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ABSTRACT This study evaluates the impact of step size selection on Jacobian-based inverse kinematics
(IK) for robotic manipulators. Although traditional constant step size approaches offer simplicity, they often
exhibit limitations in convergence speed and performance. To address these challenges, we propose and
evaluate novel variable step size strategies. Our work explores three approaches: gradient-based dynamic
selection, cyclic alternation, and random sampling techniques. We conducted extensive experiments on
various manipulator kinematic chains and IK algorithms to demonstrate the benefits of these approaches.
In particular, variable step sizes randomly derived from a normal distribution consistently improve solve rates
across all evaluated cases compared to constant step sizes. Incorporating random restarts further enhances
performance, effectively mitigating the effect of local minima. Our results suggest that variable step size
strategies can improve the performance of Jacobian-based IK methods for robotic manipulators and have
potential applications in other nonlinear optimization problems.

INDEX TERMS Robotic manipulators, inverse kinematics, variable step size, random sampling, nonlinear
optimization, iterative methods.

I. INTRODUCTION
Robotic manipulators are fundamentally based on kinematic
chains that consist of interconnected links and joints that
extend from a base to an end effector. The complexity of a
manipulator is determined by the number and arrangement of
its joints, with a higher degree of freedom (DOF) generally
correlated with increased maneuverability and dexterity [1].
For instance, industrial manipulators frequently employ six-
DOF serial kinematic chains to achieve precise positioning in
a six-dimensional Cartesian space. On the other hand, surgi-
cal robots can include more than six DOFs, incorporating a
variety of surgical tools to conform to specific operational
constraints such as a remote center of motion (RCM) [2].
This variety of kinematic structures in modern manipulators
makes the development of a universal kinematics solver for
accurate positioning control challenging. Forward kinematics
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involves mapping a given joint configuration, represented by
q = [q1, . . . , qn], to the corresponding end-effector poseX a.
On the contrary, inverse kinematics (IK) aims to determine
the joint configuration q∗ that results in a desired end-effector
pose X d . This task is essential, as robot operations are
typically defined in the operational space (Cartesian space),
while the robot is controlled in the joint (configuration) space.
Solving the IK problem results in a nonconvex optimization
problem that involves scenarios that can yield zero, one,
or an infinite number of solutions. The inclusion of joint
limits further adds to the complexity, requiring solutions to
be constrained within specific ranges.

To address these challenges, several methods have been
developed, each with distinct advantages and limitations
in terms of computational cost and robustness. Analytic
approaches, specific to certain robot geometries, use closed-
form solutions for fast computation [3]. However, these
methods are limited in their applicability and often lack the
flexibility required for additional constraints. Metaheuristic
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FIGURE 1. Illustration of iterative Jacobian-based inverse kinematics for a
robotic manipulator.

approaches, utilizing population-based search algorithms,
are appropriate for complex high-dimensional problems [4],
but can be computationally demanding and less efficient
in scenarios requiring high accuracy. Optimization-based
methods approach the problem as a constrained optimization
task, effectively managing joint limits and other constraints,
but often involve a high computational cost [5], [6], [7].
Numerical methods, which apply iterative optimization
techniques such as Jacobian pseudoinverse, numerically
derive solutions [8]. Although these methods are computa-
tionally intensive, they offer a broader range of applicability
compared to analytic methods and are generally faster
and more efficient than optimization-based approaches.
Hybrid approaches that combine numerical and optimization
techniques have been introduced, offering improvements in
computation times and solving rates [9], [10], [11]. However,
achieving optimal synchronization among different solvers
remains an important challenge, accompanied by significant
computational demands.

Among the numerical approaches to solving inverse kine-
matics, iterative descent techniques guided by the Jacobian
matrix of the manipulator are commonly employed [12].
These methods take advantage of iterative refinements of an
initial joint configuration, q0, to guide themanipulator toward
the desired configuration. Several methods in this category
have been proposed, including the Jacobian transpose [13],
Jacobian pseudoinverse [14], damped least squares [15],
and other variations [16], [17]. The primary objective of
these methods is to iteratively minimize the error between
the current and the desired end-effector poses, aiming to
converge to a configuration q∗ that achieves the target pose
X d , as illustrated in Fig. 1. Iterative optimization generally
involves two main steps at each iteration,

1) Finding a descent direction d: This involves identifying
a direction that reduces the error between the current
configuration and the desired pose.

2) Choosing a step size α: This involves determining
the magnitude of the step along the identified descent
direction. Finding the optimal step size balances

FIGURE 2. Sensitivity of pose error convergence to different constant step
sizes in a 6-DOF IK optimization. A. Initial manipulator configuration. B.
Target end-effector pose. C. End-effector pose error progression across
optimization iterations.

efficient progress toward the desired pose, avoiding
overshooting the target or causing system instability.

Although choosing the descent direction in Jacobian-
based IK follows well-established gradient-based schemes,
selecting the step size presents a nuanced challenge.
Achieving a balance between making progress towards the
solution and maintaining stability is essential for optimal
performance. A large step size might induce oscillations and
lead to failure, while a small step size necessitates more
iterations and increases the risk of encountering localminima.
Traditional analyses often assume a constant step size
schedule [18], but previous studies suggest that this choice
plays a key role in performance rather than the direction of the
gradient itself [19]. In the context of Jacobian-based inverse
kinematics, this often requires manual adjustment for specific
kinematic chains. This results in step sizes effective within
the tested configurations but cannot be universally guaranteed
across all robotic workspaces.

