
Received 22 May 2024, accepted 15 June 2024, date of publication 24 June 2024, date of current version 1 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3418016

Enhancing Efficiency in Privacy-Preserving
Federated Learning for Healthcare:
Adaptive Gaussian Clipping With
DFT Aggregator
MUHAMMAD AYAT HIDAYAT , (Graduate Student Member, IEEE),
YUGO NAKAMURA , (Member, IEEE), AND YUTAKA ARAKAWA , (Member, IEEE)
Department of Information Science and Technology, ISEE, Kyushu University, Fukuoka 819-0385, Japan

Corresponding author: Muhammad Ayat Hidayat (muhammad.971@s.kyushu-u.ac.jp)

This work was supported by Japan Science and Technology Agency (JST), PRESTO, Japan, under Grant JPMJPR21P7.

ABSTRACT Machine learning’s exponential growth has transformed healthcare, with Federated Learning
(FL) playing a pivotal role. Despite its significance, FL is vulnerable to privacy attacks. In response,
researchers have integrated differential privacy (DP) into FL. Nevertheless, incorporating DP introduces
challenges such as increased total communication costs and computational overheads due to the introduction
of noise. This drawback renders FL with DP less viable for healthcare systems, characterized by
numerous low-resource devices and network bandwidth constraints. To overcome this limitation, we propose
integrating a Discrete Fourier Transform (DFT) aggregator post-noise addition to transform the gradient
generated by local training before sending it to the central server. This process reduces the gradient
size and provides rudimentary encryption. The evaluation results reveal the superior performance of our
proposed method, demonstrating an enhanced accuracy ranging from 0.2% to 2% compared to existing
differential privacy techniques, including RDP, DP-SGD, ZcDP, LDP-Fed, and DP-AdapClip. Our approach
substantially reduces the total communication costs (ranging from 6% to 43% across different privacy
budgets) with faster training times in healthcare datasets such as the PIMA Indian database and Breast Cancer
Histopathology Images.

INDEX TERMS Federated learning, differential privacy, adaptive Gaussian clipping, healthcare.

I. INTRODUCTION
The field of machine learning (ML) has undergone a
remarkable surge in growth in the past decade, resulting
in substantial progress across a multitude of technologies
and applications. Particularly in healthcare systems, ML has
played a pivotal role in transforming the landscape of
patient care and medical research. Within the realm of
ML, one noteworthy approach is Federated Learning (FL),
which has emerged as a significant paradigm. FL empowers
the training of machine learning models across numerous
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distributed devices without centralizing sensitive data. This
innovation is particularly crucial in healthcare, where the
privacy and security of medical data are paramount. In the
FL framework, a collaborative network of clinicians develops
their own local learning model using their respective
medical data. These individual models generate incremental
updates before being subsequently transmitted to a central
coordinating node. This decentralized approach ensures that
each clinician retains control over their data governance and
privacy requirements, aligning with the stringent regulations
governing healthcare information [1]. While FL advocates
for data privacy, it remains susceptible to attacks that can
diminish or destabilize model accuracy. A prevalent attack
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is known as a ‘‘poisoning attack’’ to distort the model
by introducing corrupted training data. This action renders
the server incapable of distinguishing data sources from
authorized clients [2]. Furthermore, other types of attacks
can be executed within the FL framework. The ‘‘model
reconstruction attack’’ [3] involves monitoring and recording
all communication between clients and the server, which
is then used to reconstruct the client’s local model. The
‘‘GAN-based inference attack’’ identifies user inputs on the
server and selectively sends global updates to an isolated
client [4]. Another attack, the ‘‘inferringmembership attack,’’
seeks to exploit gradients from the SGD algorithm to access
information related to the training process [5]. Given the
multitude and diversity of these attacks, FL alone may
not be sufficient to safeguard the data used in model
training under certain circumstances. In these cases, many
researchers have applied the principle of differential privacy
to improve privacy measures in Federated Learning. This
involves introducing random noise into the model gradient
to modify the original value before transmitting it to a central
server for aggregation.

Simply adding noise to a model without optimization
inevitably reduces its accuracy. The Adaptive Gaussian
Clipping Differential Privacy (AGC-DP) method, discussed
in our previous research [6], offers a solution to improve
the trade-off between privacy and model effectiveness.
By incorporating Privacy Loss Distribution (PLD), dynami-
cally adjusting privacy parameters based on data complexity,
and optimizing data sampling through Poisson sub-sampling,
AGC-DP outperforms other DP algorithms in terms of model
accuracy. However, we noted that AGC-DP incurs elevated
total communication costs, which often lead to higher
latency. This latency can be detrimental in critical healthcare
scenarios where timely data processing is essential.

Lowering communication costs is particularly beneficial
for healthcare facilities, as it enables real-time synchroniza-
tion of patient records across different locations. This ensures
that healthcare providers have the most current informa-
tion for better decision-making. Therefore, in this paper,
we extend our previous work on AGC-DP by introducing
a Discrete Fourier Transform (DFT) to encrypt and reduce
the size of the gradient generated from local training before
adding noise to it. This compressed noisy gradient is then
sent to a central server for aggregation, reducing the gradient
size sent to the central server and thereby lowering total
communication costs. We also evaluate the system using
healthcare datasets, such as the PIMA Indian diabetes dataset
and Breast Cancer Histopathology CT Images, which contain
sensitive medical information. This evaluation aligns with the
system’s purpose of safeguarding such sensitive data. Our key
contributions can be summarized as follows:

1) Enhanced Gradient Compression: We introduced a
Discrete Fourier Transform (DFT) aggregator to reduce
the gradient size and implement basic encryption
on AGC-DP. We applied DFT after local training

and then added noise to the compressed gradient
before sending it to the central server. This approach
significantly decreases the total communication cost
while enhancing security by protecting the gradient
before transmission to the central server.

