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ABSTRACT Aiming at the problem that the existing algorithms are difficult to segment efficiently in indoor
scenes due to the high similarity of stacked and closely adjacent objects, this paper proposes an indoor
point cloud segmentation algorithm based on hierarchical feature fusion. Firstly, according to the results
of stratification, the principal component analysis method is adopted to reduce the dimension of each layer
point clouds, and then the decision rules on the two-dimensional plane are established based on the structural
characteristics of each layer objects. Combined with the analysis of hierarchical connectivity, fusing the
features of each layer, so as to obtain the global positioning of the object. Last, for further division, the density
segmentation method based on inter cluster constraints are taken into consideration. The experimental results
show that the location and segmentation effect of stacked objects is fine, it is worth mentioning that this
method has high accuracy, and the average mIoU can reach 0.811. In addition, another advantage of this
method is that it takes less time to process point clouds, the average consumption time is about 6.59 seconds.
These characteristics represent that this method can better complete the segmentation of indoor scenes.

INDEX TERMS Point clouds segmentation, indoor scenes, structural features, principal component analysis,
hierarchical integration, inter cluster constraint.

I. INTRODUCTION
With the development of emerging technologies such as 3D
scanning technology [1] and Lidar technology [2], 3D point
cloud-based applications have penetrated into various fields.
As an important research topic in point cloud processing,
segmentation has made significant contributions to many
applications such as indoor reconstruction [3], [4], object
recognition [5], [6], and reconstruction of building frame
information [7], [8].
However, when facing the complex indoor scene with

tight distribution of objects, the similarity between objects
is too high due to the stacking, tightness and occlusion of
the placement, which greatly increases the difficulty of cloud
segmentation of indoor field spots. Therefore, despite exten-
sive research on indoor point cloud segmentation, it remains
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a challenging task to segment tightly stacked objects into
different categories [9].

The point cloud segmentation algorithm for closely adja-
cent objects is an extension of the traditional point cloud
segmentation, which finds applications in various fields
such as autonomous driving technology, three-dimensional
modeling and virtual reality, intelligent robot navigation,
and medical image analysis. It excels at segmenting com-
plex real-life scenarios encountered in these domains. For
instance, in autonomous cars, multiple objects are often found
in close proximity to the vehicle. The point cloud segmenta-
tion algorithm designed specifically for nearby object seg-
mentation enables accurate identification of different entities
on the road including vehicles, pedestrians, and road signs.
This facilitates more precise decision-making during driving
operations. Similarly, this algorithm can be applied to intelli-
gent robots where accurate segmentation of closely adjacent
objects is crucial for tasks like path planning, obstacle
avoidance, and manipulation. In warehouse robotics systems
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specifically, such segmentation algorithms aid robots in dis-
tinguishing between goods and obstacles effectively enabling
efficient cargo handling and stacking operations. In conclu-
sion, the research and application of this algorithm holds great
significance in promoting advancements across related fields
while enhancing efficiency and quality of life and work.

In the current research, a variety of segmentation ideas
have been provided: region growth segmentation [10],
[11], [12] model-based fitting [13], [14] and unsupervised
clustering segmentation [15], [16]. The segmentation based
on region growth mainly divides the points with similar char-
acteristics near the seed points into a region. This method has
high accuracy, stability and robustness [17]. So, on this basis,
many scholars have improved this algorithm or combined it
with other methods to make the segmentation effect more
ideal. Wang et al. [12] projected the point cloud data onto
the image plane, selected the initial seed points according to
their geometric information, and determined the visibility of
each point according to the defined growth criteria, which
ultimately greatly improved the efficiency of segmentation of
visible points. Wang et al. [18] through setting σ th as the 95th
percentile of curvature and strengthening the region grow-
ing criteria through connective and coplanar analysis. The
non-connecting points and non-coplanar points are detected
and ignored, which improves the segmentation efficiency,
which improves the segmentation efficiency. Jin et al. [19]
combined deep learning with the regional growth algorithm
to detect stalks through Faster R-CNN, and used the regional
growth algorithm to finely segment a single corn according
to the detected stem and seed points, reducing the algorithm’s
dependence on seed points. However, this kind of algorithm
still has the problems of difficult parameter selection and high
computational complexity, which can not be adapted.