To illustrate the importance of step size selection, consider
a 6-DOF serial robotic manipulator with an initial joint
configuration as shown in Fig. 2A, aiming to reach the target
pose depicted in Fig. 2B. Using an iterative pseudoinverse
IK approach [20], the joint updates at each iteration 1q are
calculated as αJ†e, where J denotes the Jacobian matrix of
the manipulator and e represents the difference betweenX ak ,
the actual end-effector pose at iteration k , and the target pose
X d . Fig. 2C illustrates the error progression. Employing a
conventional constant step size αFIXED

= 1.0, represented
by the black dashed line, does not reach the convergence
threshold. In contrast, employing a slightly different value
of α, such as α = 0.9 or α = 1.1, achieves convergence
in fewer than 50 iterations, highlighting the sensitivity of IK
optimization to step size selection.
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However, it is well established that a constant step size,
even when optimized, can result in slow convergence [21].
Variable step size strategies have been proposed to provide
dynamic update of the step size at each iteration. A prevalent
technique for step size selection in gradient descent opti-
mization involves a line search, in which the step size α

is determined as a minimization problem of the objective
function F , given by:

α = argmin
α>0

{
F(q+ αd)

}
(1)

Line search methods require additional gradient eval-
uations to dynamically adjust the step size, adapting it
based on the function’s behavior near the current iterate.
These methods are designed to ensure a sufficient reduction
in the function value at each iteration, forming the basis
for techniques such as the Cauchy and Barzilai-Borwein
methods [22], [23] and their various adaptations [24], [25],
[26], [27], [28], [29]. Backtracking line search is a variation of
this method [30], [31], which starts with a large step size and
then reduces it until it satisfies a specific criterion, such as the
Armijo-Goldstein condition [32]. Traditional backtracking
methods only decrease the step size, while adaptive variants
can adjust it in both directions in each iteration [33], [34],
[35]. However, these methods either limit the increase in
step size to a constant factor per iteration or require extra
gradient evaluations for step size determination. In large-
scale gradient-based optimization, particularly in machine
learning applications, there has been a shift towards the
development of self-adaptive strategies to adjust step sizes,
also known as learning rates, based on gradient changes in
each iteration [36], [37]. Recent research in this domain has
also investigated the potential of cyclic alternation [21], [38],
[39] and random sampling [40], [41] to select dynamic step
sizes in nonlinear optimization.

Despite these advances, the efficacy of each method is
strongly influenced by the specific nonlinearities inherent to
the problem. Inverse kinematics poses a distinct challenge,
characterized by its highly nonlinear relationship between
joint and operational space variables. Exploration into the use
of variable step sizes in this domain has been limited. For
example, studies by Wang et al. [42], [43] have investigated
the use of deep neural networks and machine learning models
such as Decision Trees, Random Forest, and K-Neighbors,
to predict optimal step sizes for the Gaussian damped least
squares method in redundant manipulator IK. However,
reliance on kinematic chain-specific training reduces the
applicability of their approach. In addition, their focus
on position targets, excluding orientation considerations,
simplifies the optimization problem.

To address the limitations of constant step size methods in
Jacobian-based inverse kinematics (IK) for robotic manipu-
lators, this study introduces a novel approach that combines
traditional iterative Jacobian methods with variable step
sizes.While variable step size strategies are well-documented
in general optimization problems, their application and

comprehensive evaluation in robotic inverse kinematics have
not been thoroughly explored. This research conducts a
detailed comparative analysis of various variable step size
strategies, incorporating both conventional methods and
innovative approaches from fields such as machine learning,
specifically applied to inverse kinematics, a context in which
these strategies have not been previously evaluated. The
effectiveness of these strategies is assessed across different
robot kinematic chains and inverse Jacobian IK methods,
providing a unique and extensive examination not found in
previous works. The key contributions of this research are:

• A comprehensive review and evaluation of self-adaptive
strategies to adjust the size of steps in the inverse
kinematics of robotic manipulators.

• The development and implementation of diverse step
size strategies, such as gradient-based dynamic selec-
tion, cyclic alternation, and random sampling, to deter-
mine their impact on the efficiency of Jacobian-based
IK.

• Extensive experimental validation across variousmanip-
ulator kinematic chains and IK methods, demonstrating
the superiority of variable step size selection over
traditional constant step size methods.

The paper is organized as follows. In Section II, we pro-
vide a comprehensive overview of Jacobian-based inverse
kinematics and the proposed variable step size methods.
Section III details the experimental results and performance
evaluations, including a comparative analysis of the solv-
ing effectiveness of various established IK methodologies.
Section IV concludes the paper, summarizing key findings
and suggesting avenues for future research in this domain.