2) Comprehensive Evaluation: We conducted in-depth
simulations of Enhanced AGC-DP using two distinct
healthcare datasets. Through rigorous comparison with
other DP methodologies, we assessed accuracy, total
communication cost, and CPU time to demonstrate the
effectiveness of our enhancements.

The structure of this article is outlined as follows. Section II
introduces the related work on implementing secure FL in
healthcare. In Section III, we describe the features related to
our proposed method, including a system overview and threat
model. Section IV presents our proposed method, including
the description of the detailed process sequentially. Section V
provides a detailed description of the datasets used for the
learning process. Section VI describes the model detail used,
including layers and activation type. Section VII explains
the simulation parameters, specifically the environment and
simulation scenario. Section VIII presents the simulation
results and discussion. In Section IX, conclusions and future
work are presented.

II. RELATED WORK
A. PRIVACY-PRESERVING FEDERATED LEARNING
In FL, client devices refrain from sending raw data to the
central server, opting instead to exchange only the model’s
gradients. This protocol protects the raw data, ensuring it
remains exclusively stored on local devices, thus bolstering
the security and privacy of FL. However, despite clients
transmitting only model gradients to the central server,
research, such as [7], has demonstrated that these gradients
can still be utilized to reconstruct the local model and deduce
information about the training dataset. To tackle this issue,
various strategies have emerged.

One approach, Homomorphic Encryption (HE) [8], utilizes
the ElGamal algorithm to encrypt local gradients before
sending them to the central server. However, the application
of HE may face problems, especially with the complex
models often encountered in deep learning, as encrypting
many layers used in such models can introduce signifi-
cant computational overhead. Conversely, another strategy
employs blockchain technology [9], leveraging blockchain
and secure global aggregation methodologies to safeguard
against potential attacks from malicious edge devices and
servers. Nonetheless, storing data continuously on the
blockchain could lead to increased storage demands, while
integrating complex blockchain technology could increase
computational overhead.

Differential Privacy (DP) offers another solution by
injecting random noise into the released information to distort
the original values. In the realm of FL, several studies have
explored DP implementation methods, including [10], which
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utilizes Renyi differential privacy to prevent privacy leaks
from the FL-MAC as discussed in the paper. DP-SGD [11],
which adds noise based on the proportion of the clipping
norm to the gradient updates, and ZcDP [12], which employs
zero-concentrated differential privacy (ZcDP) to achieve a
tighter privacy guarantee, thereby reducing the amount of
noise added to the model compared to other methods with
the same DP assurance.

There are other approaches, such as LDP−Fed [13], which
use local differential privacy (LDP) based on the local device
privacy budget and using utility-aware privacy perturbation
to prevent uncontrolled noise from overwhelming the FL
training algorithm in the presence of large, complex model
parameter updates. The evaluation of the work shows that
it achieved improved accuracy but did not show how
efficient the method was in terms of communication and
computational overhead, and DP-AdapClip [14] which is
an approach that simplifies the training of neural networks
in federated learning through user-level differential privacy.
Instead of using a fixed clipping norm for each user’s model
update, this work proposes setting it dynamically based on a
quantile of the update norm distribution, adapting to different
tasks. This eliminates the need to fine-tune the fixed clipping
hyperparameters, making the process much more efficient.

Another approach is presented in [15], which is also
an extension of [6], as well as our previous work. This
approach utilizes DCT-pruned weights to compress gradients
using a dynamic compression ratio. The compression ratio
is determined based on the device’s resource availability,
including processor and memory capacity. The primary
distinction between our proposed method and [15] lies in
how to manipulate the model weights. In the DCT-pruned
weight approach, insignificant coefficients produced from the
Discrete Cosine Transform (DCT) of the model weights are
first pruned or removed and thenmasked before adding noise.
This process involves identifying and discarding coefficients
that contribute minimally to the representation of the model,
thus reducing the overall size of the weight matrix. On the
other hand, in this work, we employ Discrete Fourier
Transform (DFT) and rotation techniques to manipulate
the model weights. Specifically, we utilize the DFT to
transform the model weights into the frequency domain,
where rotations are applied before noise is added to enhance
the privacy and security of the gradients. Another difference
is that we implement [15] in a cloud environment and
resource-constrained device (edge device) like Raspberry Pi.
So, we specifically designed the method to fit the lower
resource in an edge device, different from the work presented
in this article, which focuses on healthcare applications that
may use high image resolution, which is not really the kind
of data used in edge devices.

