization for the new data
sets. This technique was selected because it is one of the
most successful and flexible approaches to increase the
generalization of deep learning models in cases where the
dataset is small or moderately sized, such as our case here;
the cases are shown in Equation 10.

Dropout(x) =

 0 with probability p
x

1− p
otherwise

(10)

C. SOFTWARE TOOLS AND LIBRARIES
All the experiments that were conducted in this research
were done using several different OSS tools and libraries.
Python was used as the main programming language in
this work to develop the models and analyze the data. For
computations of all the arrays and numerical calculations,
the prominent numerical computation library NumPy is
used in this project [28]. Python-based machine learning
library, ‘scikit-learn’, was used in the current study for the
creation of Random Forest and another classifier, along
with accuracy, precision, recall, and F1-score metrics [29].
Both TensorFlow [30] and Keras [31], the two complex
deep learning frameworks created by Google, were used in
developing as well as in the training of the LSTM network.
Data visualization libraries, namely, Matplotlib [32] and
Seaborn [33], were used to create different types of graphs,
confusion matrices, and ROC curves. These programs have
been selectedmainly for their stability, simplicity and actively
supported community.

IV. EXPERIMENTATION ANALYSIS, RESULTS AND
DISCUSSIONS
This section expands into the results and experimentation,
comprehensively analyzing the machine learning model’s
performance in hypertension detection. By using colab
notebook, experimental outcomes are achieved that are
detailed in Table 3 and the time consumed is shown in
Table 4, showing the efficacy of various model combinations,
shedding light on their accuracy, precision, recall, and
F1-score. 70% dataset was used for training and 30%
for testing. These results are a critical foundation for
solving the intricate interplay between base classifiers and
the LSTM neural network. They offer valuable insights
into their collective potential for advancing hypertension
prediction in healthcare scenarios. Likewise, Table3 presents
the experimental results of the trained models, showcasing
the performance metrics for various combinations of base
classifiers with the LSTM neural network.

TABLE 3. Present the outcomes of the LSTM model across various
machine learning-oriented feature prediction (FP) methods.

TABLE 4. Time consumed by the models to train.
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FIGURE 3. Confusion Matrix for Evaluating Model Performance in Hypertension Prediction.

Table 5 provides the architecture of a deep lstm model,
consisting of each layer’s type, output shape, and the number
of parameters. The model begins with an LSTM layer,
which generates an output shape of (1, 8) and contains
416 parameters. Following the LSTM layer, the first dense
layer has an output shape of (64,) with 576 parameters, while
the subsequent dense layers have output shapes of (64,) and
(32,) with 4160 and 2080 parameters, respectively. A dropout
layer is then applied with no output shape specified, as its
purpose is to prevent overfitting by randomly dropping some
neurons’ outputs during training. Finally, the model ends
with a dense layer serving as the output layer, producing
an output shape of (4,) representing the number of classes
in the classification task, with 132 parameters. Overall, this
architecture illustrates a combination of LSTM and dense
layers with varying output shapes and parameter counts
tailored to the specific task. Subsequently, Table 6 outlines the
used classifiers parameters while employing the predictive
modeling.

The RF-based FP and LSTM initially achieved good
results, with an accuracy of 96.97%, demonstrating the
effectiveness of integrating tabular information with ensem-
ble learning. Subsequently, the GB-based FP and LSTM
combination outperformed the other models, reaching an
accuracy of 98.48%. Likewise, this improvement suggests the
potency of boosting algorithms in conjunctionwith LSTM for
hypertension prediction. On the other hand, the LR-based FP

TABLE 5. LSTM neural network architecture.

TABLE 6. Classifier parameters.

and LSTM yielded a lower accuracy of 89.39%, indicating
a potential limitation in the linear relationship modeling of
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FIGURE 4. ROC for Evaluating Model Performance in Hypertension Prediction.