II. METHODOLOGY
A. JACOBIAN-BASED INVERSE KINEMATICS
This section briefly reviews the fundamentals of Jacobian-
based inverse kinematics. Consider a robotic manipulator
kinematic chain composed of n joints. The inverse kinematics
problem (IKP) is defined as the inverse of the forward
kinematics function g : Rn

→ SE(3), which maps a joint
configuration q ∈ Rn to the end-effector pose X ∈ SE(3),
where SE(3) denotes the special Euclidean group. The IKP
can be formulated as a nonlinear least squares problem
(NLSP), where the optimal joint configuration q∗ is obtained
by solving the following minimization problem:

q∗
= argmin

q∈Rn

{
F(q)

}
(2)

The objective function F(q) is defined as

F(q) =
1
2
||r(q)||22 =

1
2
r(q)⊤r(q) (3)

where r(q) = X d − g(q) ∈ Rm represents the residual
vector function, quantifying the discrepancy between the
end-effector target pose X d ∈ SE(3) and the actual
pose derived from forward kinematics g(q). To improve
readability, subsequent references will omit the explicit
dependency on q.
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Iterative descent methods are frequently used in the
solution of nonlinear least squares problems (NLSPs) due
to their proven effectiveness, efficiency, and adaptability to
various types of problems [44]. These methods begin with
the selection of an initial solution guess q0. The objective is
to find the minimum of the function F by iteratively moving
in a direction of descent, which is based on the gradient and
is denoted as dk . The update of the solution in each iteration
involves a step size α, as expressed by the following equation:

qk+1 = qk + αdk (4)

where k represents the iteration index. Two prevalent
approaches for determining a descent direction are Gradient
Descent (GD) and Newton’s Method (NM). GD is a widely
used minimization method that operates on the first-order
approximation of the objective function. It iteratively moves
towards the steepest descent direction, indicated by the
negative of the gradient of F , resulting in d = −∇F ∈ Rn.
From (3), the gradient can be defined as

∇F = −J⊤r (5)

where J =
δg(q)
δq ∈ Rm×n represents the Jacobian matrix

of the manipulator. The application of this update rule
in the context of inverse kinematics results in the well-
known Jacobian transpose inverse kinematics method [13],
as expressed in the following equation:

qk+1 = qk − α∇Fk = qk + αJ⊤
k rk (6)

NM, in contrast, leverages the second-order information of
the objective function, encapsulated in the Hessian matrix.
This approach typically results in a faster convergence rate
compared to GD but requires more computational resources
due to the necessity of inverting the Hessian matrix in each
iteration. The Hessian matrix for the manipulator, ∇

2F ,
is defined as [45]

∇
2F = J⊤J −

n∑
i=1

δJ
δqi

⊤

r (7)

.
The update rule for NM in the context of inverse kinematics

is given by

qk+1 = qk − ∇
2Fk

−1
∇Fk

= qk +

(
J⊤
k Jk −

n∑
i=1

δJk
δqi

⊤

rk

)−1

J⊤
k rk (8)

Although Newton’s method offers faster convergence, the
computational expense of calculating the Hessian matrix can
be considerable. Moreover, its convergence is not always
guaranteed since the Hessian may not be positive definite in
every scenario. These challenges have led to the development
of various adaptations, amongwhich the Gauss-Newton (GN)
method is notably prevalent [46]. The GN method represents
an efficient strategy, based on a linear model of rk around qk ,
that simplifies the calculation of the Hessian by assuming that

the second-order derivatives are negligible. Consequently,
the Hessian is approximated by ∇

2F ≈ J⊤J , markedly
reducing the computational load compared to the full Hessian
calculation. The descent direction dk in the GN method is
determined by solving the following linear equation:

J⊤
k Jkdk = J⊤

k rk . (9)

This corresponds to addressing the linearized least squares
problem

argmin
1q∈Rn

1
2
||Jkdk + rk ||22 (10)

Subsequently, the joint angle vector qk is updated in each
iteration as follows:

qk+1 = qk −

(
J⊤
k Jk

)−1
J⊤
k rk (11)

The matrix J† = (J⊤J)−1J⊤ is recognized as the Moore-
Penrose pseudoinverse of J. However, the Gauss-Newton
(GN) method does not always guarantee convergence,
especially when the initial point is far from the optimum.
An improved version of the Gauss-Newton method applies a
fraction α of the direction vector to ensure that f (q) decreases
in every iteration, thereby improving convergence. This can
be expressed as an adaptation of the pseudoinverse method
for inverse kinematics,

qk+1 = qk + αJ†rk (12)

where α represents the size of the step along the descent
direction.

The pseudoinverse approach is widely utilized in inverse
kinematics due to its ability to handle redundancy and non-
square Jacobian matrices. However, it can be problematic in
scenarios involving ill-conditioned systems or singularities,
where it may produce large joint displacements or fail to
converge. To address these issues, variations of the Gauss-
Newton method that incorporate damping factors have been
proposed, which can improve the stability and robustness
of the inverse kinematics solution. Damping least squares
methods can be formulated by introducing the damping factor
λI into the Hessian approximation, as shown in the following
equation:

qk+1 = qk − α
(
J⊤
k Jk + λI

)−1
J⊤
k rk (13)

where λ corresponds to the damping factor. The selection
of an appropriate damping factor is crucial to ensure
convergence, and several methods for its determination have
been proposed in the literatures [45] and [47]. The Levenberg-
Marquardt (LM) approach is a notable example, which
employs a damping factor to constrain the step within an
elliptical trust region, ensuring the positive definiteness of the
Hessian approximation.
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B. VARIABLE STEP SIZE METHODS
Variable step size strategies are based on the principle that
different regions within the solution space require varying
levels of precision and granularity in step size. As one
approaches the solution, it is feasible to employ larger steps
for a rapid traversal of the space. Conversely, as one draws
closer to the solution, smaller steps become advantageous to
refining the approach and preventing overshoot. This method
yields two main benefits:

• Convergence Speed: Employing variable step sizes
can markedly speed up convergence by enabling the
algorithm to switch between larger steps in less sensitive
regions of the solution space, thus covering larger
distances swiftly, and smaller steps in regions where
accuracy is crucial to ensure the optimal solution is
achieved.