B. PRIVACY-PRESEVING FEDERATED LEARNING IN
HEALTHCARE
The implementation of privacy-preserving federated learning
in the healthcare system is commonly utilized, given the sen-

TABLE 1. Feature comparison between related work and proposed
method.

sitive nature of healthcare data, which includes confidential
information such as patient records and medical diagnoses.
Data protection represents one of the main challenges in
the healthcare system. Several studies have implemented
privacy-preserving federated learning, such as the work
by [16], which employs traditional homomorphic encryption
to encrypt model updates from local IoT devices. This data
is then collected in a fog node and sent to the central
server for aggregation and decryption. However, the use of
encryption, as demonstrated in works like [17] and [18],
incurs a high computational overhead. Particularly when
using longer encryption keys, even if encryption is only
performed once during the learning process.

Another work is [19], which combines differential privacy
to ensure the privacy of the data and blockchain to record
all user activity in the system to ensure transparency. Even
though the evaluation results show that the method has
better resource consumption (memory and CPU), it is unclear
how much total communication cost is generated from
this method. Even though network latency is mentioned,
it solely depends on the network speed and environment.
There is also [20], which combines differential privacy,
Secure Multi-Party Computation (SMPC), and Homomor-
phic Encryption (HE) for model updates to providemaximum
privacy, mitigating potential data leakage risks. However, the
combination of these features can have a very high impact on
the computational overhead and total communication costs.
Even though the method is 10% more efficient in terms
of computational overhead than the state-of-the-art method,
it is not clear how much of the total communication costs is
affected by this method, which is one of the weaknesses of
differential privacy in this context. The summary of related
work and the feature comparison of our proposed method can
be seen in Table 1.

III. PREELIMINARIES
In this section, we describe the general features that constitute
our proposed method. We begin by discussing the features of
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our previous work (AGC-DP) and the infrastructure of our
system, including an overview of the system and the threat
model.

A. ADAPTIVE GAUSSIAN CLIPPING DP(AGC-DP)
AGC-DP is a strategy designed to enhance the security of
Federated Learning by incorporating varying levels of noise
into the model’s gradient by perturbing its original values.
The variable noise levels in AGC-DP are created through the
following components:

1) PRIVACY LOSS DISTRIBUTION (PLD)
In AGC-DP, the Privacy Loss Distribution (PLD) establishes
a stringent privacy guarantee. The PLD measures the
logarithmic ratio between the likelihood of observing an
outcome given different inputs. For two discrete distributions,
µup and µlo, the privacy loss at an outcome o ∈ sup(µup)
(meaning o is within the support ofµup, the set of all possible
values with non-zero probability) is defined as follows:
Definition 1: The PLD of involving µup and µlo, referred

to as PLD µup/µlo, represents a distribution on RU∞, where
y ∼ PLDµup/µlo is obtained by sampling o ∼ µup and setting
y = Lµup/µlo (o). Mathematically, this is expressed as:

Lµup/µlo(o) := ln
(

µup(o)
µlo(o)

)
(1)

AGC-DP utilizes the Gaussian mechanism to generate
noise. This mechanism is characterized by a Gaussian (or
normal) random variable with a mean (µ) and a standard
deviation (σ ). The likelihood of a Gaussian random variable
assuming a specific value is described by its probability
density function (PDF). The PDF for a Gaussian random

variable at a point x is given by: x = 1
σ
√
2π
× e

(x−µ)2

2σ2 .
Where µ denotes the mean of the distribution, indicating

its central tendency, and σ represents the standard deviation,
which measures the spread or dispersion of the distribution.
The function exp denotes the exponential function. In the
context of the Gaussian mechanism used in differential
privacy (DP), noise is added to the output of a function to
ensure the privacy of individuals in the dataset is preserved.
The amount of noise is typically scaled according to the
sensitivity of the function. To introduce the concept of scaled
sensitivity, a new variable, 1̃, is defined as 1̃ = δ(f )/σ . Here,
1(f ) represents the sensitivity of the function f , indicating the
maximum change in f due to the modification of a single data
point. σ represents the standard deviation of the Gaussian
noise being added. The noise generated by the Gaussian
mechanism follows a normal distribution, often standardized
as N (0, 1), signifying it has a mean of 0 and a standard
deviation of 1. This standardization is critical as any Gaussian
distribution can be transformed into the standard normal
distribution through normalization. Mathematically, this is

represented as:

ln


1

σ
√
2π
× e−x

2/2

1

σ
√
2π
× e−(x−1̃)2/2

 = 1̃

2
.(1̃− 2(x)) (2)

Here, the natural logarithm of a ratio compares the
probability density function (PDF) of a standard normal
distribution N (0, 1) at point x with and without an additional
noise term (1̃). (1̃ − 2(x)) represents half of the scaled
sensitivity (1̃), indicating howmuch the function’s sensitivity
contributes to the noise level. (1̃ − 2(x)) represents the
difference between the scaled sensitivity (1̃) and twice
the observed value (2(x)). This difference captures the
discrepancy between the scaled sensitivity and the observed
value and their influence on the distribution. By utilizing the
above formula, AGC-DP can analyze the impact of noise
addition on the Privacy Loss Distribution, which is crucial for
determining the amount of noise to be added to the gradient.

