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ABSTRACT The increasing popularity of video streaming services and the widespread accessibility
of high-speed internet underscore the importance of delivering cost-effective and seamless streaming
experiences. Shared internet connections may lead to varying speeds, impacting Quality of Experience
(QoE). Rate adaptation techniques aim to ensure smooth video transmission, but overly optimistic
adaptations can compromise user experience. Objective video quality assessment is crucial for efficient rate
adaptation to ensure smooth QoE. This research proposes a novel method incorporating temporal channel
shifting into Convolutional Neural Networks (CNN) for video quality assessment while maintaining the
computational simplicity of a 2DCNNmodel. The proposed approach relies on the EfficientNet architecture,
initially pre-trained on quality-aware images, and fine-tune it using datasets of rate-adaptive videos. The
model is trained and evaluated on two benchmark datasets, namely ‘‘Waterloo sQoE III’’ and ‘‘LIVE
Netflix II,’’ which consist of rate-adaptive videos annotated with subjective quality scores. Experimental
results encompass the evaluation of Pearson, Spearman, and Kendall correlation coefficients, along with the
computation time ratio for the proposed approach. The outcomes reveal competitive scores of 0.795, 0.652,
0.772, and 0.216 for the ‘‘Live Netflix II dataset’’ and 0.782, 0.713, 0.721, and 0.230 for the ‘‘Waterloo
sQoE III dataset.’’ Our proposed method, compared to 24 approaches for ‘‘Waterloo sQoE III’’ and 25 for
‘‘LIVE Netflix II,’’ attains the highest correlation scores while maintaining near-real-time processing
efficiency. These results affirm the efficacy of our approach in accurately predicting human judgment (QoE)
with computational efficiency.

INDEX TERMS Video quality, image quality assessment, rate adaption, video streaming, quality of
experience, QoE.

I. INTRODUCTION
The popularity of video applications has increased due
to the rapid advancements in digital multimedia devices
and the widespread availability of inexpensive, high-speed
internet. This has resulted in a notable rise in internet
traffic that is attributed to multimedia data, specifically

The associate editor coordinating the review of this manuscript and
approving it for publication was Miaohui Wang.

images and videos [1], [2], [3]. Smartphones, equipped with
high-definition cameras and versatile connectivity options
such as Wi-Fi and cellular networks, exemplify these
multifunctional devices contributing to the escalating demand
for multimedia content. Cisco’s annual internet study reveals
that video data constitutes a staggering 82% of internet
traffic [4]. This trend intensifies the competition among video
distribution systems and streaming services [5], where the
success of these platforms is intricately linked to the end
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user’s Quality of Experience (QoE) [6]. Consequently, there
is a critical need for robust quality assessments to gauge
users’ QoE and optimize the distribution of video content
effectively [7], [8].

The shared nature of internet connections introduces vari-
ability in connection speeds, heavily influenced by network
traffic generated by other users. In the context of adaptive
bitrate streaming, where seamless content delivery necessi-
tates adaptive bitrate adjustments [9], ensuring perceptual
quality becomes pivotal for overall QoE. Overly optimistic
rate adaptations may lead to a reduction in throughput
requirements, adversely affecting QoE [9], [10]. To address
this challenge, perceptual quality assessment of video streams
becomes essential, guiding efficient rate adaptation by
optimizing network channels based on improved perceptual
quality assessment models.

Objective quality assessment methods fall into three
categories: Full-Reference (FR), Reduced-Reference (RR),
and No-Reference (NR) [11]. FR methods compare original
and reproduced content for accurate assessment, while
RR methods use additional features transmitted with the
original content [12]. NR methods, though challenging,
operate blindly on the original content, making them more
practical in various applications where reference content
is unavailable [1]. Developing accurate and efficient NR
Video Quality Assessment (VQA) methods is crucial for
widespread applicability.

Despite advances in image quality assessment, videos
have received less attention in the NR quality assessment
domain, primarily due to the temporal complexity introduced
by video’s dynamic nature [13], [14]. For streaming videos
incorporating rate adaptation, considering the temporal
element in quality evaluation becomes crucial, capturing
scene transitions and temporal artifacts. Recent efforts in
developing objective algorithms for predicting visual quality
have involved traditional approaches leveraging natural
scene statistics or other features for regression algorithm
training [15].

Perceptual quality evaluation is conducted using both
subjective and objective methods [7], [11]. While subjective
assessment involves human observers assigning quality
scores [16], objective methods offer a cost-effective alter-
native across multimedia applications [17], [18], [19], [20],
[21]. Objective methods are classified as Full-Reference
(FR), Reduced-Reference (RR), or No-Reference (NR) [11].
Despite their limitations, NR methods are useful in situations
where reference content is not available [1]. Video quality
assessment is challenging due to its dynamic nature [13],
[14], and recent efforts aim to incorporate temporal elements
for accurate evaluation [15]. The rising trend in deep learning,
particularly Convolutional Neural Networks (CNNs), has
gained prominence in VQA research [22]. Two approaches
exist in VQA: one incorporating temporal elements and
another that does not. While CNN-based approaches provide
frame-by-frame predictions, three-dimensional CNNs offer
spatiotemporal learning by considering multiple frames as

input. However, these approaches often incur high com-
putational costs, limiting their deployment on end devices
and real-time online video understanding [23], [24]. This
research addresses VQA for rate-adaptive video streaming,
leveraging the EfficientNet 2D CNN architecture pre-trained
on quality-aware datasets BIQ2021 and KonIQ-10K. Intro-
ducing channel shift for temporal feature propagation,
the proposed approach balances efficiency, accuracy, and
generalization capabilities. The channel shift is implemented
in the residual connection of the architecture, and scalability
within the EfficientNet family allows for enhanced predictive
performance. Additionally, a quality-aware loss function,
combining mean squared error, mean absolute error, and
Spearman’s rank order correlation coefficient, contributes to
a comprehensive evaluation of video quality.

This study makes significant contributions, including
proposing an efficient VQA model tailored for adaptive
bitrate video streaming, quality-aware pre-training using
BIQ2021 and KonIQ-10K datasets, and introducing a
novel quality-aware loss function. The subsequent sections
delve into the framework, experimental setup, results, and
implications, providing a thorough exploration of the pro-
posed framework’s capabilities within adaptive bitrate video
streaming scenarios.

II. RELATED WORK
VQA for video streaming applications has been approached
through various methods, categorized into network/client-
side statistics and perceptual content-based approaches. QoS-
oriented approaches, such as those based on bitrate, latency,
and rebuffering time [25], [26], [27], [28], [29], offer fast but
less accurate solutions, suitable for simplistic quality predic-
tions and limited computational complexity devices. Hybrid
approaches [30], [31], [32], [33] integrate network statistics
and spatiotemporal characteristics, enhancing prediction per-
formance at the expense of computational complexity. On the
other hand, content-based approaches prioritize perceptual
aspects, showcasing high correlation with human judgment
but often demanding increased computational resources.

Two popular categories of content-based approaches are
Image Quality Assessment (IQA)-based and VQA-based.
IQA-based methods like BRISQUE [34], NIQE [35], and
DeepEns [1] predict video quality by treating frames as
separate images. Nevertheless, the determination of the
optimal frames per second and the oversight of temporal
characteristics with 2D CNNs pose challenges, restricting
their applicability for adaptive bitrate videos [1], [34], [35].

Content-based video quality assessment methods, like
VIIDEO [36] and V-BLIINDS [37], introduce no-reference
algorithms to predict video quality based on statistical and
perceptual features. While effective, these methods tend to
be computationally expensive, limiting real-time deployment
in streaming applications.

Several approaches, including UGC-VQA [38], PVQ [39],
VSFA [40], and FAST-VQA [41], address content varia-
tion and attempt to overcome computational inefficiencies.
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However, challenges persist in terms of computational
complexity, model adaptability, and the representation of
perceptual video quality.