• Robustness Against Local Minima: The flexibility in
adjusting step sizes enhances the stability of inverse
kinematics solutions by helping the algorithm avoid
local minima. Larger step sizes can provide the needed
momentum to overcome the influence of a local
minimum, while smaller step sizes can prevent getting
stuck initially.

This section reviews established variable step size strate-
gies, predominantly those based on line search techniques,
and introduces emerging approaches that leverage gradient-
based dynamic selection, cyclic alternation, and random
sampling.

1) LINE SEARCH STEP SIZE METHODS
Line search methods are widely used to determine the step
size α in gradient descent (GD) and Gauss-Newton (GN)
methods. These methods aim to find a step size value that
reduces the objective function along the current search direc-
tion. However, they do not necessarily guarantee convergence
to a global minimum; they only ensure a reduction in the
function value, which may lead to convergence to a local
rather than a global minimum, especially if the objective
function possesses multiple local minima.

For convex quadratic functions of the form f (q) =
1
2q

⊤Aq − b⊤q, several step size criteria have been proposed
based on the line search approach. The steepest descent (SD)
method, originally proposed by Cauchy [22], defines the step
size by minimizing the univariate function presented in (1)
and has the form

αSDk = argmin
α>0

f (qk − αdk ) =
dk⊤dk
dk⊤Adk

(14)

where dk corresponds to the gradient at the k-th iteration
of f (q), A ∈ Rn×n is symmetric and positive definite, and
αSDk represents the step size. Despite its theoretical basis, the
SD method often shows slow convergence and is adversely
affected by ill-conditioning [48]. Barzilai and Borwein [23]
introduced two efficient methods to determine the size of the

step, known as BB methods, defined as follows:

αBB1k = argmin
α>0

||(α−1I)sk−1 − yk−1||

=
s⊤k−1sk−1

s⊤k−1yk−1
=

dk−1
⊤dk−1

dk−1
⊤Adk−1

(15)

αBB2k = argmin
α>0

||sk−1 − (αI)yk−1||

=
s⊤k−1yk−1

y⊤k−1yk−1
=

dk−1
⊤Adk−1

dk−1
⊤A2dk−1

(16)

where sk−1 = qk − qk−1, and yk−1 = dk − dk−1.
Line search is also used to determine the step size in

the improved Gauss-Newton method, following either direct
search or backtracking approaches. In the direct search
method, the optimal step size is obtained by minimizing
the function described in (1). However, direct search can be
computationally intensive, as it requires solving an additional
optimization problem, which is not always straightforward.
Backtracking line search methods follow a systematic and
deterministic approach to find a suitably large step size.
It starts with an initial guess for the step size α0 and iteratively
reduces it until a condition is satisfied, such as the Armijo-
Goldstein condition given by

f (qk + αkdk ) ≤ fk − µα∇f ⊤
k dk (17)

for a given constant µ ∈ [0, 1].

2) GRADIENT-BASED DYNAMIC SELECTION
Automatic selection of the step size, also known as
learning rates, has been a recent development in large-
scale optimization, such as training of deep neural network
architectures. Gradient scaling (GS) is a technique that has
shown promising results in automatically selecting learning
rates during the training of deep fully connected and
convolutional networks, eliminating the need for additional
hyperparameters [36]. In the context of IKP, it scales the
gradient component for each joint i by the norm of the
gradient vector,

αGSki =
|∇fki |

||∇fk ||2
∀i ∈ [1, . . . , n] (18)

A second approach is the Relative Gradient Norm (RGN).
This method, initially proposed for transfer learning appli-
cations in fine-tuning pre-trained architectures by adjusting
the learning rate of model layers [37], [49], is adapted here
for the inverse kinematics (IK) problem as discussed in [50].
It involves a two-step scaling process. Initially, the relative
gradient ϕk in iteration k is calculated as the relationship
between the gradient component of each joint and the value
of the joint:

ϕki =

∣∣∣∣∇fkiqi

∣∣∣∣ . (19)

Subsequently, each component of ϕk is scaled by its norm:

αRGNki =
ϕki

||ϕk ||2
∀i ∈ [1, . . . , n] (20)
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The underlying hypothesis is that smaller relative gradient
values indicate a minimal impact of the corresponding joint
in reducing pose error. Consequently, the step sizes for these
joints can be reduced to prevent interference with other joints
that may exhibit larger relative gradients and thus require
larger steps for convergence. These adaptive approaches aim
to prevent overshooting the optimal values and facilitate
faster convergence.

3) CYCLIC ALTERNATION
Cyclic alternation of step sizes introduces a sequence of
varying step magnitudes, strategically alternating between
shorter and larger steps, to improve the convergence traits
of optimization algorithms. This approach diverges from
constant step size methodologies by injecting variability into
the step size determination process.

Several methodologies have been developed to establish
these cyclic sequences. Goujaud et al. [38] develop a
convergence rate analysis for quadratic objectives that
identifies optimal parameters, showing that cyclical learning
rates can effectively exceed the limitations of traditional
methods. Altschuler and Parrilo [21] proposed a novel step
size schedule for gradient descent that can achieve faster
convergence in smooth convex optimization, by hedging
between short and long steps in a fractal-like pattern.
In contrast with traditional GD analyses for selecting step
size, such as line search, this approach focuses on the
aggregate advancement made by all iterations rather than
individual step progress and shows that properly combining
suboptimal step sizes yields faster convergence due to the
misalignment of worst-case functions, where bad cases for
a long step are good cases for a short step, and vice versa.
Grimmer [39], on the other hand, explored policies that
incorporate non-constant step sizes with frequent, longer
steps that might temporarily increase the objective value but
ultimately facilitate faster convergencewhen evaluated across
multiple iterations.