2) SUB-SAMPLING
AGC-DP also incorporates a subsampling method to enhance
privacy protection, employing the Poisson sub-sampled
technique with a sampling probability of q. This method
randomly selects individual data points to be included in
a sub-sampled dataset independently, each chosen with a
probability of q. The mechanism’s output is subsequently
generated based on this sub-sampled dataset. In this process,
the Privacy Loss Distribution (PLD) is computed for each
mechanism (including noise addition through Gaussian
distribution and data subsampling) employed at AGC-DP, and
their convolutions are analyzed alongside an evaluation of
the divergence of the ϵ-hockey stick. This divergence metric
indicates how closely the mechanism aligns with the desired
privacy level, measuring the discrepancy between the actual
and ideal privacy loss distributions in DP.

In the context of DP, mechanisms often operate within
datasets where data points can be added or removed, such
as during data collection or when individuals request data
deletion. The addition of a data point to the dataset can
potentially increase privacy loss by introducing additional
sensitive information, while the removal of a data point
may also impact privacy loss by altering the dataset’s
composition. Taking into account both addition Lµ/v′ and
removal Lµ′/v adjacency, the privacy loss functions for the
Poisson sub-sampled mechanism are represented as:

Lµ/v′ = log(1− q+ q · e−Lµ/v(o) ) (3)

Lµ′/v = − log(1− q+ q · eLµ/v(o) ) (4)

3) ADAPTIVE CLIPPING
AGC-DP integrates adaptive clipping as part of its opera-
tions. In this regard, AGC-DP employs the initial clipping
threshold, referred to as C0, based on the target unclipped
quantile UC . This threshold establishes the limit beyond
which noisy data points are clipped to safeguard privacy
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while upholding data utility. During the training phase, UC
gradually decreases over time. This decay in UC affects
C by influencing its value. Specifically, as UC decreases,
indicating a lower tolerance for unclipped data points, C is
adjusted accordingly to maintain the balance between privacy
protection and model utility. This process can be defined as:

Cj = UCt−1 · (1− r)t (5)

(Cj) represents a clipping threshold, where (1 − r)
represents the decay factor determining how quickly the
threshold decreases over time t . If the threshold is initially
high, meaning r is small, then less noise is added, leading to a
slower decrease in the threshold. Conversely, if the threshold
is initially low, meaning r is large, more noise is added,
leading to a faster decrease in the threshold. The decay of
the target unclipped quantile every 20 iterations corresponds
to the term UCt−1, where the t − 1 indicates that the value of
the unclipped quantile decays over time.

B. SYSTEM OVERVIEW
For the system’s architecture, we consider a general Feder-
ated Learning (FL) system, illustrated in Fig.1, comprising
a server and K clients. Each client is denoted by ki, where i
ranges from 1 toK , and each client possesses a local database
Dki. The server aims to iteratively train a model using data
from K -associated clients over T steps.

In our proposed system, the process starts with the central
server’s program setting up the global model as w0. The next
step involves determining the number of participating clients
and establishing the noise level (S) to be injected into the
gradient. Each client’s program then updates its local model
(wt ) and preprocesses the dataset for training purposes. Once
ready, the client’s program initiates the training process to
generate its local model. Following this, the system applies
the Discrete Fourier Transform (DFT) aggregator to the
model gradient, converting it into a 1D rank tensor and
rotating it to increase randomness. This produces ckt , which is
subsequently added with noise determined by the previously
calculated value of S. Following this, the client’s program
transmits the gradients with added noise, represented as
ĉkt , to the server. The server’s program aggregates these
gradients, which are subsequently subjected to an inverse
Discrete Fourier Transform (DFT) to create an updated
parameter for adjusting the global model. After completing
the update process, the program shares the global model that
has been updated with the clients, initiating the subsequent
iteration round, which continues until t = T .

C. THREAT MODEL
For the threat model, we assume that the central server
operates honestly. It accurately aggregates all uploaded gra-
dients of the local model, ensuring no intentional omissions.
Furthermore, clients show no interest in the private data of
other clients and refrain from seeking further insights from
the collaborative models. Our threat model can be defined as
follows:

1) Privacy leakage. Local clients and central servers
cannot conduct inference attacks directed towards
individual clients for exchanging gradients in order to
reconstruct their local model or training datasets.

2) External adversaries. External adversaries cannot
manipulate data within the local client to introduce
false information that could disrupt the model’s
learning process. However, they can eavesdrop on the
transmitted data or gradients sent from the client to the
central server, potentially enabling them to reconstruct
training datasets.

IV. PROPOSED METHOD
In this section, we explain the steps of our proposed method
in detail. As shown in Fig.1, our proposed method consists
of nine steps: 1) Initialization, 2) Preparation for local
training, 3) Privacy loss calculation, 4) Local training, 5)
Implementation of the Discrete Fourier Transform (DFT)
aggregator, 6) Noise addition, 7) Aggregation, 8) Inverse
DFT aggregator, and 9) Global model update. In this section,
we provide a detailed explanation of each process.

A. INITIALIZATION
In this phase, the server program will set up a global
model, referred to as w0. The central server and all clients
collaborate to determine an initial weight range based on prior
knowledge, which helps improve the model’s convergence
during training. Using this range, the server initializes
w0. The central server then randomly distributes w0 to
the participating clients for local training. This random
distribution is crucial to avoid bias or favoritism towards
specific clients by the central server during the training
process.