LR when applied to hypertension data. Subsequently, the
model’s precision and recall values also reflect its challenges
in correctly identifying instances of Hypertension. Similarly,
the XGB-based FP and LSTM combination showcased a
strong performance, achieving an accuracy of 95.45%. This
outcome underlines the adaptability of XGB to data, effec-
tively capturing patterns and contributing to hypertension
prediction. Next, the DT-based FP and LSTM combination
achieved results comparable to those of the RF-based FP and
LSTM combination, indicating the effectiveness of DT-based
models in tabular data scenarios. Likewise, the findings
suggest ensemblemethods, particularly GB and RF-based FP,
are powerful partners with LSTM in hypertension detection.
These models demonstrate high accuracy and robustness in
capturing complex relationships within tabular health data.
However, while commonly used for binary classification,
LR-based FP faces challenges when applied to health data.
The limitations in accuracy, precision, and recall highlight
the importance of selecting models tailored to the specific
characteristics of the dataset. XGB is a strong candidate
for hypertension health data, exhibiting competitive accu-
racy and outperforming some traditional machine learning
models. This implies that advanced boosting techniques can
significantly contribute to improving hypertension predic-
tion. The consistent performance of DT-based models across
different combinations highlights their reliability in handling
hypertension health data. This reinforces the notion that DT
structures can effectively capture patterns and dependencies
in the context of hypertension prediction.

Figure 3 depicts the confusion metrics. The precision
and recall analysis based on the results presented in
Table 3 provides valuable insights into the performance of
the machine learning models for hypertension detection.
Precision, representing the ratio of true positive predictions
to the total predicted positives, measures the models’ ability
to avoid false positives. The precision, recall and F1-
score calculations are shown in Equation 11, 12 and 13,
respectively.

Precision =
TP

(TP+ FP))
(11)

Recall =
TP

(TP+ FN ))
(12)

F1 Score = 2×
Precision× Recall
(Precision+ Recall)

(13)

Figure 4 shows the ROC curves. Subsequently, ROC curves
are used to evaluate the performance of classification models.
These curves show the trade-off between True Positive and
False Positive rates at various model thresholds, showing
how well a model can differentiate between positive and
negative classes. A larger area under the curve indicates better
discriminatory power. Next, the GB and LSTM combination
exhibit high precision (98.55%), indicating a low rate of
misclassifying non-hypertensive instances. However, the LR
and LSTM combination show lower precision (90.41%),
signaling a comparatively higher rate of false positives.
On the other hand, recall, denoting the ratio of true positives
to the total actual positives, gauges the models’ capacity to
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FIGURE 5. Model Accuracy Curves of Training and Testing epochs.

capture all instances of Hypertension. In addition, the GB and
LSTM combination excels in recall (98.48%), emphasizing
its effectiveness in identifying most cases of Hypertension.
On the other hand, the LR and LSTM combination lags
in recall (89.39%), highlighting its challenge in capturing
the entirety of hypertensive instances. These precision and
recall values collectively offer nuanced insights into the
models’ strengths andweaknesses in hypertension prediction.
In summary, the model combinations presented in this study
provide valuable insights into the strengths and limitations
of different machine-learning approaches for hypertension
detection. Overall, the implications of these findings extend
to the selection of suitable models for the health data
employed in this study and the potential for ensemble
methods to enhance predictive accuracy.

The trained models were also evaluated during their train-
ing with validation data to observe the trend they followed.
They were evaluated using Model Accuracy and Model Loss
curves; their results are shown in Figure 5 and Figure 6. The
training curves showed quick improvement times, offering
insightful information about the learning dynamics of the
model.Wewere able to evaluate the training process’ efficacy
and spot any abnormalities or inconsistencies in the model’s
performance track by examining the accuracy curve. LR-
based FP +LSTM shown in Figure 5e showed low results,
but there were not any irregularities spotted in the proposed
model. The loss curves, on the other hand, show how well
the model was able to minimize its errors during the training

process. A falling loss curve showed that the model was
approaching an ideal solution. However, variations or peaks
can point to concerns like overfitting or instability during the
training phase. None of our models showed any irregularity
in the falling curve except LR-based FP +LSTM in 6e
and XGB-based FP +LSTM in Figure 6c showed a little
deviation. The evaluation helped in accessing the model’s
generalization to new data and the overall training progress
by analyzing the loss curve.