The formulation of cyclic step sizes can be represented
as a continuous function S(k) or as a discrete set S =

{s0, s1, . . . , sN−1}, where N denotes the cycle length. In dis-
crete cyclic alternation, the step size for each iteration k is
defined as:

αALTk = s(k mod N ) (21)

In this model, the set S can be selected according to specific
criteria or adaptively tuned according to the performance of
the function at each iteration.

4) RANDOM SAMPLING STEP SIZE
Random search has been proposed for numerical opti-
mization of unconstrained objectives and has demonstrated
its effectiveness in a variety of ill-structured global opti-
mization problems involving both continuous and discrete
variables [51]. Random search algorithms typically focus on
quickly finding a satisfactory solution, rather than ensuring
optimality with probabilistic convergence. Schumer and

Steiglitz [40] introduced an adaptive step size random
search, where the step size is dynamically adjusted based
on the success or failure of the search process. Schrack
and Choit [52] suggested calculating the step size as the
optimum along a randomly chosen direction vector. More
recently, randomized step sizes have been applied to neural
network optimization, where each unit or feature of the
network is assigned a learning rate sampled from a wide-
ranging distribution [41]. Unlike previous work, this study
proposes a combination of conventional inverse kinematics
(IK) methods to determine a descent direction dk and
randomly samples step sizes from a probability distribution
P with parameters θ as given by

αRAND
∼ P(θ ) (22)

This approach does not adhere to a monotonic decrease
in the objective function. The rationale behind this approach
is that minor deviations from the conventional constant step
size (α = 1.0) can effectively counter the principal challenge
in numerical optimization, namely getting trapped in local
minima, a frequent issue in IKP when the target pose is
substantially distant from the current configuration. Empir-
ical evidence is presented to show that random step sizes
can significantly improve the solve rate for nonlinear IKP in
robotic manipulators. Two types of sampling distribution are
evaluated: uniform and normal distributions.

III. EXPERIMENTS AND RESULTS
A. JACOBIAN-BASED FORMULATION FOR INVERSE
KINEMATICS PROBLEM
Actual and desired end-effector poses are defined as transfor-
mations Xa = g(q0) ∈ SE(3) and Xd ∈ SE(3), respectively.
The residual in the inverse kinematics problem, as defined
in (3), is expressed as:

r(q) = log
(
XdXa

−1
)

(23)

where the logarithm function log : SE(3) → se(3) maps the
pose from the Lie group SE(3) to twists in the Lie algebra
se(3) [53]. The goal of the IKP is to find an appropriate joint
configuration q∗ that minimizes:

argmin
q∈Rn

1
2

∥∥∥log (XdXa
−1
)∥∥∥2

2
(24)

The optimal q∗ is obtained through a gradient-based
iterative optimization process defined in (4), comprising a
descent direction dk computed from the IK method and a
step size αk for each iteration. The process repeats until the
convergence criterion ∥r(q)∥ ≤ ϵc is satisfied, where ϵc
denotes the convergence threshold.

Five Jacobian-based inverse kinematics algorithms were
implemented for experimental evaluation.

• Jacobian pseudoinverse (PINV) [14]:

dk = J†krk (25)
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• Damped least squares (DLS) [15]:

dk = (J⊤
k Jk + λDLSI)−1J⊤

k rk = J†DLSk rk (26)

• Minimum damped least squares (MDLS) [15]:

dk = (J⊤
k Jk + λMDLSI)−1J⊤

k rk = J†MDLSk rk

λMDLS =

{
λbase/σmin, if σmin < σthresh

0, otherwise

(27)

• Gaussian damped least squares (GDLS) [17]:

dk = (J⊤
k Jk + λGDLSI)−1J⊤

k rk = J†GLSk rk

λGDLSi = λmaxe−(σi/σthresh)
2

∀i ∈ [0, . . . ,m]

(28)

• Levenberg-Marquardt method (LM) [54]:

dk = (J⊤
k Jk + λLM I)−1J⊤

k rk = J†LMk
rk

λLMk =

{
λLMk−1/βLM , if ||rnew||2 < ||rprev||2
βLMλLMk−1 , otherwise

(29)

with λLM0 = λinit.
The Jacobian pseudoinverse J† is computed using Singular

Value Decomposition (SVD). The Jacobian is decomposed
into J = V6U⊤, where V and U are orthogonal matrices,
and 6 is a diagonal matrix containing singular values of J .
The pseudoinverse is then calculated as:

J† = V6̃
−1
U⊤ (30)

Here, 6̃ represents the diagonal matrix composed of
modified singular values σ̃ . For the pseudoinverse (PINV)
method, the modified singular values σ̃i are given by:

σ̃i =
1
σi

(31)

For the Damped Least Squares (DLS) and Levenberg-
Marquardt (LM) method, the damping factor λ is incorpo-
rated into the modified singular values as follows:

σ̃i =
σi

σ 2
i + λ2

, (32)

while the Minimum Damped Least Squares (MDLS) and
Gaussian Damped Least Squares (GDLS) methods are
incorporated as

σ̃i =
1

σi + λ
(33)

To ensure that the joint angles remain within the specified
joint limits [qi, qi], a clipping strategy is employed at the end
of each iteration:

qi =

{
qi, if qi > qi
qi, if qi < qi

(34)

This strategy is implemented to prevent the joint angles
from exceeding their allowable range, ensuring the physical
feasibility and operational safety of the robotic manipulator.