Compared with the region growth algorithm, the method
based on model fitting is mainly used to segment spe-
cific objects by fitting geometric primitives [20], such as
RANSAC [21], [22], Hough transformations [23], [24], etc.
However, these methods are difficult to segment complex
shapes or achieve complete automation, because details can
not always be modeled by easily identifiable geometric
shapes. Therefore, it is usually used in combinationwith other
methods [22], [25] to produce accurate results. Li et al. [21]
represented the 3D unorganized point cloud with a group of
NDT units, and selected a planar nondestructive testing unit
as the minimum sample in each iteration to ensure the cor-
rectness of sampling on the same planar surface and improve
the performance of the algorithm. Yang et al. [26] obtained
a series of parallel planes from angle clustering according
to the improved RANSAC detection, extracted the adja-
cent overlapping planes in the space, and further improved
the accuracy of point cloud segmentation while reducing
the processing speed. Song et al. [27] and others trans-
formed 3D points into Hough space through HT algorithm,
and then trained CNN model to segment objects. To some
extent, they overcame the problems of unstructured spatial

distribution, disordered arrangement and sparse distribution
of point clouds.

For the unsupervised clustering segmentation algorithm,
the point clouds are segmented according to the spatial posi-
tion, color or other characteristics between the points, such
as k-means [28], DBSCAN [29], [30], etc. The clustering
algorithm can classify the points with continuous and uniform
density, and realize the accurate segmentation of the plane.
Chen et al. [31] obtained the local maximum of CHM through
the local maximum method to determine the location of the
initial cluster center and the cluster K value of the K-means
algorithm,whichmade the segmentation accuracy higher. But
the process of this method is cumbersome, it is easy to cause
data loss in the process of converting lidar data into two-
dimensional data, and can not avoid the defect that k-means
takes too long. Czerniawski et al. [32] proposed to combine
the semantic information stored in the plane using DBSCAN
in 6D space, and train the decision tree classifier through
dimensionality reduction and unsupervised learning, which
can achieve an accuracy of more than 90% in large-scale
building plane segmentation. Chen et al. [33] proposed addi-
tional DBSCAN clustering conditions and adaptive threshold
based on candidate sample selection and plane validity detec-
tion in three-dimensional space to obtain an effective fitting
plane. Although DBSCAN has good segmentation perfor-
mance, like the region growing algorithm, it is extremely
difficult to determine the parameters of the algorithm, and
different parameters directly lead to significantly different
results.

In addition to the above methods, point cloud segmenta-
tion methods based on deep learning are also widely used.
These methods use deep neural networks to directly learn and
predict the original point cloud data end-to-end, without man-
ually designing feature extractors, and can better capture the
local features and global structural information of point cloud
data. It has good performance when dealing with large-scale
and complex point cloud data. However, the methods based
on deep learning have the disadvantages of high demand for
training data, large time complexity, and weak generalization
ability of the model, which are difficult to be used for small
sample point cloud segmentation.

To sum up, the current point cloud segmentation algorithm
has made good progress. Researchers have improved the
traditional algorithm through different methods, making the
segmentation accuracy continuously improved. However,
due to the disorder and high density of point clouds,
the traditional segmentation algorithm is still very time-
consuming, and it is easy to produce the results of under
segmentation or over segmentation, especially in the face
of closely distributed objects, the similarity of different
objects caused by the contact and overlap between point
clouds is high, and it is difficult to segment efficiently.
Therefore, how to segment indoor point cloud quickly and
accurately is still a difficult problem in 3D point cloud
processing.
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FIGURE 1. Overall flow chart.