A. DISCUSSION
The proposed model performed well on this dataset, with
every model providing high accuracy rates; the trained
models include Random Forest (RF), Gradient Boosting
(GB), Logistic Regression (LR), XGBoost (XGB) and
Decision Tree (DT) integrated with LSTM model. GB gave
top-notch performance by providing an accuracy of 98.48%,
and RF and DT provided an accuracy of 96.97%. Meanwhile,
XGB and LR provided accuracy results of 95.45% and
89.39%, respectively. The new feature production technique
provided extra features to the LSTM model that helped the
LSTM model to interpret complex data patterns efficiently.
It helped the LSTM model to understand the dynamics of
the data that lead to enhanced predictive performance. This
innovative technique helped to excel in the working of the
LSTM model in handling intricate data in different domains.
The techniques used previously presented various limitations,
including low accuracy, as their models could have been
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FIGURE 6. Model Loss Curves of Training and Testing epochs.

TABLE 7. Performance comparison with [1].

more efficient in learning intricate patterns. Other models
like Convolutional Neural Networks (CNN) and SVMs reach
a point where they start overfitting on the data, especially
when the available dataset is small in quantity or consists
of irregular data. These models are also open for adversarial
attacks where a slight variation in input can lead the model to
predict inaccurate or false results.

GB-based FP+LSTM provided results of 98.48% that not
only surpassed the comparison models but also the baseline
approach [1] of this paper with a margin of 2.29%. Table 7
compares the baseline approach with the proposed approach.

Some of the other models also surpassed the baseline
approach, including RF-HDLM andDT-HDLM; both models
provided an accuracy of 96.97

V. CONCLUSION AND FUTURE WORK
This paper provides the theoretical foundation of a unique
classification system that is conducive to the early diagnosis
of hypertension using feature engineering based on machine
learning with deep learning models. In the case of predictive
engineering, the models used include Gradient Boosting,
Random Forest, Logistic regression, Decision trees, and

XG Boost, but by incorporating LSTM with these models,
predictive accuracy was achieved. Remarkably, the overall
equity of utilizing Gradient Boosting-based feature predic-
tions combinedwith the LSTMmodel sat at 98.48% accuracy.
The high accuracy and reliability of the proposed model
can be of great importance to healthcare practitioners and
policymakers. Prompt diagnosis of hypertension can help to
prevent serious health problems, including heart attacks and
strokes, kidney failure and other consequences. The blood
pressure measurement of our model to analyze and predict
trends from raw and large data sets is more sophisticated than
the standard diagnostic tools that make use of only occasional
and less detailed measurements. The implications of this
model lie in enabling the early detection of hypertension and
changing the management of hypertension in the clinic. The
application of machine learning and deep learning in clinics
could mean early prevention and intervention for patients
with cardiovascular-related diseases and cut healthcare costs
and lives lost due to cardiovascular diseases.

This study offers useful findings directly related to the
use of feature engineering that employs machine learning
in combination with state-of-the-art deep learning models to
identify hypertension. The trends associated with Gradient
Boosting and LSTM networks are still a subject of further
research. Still, they demonstrate the high sensitivity of
analyzed dependencies and shall help enhance the predictive
model. This approach can be done for other chronic
conditions, as illustrated, emphasizing the modularity and
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applicability of the employed methodology. Further research
may also incorporate other variables, such as the patient’s
genetics and diet, to improve the accuracy of the model.
Further, real-time data acquisition from wearable devices
and EHRs may be useful in monitoring the patient’s status
and assembling alerts for both the patient and health-related
personnel. Furthermore, possible biases in the data, as well as
themodel’s ability to performwell with different populations,
will also be significant considerations. Some of the general
considerations that were identified included patients’ rights
to privacy and protection of their information to ensure
compliance with the law and patient trust.
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