B. PREPARATION FOR LOCAL TRAINING
During this phase, we set up all the necessary parameters
for the training process. The first parameter defined was the
base noise multiplier (bnm), which influences the amount of
noise added to the local model on each client. Additionally,
we established the number of base clients per round (bcpr).
Furthermore, we determined the values for target epsilon ϵt
and target delta δt . These values have a significant impact on
the privacy parameters and play a role in controlling the level
of privacy protection in the subsequent stages of the process.

C. PRIVACY LOSS CALCULATION
Like [15], we also used the Privacy Loss Distribution (PLD)
defined in AGC-DP [6] to compute the privacy loss (ϵ),
as outlined in Equations (3) and (4). The PLD generates
PL(ϵ), clients per round (cpr), and noise multiplier (nm),
as shown in lines 1 to 5 of Algorithm 1. The computed
ϵ from PLD is then compared to the predefined target
privacy (ϵt ). This target privacy determines the desired level
of privacy protection for the system (lower values indicate
higher privacy, while higher values imply lower privacy). The
values of cpr and nm will be adjusted based on ϵ until it
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FIGURE 1. Overview of the proposed system.

Algorithm 1 Privacy Loss Calculation
Data: ϵt , δt , bcpr = 50, bnm = 0.5
Result: nm

1 Function GetEps(cpr):
2 nm← bnm
3 nm× = cpr/bcpr

// Calculate privacy loss
4 ϵ = PLDaccnt (nm)
5 return cpr , ϵ, nm
6 Function FindClientNeeded():
7 ep← GetEps(bcpr)
8 if ep[1] < ϵt then
9 return ep;
10 end
11 while True do
12 ls← ep
13 ep← GetEps(2 ∗ ls[0])
14 end
15 return ep

matches ϵt . Once achieved, the appropriate cpr and nm for ϵt
are determined as a reference in lines 7 to 14 of Algorithm 1.
These parameters are then utilized in local training, where cpr
dictates the number of client participation in one iteration, and
nm governs the amount of random noise added to the gradient
after local training.

D. LOCAL TRAINING
In the initial stage of local training, the clipping process
was initiated. During this phase, the target unclipped quantile

gradually diminished, as specified in lines 2 of Algorithm 3.
Alterations to the target unclipped quantile have a direct
impact on the threshold value employed for gradient clipping.
This threshold, in turn, indirectly affects the introduction
of noise into the model gradient at regular intervals,
typically every 20 iterations. Subsequently, the local clients
commenced their training process, utilizing the parameters
generated in stages 1-3. Each client conducted local model
training, denoted as wkt , for a single local epoch to ensure
comprehensive local training. During each local epoch,
the client meticulously processed their entire local dataset.
To streamline and expedite the local training procedure
while avoiding the substantial time delays associated with
multiple local epochs, the client divided the local dataset
into smaller batches. Following this segmentation, the client
applied training to one randomly selectedmini-batch from the
collection of batches, one at a time.

E. APPLY DFT AGGREGATOR
In this phase, the gradient from local training was applied
to the randomized discrete Fourier transform or DFT. The
details of this process are described below.

1) Flattens the gradients: This process converts a multi-
dimensional gradientwkt into a one-dimensional vector.
This operation essentially ‘‘unwraps’’ the gradient,
transforming it into a sequence of elements in a specific
order, as seen in Algorithm 2 line 2-3.

2) Pads the flattened gradients: This process involves
adding zero values to the flattened gradient flt so then
the resulting gradient has an even number of elements.
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Algorithm 2 DFT Aggregator

Data: wkt
Result: ckt

1 Function ClientTrans(wkt ):
Data: flt , padW , cwkt , rw

k
t , dw

k
t , uw

k
t

Result: ckt
2 for each element x in wkt do
3 flt ← Reshape(x, [−1])
4 end
5 foreach element y in flt do
6 if size(y)%2 = 0 then
7 num_zeros← 0
8 end
9 else
10 num_zeros← 1
11 end
12 padW ← Concat([y, num_zeros])
13 end
14 cwkt ← Complex(rl = padW [0], im = padW [1])
15 rwkt ← Rotate(cwkt )
16 dwkt ← FFT(rwkt )
17 uwkt ← Concat(real(dwkt ), imag(dw

k
t ))

18 foreach element j in uwkt do

19 ckt ←
√

size(j)
2

20 end
21 return ckt ;

3) Packs the gradient: This operation transforms the
gradient paddedwith zero padW into a complex-valued
gradient by creating complex numbers. The resulting
complex gradient cwkt will have half as many elements
as the original real gradient. The transformation is
achieved by pairing the real rl and imaginary im values
from the original gradient to form complex numbers
collectively. The complex tensor will have half as
many elements as the original gradient, indicated by
d/2. In other words, if the original gradient had d
elements, the resulting complex gradient would have
d/2 complex numbers. This reduces the size of the
gradient. This process can be seen in Algorithm 2
line 14.

4) Rotating complex gradient coordinates: This process
applies a random phase shift to the individual complex
numbers within the gradients cwkt as defined in
Algorithm 2 line 15. Each complex number consists
of a real part and an imaginary part, and an angle
effectively rotates these two components randomly.

5) Applies the discrete Fourier transform: This process
applies DFT to the cwkt to convert it from the
spatial domain into the frequency domain as seen
in Algorithm 2 line 16. In this context, the DFT is
applied to the complex tensor. It reveals the frequency
components present in the data after the previous
transformations.