In this paper, the point cloud is processed hierarchically
to improve the computational efficiency, and the clustering
method is used to make up the shortage of segmentation
accuracy. The hierarchical processing of point cloud can
effectively extract and represent the structure and character-
istics of large-scale point cloud data, and realize the efficient
storage, rapid retrieval and accurate analysis of point cloud
data. Through layering, the processed object is composed of
multi-layer small-scale point clouds, which makes it easier to
extract the local features of the object, and avoids the result of
low computational efficiency and difficulty in feature extrac-
tion caused by too dense data. After that, density clustering is
used for secondary segmentation. Although the segmentation
accuracy of this method is very considerable, it is inefficient
in the face of large-scale point clouds, and the parameter
selection is extremely difficult, so it needs to constantly adjust
the parameters to achieve the expected results. Therefore, this
paper proposes an algorithm combining the advantages of
stratification and density clustering to achieve fast and accu-
rate indoor point cloud segmentation. The overall flowchart
of the proposed method is shown in Figure 1.

The rest of the paper is organized as follows: Section II
explains in detail the rationale of the proposed method.
Section III introduces the experimental design and experi-
mental results. The discussion and conclusion of this paper
are respectively in Section IV and Section V.

II. METHODOLOGY
This section will introduce the 3D point cloud segmentation
algorithm from three stages: (1) point cloud hierarchical
processing; (2) global object localization and segmentation;
(3) Fine segmentation based on density clustering.

A. POINT CLOUD LAYERED PROCESSING
In this subsection, the original point cloud is stratified, and
the point cloud of each layer is reduced to a two-dimensional
plane by Principal Component Analysis method. After that,
the dimension reduction points were fitted into line segments
by setting thresholds for the length of the line segment and the
Euclidean distance between the points on the line segment.
Then, based on the normal vector Angle and intersection of
the line segments in each layer, the closure analysis of the
line segments in each layer is carried out, so as to obtain
the contour features of different objects in each layer, and
preliminarily realize the local location of objects in each
layer. As shown in Figure 2, it is the flow chart of point cloud
hierarchical processing.

Point cloud layering is a method to divide 3D point cloud
data into different levels according to the height or depth
standards. Through point cloud layering, the complexity of
data can be greatly reduced, which is convenient for data
processing and analysis. For the collected point cloud, it is not
difficult to get the maximum value of the data on the Z axis.
The number of layers to be divided is determined according
to the size and height of the point cloud, and the height of
each layer is obtained. The calculation formula of the center
height of each layer is as follows:

h0 = zmin + d (1)

hn = h0 + 2 ∗ n ∗ d (2)

wherein, hn represents the height of the nth layer. d is the
distance from the center height of each layer to both ends.
The value of d directly determines the number of layers to be
divided. Figure 3 shows the layering results when the value
of d is different. Each layer is given different colors and set
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FIGURE 2. Hierarchical processing flowchart.

FIGURE 3. Dimension reduction at each layer.

a certain spacing. Generally speaking, the lower the value
of d , the more layers to be divided, making the structural
characteristics of the object more obvious. Therefore, this
algorithm selects d as 0.01 for layering.
In order to reduce the dimensionality of data, remove

redundant information contained in the point cloud, and
extract the most representative and distinguishing features
in the point cloud, principal component analysis (PCA) [34]
was used to reduce the dimensionality of each layer of point
cloud.

The point cloud data is first converted into a matrix form,
where each row represents a point and each column repre-
sents a dimension. Then zero averaging is performed on each
column of the data.

X ′
= (X − µ)/σ (3)

After the data is zero-averaged, its covariance matrix C
is calculated, which describes the relationship between the
various variables in the data. At the same time, the eigenval-
ues and eigenvectors of the covariance matrix are obtained
using the eigenvalue decomposition method. The eigenvalues
are sorted from largest to smallest, the first two eigenvec-
tors are selected, and the point cloud data is projected onto
the low-dimensional space described by these eigenvectors
to obtain two-dimensional point cloud data Y . The specific

formula is as follows:

C =
1
n

∗ X ′
∗ X ′T (4)

Y = PX (5)

The dimensionality reduction plan of each layer is then
obtained. As shown in Figure 4 below, the dimensionality
reduction results of most layers are composed of multiple
line segments. Therefore, in order to obtain the distribution
characteristics of objects in each layer, it is necessary to
analyze the existence and position coordinates of objects after
locating the line segments of each layer.