Research efforts like StarVQA [42] propose attention-
based approaches for video quality assessment, leveraging
transformer networks. While providing good predictive per-
formance, computational efficiency remains slightly below
real-time standards.

Despite these advancements, a research gap exists in
achieving a balance between predictive performance and
computational efficiency in video quality assessment. Exist-
ing approaches either prioritize one aspect at the expense of
the other or encounter challenges in adapting to real-time
processing requirements. This research aims to bridge this
gap by proposing an efficient video quality assessment
framework tailored for adaptive bitrate video streaming,
ensuring both accuracy and computational efficiency.

III. PROPOSED METHODOLOGY
Three-dimensional CNNs are designed to circumvent this
limitation by processing multiple video frames at once and
capturing the temporal relationship between the adjacent
frames [43], [44], [45], [46]. This capability of the 3D
CNNs (such as C3D [47] or I3D [48]) makes them
unusually complex by increasing the required number of
training parameters to the number of frames processed at a
time [49]. This study, on the other hand, proposes a Temporal
Quality Predictor (TQP) framework, which combines various
concepts from existing studies in order to carry out temporal
modeling without introducing extra levels of complexity [1],
[50], [51]. Figure 1 depicts the whole process that the TQP
employs in order to make its quality predictions for videos.

A. MODELING APPROACH
Our modeling approach is based on the assumptions that
similar to spatial redundancy, the frames in a video stream
are also highly redundant and the change in content in
subsequent frames is relatively low. This assumption has led
us to explore channel shifting in the temporal dimension
in which only a portion of the information is shared with
adjacent frames to learn the temporal characteristics. The
proposed approach ensures an increase in model capacity and
minimization of data shifting which leads to efficient and
accurate models. This strategy ensures that spatial learning
is not heavily impaired and the incorporation of temporal
learning is enough to model temporal feature learning.

The model employs a strategy of using off-the-shelf,
pre-trained CNN to perform temporal feature extraction
in residual connections using temporal channel shifting.
EfficientNet [37] is used as a pre-trained model because
of its small size, good generalization and scalability, but
any CNN model with residual connections can be modified
to perform channel shifting. In addition, the framework
includes a pre-training strategy, temporal feature extraction,
and quality estimation via regression using spatiotemporal
features extracted by the Temporal Quality Predictor (TQP).

Each of these stages is described in greater detail in the
following subsections.

The channel shifting performs information sharing
between subsequent frames and is demonstrated using
2D convolution operation which is given by Eq. 1 & 2.

y[a, b] = 6∞
m=−∞6∞

n=−∞h[m, n] · x[a− m, b− n] (1)

y[m, n] = x[m, n] ∗ h[m, n]

= 6∞
m=−∞6∞

n=−∞x[I , j] · h[m− i, n− j] (2)

Here x and y are the input and output image, h is the
kernel matrix with m and n indices and (i, j) provide the
pixel location. The convolution operation is performed for
all possible values and the padding is decided as per the
user’s specifications. In case of a 1D input f and kernel h
the convolution Conv(f , g) requires a weight vector g with
size three (g1, g2, g3) to be convolved with input f . The
convolution for this scenario can be given by Eq. 3.

fi = g1f −1
+ g2f 0 + g3f +1 (3)

In order to perform convolution of the video frame through
shifting and multiplication, the input channels can be shifted
by −1 and +1. The shift operation performs information
transfer with its neighboring frames (fi−1, fiandfi+1) and the
operation can be performed as described in Eq. 3.A−1

i = Ai−1

A0i = Ai
A+1
i = Ai+1



Figure 2 demonstrate the channel shifting in temporal
dimension by using eight channels and three consecutive
frames. The channels learned from different frames are rep-
resented by different colors to highlight them during channel
shift taking place in the temporal dimension. Figure 2(a)
illustrate the original channel sequence in consecutive frames
whereas Figure 2(b) illustrates the channel sequence after the
application of shift. Channel 1 in Figure 2(b) demonstrates
left temporal shift which indicates shifting by −1 shift in
frames whereas channel 2 in Figure 2(b) demonstrates right
temporal shift by+1 shift in frames taking place in channel 2.
The rest of the channels in Figure 2(b) demonstrate unshifted
frames.

In our study, we have adopted a channel shift of 1/8
channels, a strategy aligned with established methodologies
such as TSM. This approach offers several advantages,
including reduced computational overhead by shifting only
a fraction of channels, as well as the retention of spatial
learning ability, as highlighted by Lin et al. [51]. Furthermore,
this choice aligns with the understanding that temporal
frames typically exhibit less variation in information com-
pared to spatial blocks. We believe this approach strikes
a balance between computational efficiency and preserving
important spatial-temporal features essential for our model’s
performance.
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FIGURE 1. Overall framework of Temporal Quality Predictor (TQP).

FIGURE 2. Graphical depiction of channel shifting in temporal dimension.

B. QUALITY PREDICTOR
In order to perform quality prediction, spatiotemporal fea-
ture extraction is performed using EfficientNet architecture
with channel shifting. The video stream is converted into
individual frames which are saved on disk and provided
sequentially to the model for spatiotemporal feature learning.
The frames are augmentation as part of pre-processing
before providing them to the spatiotemporal feature extractor
to increase effective dataset size and allow the model
to learn variations resulting in improved generalization.
The information extracted in terms of learned features is

transferred from each frame to its subsequent frames after
pre-processing and data augmentation. Fig. 2 depicts the
channel shift in both directions of the temporal dimension
and therefore allows the model to learn feature maps via the
EfficientNet model and the use of temporal channel shift.

1) EFFICIENTNET ARCHITECTURE
EfficientNet is a family of CNN models introduced by [47]
and is among themost efficient models (i.e. requiring the least
FLOPS for inference) that reach State-of-the-Art accuracy on
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both ImageNet and common image classification & transfer
learning tasks. The baseline architecture termed EfficientNet-
B0 is similar to MnasNet, which reached near-SOTA with
a significantly smaller model. Model scaling is performed
through a heuristic way to perform compound scaling in
depth, width, and resolution dimensions. The scaled-up
versions are EfficientNet-B1 to B7 which represents a good
combination of efficiency and accuracy on a variety of
scales. Such a scaling heuristics (i.e. compound-scaling)
allows the efficiency-oriented base model (B0) to surpass
models at every scale while avoiding extensive grid-search
of hyperparameters.

The architecture also includes various design elements
that improve efficiency. Squeeze-and-Excitation (SE) blocks
allow the network to dynamically adjust the channel-wise
feature responses, resulting in improved accuracy. Stem
blocks are used at the beginning of the network to reduce the
spatial resolution of the input image and make the network
more efficient. The swish activation function is used instead
of traditional activation functions such as ReLU to improve
the model’s accuracy and efficiency. The SE block is inserted
into the network between the convolutional layers and the
activation function. The use of SE blocks has been shown
to significantly improve the accuracy and efficiency of the
network.

The residual connection is modified to implement a
channel shift, which leads to the extraction of both temporal
and spatial features when using EfficientNet with a temporal
channel shift. To mitigate the latency overhead of the model
and overcome the compute cost of the framework, the model
propagate 1/8 of the features to the adjacent frames. The
information in the current frame is shifted along the temporal
dimensions and the learned parameters are shared with
connected or neighboring frames in the channel shift.

In order to perform quality prediction, the last fully con-
nected layer has single neuron followed by regression layer.
The loss function used for model training is a quality-aware
loss function which is described in the III-C. The model
performs spatial feature learning whereas temporal feature
learning is performed through channel shifting implemented
in the residual block. As the temporal channel shift introduces
channels in the next frame for each frame and therefore can
perform long-range temporal modeling through cascading
effect due to the transfer of information from each frame to
its neighboring frames.