B. EVALUATED VARIABLE STEP SIZES
This study compares the performance of the proposed
variable step sizes with other step size criteria commonly used
in gradient-based optimization.

• Constant: The step size is consistently constant at 1.

α
FIXED
k = 1 (35)

• Steepest descent [55]: The step size is determined based
on the steepest descent criterion.

α
SD
k =

r⊤k rk
r⊤k JkJ

⊤
k rk

(36)

• Barzilai and Borwein BB1: This method calculates the
step size according to the BB1 criterion.

α
BB1
k =

r⊤k−1rk−1

r⊤k−1Jk−1J⊤

k−1rk−1
(37)

• Barzilai and Borwein BB2: This approach uses the BB2
criterion to determine the step size.

α
BB2
k =

r⊤k−1Jk−1J⊤

k−1rk−1

r⊤k−1

(
Jk−1J⊤

k−1

)2
rk−1

(38)

• Gradient Scaling: The step size of each joint is scaled
based on the norm of the gradient vector.

α
GS
ki =

∣∣dki ∣∣
∥dk∥

∀i ∈ [1, . . . .n] (39)

• Relative Gradient Norm: The step size is scaled based
on the Relative Gradient Norm,

α
RGN
ki =

ϕki

∥ϕk∥2
∀i ∈ [1, . . . .n] (40)

where ϕki =

∣∣∣ dkiqi ∣∣∣ ∀i ∈ [1, . . . .n].
• Cyclical: This method uses a cyclical pattern of step
sizes that alternates through a predefined sequence in
cycles,

αALTk = S(k mod N ) (41)

withN = 7 and S = {1/φ2, 1/φ, 1.0, φ, 1.0, 1/φ, 1/φ2
},

where φ = 1.618 is the golden ratio.
• Uniform Random: The step size is randomly sampled
from a uniform distribution.

αURAND
∼ U(0.5, 1.5) (42)

• Normal Random: The step size is randomly sampled
from a normal distribution.

αNRAND
∼ N (1.0, 0.5) (43)
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FIGURE 3. Illustration of the robotic manipulator models used for experimental validation.

C. EXPERIMENTAL SETUP
The proposed approach is evaluated on ten commercial
manipulator kinematic chains, including both 6-DOF and
7-DOF manipulators. The manipulators were selected based
on criteria that ensure a diverse representation of commonly
used industrial robots, including factors such as wrist con-
figuration, workspace range, and the presence of redundant
DOFs. The 6-DOF manipulators evaluated are:

• UR-10 (Universal Robots)
• VS-050 (DENSO Robotics)
• xArm6 (UFactory)
• Jaco (Kinova)
• IRB140 (ABB)
The 7-DOF manipulators evaluated are:
• Gen3 (Kinova Robotics)
• Panda (Franka Emika)
• LBR iiwa (KUKA)
• xArm7 (UFactory)
• Sawyer (Rethink Robotics)
The evaluated kinematic chains are illustrated in Fig. 3.

To assess the effectiveness of the proposed approach,
5000 target poses, each including an end-effector position
and orientation, were randomly generated using forward
kinematics applied to random joint configurations. This
ensures that each target pose has at least one valid solution.
Integrating 6D target poses introduces substantial difficulties
for inverse kinematics algorithms, particularly in terms of
reachability and the likelihood of facing singularities. More-
over, 5000 initial joint configurations were also randomly
generated and paired with a target pose. The implementation
was carried out in Python, employing the Pinocchio library
(v. 2.6.10) [56] for kinematic computations, transformations,
and kinematic chain parsing. The choice of damping factors
and thresholds is not trivial, as they can significantly affect the
performance of IK methods. For the experimental analysis,
a predefined set of potential options was considered for
each parameter. The complete list of parameters used for the
experimental evaluation is summarized in Table 1.

D. COMPARATIVE ANALYSIS OF SOLVE RATES FOR
VARIABLE STEP SIZES
This section presents a comparative analysis of the solve rates
achieved by various step size methods. The solve rates for

TABLE 1. Parameters for experimental validation.

each variable step size method are summarized in Table 2.
The methods are evaluated based on their ability to improve
the solve rates when compared to a fixed step size approach.
The descent direction for each method is derived using
the Jacobian pseudoinverse algorithm (PINV). To quantify
the relative effectiveness of each method, we calculate the
relative solve rates, SRrel, with respect to a constant step size
(αFIXED

= 1.0), as follows:

SRrel(α) =
SR(α) − SR(αFIXED)

SR(αFIXED)
× 100% (44)

where SR(α) represents the solve rate for a given step size
α. Figures 4A and 4B illustrate these relative solve rates for
non-redundant and redundant kinematic chains, respectively.