FIGURE 4. Laying with different width.

On the basis of the least square method [35], a threshold
limit is set for the length of each line segment and the distance
between the nearest neighbor points. However, this method
may not be stable for the presence of noise and outliers
in the data, so on the basis of the least square method,
a threshold limit is set for the distance between the length
of each line segment and the nearest neighbor point. When
equations (6) and (7) are satisfied, that is, the length of the
line segment is greater than the threshold λ and the Euclidean
distance between the nearest neighbor points is less than the
threshold ε, the line segment can be formed, where M is
the set composed of all point indexes in this line segment.
If the condition is not satisfied, the line segment is split and
the second length determination is performed. Finally, the
fitting and positioning of each line segment are realized, and
the accuracy limitation caused by outliers and overfitting is
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FIGURE 5. Flowchart of global localization and segmentation.

avoided when the least square method is used to fit multiple
line segments.√

(xmax − xmin)2 + (ymax − ymin)2 ≥ λ (6)√
(xi+1 − xi)2 + (yi+1 − yi)2 ≤ ε (7)

After all the line segments of each layer are obtained, the
closure analysis of each layer is carried out respectively, so as
to obtain the preliminary judgment of the position of objects
in each layer. The treatment of each layer is as follows:

(1) Randomly select a line segment and calculate the nor-
mal vector Angle and distance between other line segments.

(2) Determine whether the angle θij between line segments
is greater than the Angle threshold, such as equation (8),
where is the direction vector of the line segments.

θ0 < arccos
(

v1 · v2
|v1| · |v2|

)
(8)

(3) The correlation between the line segment satisfying the
condition and the original line segment is analyzed, that is,
whether it approximately intersects. If relevant, the original
line segment and the line segments satisfying the condition
form a list and store it in the set Ui. The formed list consists
of multiple line segments, which represent the combination
of line segments that may be closed in the ith layer.

Ui = {(a0, a1, a2) , (b0, b1) , . . . (k0, k1, k2)} (9)

(4) Return to (1) and loop through until all line segments
of this layer have been determined.

(5) The preliminary judgment result of the position of the
object in each layer is obtained after removing the repeated
combination of the layer set.

The combination of possible closed line segments of each
layer is stored in the set U , as in equation (10), where n is the
total number of layers. This result represents the edge contour
information of each height of the object.

U = {U1,U2 . . . . . .Un} (10)

B. GLOBAL POSITIONING AND SEGMENTATION
In this section, the object contour features belonging to the
same two-dimensional plane region in each layer are fused,
and the global position information of the object is obtained
by combining the analysis of the hierarchical connectivity,

so as to realize the global localization, and the object-level
segmentation is carried out according to this result. The
algorithm flow is shown in Figure 5.

In order to accurately locate the global position of the
object, it first needs to traverse the layers from bottom to top,
and divide the Ui of each layer in the contour information
set U , so that the sets representing the same position area in
each layer are grouped into one object Tk . Tk represents the
two-dimensional contour information of different objects in
different layers in the scene, and it reflects the approximate
position of each object to a certain extent. The setT composed
of Tk is the set of contour information of all objects in the
scene.

T = {T1,T2, . . . ,T k} (11)

Since the ray emitted by lidar cannot penetrate the solid
object, generally only the point cloud data of the object
surface can be obtained, that is, the top surface and side
surface without occlusion. Therefore, in the vast majority
of layers after stratification, the point cloud representing the
object is composed of multiple line segments, as shown in
Figure 6. However, in the process of traversing each layer
from bottom to top, as the number of layers becomes higher,
the top layer of each object will be continuously reached,
and the number of point clouds in this area of the layer will
change abruptly, which represents the top of the object to
some extent, as shown in Figure 7.

FIGURE 6. Normal layer plane.
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FIGURE 7. Abrupt change layer plane.