C. LOSS FUNCTION
MSE is the most frequently used loss function for training
quality assessment models. Ahmed et al. [1] demonstrated
empirically that MSE is the best loss function for training
image quality assessment models. In contrast, Hosu et al. [52]
claimed that MAE is the most appropriate loss function for
assessing image quality. However, we are attracted to training
our model using a quality-aware loss function rather than just
MSE and MAE.

In order to achieve this goal, a loss function is formulated
by integrating multiple error metrics, including MSE and
MAE, along with a differentiable approximation of Spear-
man’s Rank Order Correlation Coefficient (SROCC). The
loss function can be obtained using Eq. 4.

Loss = λ1 · MSE + λ2 · MAE + λ3 · (1 − SROCC) (4)

MSE quantifies the average squared difference between
predicted and ground truth quality scores, defined by Eq. 5.

MSE =
1
n

n∑
i=1

(Yi − Ŷi)2 (5)

where Yi and Ŷi denote the ground truth and predicted scores.
Similarly, MAE measures the average absolute difference,
given by Eq. 6.

MAE =
1
n

n∑
i=1

|Yi − Ŷi| (6)

To address the non-differentiability of traditional SROCC
calculation, a differentiable approximation is introduced.
In this approximation, the softmax function is employed to
convert predicted and ground truth scores into continuous
and differentiable ranks. The softmax ranks Ri are calculated
by Eq. 7 for both predicted and ground truth scores. These
softmax ranks are then used to compute the differentiable
approximation of SROCC. This formulation allows for effi-
cient gradient-based optimization during CNN training while
simultaneously capturing both magnitude and order-related
errors in image quality predictions.

Ri =
eYi∑n
j=1 e

Yj
(7)

In Eq. 4, the coefficients λ1, λ2, and λ3 control the relative
importance of each loss component. The differentiable
SROCC component is 1 − SROCC to frame it as a loss
term (i.e., minimizing it is desirable). The MSE and MAE
components serve as traditional error metrics, capturing the
difference between the predicted and ground truth scores in
terms of squared and absolute differences, respectively.

The rationale behind the formulation of the multi-objective
loss function of Eq. 4 to consider the magnitude and the
direction of the error as well as the monotonic relation
between the predicted and ground-truth values. On one hand,
incorporating both MSE and MAE, the loss function aims
to minimize the squared differences between the predicted
and ground truth quality scores while also considering the
absolute differences. This allows CNN to not only focus on
minimizing the overall error but also pay attention to the
accuracy of the predictions. SROCC component measures
the monotonic relationship between the predicted and ground
truth ranks. By including it in the loss function, the model is
encouraged to learn to predict not only the quality scores but
also their relative order or ranking.

To determine the values of hyperparameters λ1, λ2, and λ3,
a grid search was conducted using values of 1/2, 1, and 2.
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FIGURE 3. Loss values at various grid points.

This exploration involved 27 distinct configurations, each
trained for 10 epochs. Figure 3 provides the values of loss
at the end of training for various grid points indicating that
lowest loss value of 0.371 is obtained at λ1 = 1, λ2 = 1 and
λ3 = 2. Subsequently, Equation 8 was derived as a simplified
form of the loss function utilized during model training.

Loss = MSE + MAE + 2 · (1 − SROCC) (8)

D. PRE-TRAINING
Training of a CNN usually requires a large number of labeled
images which is a challenging task in many cases such as
VQA. Transfer learning is a popular method where a model
developed for one task is reused as a starting point to model
a different task. This method presents itself as an excellent
opportunity and eliminates the need for a vast amount of
computational time and training data. In order to take benefit
of this approach and eliminate the need for a large amount of
labeled training data, we have performed model pre-training
on image quality assessment database BIQ2021 [16]/KonIQ-
10K [52]. As the MOS of both dataset follows different
scale and therefore the MOS is normalized before combining
and using both datasets to perform model pre-training. The
Eq. 9 is used to perform normalization of the MOS. This
pre-training using min-max normalized MOS score allows
the TQP to learn the quality aware priors and therefore
improve the subsequent VQA performance.

MOS i =
MOSi − min(MOS)

max(MOS) − min(MOS)
(9)

where i is the index of an element in MOS andMOS.

E. DATA AUGMENTATION
Data augmentation is a commonly used technique in training
deep learning models and is required to serve various
purposes. It increases the effective dataset size by introducing
artificially generated training examples. This increased
dataset size allows the model to reduce dependency on
a larger dataset. It improves the model generalization by
introducing diverse variations in the training data which
sometimes doesn’t occur in the data. It allows the training
process to mitigate the overfitting as the model may become
too specialized on the training instances and the introduction
of perturbations allow it to learn more general features.
These generalized features make the model more robust
to real-world variations and therefore lead to improved
performance.

To train the TQP, we have introduced horizontal flip which
makes the model invariant to horizontal flipping. Vertical and
horizontal translation and left and right rotation up to 50 are
introduced for additional variations in the image. Moreover,
as the model accepts an input size of 224×224 and the spatial
resolution of the video is different from this size, therefore
random cropping is performed to select a random patches of
the frame equal to the input size. These variations allow the
model to learn a generalized quality aspect of the image and
focus less on the content in the image (frame).

F. TRAINING OPTIONS
In order to train the model, we used Adam optimizer and
trained it with a batch size of 16 images. An initial learning
rate of 3 × 10−3 is used with a piece-wise learning rate
in which the learning rate is halved after 30, 20, and then
10 epochs. The model is trained for 300 epochs with a
validation check to avoid overfitting. The training is stopped
if the validation loss stops decreasing after three validation
checks.

IV. EXPERIMENTS
In this section, we present the details of the experimental
setup used to evaluate the proposed approach for VQA.
The execution environment, description of the dataset,
and evaluation metrics for the experiments are discussed
followed by model evaluation and comparison with existing
approaches.

A. EXECUTION ENVIRONMENT
The experiments were conducted using Matlab ® 2022b
on a Windows 10 equipped Dell T3610 workstation. The
workstation is powered by an Intel ® Xeon ® Processor E5-
2687W v2 and has 32GB of RAM. To enhance performance
and reduce latency, the training dataset, operating system and
Matlab were installed/placed on a SATA SSD. The system
was equipped with a GeForce RTX 3060 GPU with 12GB
GDDR6 memory, providing ample computational power for
the experiments. This setup ensured a robust and efficient
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execution environment for the research, enabling smooth
processing and analysis of the data.

B. DATASET DESCRIPTION
In order to perform VQA, a subjectively scored dataset is
a prime requirement as training of a supervised learning
model is performed using labelled examples. Several studies
have targeted the QoE issue of streaming videos, but they
lack aspects of real-world video streaming systems such as
actual network measurements and client-driven adaptation
strategies. Therefore, we have relied on the ‘‘LIVE-NFLX-II
Subjective Video QoE Database’’ [53] and ‘‘Waterloo sQoE
Database-III’’ [54] which are two comprehensive subjective
QoE databases containing rate adaptive videos.

1) LIVE-NFLX-II SUBJECTIVE VIDEO QOE DATABASE
The LIVE-NFLX-II [53] dataset contains 420 videos that
were evaluated by 65 subjects. The dataset provides 9,750
continuous-time and retrospective subjective opinion scores.
The dataset provides instantaneous QoE-based subjective
opinion scores in a continuous-time scenario and overall
video quality score for a retrospective scenario. We are
dealing with long-term quality assessment scenarios in this
study and are therefore using retrospective subjective scores
only. Figure 4 provides a depiction of nine sample videos
from the LIVE-NFLX-II database. The distribution of Mean
Opinion Score (MOS) for the dataset is provided in Figure 5.
The dataset is created by generating video content from
15 videos streamed under seven different network conditions
and four different adaptation strategies. It is a large-scale
dataset in terms of video content, encoding, and adaptive
streaming. The dataset can be used for VQA, perceptual
video coding, incorporation of buffer and network conditions,
and client-driven adaptation research. The seven network
conditions are actual network traces from the HSDPA dataset
which represents a challenging 3Gmobile networks scenario.
Moreover, four client adaptation strategies are used to
generate content on the basis of rate, buffering, and quality,
whereas the video content itself covers a range of content
categories. The content characteristics span a large variety

FIGURE 4. Sample video frames depicting the content diversity in the
LIVE-NFLX-II database.

