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ABSTRACT Semantic segmentation is a crucial task in computer vision, where each pixel in an image
is classified into a category. However, traditional methods face significant challenges, including the
need for pixel-level annotations and extensive training. Furthermore, because supervised learning uses a
limited set of predefined categories, models typically struggle with rare classes and cannot recognize new
ones. Unsupervised and open-vocabulary segmentation, proposed to tackle these issues, faces challenges,
including the inability to assign specific class labels to clusters and the necessity of user-provided text queries
for guidance. In this context, we propose a novel approach, TAG which achieves Training, Annotation,
and Guidance-free open-vocabulary semantic segmentation. TAG utilizes pre-trained models such as CLIP
and DINO to segment images into meaningful categories without additional training or dense annotations.
It retrieves class labels from an external database, providing flexibility to adapt to new scenarios. Our
TAG achieves state-of-the-art results on PascalVOC, PascalContext and ADE20K for open-vocabulary
segmentation without given class names, i.e. improvement of +15.3 mIoU on PascalVOC.

INDEX TERMS Semantic segmentation, open-vocabulary, zero-guidance.

I. INTRODUCTION
Semantic segmentation represents a crucial task in computer
vision, which describes assigning class labels to each pixel
of an image. Its applications span diverse domains, including
robotics and satellite image analysis.

Despite its significance, current semantic segmentation
methods still face several critical challenges. Firstly, these
methods are high-cost, requiring pixel-level annotation
and extensive training. Secondly, since supervised learn-
ing depends on a predefined set of categories, detecting
extremely rare or completely new classes during prediction
is virtually impossible.

Two related tasks were proposed to address these limita-
tions: unsupervised and open-vocabulary semantic segmenta-
tion. Unsupervised semantic segmentation [1], [2], [3] avoids
the expensive annotation process by using representations
obtained through a backbone model [4], [5] trained on a
different task. Open-vocabulary semantic segmentation [6],
[7], [8], [9], [10] enables the identification of a wide array
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FIGURE 1. Guidance-free Open-Vocabulary Semantic Segmentation. Our
TAG can segment an image into meaningful segments without training,
annotation, or guidance. It successfully segments structures such as the
Leaning Tower of Pisa and the Colosseum. Unlike traditional
open-vocabulary semantic segmentation methods, TAG can segment and
categorize without text-guidance.

of categories through natural language and is not bound to a
pre-defined set of categories.

However, there are still challenges to be solved with
these methods. Unsupervised semantic segmentation clusters
images by class but cannot identify the class of each
cluster, while open-vocabulary segmentation assumes that
text queries describing objects in the image are provided
by the user. To address these challenges, zero-guidance
segmentation emerged in [14], enabling open-vocabulary
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TABLE 1. Relationship with related works. We categorize related works into four distinct areas: training-free, (dense) annotation-free, guidance-free,
and open-vocabulary.

segmentation without the need for inputting class candidates
(guidance), yet there is still room for improvement in terms
of performance. We categorize these related works into four
distinct areas in Table 1.

Based on these backgrounds, we further improved this
approach by introducing a novel method named TAG,
which offers higher performance and flexibility. As its
primary strength, TAG achieves Training, Annotation, and
Guidance-free open-vocabulary semantic segmentation. This
method employs a novel approach by extracting semantic
features from each pixel in an image using CLIP [13], and
then retrieving the open-vocabulary classes based on these
features from an external database [19], [20], [21], [22].
TAG operates using pre-trained frozen models CLIP [13]
and DINOv2 [5], eliminating the need for an additional
training process. CLIP [13] can identify diverse objects
and scenes while its segmentation results are often coarse
and noisy, necessitating refinement. We use DINOv2 [5] to
excel in capturing fine details and global context, enabling
precise segmentation. Combining these models leverages
CLIP [13]’s generalization and DINO [5]’s detailed feature
extraction for more accurate segmentation. These models
do not utilize the dense and costly annotations traditionally
required for semantic segmentation.

Furthermore, through the extensibility of its database, this
method also incorporates flexibility, making it easy to adapt
to new classes or scenarios. A major distinction between
previous methods [14], [16], and our TAG is that it provides
more flexibility as it can be extended to include new concepts
by adding them to the database while previous methods
require re-training. It is important to note that while the
database used in TAG is finite, the language models like
BLIP [17] or GPT [15] are also constructed from similarly
finite datasets. In [23], it is even reported the retrieval-based
methods provided superior results over BLIP [17] in the
context of image classification.