In order to avoid that the top point cloud is too thick due to
the light transmission of the object, which makes the object
difficult to accurately locate, it is necessary to analyze its
connectivity, and determine the exact number of layers Lk on
the top of each object through the line segment distribution
information of the layers above and below the mutation layer.
As shown in Figure 6 (a) and (b), the mutation layer of this
object is 28 because there is no mutation in this region within
the range of layers above the 28 layers, and the distribution
characteristics of the lower layers are similar to that of this
layer.

After obtaining the number of abrupt change layers of each
object, the position coordinates of each object are determined
by locating the point cloud dense area of the abrupt change
layer, and combined with the contour information Tk of the
corresponding position below the layer, the global positioning
of the object is realized one by one. According to its posi-
tion, the point cloud in the nearby area is classified in the
three-dimensional space to complete the first segmentation of
the densely packed indoor objects. The segmentation results
are shown in Figure 9 (a), where the set of points defined as
the same color is the class of objects or planes segmented.

C. PRECISE SEGMENTATION BASED ON DENSITY
CLUSTERING
In the previous section, we accurately segmented indoor
objects. However, due to the sparsity, inhomogeneity and
noise of point clouds, the results of line segment fitting and
top object positioning would be affected, making it difficult
to segment some objects with sparse bottoms. Therefore,
on this basis, the remaining unsegmented points in the point
cloud need to be segmented twice, so as to improve the accu-
racy of the algorithm to a greater extent. Since unsegmented
point clouds are always a small part, we adopt density-based
segmentation method to achieve further segmentation for a
small part of point clouds, which avoids excessive computa-
tional complexity when facing large-scale points and ensures
segmentation accuracy.

The principle of density segmentation is to connect the
points in the point cloud together to form clusters according to
the density, and classify the points without sufficient density

as noise points or outliers. However, this method is easy
to lead to under-segmentation and over-segmentation in the
segmentation of regions with different densities. Therefore,
this paper adds the restriction of cluster spacing on this basis.

The specific steps are as follows: First choose any point,
and then find all other points within the radius of this point
as the center of the circle and eps, the number of which is
marked as m, if j = 0, then the origin is marked as noise.
If j = 1, it is labeled as the core sample and assigned a new
cluster label, as in equation (12), whereMPT is the minimum
number of points within the range that can be attributed to
the core sample. All neighbors of that point (within distance
eps) are then accessed. If they haven’t already been assigned
a cluster, assign them the new cluster label you just created.
If they are core samples, visit their neighbors in turn, and so
on. As shown in Figure 8 (a), the red dot is the core sample.

j =

{
0 m < MPT
1 M ≥ MPT

(12)

FIGURE 8. Density segmentation.

The cluster gradually grows until there are no more core
samples in the eps range of the cluster. Pick another point that
has not yet been visited and repeat the same process, stopping
when all points are marked, as shown in Figure 8 (b).

After the segmentation result is obtained, the shortest dis-
tance between each cluster can be calculated, and the two
clusters with too low distance can be classified to avoid
excessive segmentation. At the same time, each cluster is
assigned a different color according to the final result, which
is the segmentation result, and the stability of the algorithm
is further improved.

Figure 9 shows the specific segmentation process. (a) is
the result of the first segmentation. Obviously, it can be
seen that the chair and the box above the cabinet are not

FIGURE 9. Segmentation results.
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well segmented, and the density-based fine segmentation just
solves this problem, as shown in Figure 9 (b), which further
improves the accuracy of the algorithm.

III. EXPERIMENTS
In this section, we first briefly introduce the 3D LiDAR
point cloud acquisition equipment. Secondly, the evaluation
indexes of experimental results are introduced. Then, in order
to illustrate the applicability of the proposed algorithm in
various scenarios, this section conducts data acquisition and
segmentation of indoor space in three different scenarios
according to the above proposed methods. Finally, several
common point cloud segmentation algorithms are selected for
comparison to demonstrate the feasibility and advantages of
the proposed method.