The results show that a constant step size αFIXED limits the
solve rate for PINV, while variable step sizes offer varying
degrees of solve rate improvement. For non-redundant
kinematic chains, where a single solution is expected, the
impact of variable step sizes is substantial, with relative solve
rates exceeding 300% for the UR10 manipulator. In the case
of redundant kinematic chains, the relative solve rate reaches
upt to 35% for the Sawyer robot. Methods such as BB1,
BB2, RGN, and NRAND demonstrate the most significant
improvements in the solve rates for different kinematic
chains. The strict residual reduction enforced by the SD,
BB1, and BB2 methods appears to be effective for both types
of kinematic chains. Among the proposed random-based
variable step sizes, the NRAND method, which samples
step sizes randomly from a normal distribution, achieved the
best performance in half of the evaluated cases. In contrast,
the URAND version, sampling from a uniform distribution,
provided limited improvement. This observation suggests
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TABLE 2. Comparison of solve rates across different step size methods. The highest solve rates for each kinematic chain are emphasized in bold.

FIGURE 4. Comparison of relative solve rates SRrel, expressed as the
percentage change in solve rate relative to a constant step size (α = 1.0).
A. Non-redundant kinematic chains. B. Redundant kinematic chains.

that maintaining step sizes around the default value of α =

1.0 ensures a more focused exploration of the solution space,
leading tomore efficient convergence, while still reducing the
risk of getting stuck in local minima.

E. CASE STUDY
Acase study is presented using one of the randomly generated
initial and target poses to demonstrate the effect of variable
step sizes in inverse kinematics problems. We selected the
VS-050 kinematic chain with initial configuration q0 =

[2.771, −0.952, 1.475, −4.690, −0.430, 5.352]. The target
pose within the reachable workspace is defined as

X d =


0.679 0.661 0.317 0.0016
0.181 0.268 −0.946 −0.1617

−0.711 0.700 0.0626 0.7148
0 0 0 1

 .

Figure 5 shows the error between the end-effector pose
and the target, computed after (23), between optimization

FIGURE 5. Comparison of pose error reduction across iterations for
different step size methods in Jacobian pseudoinverse IK.

FIGURE 6. Visualization of IK optimization dynamics: A. Evolution of joint
values across iterations. B. Corresponding step sizes, randomly sampled
from a normal distribution, used in each iteration.

iterations. Methods such as SD, BB1, and BB2 continuously
reduce the error, only increasing when joint limits are reached
and the solution is truncated. However, they were unable to
find a solution within the convergence threshold. Gradient-
based step sizes, RGN andGS, rapidly reduce the error but get
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TABLE 3. Comparison of solve rates with random restarts for different step size methods. The highest solve rates for each kinematic chain are
emphasized in bold.

FIGURE 7. Sequential snapshots illustrating the manipulator’s
configurations at different iterations during the inverse kinematics
optimization process.

stuck in a local minimum upon reaching a joint limit. Cyclic
alternation (ALT) achieves error reduction close to the desired
threshold but does not converge fully. In contrast, random step
size approaches, URAND and NRAND, not strictly adhering
to an error-reducing criterion, successfully found the optimal
solution in less than 50 iterations.

Figure 6A shows the joint angles for the most effective
method, NRAND, at each iteration, alongside the step
size randomly sampled as shown in Fig. 6B. A total
of 18 iterations were required to achieve convergence.
Snapshots of robot configurations at various iterations are
shown in Fig. 7. Although some joints also reached their
limits at certain points, they did not get stuck due to the
random nature of the step size selection, alternating between
large values in the initial iterations, shorter values around
iteration 5, and then sizes close to 1.0 in iterations 7-9. Once
the joint configuration approached the optimal solution in
iteration 10, the subsequent steps remained smooth, and the
size of the steps did not hinder convergence.

F. RANDOM RESTARTS
Gradient-based methods are prone to get stuck in local
minima. To address this challenge and further enhance
the solve rate, we evaluated the proposed step sizes in
conjunction with an improved random restart approach. This
technique allows the initial joint configuration to be reset with
random values after a predetermined number of iterations
without a significant reduction in pose error. A threshold of
1 × 10−6 for pose error and a limit of 10 iterations without
improvement were set to trigger a restart.

The random restart mechanism offers a systematic way
to escape local minima and explore different regions of the

FIGURE 8. Comparison of relative solve rates SRrel with random restarts,
expressed as the percentage change in solve rate relative to a constant
step size (αFIXED = 1.0). A. Non-redundant kinematic chains. B.
Redundant kinematic chains.

solution space. By periodically restarting the optimization
process, the likelihood of finding the global minimum for the
inverse kinematics problem is increased.

The solve rates with random restarts for each evaluated
kinematic chain and step size selection method are presented
in Table 3, while the comparison of relative solve rates is
depicted in Fig. 8. While Section III-D revealed relative
improvements in solve rates, the overall rates remained below
50% for most cases. The introduction of random restarts
significantly increased the solve rates for all robots, withmost
achieving solve rates greater than 50%. The Jaco robot was
an exception due to its unique wrist arrangement. Variable
step sizes continue to play a crucial role in enhancing solve
rates. SD, BB1, and BB2 methods did not show advantages
when combined with random restarts. Gradient-based step
sizes like RGN and GS displayed significant improvement
for non-redundant kinematic chains, but less so for 7-DOF
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FIGURE 9. Relative solve rates SRrel across different kinematic chains using damped inverse kinematics algorithms with various step size
selections.

TABLE 4. Average solve rates across all non-redundant kinematic chains for various IK algorithms with variable step sizes. Top performing rates for each
algorithm are highlighted in bold.