6) Unpacks the complex gradient: Unpacks the complex
gradient: This step reverses the process of step 3.
The complex gradient dwkt is converted back into a
real gradient by separating the real and imaginary
components of the complex tensor and concatenating
them back into a real tensor with the length of d. This
process can be seen in Algorithm 2 line 19.

7) Normalizes the gradient: This process divides the
un- pack gradients uwkt as defined in Algorithm 2
line 18-20. This process ensures that the gradient
remains within a desired range or that the magnitude
of the gradient is consistent for the inverse process
on the server. This process will generate the transform
gradient ckt that will be added noise on the next process.

F. NOISE ADDITION
By incorporating adaptive Gaussian clipping, as detailed
in [6], we determined a clipping threshold C by refer-
encing a target unclipped quantile denoted as UC . This
process involved gradually reducing UC every 20 iterations.
AdjustingUC directly impacted the clipping threshold value,
consequently affecting the amount of noise introduced to the
gradient (S) as illustrated in Algorithm 3 in line 2.

Algorithm 3 Noise Applied to the Gradient Locally

Data: ckt
Result: ĉkt

1 – Decrease the desired unclipped quantile;
2 Cj = UCt−1 · (1− r)t ;
3 – Injecting noise into the models gradient;

4 ĉkt = ckt /max(1,
||ckt ||2
S

);

5 –Send the noisy gradient to the central server.;

Subsequently, we introduced noise to the compressed
gradient denoted as ckt , using the computed noise factor S.
To implement the noise mechanism, we utilized a Gaussian
mechanism. This procedure yielded a compressed gradient
with the incorporated noise, represented as ĉkt , as illustrated
in Algorithm 3 in line 4. Following this, the gradient
was transmitted to the server for further steps, including
aggregation, inversion, and the updating of the global model.

G. AGGREGATION
During this phase, the server received the compressed noisy
gradient ĉkt . Subsequently, the server conducted gradient
aggregation, following the procedure outlined in lines 14-
16 of Algorithm 4. The aggregation process produces
the updated parameter, denoted as wt , representing the
parameter values at a specific iteration or time step during
the optimization process. These updated parameters are
obtained by aggregating ĉkt from participating clients. The
parameter wt will be employed for the inverse Discrete
Fourier Transform (DFT) aggregator.
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H. INVERSE DFT AGGREGATOR
This process was the inverse of the DFT aggregator; the step
aimed to restore the original gradient transformed in the DFT
aggregator process. The detailed steps of this process can be
described as follows:

Algorithm 4 Inverse DFT and Model Update
Data: wt
Result: ow

1 Function ServerTrans(wt):
Data: oc, oi, oir
Result: ow

2 foreach element o in wt do

3 os← o ∗
√

2
d

4 end
5 foreach element g in os do
6 or ← Reshape(g, [−1])
7 end
8 oc← Complex(real = or [0], imag = or [1])
9 oi← IFFT(oc)

10 oir ← InverseR(oi)
11 ow← Concat(real(oir ), imag(oir )) return ow;
12

13 – Server Aggregation
14 for k ∈ k1, k2, . . . , kn,K do
15 wt ←

∑T
t=1

nk
n c

k
t ;

16 end
17 – Inverse transformation
18 ow← ServerTrans(wt);
19 – Global model update
20 Wt ← Wt−1 − n∇g(ow) ;

1) Scaling: This step starts by reversing the scaling
step, which involves multiplying each element in the
gradientwt by a scaling factor. In this case, it multiplies
the tensor by 1√

d
2

to normalize it. This process can be

seen in the Algorithm 4 line 2-4.
2) Reshaping: This step reshapes the scaled gradient

os into a two-row matrix with a flexible number of
columns as seen in Algorithm 4 line 5-7. This process
effectively reverses the flattening operation in the DFT
aggregator process.

3) Complex Packing: this step repacks the real-valued
gradient or into a complex data type, reversing the
operation of unpacking it into real and imaginary
components.

4) Inverse Fourier Transform (IFFT): This applies
the inverse Fourier transform (IFFT) to convert the
complex gradient oc from the frequency domain back
to the time or spatial domain, effectively reversing the
forward Fourier transform. This process can be seen in
Algorithm 4 line 9.

5) Random Inverse Rotation: This process reverses the
random rotations introduced in the DFT aggregator

process in the client by applying the inverse rotation
operation to oi. This random inverse rotation has the
same parameter as the previous one used in random
rotation. To reverse the random rotations, it typically
needs access to the same random rotation parameters
used in the forward transformation.Without knowledge
of these parameters, accurately inverting the rotations
is challenging or impossible. Implementing random
rotation ensures that sensitive information remains
protected. This process can be seen in Algorithm 4
line 10.

6) Real-Imaginary Concatenation: This process con-
catenates the real and imaginary components into
a complex gradient ow as defined in Algorithm 4
line 11, effectively reversing the separation of real and
imaginary parts.

I. UPDATE GLOBAL MODEL
This phase commences following the inverse operation,
which calculates the reverse gradient of ow. This inverted
gradient is then utilized to update the global model W ,
as indicated in Algorithm 4 at line 20. This process generated
an updated global model Wt . Subsequently, this updated
global modelWt is distributed to all participating clients and
will be used for the next iteration in the learning process. The
detailed algorithm of our proposed method can be found in
Algorithm 5.