A. DATA COLLECTION
The hardware equipment used in the experiment is shown in
Figure 10, which is a ground-borne LiDAR scanner, mainly
composed of a laser sensor, a camera sensor and a fuselage,
in which the fuselage contains a rotating head, inertial mea-
surement unit (IMU) and other equipment. When collecting
data, station scanning is required at multiple locations of the
test site to ensure that all corners are laser fired to ensure
adequate data.

FIGURE 10. LiDAR scanner.

The principle of data acquisition in the experiment is as
follows: First, start the device, the radar emits a laser beam
through the built-in laser transmitter, the laser beam shines
on the object in the surrounding environment, and the laser
receiver receives the returned reflected laser. By measuring
the time difference and angle information of the reflected
laser light, the distance and spatial position between the
object and the radar can be calculated. The radar then acquires
its position and direction information via GPS or inertial
navigation systems. Through multiple scans, a large amount
of distance and location data is obtained, and these data are
converted into point cloud data, that is, a collection of discrete
points in three-dimensional space.

B. EXPERIMENTAL RESULTS
In this paper, the above equipment is used to collect data for
three indoor scenes, and the point clouds data correspond-
ing to these scenes were collected. The applicability of the

FIGURE 11. The real scene of scene 1; (b) the original point cloud.

FIGURE 12. Final segmentation results for scene 1.

FIGURE 13. The real scene of scene 2; (b) the original point cloud.

proposed algorithm is demonstrated through the segmenta-
tion of indoor frame (scenario 1) and object accumulation
(scenario 2 and 3).

Firstly, the first scene is the upper space of the office,
as shown in Figure 11 (a), which mainly shows the seg-
mentation effect of the proposed algorithm for the irregular
indoor space structure. The corresponding point cloud data is
shown in Figure 11 (b). The segmentation results are shown
in Figure 12. The segmented planes of the same color are
marked as (1)-(7) respectively, corresponding to different
planes in scene 1, where (6) is the occluded surface at the
wall, and the unsegmented area is represented by the origin
cloud color. And the Table 1 reflects the relationship between
the segmentation results of various types of objects and the
true number of points in this scene.

As shown in Figure 13 (a), Scene 2 is an indoor space
equipped with scattered objects, and the corresponding point
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TABLE 1. The IoU and indicators of various objects in Scenario 1.

TABLE 2. The IoU and indicators of various objects in Scenario 2.

cloud data is shown in Figure 13 (b), which contains about
600,000 points, showing the segmentation effect of the pro-
posed algorithm in the indoor space. The segmentation results
are shown in Figure 14 below. Different colors represent
different categories of objects divided, among which (1), (2),
(7) and (9) are the spatial framework of the room, and (3), (4),
(5), (6) and (8) are cabinets, boxes and chairs in the room.And
the Table 2 reflects the relationship between the segmentation
results of various types of objects and the true number of
points in this scene.

FIGURE 14. Final segmentation results for scene 2.

Scene 3, like scene 2, is a storage room with objects of
different sizes, as shown in Figure 15 (a). The number of
objects in this scene increases, and the way of stacking is
closer, which mainly shows the plane segmentation results
of the proposed algorithm when the objects in the storage
room are arranged more closely. Figure 15 (b) is the initial

FIGURE 15. The real scene of scene 3; (b) the original point cloud.

point cloud of scenario 3, while Figure 16 shows the final
segmentation results and the individual segmented objects.
The segmented planes of the same color are labeled (1-10),
corresponding to different planes in scene 3. And the Table 3
reflects the relationship between the segmentation results of
various types of objects and the true number of points in this
scene.

C. COMPARISON WITH OTHER METHODS
To illustrate the advantages of the proposed algorithm, this
section is segmented by other methods to demonstrate the
advantages of the proposed algorithm in an intuitive form.
In order to minimize the influence of processing devices on
the final segmentation results, all algorithms are run on the
same device, and we also adjust the parameters in several
comparison methods to obtain relatively better segmentation
results. The segmentation results of five comparison seg-
mentation methods obtained in three scenarios are shown in
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TABLE 3. The IoU and indicators of various objects in Scenario 3.