FIGURE 5. Distribution of MOS in the LIVE-NFLX-II database.

including natural and animation video content, fast/slow
motion scenes, light/dark scenes, and low and high texture
scenes.

To accurately model video streaming, the database utilizes
actual network measurements and a pragmatic client buffer
simulator, going beyond simplistic network and buffer
occupancy models. The database captures various aspects of
streaming adaptation, including video quality fluctuations,
re-buffering events of different duration and frequencies,
spatial resolution changes, and diverse bitrate/quality levels
across different video content types. By incorporating mul-
tiple network traces and adaptation strategies, the database
offers a comprehensive representation of real-world video
streaming scenarios.

2) WATERLOO SQOE DATABASE-III
The Waterloo Streaming Quality-of-Experience Database-III
(sQoE-III) [54] is a comprehensive dataset designed for
VQA. It comprises of 20 RAW HD reference videos and
450 simulated streaming videos, with an average duration
of 13 seconds. To ensure the generation of meaningful and
representative test videos, a series of Dynamic Adaptive
Streaming over HTTP (DASH) experiments were conducted.
The relevant streaming activities were recorded, and the
streaming sessions were reconstructed using video process-
ing tools. The streaming sessions were generated using six
adaptive streaming algorithms: rate-based, BBA, AIMD,
Elastic, QDASH, and FESTIVE. These algorithms were
evaluated under 13 diverse bandwidth conditions. A total of
34 subjects participated in the evaluation process, scoring
the quality of each video sequence using a numerical quality
scale ranging from 0 to 100. Figure 6 provides the depiction
of nine sample video frames from the Waterloo dataset. The
distribution of MOS for the dataset is provided in Figure 7.
The uniqueness of the SQoE-III database lies in its realistic
and diverse nature. Unlike existing databases that often
contain hand-crafted test sequences, the SQoE-III database
provides a larger and more representative collection of
450 streaming videos. These videos are created from diverse
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FIGURE 6. Sample video frames depicting the content diversity in the
database.

FIGURE 7. Distribution of MOS in the Waterloo database.

source content and encompass a wide range of distortion
patterns. Additionally, the dataset includes recordings of
streaming sessions using six adaptation algorithms with
distinct characteristics under 13 representative network
conditions. The quality of all streaming videos was assessed
by the 34 subjects.

C. EVALUATION METRICS
1) PEARSON LINEAR CORRELATION COEFFICIENT(PLCC)
PLCC measures the linear correlation between the predicted
quality scores and the ground truth scores. It ranges
from −1 to 1, with 1 indicating a perfect positive correlation,
−1 indicating a perfect negative correlation, and zero
for no correlation. A higher PLCC value signifies better
performance. The formula for calculating PLCC is provided
Eq. 10.

PLCC =

∑n
i=1((xi − x̄)(yi − ȳ))√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(10)

2) SPEARMAN RANK-ORDER CORRELATION COEFFICIENT
(SROCC)
SROCC measures the monotonic relationship between the
predicted quality scores and the ground truth scores,
disregarding any linear correlation. Similar to PLCC, SROCC

ranges from −1 to 1, with higher values indicating better
performance. The formula for calculating SROCC is provided
in Eq. 11.

SROCC = 1 −
6

∑n
i=1(di)

2

n(n2 − 1)
(11)

In the formula of Eq. 11 & Eq. 10, n represents the number
of samples, xi and yi represent the image quality scores
for the ith sample, and x̄ and ȳ represent the means of the
quality scores. di represents the difference in ranks between
corresponding pairs of quality scores.

3) KENDALL RANK-ORDER CORRELATION COEFFICIENT
(KRCC)
KROCC also measures the monotonic relationship between
the predicted quality scores and the ground truth scores,
but it emphasizes concordant and discordant pairs. A higher
KROCC signifies better performance. The formula for
calculating KROCC is provided in Eq. 12.

KROCC =
C − D

√
(C + D+ T ) · (C + D)

(12)

In this formula, C represents the number of concordant pairs,
D represents the number of discordant pairs, and T represents
the number of ties in the dataset. The formula calculates the
KROCC (τ ) by dividing the difference between the number
of concordant pairs and the number of discordant pairs by the
square root of the product of (C + D+ T ) and (C + D).

4) COMPUTATION TIME RATIO (CTR)
The CTR is a metric that represents the ratio of the com-
putation time to the duration of the video being processed.
It indicates the efficiency of the model in performing the task
relative to the duration of the video. The formula to calculate
the computation time ratio can be expressed as Eq. 13:

CTR = ComputationTime/VideoDuration (13)

where,
Computation Time: refers to the time taken by the system or
model to perform the computation or processing of the task.
Video Duration: represents the total duration or length of the
video being processed.
It’s important to note that the computation time and video
duration are measured consistently using the same unit
of time (e.g., seconds) to ensure accurate comparison and
calculation of the ratio. Additionally, it’s essential to note that
the computation time is calculated with a single CPU only
without the support of parallel processing or GPU.

D. MODEL EVALUATION
To evaluate the performance of proposed framework (TQP),
the dataset is partitioned into train/test split. The training set
contains 80% of the video streams whereas the remaining
20% are reserved for model testing. This partitioning ensured
that the model was trained on a sufficient amount of data
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FIGURE 8. Scatter-plot of ground-truth vs predicted values for
10 iterations (the regression line for the model is plotted for each
iterations).

while also allowing for an unbiased evaluation on unseen
video streams.

During the testing phase, the quality predictions are
performed for 10 iterations. In each iteration, the model
randomly cropped a section of the input video sequence with
a spatial resolution of 224 × 224. This random cropping
approach helped capture diverse spatial information from
different regions, providing a robust evaluation of the model’s
ability to generalize to various regions. Figure 8 provide
the scatter plot and fitting line for 10 iterations for LIVE
Netflix II dataset. For each iteration, the model produced
a predicted quality score for the cropped image parch.
To obtain a final predicted quality score for the entire video
sequence, we averaged the quality predictions from the
10 patches (iterations). This averaging process accounted
for the variability introduced by the random cropping and
provided a more reliable estimate of the overall video quality.
The scatter plot between ground-truth and the final predicted
quality score is provided in Figure 9 with the regression
line and its confidence interval. The residual plot is an
important tool for evaluating the performance and reliability
of a video quality prediction model. It is constructed by
plotting the differences (residuals) between the predicted
quality scores and the corresponding ground truth quality
scores. Each data point on the plot represents a video sample,
with the x-axis representing the predicted quality score and
the y-axis representing the residual. It allows, assessment of
model’s predictions with the actual observed quality scores
and provides insights into the model’s accuracy and potential
sources of error. It has the ability to reveal any systematic
patterns or trends in the model’s predictions. A well-fitted
and accurate model should exhibit a random scattering of
residuals around the zero line, indicating that the predictions
are unbiased and capture the true underlying quality of the
videos. On the other hand, systematic patterns or trends in
the residuals may suggest the presence of model bias or
limitations.

FIGURE 9. Scatter-plot of ground-truth vs average predictions along with
the confidence interval.

FIGURE 10. Residual plot with true predictions at the x-axis and residual
value at the y-axis.