Our TAG can segment an image into meaningful segments
as shown in Figure 1 without any text guidance. In particular,
TAG is able to accurately segment structures with their
proper nouns, such as the Leaning Tower of Pisa and the

Coliseum. In addition, TAG shows significant improvements
in contrast to other comparable segmentation methods, i.e.
on the PascalVOC [24] dataset (+15.3 mIoU).
Our contributions are the following:
1) We propose a novel approach, namely TAG, to achieve

open-vocabulary semantic segmentation that does not
require pre-defined categories by retrieving segment
categories from an external database.

2) TAG achieves compelling segmentation results for all
categories in the wild without any additional training,
high-cost dense annotation, or text query guidance.

3) TAG outperforms the previous state-of-the-art methods
by 15.3 mIoU on the PascalVOC [24] dataset, demon-
strating the superior segmentation performance of our
proposed approach.

II. RELATED WORK
A. SEMANTIC SEGMENTATION
Semantic segmentation is the task of assigning class labels
to all pixels in an image, commonly using convolutional
neural networks [11], [25] or vision transformers [26] for end-
to-end training. These methods, while effective, depend on
extensive annotation and significant computational resources
for training, and are limited to predefined categories. Thus,
unsupervised, and domain-flexible approaches have recently
gained importance.

Unsupervised semantic segmentation [1], [2], [3], [27]
attempts to solve semantic segmentation without using any
kind of supervision. STEGO [2] and HP [3] optimize the head
of a segmentationmodel using image features obtained from a
backbone pre-trained by DINO [4] and DINOv2 [5], an unsu-
pervised method for many tasks. However, unsupervised
semantic segmentation clusters images by class but cannot
identify the class of the each cluster. In contrast, our TAG
distinguishes classes without extra training or annotation.

B. OPEN-VOCABULARY SEMANTIC SEGMENTATION
Open vocabulary semantic segmentation, crucial for seg-
menting objects across domains without being limited to
predefined categories, has seen notable advancements with
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the introduction of key methodologies [6], [7], [7], [8], [9],
[10], [28], [29], [30], [31], [32], [33], [34].
Early attempts, such as ZS3Net [30] and SPNet [32],

focused on zero-shot learning, training custom modules
to bridge visual and language embedding spaces. These
methods set the foundation for future improvements.

This area has seen significant improvement, particularly
through integrating vision-language models like CLIP [13],
which train visual and textual feature encoders on extensive
image-text pairs. LSeg [33], OpenSeg [7], OPSNet [34], and
OVSeg [7] have each contributed to the advancements in the
field leveraging CLIP [13]. These methods typically generate
class-agnostic masks before using CLIP [13] to classify each
mask, demonstrating the versatility of CLIP [13] embeddings
in open vocabulary semantic segmentation.

Moreover, MaskCLIP [9] and GEM [35] have highlighted
the potential of using intermediate representations from
a frozen CLIP [13] encoder to directly segment images
without additional training, reducing both annotation and
training costs. Concurrently, models like ODISE [8] have
explored the integration of pre-trained diffusion models [12]
with CLIP [13] to extend to high performance panoptic
segmentation.

Despite these advancements, a limitation across these
methods is their reliance on text input as guidance from
users. Our TAG tackles this limitation and allows for
open-vocabulary segmentationwithout text guidance. Closest
and concurrent to our work is the zero-guidance semantic
segmentation paradigm [14], in which clustered DINO [4]
embeddings are combined with CLIP [13]. To generate
captions from CLIP [13] features, ZeroSeg [14] uses
ZeroCap [36] which combines a languagemodel, GPT-2 [15],
with CLIP [13]. It adjusts parts of GPT-2 [15] to finish
the sentence, starting with ‘‘Image of a . . . ’’ so that the
sentence closely matches the images according to CLIP’s
understanding.

However, there is still room for improvement in terms of
performance. We hypothesize that the issue is related to the
performance of ZeroCap [36]. Therefore, as a new method,
our TAG uses a novel approach that retrieves categories from
a database for estimating categories.