FIGURE 16. Final segmentation results for scene 3.

FIGURE 17. Comparison of scene 1.

Figure 17, Figure18 and Figure19. In each figure, (a) repre-
sents the original point cloud; (b), (c), (d), (e) and (f) stand
for DBSCAN, RANSAC, RG, and PointNet respectively. The
segmentation results of the algorithm are also reflected in
this section. And the segmented point clouds are displayed
in different colors.

D. EVALUATION INDEX OF EXPERIMENTAL RESULTS
This section introduces several parameters to evaluate the
quality of each experimental result, namely F1-score and
operation time T . F1-score is the harmonic average of accu-
racy (Sp) and recall rate (Sr ), and its size reflects the accuracy
and completeness of the classification model, that is, the
accuracy of the model in identifying positive cases and the

FIGURE 18. Comparison of scene 2.

FIGURE 19. Comparison of scene 3.

completeness of all positive cases. The number of samples is
used here for calculation. The specific calculation formula is
as follows:

F1 − score = 2 ∗ (Sp∗Sr )/(Sp+Sr ) (13)

Accuracy measures how much of the sample in which the
model is predicted to be positive is actually positive, i.e. the
proportion of the sample in which the model is predicted to
be positive is correctly classified. The recall rate measures
how many true positive cases the correctly identifies, i.e.
the proportion of true positive cases that the model correctly
identifies. The calculation formula of accuracy and recall rate
is as follows:

Sp = TP/(TP+ FP) (14)

Sr = TP/(TP+ FN ) (15)

TP indicates True Positive, that is, the number of samples
that are correctly classified as positive. FP indicates False
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TABLE 4. Evaluation parameter.

Positive, that is, the number of samples that are incorrectly
classified as positive. FN indicates False Negative, that is,
the number of samples that are incorrectly classified as
negative.

Intersection over Union (IoU ) is a common metric to
evaluate the degree of overlap between the predicted results
and the true labels in object detection or segmentation tasks.
It is obtained by computing the intersection area between the
predicted region and the true region divided by their union
area. Mean Intersection over Union (mIoU ) is the average of
IoU , which is commonly used in the evaluation of multi-class
segmentation tasks, and it is calculated by summing the IoU
of each class and taking the average.

The evaluation indicators in the comparison experiment are
shown in Table 4 below, which visually shows the parameters
of Sp, Sr , F1-score,mIoU and T of each method in the three
scenes. And the IoU of various objects in different scenarios
is reflected in Table 5.

IV. DISCUSSION
In terms of experimental results, for indoor spatial structure,
the algorithm proposed in this paper can easily divide the
wall into various planes in the final segmentation results.
As can be seen from Figure 12 and Figure 17, although other
algorithms can also extract part of the planes, the proposed
planes are often incomplete or inaccurate. The phenom-
ena of under-segmentation, unidirectional segmentation and
over-segmentation are obvious. In contrast, the algorithm in
this paper performswell in dividing the architectural structure
of the interior space. However, it can be clearly seen from
Figure 17 that all methods have unsatisfactory segmentation
effect on the window part. This is because the glass on the
window has a high transparency, most of the laser beam
will be absorbed or transmitted when passing through the
glass, and only a small amount of laser can be reflected back,

which will cause the window glass points to be missing in
the point cloud data. All kinds of algorithms will have obvi-
ous under-segmentation phenomenon when they segment the
window framewith too low similarity, which is also the future
direction of the algorithm.