The residual plot of Figure 10 indicates that the data does
not have a strong trend but the distribution of the points is
negative for the first half of the predictions and positive for
the latter half and therefore indicates an apparent weakness
in the model. The comparison of the predictive performance
with existing approaches indicated that the proposed model
provides the highest correlation with the ground-truth and
the bias in the model is the result of a smaller dataset size.
As the number of samples in the LIVE Netflix II dataset
is 420 and for Waterloo sQoE -III dataset are 450 which
are not representative enough to learn a good generalization.
The residual analysis was performed during the design of
the model and several considerations were explored and
the proposed TQP has provided the best performance and
therefore warrants for an increase in training dataset size to
improve the model’s generalization. The response plot of the
proposed approach is provided in Figure 11 which provide
the scatter plot of ground-truth and predicted values for each
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FIGURE 11. Response plot of ground-truth and predicted values for each
sample of test set.

record in the test set. The plot is useful in visualizing the
actual and predicted quality scores for each record in the
test set. It is indicated from the figure that the deviation
in the ground-truth and predicted values are not so large
and that the predictive performance can be further improved
by improving the training dataset in terms of quantity and
representation. To quantitatively assess the performance of
our model, we computed three correlation measures: the
PLCC, the SROCC, and the KROCC. These metrics were
calculated by comparing the predicted quality scores to the
ground truth scores for both the test set of the datasets. The
results for each of these metrics are presented in Table 1 & 2.
This table provides a comprehensive summary of the model’s
performance, allowing for a clear comparison of its predictive
accuracy and consistency across different evaluation metrics
and datasets.

E. COMPARISON WITH EXISTING APPROACHES
The experimental results of the proposed approach for both
datasets are presented in Table 1 & 2, which showcases
the performance of the model. To evaluate the performance
of the proposed approach in comparison to state-of-the-art
methods, we selected 25 existing approaches and conducted
a comprehensive comparison of their predictive performance.

The comparison is based on several key metrics, including
SROCC, KROCC, and PLCC. These metrics measure the
correlation between the predicted quality scores and the
ground truth quality scores. The higher the correlation values,
the stronger the relationship between the predicted and
actual quality scores. In this comparison, we excluded Root
Mean Square Error (RMSE) as a metric since we performed
re-scaling of the Mean Opinion Scores (MOS) to a range
of 0 to 1 and therefore it will not reflect the RMSE as
an accurate measure for comparison. However, we included
an important metric, namely, the Computation Time Ratio
(CTR), which represents the ratio of prediction time to video
playback duration. A lower ratio indicates a model with low
computational complexity, and a value lower than 1 indicates

TABLE 1. Performance assessment on ‘‘Waterloo sQoE III’’ dataset.

TABLE 2. Performance assessment on ‘‘LIVE Netflix II’’ dataset.

that themodelmeets the real-time prediction requirement (i.e.
the quality can be predicted before the playback duration of
the video). Thus, we considered CTR as ametric to assess and
discuss the performance of competitive models based on their
time efficiency. It is worth noting that a quality prediction
approaches that can provide inference within a CTR of less
than 1 is considered suitable for real-time operations, and
used this criterion to compare models.
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Table 1 presents the performance comparison of the
proposed approach using the Waterloo sQoE-III dataset,
while Table 2 showcases the performance comparison using
the LIVE Netflix-II dataset. These tables provide a compre-
hensive analysis of the proposed approach’s performance,
comparing it to other state-of-the-art methods across various
correlation measures and CTR. By conducting this extensive
comparison, we gain insights into the effectiveness and
efficiency of the proposed approach for VQA, establishing its
competitive edge and suitability for real-time applications.

F. CROSS-DATASET EVALUATION
Cross-dataset evaluations were performed to demonstrate the
robustness of the proposed TQP model for assessing video
quality. This involved testing models on the LIVE Netflix II
dataset that were trained on the Waterloo sQoE III dataset,
and vice versa. Cross-dataset evaluation is crucial as it allows
for an assessment of the model’s generalization capability
beyond the training dataset. The study demonstrates the
model’s ability to generalize and accurately predict video
quality across diverse datasets and real-world scenarios by
ensuring that it performs consistently well on datasets other
than those on which it was trained. In order to compare
cross-dataset evaluation, some existing models are trained
and evaluated on the same scenario and are presented for
comparison in Table 3.

These results indicate that the TQP model demonstrates
strong generalization capabilities across datasets. Despite
being trained on one dataset, it exhibits consistent and
high-performance levels when tested on a different dataset.
The similarity in performance metrics between the training
and testing datasets suggests that the TQP model effectively
learns and captures underlying video quality features that
are transferable across datasets, rather than being overly
tailored to dataset-specific characteristics. Therefore, the
cross-dataset evaluation results validate the robustness and
effectiveness of the TQP model in predicting video quality,
underscoring its applicability and reliability across diverse
datasets and real-world scenarios.

G. ABLATION STUDY
The ablation study results highlight the impact of using dif-
ferent backbone architectures with and without the proposed
channel shift on the performance metrics SROCC, KROCC,
and PLCC. These metrics are crucial for assessing the
quality of video predictions in terms of ranking consistency,
correlation, and linearity with ground truth scores. The key
observations from the study are as follows:

• Performance Improvement with Channel Shift: The
performance improvement with the application of chan-
nel shift is evident across all backbone architectures,
showing significant enhancement in SROCC, KROCC,
and PLCC metrics. This demonstrates the effectiveness
of channel shift in improving model performance.
Notably, the EfficientNet-B0 architecture exhibits the

most substantial improvement across all three metrics.
This confirms its superior effectiveness and efficiency
when combined with channel shift, making it the
standout performer among the tested architectures.

• Backbone Architectures Without Channel Shift:
Among the backbone architectures without the applica-
tion of channel shift, SqueezeNet achieves the lowest
performance, with SROCC, KROCC, and PLCC values
of 0.527, 0.392, and 0.512, respectively. MobileNet-V2
showsmoderate performance, achieving scores of 0.608,
0.424, and 0.594. ResNet-50 performs slightly better
than SqueezeNet but still has limited effectiveness,
with scores of 0.571, 0.411, and 0.564. ShuffleNet is
the lowest performer overall, with values of 0.506,
0.385, and 0.504. EfficientNet-B0 stands out as the best
performer in this group, with scores of 0.623, 0.587, and
0.619, demonstrating its relatively superior performance
even without channel shift.

• Backbone ArchitecturesWith Channel Shift:Among
the backbone architectures with the application of
channel shift, SqueezeNet shows notable improve-
ment, with scores rising to 0.692, 0.665, and 0.681.
MobileNet-V2 achieves higher scores of 0.768, 0.724,
and 0.748, demonstrating significant enhancement.
ResNet-50 also shows considerable improvement, with
values increasing to 0.762, 0.702, and 0.746. ShuffleNet,
while improved, still performs lower than the other
architectures, with scores of 0.651, 0.610, and 0.634.
EfficientNet-B0 achieves the highest performance, with
scores of 0.782, 0.713, and 0.721, establishing it as the
best-performing model with channel shift applied.

• Proposed Model: The EfficientNet-B0 architecture
with channel shift stands out as the proposed model
in this study, delivering the best results across all
three metrics and demonstrating its superiority in
effectively leveraging temporal features in video quality
assessment. The ablation study clearly shows that incor-
porating the proposed channel shift method enhances
the performance of all tested architectures. EfficientNet-
B0 with channel shift emerges as the top-performing
model, providing robust and reliable video quality
predictions suitable for adaptive bitrate video streaming
applications. This study underscores the importance of
selecting an efficient backbone and integrating advanced
techniques like channel shift to optimize performance.

H. DISCUSSION
Tables 1 and 2 provide a comprehensive analysis of the
comparative performance of the proposed TQP approach
on the Waterloo sQoS III dataset and the Live Netflix II
dataset, respectively. The evaluation is based on important
metrics such as PLCC, SROCC, KROCC, and computation
Time ratio (representing the computational efficiency of the
approach).