Algorithm 5 Overall Algorithm

1 Program SERVER
2 - Initialization of global model w0
3 for t|t1|t2|tn . . . ..T do
4 - Inverse Transform and Model Update
5 Wt ← Algorithm 4;
6 end
7 return cpr, nm,w0,Wt ;
8 end
9 Program CLIENT
10 – Privacy Loss Calculation
11 S ← Algorithm 1
12 wkt ← Local Training
13 – Gradient Transformation with DFT Aggregator
14 ckt ← Algorithm 2
15 – Adaptive Gaussian Clipping DP
16 ĉkt ← Algorithm 3
17 return ĉkt
18 end

V. DATASETS
We tested our proposed framework on two datasets: the PIMA
Indian Diabetes dataset and Breast Cancer Histopathology
images. These two datasets are of different sizes and have
distinct characteristics, which are described below:

88452 VOLUME 12, 2024



M. A. Hidayat et al.: Enhancing Efficiency in Privacy-Preserving Federated Learning for Healthcare

1) PIMA Indian Diabetes Dataset1. The Pima Indian
Diabetes Dataset, originally obtained from the National
Institute of Diabetes and Digestive and Kidney Dis-
eases, provides information about 768 women living
near Phoenix, Arizona, USA. This dataset includes data
about eight factors believed to influence diabetes, along
with the corresponding classifications. It is organized
into 9 columns and 768 rows, with 500 entries repre-
senting non-diabetic individuals and 268 representing
diabetic individuals. The classification outcome vari-
able is binary, using 0 (indicating a negative diabetes
test) and 1 (indicating a positive diabetes test).

2) Breast Cancer Histopathology (BCH)2. The dataset
comprises 162 whole-mount slide images of Breast
Cancer (BCa) specimens scanned at 40xmagnification.
From these images, a total of 277,524 patches measur-
ing 50 × 50 were extracted, with 198,738 being IDC
negative and 78,786 being IDC positive.

VI. MODELS
For each client, we used a local convolutional neural network
model.We also applied a convolutional neural network for the
Global model. Different models are used in the PIMA Indian
Diabetes Dataset and Breast Cancer Histopathology. Below
is the description of the model used in this paper.

1) Model for PIMA Indian Diabetes Dataset: The
model used for this type of dataset was a feedforward
neural network comprised of an input layer and two
hidden layers with 6 and 3 neurons, respectively, all
using sigmoid activation functions, as well as an output
layer with a single neuron and sigmoid activation.
The Glorot Normal weight initialization method was
employed for all layers. Notably, the output layer
incorporates L1 and L2 regularization with specific
strengths (l1 = 0.0001 and l2 = 0.01).

2) Model for Breast Cancer Histopathology Dataset:
The model for this dataset consisted of four convolu-
tional layers with 32, 64, 128, and 128 filters of size
3 × 3, respectively, each followed by a rectified linear
unit (ReLU) activation function and max-pooling with
a 2×2 pool size. Dropout layers with a rate of 0.25were
inserted after each max-pooling layer. Subsequently,
a flattening layer converted the 2D feature maps into
a 1D vector, followed by a fully connected dense layer
with 128 units and ReLU activation. Another dropout
layer with a rate of 0.5 was added to reduce overfitting
further, and the final output layer consisted of two
neurons with sigmoid activation.

We used the above model for the different evaluation sce-
narios and implemented it for all the state-of-the-art methods
used as comparators, including the proposed method.

1https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
2https://www.kaggle.com/datasets/paultimothymooney/breast-

histopathology-images

TABLE 2. Detail of simulation hyperparameter.

VII. SIMULATIONS
A. SIMULATION ENVIRONMENT
The simulation was conducted on a computer equipped with
an 11th Generation Intel Core i9-11900K CPU, 128 GB of
RAM, and an NVIDIA GTX 3070 graphics card with 8 GB
of VRAM. The computer ran the Ubuntu 20.04 LTS operating
system. The simulation platform included Python 3.8 and
Tensorflow 2.8.3, with Tensorflow Federated 0.22.0 serv-
ing as the framework for Federated Learning (FL), and
Tensorflow Privacy 0.8.0 being utilized as the privacy
library.

B. SIMULATION SCENARIOS
In our evaluation, we utilized a simulation to compare
our proposed method with the other algorithms previously
employed in Federated Learning (FL), including DP-SGD,
RDP, ZcDP, LDP-Fed, and DP-AdapClip. We assessed the
differences among the five algorithms and our proposed
approach in terms of model accuracy, total communication
costs, and computational complexity. Our simulation process
encompassed two distinct scenarios to provide a comprehen-
sive analysis.
• Scenario 1. We evaluate our proposed method and
five other algorithms using different datasets. For the
privacy budget, we set ϵ = 2.0 and δ = 1e-05. For the
dataset, we used the PIMA Indian Diabetes dataset and
Breast Cancer Histopathology datasets. We iterated the
scenario for 100 communication rounds.

• Scenario 2. We evaluate our proposed method and five
other algorithms using the same datasets as scenario 1.
The difference lay in the privacy budget used. In this
scenario, we used ϵ = 2.5 and δ = 1e-05. We also
iterated this scenario using 100 communication rounds.
The detailed simulation hyperparameters are listed in
Table.2.