C. TEXT RETRIEVAL FROM CLIP EMBEDDING
In natural language processing, retrieving information from
external databases has been shown to boost the performance
of large language models [37], [38], [39]. This concept is
also explored in computer vision, particularly for addressing
class imbalance by using databases to retrieve training
samples or image-text pairs. RAC [40] and VIC [23] achieved
image classification without relying on predefined classes
by utilizing an external database. It has the advantage of
low memory consumption because it only uses captions
from databases like Public Multimodal Datasets (PMD) [19]
collecting image-text pairs from different public datasets.

III. METHOD
Figure 2 shows an overview of our proposed method which
we call TAG, a novel approach. Our TAG attempts to partition
input images into semantic segments and label each segment
with open-vocabulary categories. To this end, we propose to
identify segment candidates using per-pixel features obtained
from DINOv2 [5] (Sec. III-A), acquire representative seg-
ment embeddings for segment candidates using per-pixel
features from a ViT pre-trained with CLIP [13] (Sec. III-B),
and assign categories to each candidate segment by retrieving
the closest matching sentence from an external database
(Sec. III-C). Note that, unlike traditional open-vocabulary
semantic segmentation, the input is only the image, with no
need to input category candidates as guidance.

A. SEGMENT CANDIDATES WITH DINO
It has been observed that segmentation results obtained from
CLIP-based segmentation methods [9], [35] are fragmented
and noisy as shown in Figure 4. Therefore, the first step in
our TAG pipeline is calculating segmentation candidates to
achieve more accurate segmentation results. To obtain more
precise segmentation outcomes than CLIP-based methods
without using dense annotations, we reference unsupervised
segmentation methods [2], [3] and employ a ViT pre-trained
with DINOv2 [5].

The output of DINOv2 [5] is a feature map ∈ RD×
H
P ×

W
P ,

where D is the dimension of the feature, P is the patch size of
the transformer, and H and W are image sizes. This feature
map will be upsampled to per-pixel features ∈ RD×H×W .
Once the per-pixel feature is obtained, to assign categories
for each segmentation candidate, we use k-means to divide
the per-pixel features into segmentation candidates, resulting
in oversegmentation.

B. REPRESENTATIVE SEGMENT EMBEDDINGS WITH CLIP
CLIP [13] is a ViT model that can embed images and text into
the same latent space. To assign natural language categories
to each segment, we use CLIP [13] to embed the image at the
pixel level.

Instead of directly acquiring pixel-level features from
CLIP [13], we extract dense patch-level features from
the image encoder of CLIP [13] following CLIP-based
segmentation methods [9], [35]. The image encoder of
CLIP [13] uses a multi-head attention layer, where the
globally average-pooled feature works as the query, and the
feature at each patch generates a key-value pair. Then, this
layer outputs a spatial weighted sum of the incoming feature
map followed by a linear layer F(·):

AttnPool(q, k, v) = F

(∑
i

softmax

(
qkTi
C

)
vi

)

=

∑
i

softmax

(
qkTi
C

)
F(vi), (1)

q = Embq(x), ki = Embk (xi), vi = Embv(xi), (2)
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FIGURE 2. High-level overview of our TAG architecture. Our TAG can partition images into semantic segments and label each segment with
open-vocabulary categories. First, TAG identifies segment candidates using per-pixel features obtained from DINOv2 [5]. Then, it acquires
representative segment embeddings for segment candidates using per-pixel features from a ViT pre-trained with CLIP [13]. Finally, the categories are
assigned to each candidate segment by retrieving the closest matching sentence from an external database. Note that the input is only the image,
with no need to input category candidates as guidance.

where C denotes a constant scaling factor and Emb(·)
represents a linear embedding layer. xi is the input feature at
patch i and x is the average of all xi. The Transformer layer
in CLIP [13] outputs a detailed image representation, made
possible because F(vi), computed at each spatial location,
captures a rich response of local semantics.

Based on this observation, we utilize the features from the
last attention layer of CLIP [13] image encoder by adopting
the GEM [35] mechanism.
CLIP model in TAG outputs value features ∈ RD×

H
P ×

W
P ,

where D is the dimension of the feature, P is the patch size of
the transformer. These features contain dense representations
of the image, capturing patch-level information, which we
upsample to per-pixel features ∈ RD×H×W , corresponding
to the same size as the features obtained from DINO [5].