To assess the performance of video quality predictionmod-
els, a higher correlation coefficient is desirable, indicating
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TABLE 3. Results of cross-dataset evaluation.

TABLE 4. Results of ablation study.

a stronger relationship between predicted and ground truth
quality scores. Additionally, a low Time value (less than 1)
is preferred for real-time performance, as it signifies that the
inference time is shorter than the playback duration.

In the evaluation, the proposed TQP approach is compared
against twenty-four existing approaches. The methods are
ranked in ascending order based on their SROCC values
obtained from both datasets. The results demonstrate that
the proposed TQP approach exhibits the best prediction
performance in terms of both PLCC and SROCC, while
maintaining real-time computational efficiency. Its inference
time accounts for only 21.6% of the video’s runtime, making
it highly suitable for real-world implementation.

Among the evaluated approaches, StarVQA [42] stands
out as the second-best performing technique based on
SROCC. However, its KROCC and PLCC scores are
comparatively lower than those of the other approaches.
Furthermore, StarVQA’s [42] computational efficiency is

non-real-time, requiring 4.1 times the playback duration.
In the LIVE Netflix II dataset, FastVQA [41] emerges
with the highest KROCC value and the second-highest
PLCC value. Additionally, FastVQA [41] achieves real-time
processing efficiency, utilizing approximately 30.9% of the
video’s playback duration. PVQ [39] is another competitive
strategy, exhibiting excellent predictive performance, albeit
with slightly lower computational efficiency than real-time
operation.

Moreover, it is worth mentioning that MoK2012 [26],
FTW [27], and Liu et al. [28] are the fastest approaches
for video quality prediction, with inference times as low as
0.1% of the video playback time. However, these approaches
demonstrate relatively low predictive performance, with
Liu et al. [28] being the best performer among the extremely
fast techniques. In the case of the Live Netflix II dataset,
Liu et al. [28] achieves an SROCC of 0.663, KROCC
of 0.468, and PLCC of 0.637, while making predictions in
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only 0.1% of the video playback time. Thus, in scenarios
with limited processing capabilities, Liu et al. [28] may be
a suitable choice.

As a closing note, when considering the trade-off between
predictive performance and computational complexity, the
proposed TQP approach and FastVQA [41] emerge as the
most favorable choices. These approaches strike a balance
between accuracy and efficiency, making them well-suited
for practical deployment in video quality assessment
applications.

V. CONCLUSION
The importance of efficient rate adaptation to satisfy network
requirements has dramatically increased with the widespread
use of video streaming services and the shared nature of the
internet. Nonetheless, excessively optimistic rate adaptation
can result in poor Quality of Experience (QoE) for the user.
The objective evaluation of video quality is essential for
enhancing QoE and facilitating optimal rate adaptation.

This research addressed the challenge of video qual-
ity assessment for rate adaptive videos. Existing deep
learning-based video quality evaluation models often pri-
oritize high prediction performance at the expense of
computational efficiency, making them unsuitable for real-
time deployment. To overcome this limitation, we developed
a reliable and cost-effective quality assessment system that
leverages temporal learning using 2D CNN-based quality
assessment models with channel shifting. The proposed
approach introduces channel shifting, which transfers 1/8th
of the features from a frame to its subsequent frame.
This technique effectively captures temporal information,
enhancing the quality assessment process. The experimental
results demonstrate that our approach achieves state-of-
the-art performance in terms of correlation with human
judgment, indicating its superior predictive capabilities.
Moreover, one of the key strengths of our approach lies in its
computational efficiency, enabling real-time operation. The
proposed system is capable of performing quality prediction
in just 23% of the video’s duration, making it highly practical
for real-world applications.

In conclusion, our research offers a legitimate alternative
for objective quality evaluation in video streaming applica-
tions. The proposed method establishes a balance between
precision and computational efficiency, resulting in enhanced
QoE and optimal rate adaptation. Our system contributes
to improving user satisfaction and the overall streaming
experience by providing a dependable and cost-effective
video quality evaluation.

A. FUTURE RESEARCH DIRECTIONS
While this study has made significant contributions to video
quality assessment for rate adaptive videos, there are several
avenues for future research that could further advance the
field. Some potential directions for future investigations
include:

• Integrate quality assessment with dynamic rate adapta-
tion for real-time adaptive streaming, optimizing user
QoE by dynamically adjusting video quality based on
assessed scores.

• Incorporate subjective aspects of video quality by con-
sidering user preferences and perceptions, personalizing
the assessment system for tailored QoE.

• Evaluate system performance on diverse video content,
enhancing robustness across genres, resolutions, and
encoding formats.

• Conducting field trials and user studies to evaluate the
proposed system in real-world scenarios and collect user
feedback. Assessing the system’s performance under
various network conditions and user environments to
validate its effectiveness and practicality.

• Contribute to standardized evaluation protocols and
benchmark datasets for video quality assessment in
rate adaptive videos, promoting reproducibility and
facilitating comparisons.

AUTHORS CONTRIBUTION
All the authors have contributed equally to the study.

DECLARATION OF COMPETING INTEREST
The authors declare the following financial interests/personal
relationships, which may be considered potential competing
interests: Muhammad Azeem Aslam reports that the admin-
istration of Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences, Changchun
130033, China, provided support. Muhammad Azeem Aslam
writes a connection with Changchun Institute of Optics,
Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China. Muhammad Azeem Aslam has
confirmed no conflict of interest for this study.

REFERENCES
[1] N. Ahmed, H. M. Shahzad Asif, A. R. Bhatti, and A. Khan, ‘‘Deep

ensembling for perceptual image quality assessment,’’ Soft Comput.,
vol. 26, no. 16, pp. 7601–7622, Aug. 2022.

[2] J. Li, L. Han, C. Zhang, Q. Li, and Z. Liu, ‘‘Spherical convolution
empowered viewport prediction in 360 video multicast with limited FoV
feedback,’’ ACM Trans. Multimedia Comput., Commun., Appl., vol. 19,
no. 1, pp. 1–23, Jan. 2023.

[3] S. Pan, G. J. W. Xu, K. Guo, S. H. Park, and H. Ding, ‘‘Video-based
engagement estimation of game streamers: An interpretable multimodal
neural network approach,’’ IEEE Trans. Games, pp. 1–12, 2023.

[4] E. S. Gama, L. O. N. De Araújo, R. Immich, and L. F. Bittencourt, ‘‘Video
streaming analysis in multi-tier edge-cloud networks,’’ in Proc. 8th Int.
Conf. Future Internet Things Cloud, Aug. 2021, pp. 19–25.

[5] J. Li, C. Zhang, Z. Liu, R. Hong, and H. Hu, ‘‘Optimal volumetric video
streaming with hybrid saliency based tiling,’’ IEEE Trans. Multimedia,
2022.

[6] F. Lozano, M.-C. Aguayo-Torres, G. Gómez, C. Cárdenas, and J. Baños,
‘‘Network traffic analysis and qoe evaluation for video progressive
download service: Netflix,’’ in Proc. Int. Conf. Wired Wireless Internet
Commun., 2015, pp. 239–246.

[7] M. Azeem Aslam, X. Wei, N. Ahmed, G. Saleem, T. Amin, and H. Caixue,
‘‘VRL-IQA: Visual representation learning for image quality assessment,’’
IEEE Access, vol. 12, pp. 2458–2473, 2024.

[8] H. Khalid and N. Ahmed, ‘‘Blind image quality assessment using
multi-stream architecture with spatial and channel attention,’’ 2023,
arXiv:2307.09857.

88276 VOLUME 12, 2024



M. A. Aslam et al.: TQP: An Efficient Video Quality Assessment Framework

[9] Q. Zheng, Z. Tu, P. C. Madhusudana, X. Zeng, A. C. Bovik, and Y. Fan,
‘‘FAVER: Blind quality prediction of variable frame rate videos,’’ Signal
Process., Image Commun., vol. 122, Mar. 2024, Art. no. 117101.