TABLE 5. Average solve rates across all redundant kinematic chains for various IK algorithms with variable step sizes. Top performing rates for each
algorithm are highlighted in bold.

chains. In contrast, cyclic alternation (ALT) and random
approaches (URAND and NRAND) significantly improved
solve rates across all kinematic chains. In particular, the
NRAND method achieved the highest improvements for
all robot models, with solve rates exceeding 90% for the
UR10 and Sawyer kinematic chains and showing substantial
increases in all other chains.

G. EVALUATION OF VARIABLE STEP SIZES WITH VARIOUS
INVERSE KINEMATICS ALGORITHMS
The performance of variable step sizes was evaluated
with various inverse kinematics algorithms, including DLS,
MDLS, GDLS, and LM. As these algorithms depend on
the selection of appropriate damping factors and additional
parameters, multiple combinations were tested, as indicated
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TABLE 6. Comparison of average iterations required for convergence with various step sizes across different IK algorithms.

TABLE 7. Average computation time in seconds for each IK algorithm across different step sizes.

in Table 1. The best results obtained from all combinations
are reported in this section. The relative solve rate for each
kinematic chain, step size, and IK method is shown in Fig. 9.
Regardless of the chosen IK approach, a performance trend
similar to that observed with the PINV method is found with
the damped IK approaches. In particular, NRAND exhibited
the best performance among all variable step sizes, enhancing
solve rates for all kinematic chains. This demonstrates the
effectiveness of randomly selecting step sizes within a normal
distribution centered on α = 1.0.
Tables 4 and 5 present the average solve rates for non-

redundant and redundant kinematic chains, respectively.
Among non-redundant robots, the Levenberg-Marquardt
method achieves the best performance, significantly bene-
fiting from variable steps, as reflected in the 80% relative
solve rate for the JACO robot. On the contrary, PINV shows
the lowest average solve rate, while MDLS, already largely
benefiting from random restarts, receives the least advantage
from variable steps. For 7-DOF chains, most IK methods
reflect a similar trend, with slight variations in average solve
rates. The NRAND method achieves the best performance,
followed by the URAND approach. Generally, all IK
approaches experience an approximate 9% improvement in
the solve rates when combined with NRAND. In contrast,
SD, BB1, and BB2 methods either maintain or significantly
reduce solve rate performance, likely due to a high probability
of becoming stuck in local minima at each restart. Random
step size methods are more effective in avoiding this issue.

H. COMPUTATIONAL PERFORMANCE
The computational performance was evaluated in terms of
the number of iterations and computational time required for
successful runs. Table 6 summarizes the average number of
optimization iterations needed to find a solution across all
kinematic chains. For the constant case, DLS required the
fewest iterations, while PINV required the most. The impact
of variable step sizes varied, with SD having the highest
average number of iterations and BB1 the lowest. Cyclic
alternation and random approaches increased the number

FIGURE 10. Average computation time in seconds across all robot
kinematic chains for different step size strategies.

of iterations by approximately 50% to 80% compared to
the baseline case. However, this additional computational
demand could be offset by the solve rate improvement
demonstrated in previous sections.

Table 7 presents the corresponding average computation
time for each step size and IK algorithm, and Figure 10
shows the average computation time for each step size when
considering all the IK algorithms evaluated. The best average
computation time under constant step sizes was achieved
with GDLS and LM approaches, around 20 ms, while PINV
exhibited the highest time, about 30 ms. The use of randomly
selected step sizes increased the average computation time
by approximately 50%, with times ranging from 27 to 47ms.
Nevertheless, given the potential for further optimization
using faster compilers (e.g., C++), it is expected that a
suitable performance for real-time control (>500Hz) can be
readily achieved.

IV. CONCLUSION
This study has explored the impact of step size selection
for Jacobian-based inverse kinematics (IK) methods for
robotic manipulators. Although constant step size approaches
are common, they often face limitations in convergence
speed and overall efficiency. To overcome these drawbacks,
we proposed and evaluated variable step size strategies that
include gradient-based dynamic selection, cyclic alternation,
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and random sampling. Our experimental analysis, conducted
on various manipulator kinematic chains with 6 and 7 degrees
of freedom, demonstrated the significant advantages of
variable step sizes. Furthermore, we extended our evaluation
to include various iterative Jacobian-based IK methods
beyond the conventional Jacobian pseudoinverse, such as
Damped Least Squares (DLS), Minimum Damped Least
Squares (MDLS), Gaussian Damped Least Squares (GDLS),
and Levenberg-Marquardt (LM) approaches. Our results
showed a substantial improvement in solve rates achieved
by employing random step sizes, particularly those derived
from a normal distribution. This enhancement was further
enhanced by integrating random restarts. Future work will
aim to adapt these findings to multiobjective IK scenarios,
where precise parameter selection is crucial for performance.
We also plan to refine and enhance our approach to improve
its efficiency and robustness for practical robotic applica-
tions. Additionally, we will further analyze computational
complexity, stability of convergence, and sensitivity to
step size parameters. Variable step sizes are applicable in
numerous sectors to boost both efficiency and accuracy. For
mobile robot path planning, these step sizes can facilitate real-
time modifications in response to environmental changes.
Within machine learning, especially during the training of
deep neural networks, employing variable step sizes can
accelerate convergence and help bypass local minima in
gradient descent processes. Moreover, these techniques can
be combined with optimization methods such as line search
or trust region strategies to dynamically fine-tune step sizes.
This study demonstrates that employing variable step sizes
can lead to more effective and reliable outcomes in Jacobian-
based inverse kinematics for robotic manipulators.
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