Next, to assign categories to segment candidates, we cal-
culate embedding features representing the segments from
CLIP [13] per-pixel features f ∈ RD×H×W as shown in
Figure 3. For each segment k , this representative segment
embedding f̄k ∈ RD is computed by averaging based on
the values mkhw ∈ {0, 1}, which results from applying
k-means to the output of the DINO [5] with k classes, as
follows:

f̄k =
1
Mk

∑
h,w

mkhw · fhw, Mk =

∑
h,w

mkhw (3)

C. SEGMENT CATEGORY RETRIEVAL
CLIP [13] can embed images and text in the same latent
space, but the model itself cannot generate images or text
from the embedded features. To address this challenge,
our proposed method TAG finds the closest category using
multi-modal data from large databases.

First, we retrieve a few of the most probable candidate
classes from the large classification space.

Let D be the database of image captions. Given represen-
tative segment embedding f̄k , retrieve the set Df̄k ⊂ D of the
n closest captions to each segment embedding by

Df̄k = top-n
d∈D

f̄Tk · fd
∥f̄k∥ · ∥fd∥

, fd = CLIPt (d), (4)

where CLIPt is the text encoder of the CLIP [13].
Next, to extract candidate words Cf̄k from the set Df̄k ,

we create a set of all words that are contained in the captions.
We sequentially apply three operations: (i) remove noisy
candidates, (ii) standardize their format, and (iii) filter them.

In the first operation, we remove all the irrelevant words,
such as URLs, or file extensions.

Secondly, we align words referring to the same semantic
class in a standardized format. Specifically, Converting upper
case to lower case and plural words to singular format.

In the final operation, we filter out two types of words:
rare and noisy categories based on the frequency of word
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FIGURE 3. Overview of the flow for each segment. Each segment independently retrieves for category candidates and assigns a category.

occurrences, as well as entire categories of words determined
by Part-Of-Speech (POS) [41] tagging. Frequency filtering
involves retaining only those words that appear more than
two times in the input text. If the threshold is set too high and
no words meet the criterion, it is lowered to include at least
the most frequently occurring words. The POS [41] tagging
classifies words into groups like adjectives, articles, nouns,
or verbs, allowing us to exclude any terms that do not hold
semantic significance as segmentation categories.

Given candidate words Cf̄k , we assign words to
representative segment embedding f̄k as

W = argmax
c∈Cf̄Tk

f̄Tk · fc
∥f̄k∥ · ∥fc∥

, fc = CLIPt (c), (5)

where W is assigned a category word to segment. Through
the above process, we can obtain segmentation results by
assigning categories to each segment candidate.

IV. EXPERIMENT
First, we present the implementation details in Section IV-A.
Next, we compare our results to previous methods in
Section IV-B and evaluate the open vocabulary aspect in
Section IV-C. Finally, we justify the construction of TAG
through an ablation study in Section IV-D.

A. IMPLEMENTATION DETAILS
For our implementation of TAG, we employed a frozen pre-
trained CLIP [13] and DINO [5] with ViT-L/14 architecture
and input 448 × 448 images to them. As database, we use
PMD [19], CC12M [20], WordNet [22] and English-
Words [21]. In addition, we use a fast indexing technique,
FAISS [45]. Our model works with a GPUmemory of 15 GB.

B. MAIN RESULTS
To validate the performance of TAG, we conducted compre-
hensive comparative experiments with its closest counterpart,
ZeroSeg [14]. For settings, TAG uses a PMD database [19].
We set the number of k-means clusters as 15 and the
frequency filtering threshold 2. For the evaluation, we used
the mean Intersection over Union (mIoU) as the primary
metric. The predicted text Ti needs to be assigned to one of
the ground truth classes T gt . Ti is assigned to the ground-truth
label that is closest in the Sentence-BERT [46] embedding
space, following the same approach as ZeroSeg [14].
Formally, the new label T ∗

i is computed by

T ∗
i = argmax

t∈T gt
[cossimSBERT(Ti, t)]. (6)

We perform our experiments on the PascalVOC [24]
dataset comprising 20 classes, PascalContext [43] with
59 classes, as well as ADE20K [44] consisting of 150 classes.
The qualitative results are shown in Figure 4 and Figure 5.