When the scene is a storage room adjacent to an object,
it can be seen from Figure 18 and 19 that the similarity
between objects is high due to blurred or overlapping bound-
aries and excessive density when objects are densely placed,
whichmakes it difficult for common segmentation algorithms
such as DBSCAN, RANSAC and Region Growth Segmenta-
tion to correctly segment the object. Among them, DBSCAN
is the most affected. Wrongly categorize the objects stacked
together into one class, which greatly reduces the accuracy;
Although RANSAC has a good effect, it is easy to fall into the
local optimal solution, and it is obvious that the phenomenon
of over-segmentation is serious. The region growth algorithm
relies too much on neighborhood information, resulting in
excessive segmentation, and the time complexity is too high.
As can be seen from Table 5, the algorithm obviously takes
much longer time than other methods. What is more, the
PointNet algorithm has a prominent segmentation effect on
each scene by using the trained model. However, due to the
insufficient number of samples, the learning ability of the
model on local features is weak, and finally the edge position
of each object is difficult to segment accurately. Overall,
the algorithm proposed in this paper performs preliminary
screening of objects at each layer after point cloud layering
and processing, and adjusts the results through hierarchi-
cal connectivity analysis, which finally solves the problem
of difficult segmentation when objects are tightly packed.
Compared with other algorithms, the proposed algorithm is
more accurate in the segmentation of tightly packed goods,
and is superior to the four algorithms in completeness and
vision.
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TABLE 5. The IoU of various objects in different scenarios.

FIGURE 20. Efficiency of the four segmentation methods in Scene 3.

In terms of evaluation parameters, the efficiency and accu-
racy of our algorithm is better than that of the comparison
algorithm. In Table 5, the segmentation time of scene 3 is
16.62s (DBSCAN), 22.74s (RANSAC), 142.3s (RG) and
13.19s (Ours) respectively, for PointNet, it takes about
15 hours to train the model. Obviously, our algorithm runs
faster and performs well in terms of efficiency. In addition,
the plane segmentation accuracy of the proposed algorithm
is also slightly higher than that of the other four methods.
We can intuitively see in Figures 17, 18 and 19 that the
segmentation effect of this algorithm is more prominent, and
from the relevant parameters in Figure 21 and Table 5, we can
also observe that the F1-score of the four algorithms varies
greatly in each scene, but the performance of the proposed
algorithm is still stable in the complex environment scene 3,
with the F1-score reaching 95.2% and the mIoU reaching
0.823, which is still better than the other four methods in
general.

In general, the proposed algorithm has certain advantages
over other algorithms, with an average F1-score of 90.73 and

FIGURE 21. F1-score values of four segmentation methods in three
scenes.

an average mIoU of 0.811, which is superior to other algo-
rithms in terms of both visual and evaluation indicators.
However it also has some shortcomings: First, when dealing
with objects consisting of a small number of point clouds,
such as window frames, the algorithm is difficult to segment
effectively due to the inconspicuous features. What is more,
the current segmentation of indoor close-packed objects is
mainly for the scenarios of densely stacked goods such
as storage rooms, which may make the algorithm unable
to achieve the expected results in the very messy indoor
scenarios where various items are randomly stacked.

V. CONCLUSION
In this paper, an indoor point cloud segmentation method
based on hierarchical structure feature fusion is proposed,
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combining the advantages of hierarchical structure feature
fusion and density clustering. This method is tested in the
scene of irregular indoor frames and objects closely stacked,
and good results are obtained. The main conclusions are as
follows:

(1) From the direct comparison of experimental results, the
proposed method accurately segments indoor point clouds,
effectively solves the phenomenon of under-segmentation
and over-segmentation caused by too high similarity, and
the segmented area has a high consistency with the real
indoor environment. In the quantitative analysis, the average
F1-score value of the proposed method is 87.8%, the aver-
age mIoU and runtime can reach 0.811 and 6.59s, which is
superior to the other three test methods, which verifies the
superiority of the proposed method.

(2) Comprehensively considering the distribution informa-
tion and hierarchical structure characteristics of point clouds,
it realizes the global positioning and segmentation of indoor
objects, especially in the point cloud segmentation when
objects are closely adjacent and stacked. The precision and
efficiency of segmentation are effectively improved.

In the future, we will continue to optimize the point
cloud segmentation algorithm and try to solve the problem
that the algorithm is difficult to efficiently segment under
the scene of too high randomness of items. The iterative
optimization method is considered to adapt the model param-
eters according to the segmentation results, and gradually
improve the segmentation results, and combine with the cur-
rent research to improve the performance of high-point cloud
segmentation.
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