[10] Z. Cui, H. Sheng, D. Yang, S. Wang, R. Chen, and W. Ke, ‘‘Light field
depth estimation for non-lambertian objects via adaptive cross operator,’’
IEEE Trans. Circuits Syst. Video Technol., 2023.

[11] N. Ahmed, H. M. S. Asif, and H. Khalid, ‘‘PIQI: Perceptual image quality
index based on ensemble of Gaussian process regression,’’ Multimedia
Tools Appl., vol. 80, no. 10, pp. 15677–15700, Apr. 2021.

[12] Q. Liu, H. Yuan, R. Hamzaoui, H. Su, J. Hou, and H. Yang, ‘‘Reduced
reference perceptual quality model with application to rate control for
video-based point cloud compression,’’ IEEE Trans. Image Process.,
vol. 30, pp. 6623–6636, 2021.

[13] J. Yan, L. Wu, W. Jiang, C. Liu, and F. Shen, ‘‘Revisiting the robustness of
spatio-temporal modeling in video quality assessment,’’ Displays, vol. 81,
Jan. 2024, Art. no. 102585.

[14] Y. Fang, Z. Li, J. Yan, X. Sui, and H. Liu, ‘‘Study of spatio-temporal
modeling in video quality assessment,’’ IEEE Trans. Image Process.,
vol. 32, pp. 2693–2702, 2023.

[15] K. Seshadrinathan andA. C. Bovik, ‘‘Motion tuned spatio-temporal quality
assessment of natural videos,’’ IEEE Trans. Image Process., vol. 19, no. 2,
pp. 335–350, Feb. 2010.

[16] N. Ahmed and S. Asif, ‘‘BIQ2021: A large-scale blind image quality
assessment database,’’ 2022, arXiv:2202.03879.

[17] N. Ahmed and H. M. S. Asif, ‘‘Ensembling convolutional neural networks
for perceptual image quality assessment,’’ in Proc. 13th Int. Conf. Math.,
Actuarial Sci., Comput. Sci. Statist. (MACS), Dec. 2019, pp. 1–5.

[18] N. Ahmed and H. M. S. Asif, ‘‘Perceptual quality assessment of
digital images using deep features,’’ Comput. Informat., vol. 39, no. 3,
pp. 385–409, 2020.

[19] N. Ahmad, H. M. S. Asif, G. Saleem, M. U. Younus, S. Anwar,
and M. R. Anjum, ‘‘Leaf image-based plant disease identification using
color and texture features,’’ Wireless Pers. Commun., vol. 121, no. 2,
pp. 1139–1168, Nov. 2021.

[20] G. Saleem,M. Akhtar, N. Ahmed, andW. S. Qureshi, ‘‘Automated analysis
of visual leaf shape features for plant classification,’’ Comput. Electron.
Agricult., vol. 157, pp. 270–280, Feb. 2019.

[21] S. Nawaz, A. Calefati, N. Ahmed, and I. Gallo, ‘‘Hand written characters
recognition via deep metric learning,’’ in Proc. 13th IAPR Int. Workshop
Document Anal. Syst. (DAS), Apr. 2018, pp. 417–422.

[22] S. Alamgeer, M. Irshad, and M. C. Q. Farias, ‘‘CNN-based no-reference
video quality assessment method using a spatiotemporal saliency patch
selection procedure,’’ J. Electron. Imag., vol. 30, no. 6, Nov. 2021,
Art. no. 063001.

[23] Y. Zheng, P. Liu, L. Qian, S. Qin, X. Liu, Y. Ma, and G. Cheng,
‘‘Recognition and depth estimation of ships based on binocular stereo
vision,’’ J. Mar. Sci. Eng., vol. 10, no. 8, p. 1153, Aug. 2022.

[24] W. Wu, H. Zhu, S. Yu, and J. Shi, ‘‘Stereo matching with fusing adaptive
support weights,’’ IEEE Access, vol. 7, pp. 61960–61974, 2019.

[25] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, ‘‘A control-theoretic approach
for dynamic adaptive video streaming over HTTP,’’ in Proc. ACM Conf.
Special Interest Group Data Commun., Aug. 2015, pp. 325–338.

[26] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, ‘‘QDASH:
A QoE-aware DASH system,’’ in Proc. 3rd Multimedia Syst. Conf.,
Feb. 2012, pp. 11–22.

[27] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau, ‘‘Internet video
delivery in YouTube: From traffic measurements to quality of experience,’’
in Data Traffic Monitoring and Analysis, 2013, pp. 264–301.

[28] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
‘‘A case for a coordinated Internet video control plane,’’ in Proc.
ACM SIGCOMM Conf. Appl., Technol., Architectures, Protocols Comput.
Commun., Aug. 2012, pp. 359–370.

[29] J. Xue, D.-Q. Zhang, H. Yu, and C. Wen Chen, ‘‘Assessing quality of
experience for adaptive HTTP video streaming,’’ in Proc. IEEE Int. Conf.
Multimedia Expo. Workshops (ICMEW), Jul. 2014, pp. 1–6.

[30] Z. Duanmu, K. Zeng, K. Ma, A. Rehman, and Z. Wang, ‘‘A quality-of-
experience index for streaming video,’’ IEEE J. Sel. Topics Signal Process.,
vol. 11, no. 1, pp. 154–166, Feb. 2017.

[31] A. Bentaleb, A. C. Begen, and R. Zimmermann, ‘‘SDNDASH: Improving
QoE of HTTP adaptive streaming using software defined networking,’’ in
Proc. 24th ACM Int. Conf. Multimedia, Oct. 2016, pp. 1296–1305.

[32] D. Ghadiyaram, J. Pan, and A. C. Bovik, ‘‘Learning a continuous-time
streaming video QoE model,’’ IEEE Trans. Image Process., vol. 27, no. 5,
pp. 2257–2271, May 2018.

[33] Z. Duanmu, W. Liu, D. Chen, Z. Li, Z. Wang, Y. Wang, and W. Gao,
‘‘A knowledge-driven quality-of-experience model for adaptive streaming
videos,’’ 2019, arXiv:1911.07944.

[34] A. Mittal, A. K. Moorthy, and A. C. Bovik, ‘‘No-reference image quality
assessment in the spatial domain,’’ IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[35] A. Mittal, R. Soundararajan, and A. C. Bovik, ‘‘Making a ‘completely
blind’ image quality analyzer,’’ IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[36] A. Mittal, M. A. Saad, and A. C. Bovik, ‘‘A completely blind video
integrity Oracle,’’ IEEE Trans. Image Process., vol. 25, no. 1, pp. 289–300,
Jan. 2016.

[37] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for con-
volutional neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[38] W. Sun, X. Min, W. Lu, and G. Zhai, ‘‘A deep learning based no-reference
quality assessment model for UGC videos,’’ in Proc. 30th ACM Int. Conf.
Multimedia, Oct. 2022, pp. 856–865.

[39] Z. Ying, M. Mandal, D. Ghadiyaram, and A. Bovik, ‘‘Patch-VQ: ‘patching
up’ the video quality problem,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 14014–14024.

[40] D. Li, T. Jiang, and M. Jiang, ‘‘Quality assessment of in-the-wild videos,’’
in Proc. 27th ACM Int. Conf. Multimedia, Oct. 2019, pp. 2351–2359.

[41] H. Wu, C. Chen, J. Hou, L. Liao, A. Wang, W. Sun, Q. Yan, and W. Lin,
‘‘FAST-VQA: Efficient end-to-end video quality assessment with fragment
sampling,’’ in Computer Vision–ECCV. Cham, Switzerland: Springer,
2022, pp. 538–554.