In Figure 4, we compared TAG with CLIP [13] base
open-vocabulary method, MaskCLIP [9], and GEM [35].
Using MaskCLIP [9] and GEM [35] results in a noisy
and fragmented segmentation, whereas TAG achieves more
consistent segments that better correspond with the shape of
the object and segment categories. In Figure 5, we compare
GroupViT [42], ZeroSeg [14], and our TAG on images
containing general objects from PascalContext [43]. In the
image (a), TAG is the only method that accurately recognizes
a cow as a calf. In addition, TAG assigns the precise and
relevant class ‘barn’ to the surroundings of the calf, unlike
ZeroSeg which incorrectly includes the class ‘sleeping’.
In image (b), TAG is the only method to correctly identify
‘sunglasses’, and it also accurately classifies the dog as a
‘bulldog’. However, in image (c), TAG does not distinguish
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FIGURE 4. Comparison results with CLIP base open-vocabulary segmentation methods on PascalVOC [24] Note that
MaskCLIP [9] and GEM [35] uses text guidance while our TAG does not use.

TABLE 2. Comparison of state-of-the-art methods. We evaluate on PascalVOC [24], PascalContext [43], and ADE20K [44] and report the mIoU. The clear
boost in performance by retrieving open-vocabulary segment categories underlines their semantic richness and effectiveness.

between a desk and a chair but rather assigns the rough class
‘room’ to the entire space. Occasionally, as shown in (d), TAG
assigns proper nouns such as ‘swindon’ and ‘swanage’ which
are names of cities in South England. While TAG correctly
identifies the background as the city ‘swanage’, the ground is
incorrectly assigned to the city of ‘swindon’. We hypothesize
this is caused by both segments being close in the CLIP [13]
embedding space.

The quantitative results are shown in Table 2. TAG
shows an improvement of +15.3 mIoU on PascalVOC [24],
+0.6 mIoU on PascalContext [43], and +0.2 mIoU on
ADE20K [44] compared to previous zero-guidance seg-
mentation state-of-the-art results. In particular, TAG shows
a dramatic performance improvement on PascalVOC [24],

which was identified as a limitation in ZeroSeg [14].
Additionally, our TAGmethod has made significant improve-
ments compared to untrained open-vocabulary segmentation
methods, demonstrating an impressive improvement of
+28.3 mIoU on PascalVOC [24], even without text-based
guidance.

C. OPEN VOCABULARY SEGMENTATION ON
WEB-CRAWLED IMAGES
In this section, we thoroughly assess the performance of
TAG using open vocabulary segmentation experiments on
web-crawled images, where we test the model’s ability to
accurately segment various unseen classes, including specific
and detailed categories such as ‘joker’ and ‘porsche’.
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FIGURE 5. Qualitative results. We compare GroupViT [42], ZeroSeg [14], and our TAG on images containing general objects from PascalContext [43]. This
figure indicates that TAG can segment and label correctly.

FIGURE 6. Open-vocabulary segmentation results. In (a) we test on a general image, (b) and (c) show images generated by Stable Diffusion [12], and
(d) and (e) are images featuring specific proper nouns.

The qualitative outcomes of the experiments are visually
depicted in Figure 6. In this figure, (a) represents a general
image, while (b) and (c) showcase images created by
Stable Diffusion [12]. Furthermore, (d) and (e) show images
containing proper nouns.

In image (a), although the complex concept of a
‘mirror’ is not captured, the segmentation successfully
identifies both ‘cat’ and ‘bathroom’, resulting in accurate
outcomes. In image (b), while failing to recognize the
‘astronaut’, the model aptly estimates the ground as the

‘moon’, leading to a logical result. Given TAG’s ability
to identify the ground as the moon, it is evident that it
can understand the whole image while generating segment
embeddings. Image (c) showcases the precise segmentation
of various foods. Image (d) impressively segments and
identifies proper nouns such as ‘joker’ and ‘batman’,
demonstrating remarkable results. Lastly, image (e), despite
containing the specific proper noun ‘porsche’, is correctly
recognized as a supercar, affirming the accuracy of the
segmentation.
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TABLE 3. Ablation study on database and numbers of cluster used for k-means. We evaluate on PascalVOC [24], PascalContext [43], and ADE20K [44]
and report the mIoU. These results reveal that using PMD [19] and CC12M [20] as the database and setting the number of k-means clusters to 15 is the
most robust choice, consistently yielding favorable outcomes across multiple datasets.

FIGURE 7. Qualitative results of ablation study on PascalVOC [24]. The database and the number of k-means clusters are shown with the
results.

These findings serve as compelling evidence that TAG
exhibits robust capabilities to accurately segmenting open
vocabularies, including complex and specific categories, thus
underscoring its versatility and effectiveness in handling
diverse and intricate segmentation tasks.

D. ABLATION STUDY
In this section, we perform ablation studies on TAG, examin-
ing how various databases, cluster numbers of k-means, and
label reassignment of evaluation affect performance.

Table 3 presents the results of the ablation experiments
comparing the effect of databases and cluster numbers of
k-means on the mIoU. The results indicate that PMD [19]
and CC12M [20] are preferable datasets for our database.
These results also reveal that using PMD [19] as the
database and setting the number of k-means clusters to
5 is the most robust choice, consistently yielding favorable

outcomes across multiple datasets. Figure 7 shows the
ablation qualitative results. Left image remains unchanged
regardless of variations in the database or the number of
clusters, while increasing the number of clusters has been
observed to cause segments with the same semantic meaning,
such as ‘apartment’ to be divided into different segments like
‘home’ or ‘house’ in right image.

Furthermore, we conduct ablation experiments on fil-
tering operations and the number of captions to select
used for segment category retrieval. Table 4 shows that
utilizing all three filtering operations yields the best results.
Similarly, we examine the effect of the threshold on the
frequency filtering. The results are shown in Table 5 and
indicate that using our default threshold of 2 is justified.
In addition, Table 6 shows the number of captions to select
and indicates that our default setting threshold to 10 is
appropriate..
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TABLE 4. Ablation study on filtering operations. We evaluate on PascalVOC [24], PascalContext [43], and ADE20K [44] and report the mIoU. This table
shows that utilizing all three filtering operations yields the best results.

TABLE 5. Ablation study on the threshold of frequency filtering. We
evaluate on PascalVOC [24], PascalContext [43], and ADE20K [44] and
report the mIoU.

TABLE 6. Ablation study on the number of retrieved captions. We
evaluate on PascalVOC [24], PascalContext [43], and ADE20K [44] and
report the mIoU.

TABLE 7. Ablation study on the threshold of Sentence-BERT similarity.
We evaluate on PascalVOC [24], PascalContext [43], and ADE20K [44] and
report the mIoU.

For evaluation, the predicted text Ti is assigned to the
ground-truth label that is closest in the Sentence-BERT [46]
embedding space. We conduct additional experiments on
this assignment metrics. By calculating the IoU only for
segments with a cosine similarity above a certain threshold,
we enable the evaluation of TAG for different values of
similarity. The experimental results are shown in Table 7.
The mIoU for segments with thresholds of 0.5 or higher
demonstrates performance comparable to supervised, guided
open-vocabulary segmentation methods as shown in Table 7.
The experimental results also demonstrate that the inferred
categories have at least a similarity score of zero or higher
within the ground truth label, indicating that the predictions
are not entirely off the mark.

V. LIMITATION
While TAG achieves remarkable results, our proposed
method still comes with certain limitations. First, as shown
in Table 3, TAG depends on the choice of the database,
making it challenging to select the optimal database for
unknown domains without information on test labels. On the

other hand, TAG can flexibly address this limitation by
adding new concepts into the database without retraining,
unlike language-based methods [14], [16]. Second, TAG does
not distinguish between different levels of class granularity.
As shown in Figure 6 (e), TAG predicted both ‘Porsche’ and
‘Lamborghini’ as ‘supercar’. While the predicted categories
in the qualitative results are consistently correct, they may
not always align with the optimal category desired by the
user. Future works might address this issue by considering
the frequency of words within the database.

VI. CONCLUSION
In this study, we proposed TAG, Training, Annotation,
and Guidance-free open-vocabulary semantic segmentation.
TAG employs a novel approach by extracting semantic
features from each pixel in an image using CLIP [13],
and then retrieving the open-vocabulary categories based
on these features from an external database. Through a
series of comprehensive experiments and analyses, we have
demonstrated the effectiveness and versatility of TAG across
various datasets and challenging segmentation tasks. Our
results indicate that TAG exhibits robust performance in
handling diverse categories, including general classes and
fine-grained, proper noun-based segments.

Overall, our findings highlight the potential of TAG
as a powerful and effective tool in the field of semantic
segmentation. By retrieving the open-vocabulary categories,
we have successfully demonstrated the model’s capability
to handle diverse datasets and open vocabularies without
text guidance, paving the way for future advancements and
applications in this critical area of computer vision.
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