[42] F. Xing, Y.-G. Wang, H. Wang, L. Li, and G. Zhu, ‘‘StarVQA: Space-time
attention for video quality assessment,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2022, pp. 2326–2330.

[43] M. Xu, J. Chen, H. Wang, S. Liu, G. Li, and Z. Bai, ‘‘C3DVQA: Full-
reference video quality assessment with 3D convolutional neural network,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2020, pp. 4447–4451.

[44] G. Varol, I. Laptev, and C. Schmid, ‘‘Long-term temporal convolutions for
action recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6,
pp. 1510–1517, Jun. 2018.

[45] J. Yang, Y. Zhu, C. Ma, W. Lu, and Q. Meng, ‘‘Stereoscopic video quality
assessment based on 3D convolutional neural networks,’’Neurocomputing,
vol. 309, pp. 83–93, Oct. 2018.

[46] J. You and J. Korhonen, ‘‘Deep neural networks for no-reference video
quality assessment,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2019, pp. 2349–2353.

[47] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learning
spatiotemporal features with 3D convolutional networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489–4497.

[48] J. Carreira and A. Zisserman, ‘‘Quo vadis, action recognition? A new
model and the kinetics dataset,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 4724–4733.

[49] O. Köpüklü, N. Kose, A. Gunduz, and G. Rigoll, ‘‘Resource efficient 3D
convolutional neural networks,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshop (ICCVW), Oct. 2019, pp. 1910–1919.

[50] G. Saleem, U. I. Bajwa, R. Hammad Raza, F. H. Alqahtani, A. Tolba, and
F. Xia, ‘‘Efficient anomaly recognition using surveillance videos,’’ PeerJ
Comput. Sci., vol. 8, Oct. 2022, Art. no. e1117.

[51] J. Lin, C. Gan, and S. Han, ‘‘TSM: Temporal shift module for efficient
video understanding,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 7082–7092.

[52] V. Hosu, H. Lin, T. Sziranyi, and D. Saupe, ‘‘KonIQ-10k: An ecologically
valid database for deep learning of blind image quality assessment,’’ IEEE
Trans. Image Process., vol. 29, pp. 4041–4056, 2020.

[53] C. G. Bampis, Z. Li, I. Katsavounidis, T.-Y. Huang, C. Ekanadham, and
A. C. Bovik, ‘‘Towards perceptually optimized end-to-end adaptive video
streaming,’’ 2018, arXiv:1808.03898.

[54] Z. Duanmu, A. Rehman, and Z. Wang, ‘‘A quality-of-experience database
for adaptive video streaming,’’ IEEE Trans. Broadcast., vol. 64, no. 2,
pp. 474–487, Jun. 2018.

[55] N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and
S. S. Medasani, ‘‘Blind image quality evaluation using perception based
features,’’ in Proc. 21st Nat. Conf. Commun. (NCC), Feb. 2015, pp. 1–6.

VOLUME 12, 2024 88277



M. A. Aslam et al.: TQP: An Efficient Video Quality Assessment Framework

[56] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[57] Z. Tu, Y.Wang, N. Birkbeck, B. Adsumilli, and A. C. Bovik, ‘‘UGC-VQA:
Benchmarking blind video quality assessment for user generated content,’’
IEEE Trans. Image Process., vol. 30, pp. 4449–4464, 2021.

[58] J. Korhonen, ‘‘Two-level approach for no-reference consumer video
quality assessment,’’ IEEE Trans. Image Process., vol. 28, no. 12,
pp. 5923–5938, Dec. 2019.

[59] M. A. Saad, A. C. Bovik, and C. Charrier, ‘‘Blind prediction of natural
video quality,’’ IEEE Trans. Image Process., vol. 23, no. 3, pp. 1352–1365,
Mar. 2014.

[60] X. Min, G. Zhai, K. Gu, Y. Liu, and X. Yang, ‘‘Blind image quality
estimation via distortion aggravation,’’ IEEE Trans. Broadcast., vol. 64,
no. 2, pp. 508–517, Jun. 2018.

[61] Y. Liu, K. Gu, Y. Zhang, X. Li, G. Zhai, D. Zhao, and W. Gao,
‘‘Unsupervised blind image quality evaluation via statistical measurements
of structure, naturalness, and perception,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 30, no. 4, pp. 929–943, Apr. 2020.

[62] Z. Ying, H. Niu, P. Gupta, D. Mahajan, D. Ghadiyaram, and A. Bovik,
‘‘From patches to pictures (PaQ-2-PiQ): Mapping the perceptual space of
picture quality,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 3572–3582.

[63] P. Ye, J. Kumar, L. Kang, and D. Doermann, ‘‘Unsupervised feature
learning framework for no-reference image quality assessment,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 1098–1105.

[64] F.-Z. Ou, Y.-G. Wang, and G. Zhu, ‘‘A novel blind image quality
assessment method based on refined natural scene statistics,’’ in Proc.
IEEE Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 1004–1008.

[65] J. Xu, P. Ye, Q. Li, H. Du, Y. Liu, and D. Doermann, ‘‘Blind image quality
assessment based on high order statistics aggregation,’’ IEEE Trans. Image
Process., vol. 25, no. 9, pp. 4444–4457, Sep. 2016.

[66] D. Ghadiyaram and A. C. Bovik, ‘‘Feature maps driven no-reference image
quality prediction of authentically distorted images,’’ in Human Vision
and Electronic Imaging, vol. 9394. Bellingham, WA, USA: SPIE, 2015,
pp. 158–171.

MUHAMMAD AZEEM ASLAM received the
Ph.D. degree from Northwestern Polytechnical
University, Xi’an, China. He is currently with
Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences, and
the School of Information Engineering, Xi’an
Eurasia University, Shanxi, China. His research
interests include computer vision and machine
learning.

XU WEI received the B.S. degree in mechanical
and electronic engineering from Jilin University,
Changchun, China, in 2003, and the Ph.D. degree
in mechanical and electronic engineering from
Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences,
Changchun, in 2008. Since 2008, he has been
with Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences.
He is currently a Research Fellow and the Ph.D.

Supervisor. His current research interests include the integration technology
of satellites and payloads and the highly reliable electronic systems for
aerospace.

NISAR AHMED received the master’s and Ph.D.
degrees in computer engineering from the Uni-
versity of Engineering and Technology at Lahore,
Lahore, Pakistan. With over 13 years of dedicated
research and professional experience, he has made
significant contributions to the fields of digi-
tal image processing, computer vision, machine
learning, and data science. His current research
interests include pattern recognition, computer
vision, and digital image and video processing.

GULSHAN SALEEM received the master’s degree
in software engineering from the College of
E&ME, National University of Science and Tech-
nology, Rawalpindi, Pakistan, in 2016. She is
currently pursuing the Ph.D. degree in computer
science with COMSATS University Islamabad,
Lahore Campus, Pakistan. She is also a Lec-
turer with the Department of Computer Science,
Lahore Garrison University, Lahore, Pakistan.
Her research interests include computer vision,

machine learning, and digital image processing. She is passionate about
exploring innovative solutions at the intersection of these fields to address
contemporary challenges in computer science and technology.

ZHU SHUANGTONG received the master’s
degree in engineering. She is currently with
Changchun Institute of Fine Mechanics and
Physics, Chinese Academy of Sciences, China.
Her current research interests include remote sens-
ing, image processing, and software engineering.

YIMEI XU received the bachelor’s and master’s
degrees in computer sciences. She is currently
with the School of Information Engineering, Xi’an
Eurasia University. Her current research interests
include computer vision and machine learning.

HU HONGFEI received the bachelor’s and mas-
ter’s degrees in computer engineering. He is
currently with the School of Information Engi-
neering, Xi’an Eurasia University. His current
research interests include computer vision and
image processing.

88278 VOLUME 12, 2024