VIII. RESULTS AND DISCUSSION
In this section, we present and discuss the results obtained
from the simulation process. In particular, we have
engaged in an analysis of the results in terms of
accuracy, total communication costs, and computational
complexity.
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FIGURE 2. Global model accuracy of proposed method compare to other DP algorithm.

TABLE 3. Detail of simulation results on model’s accuracy.

A. MODEL ACCURACY
In Fig.2, we can see that our method achieves higher model
accuracy compared to other methods in both scenarios 1 and
2. While the accuracy improvement in the Breast Cancer
Histopathology datasets may seem modest, it is notable
that our approach outperforms all state-of-the-art methods
in the PIMA Indian Diabetes datasets. Furthermore, the
findings indicate that our method achieves faster model
convergence than all state-of-the-art methods in the Breast
Cancer Histopathology datasets, regardless of whether the
value of ϵ is higher or lower. Specifically, our method reaches
convergence within 20 communication rounds. In contrast,
the other state-of-the-art methods require 40 communication
rounds to converge, except for DP-SGD at ϵ = 2.5, which
converges in the same time frame as our proposed method.

B. TOTAL COMMUNICATION COSTS
We also evaluated the total communication costs incurred by
each method. To assess this, we introduced the Aggregated
Data (AD) variable, which represents the tensors returned by

each client to the server (upstream data) after local training.
The size of this parameter was measured in Gigabytes (GB)
for the Breast Cancer Histopathology dataset and Kilobytes
(KB) for the PIMA Indian Diabetes dataset. Fig.4 shows that
our proposed method results in significantly lower total com-
munication costs compared to other state-of-the-art methods
in both scenarios for the Breast Cancer Histopathology and
PIMA Indian Diabetes datasets. Additionally, for the PIMA
Indian Diabetes datasets, our method’s total communication
costs do not increase substantially beyond 80 communication
rounds. In contrast, methods like RDP, DP-SGD, and ZcDP
consistently show increasing communication costs with each
round. Although LDP-Fed and DP-AdapClip initially have
lower total communication costs than our method, they
exhibit exponential increases beyond 80 rounds, eventually
surpassing our proposed method.

Based on Table 4, our proposed method has a communica-
tion efficiency advantage compared to another state-of-the-art
method, even when evaluated using more extensive datasets
and complex models in additional relation to different
privacy parameters. We also observed an increase in total
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TABLE 4. Detail of simulation results on total communication cost.

TABLE 5. Detail of simulation results on total training time in (Seconds).

FIGURE 3. Total communication cost of proposed method compared to other DP algorithms.

communication costs when there was a decrease in ϵ. This
increase occurred because as ϵ decreases, more noise is
added to the model gradient, resulting in a more biased
model. To address this challenge, as noted in [6], each
algorithm increases the number of clients participating in the
learning process, which in turn raises total communication
costs. Notably, DP-SGD had the lowest increase in total
communication costs, indicating that it did not significantly
increase the number of participating clients in the learning
process in order to meet a lower privacy budget of ϵ and δ,
unlike other methods.

C. COMPUTATIONAL COMPLEXITY
We measured computational complexity based on the
observed training time for all methods, with lower training

times indicating lower computational complexity and faster
convergence. This has significant real-world implications
for resource efficiency, responsiveness, and feasibility in
privacy-preserving federated learning applications. Our pro-
posed method demonstrated consistently lower training times
than other state-of-the-art methods for both the Breast
Cancer Histopathology and PIMA Indian Diabetes datasets
in Scenarios 1 and 2, as shown in Fig.3. For the PIMA
Diabetes dataset at ϵ = 2.0, our method achieved substantial
reductions in training time compared to other methods. Even
at ϵ = 2.5, our method maintained its efficiency advantage.
Similarly, for the Breast Cancer Histopathology dataset, our
method exhibited significant training time efficiency for both
ϵ values. Our proposed method achieved this efficiency, even
with additional time added, because of the DFT transform
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FIGURE 4. Total training time of proposed method compared to other DP algorithms.

aggregator in the client and inverse process in the server.
The detailed results of the total training time can be seen in
Table 5.

D. DISCUSSION
The simulation results show that accuracy decreases as the
epsilon value decreases from 2.5 to 2.0 across both datasets
due to increased noise making the model more biased.
Despite this, our proposed method demonstrates remarkable
resilience to stricter privacy constraints, exhibiting only
minimal decreases in accuracy. In contrast, other methods
show more pronounced accuracy decreases. For example,
the RDP method shows a substantial drop in accuracy in
both datasets. Similarly, ZcDP, LDP-Fed, and DP-AdapClip
also experience significant decreases, indicating varying
vulnerability to stricter privacy budgets. Our proposed
method and DP-SGD exhibit minimal decreases in accuracy
as epsilon decreases. While DP-SGD performs slightly better
in one dataset, our method performs better in the other.
Overall, DP-SGD demonstrates greater resilience to accuracy
decreases with lower epsilon values in larger and more
complex datasets, such as CT scan images, compared to all
other methods, including our proposed method.

In our study, we carefully selected two privacy budgets, ϵ=
2.0 and ϵ = 2.5, with a fixed δ = 1e-05, as the foundation for
our simulations. This deliberate choice allowed us to assess
the performance of each algorithm under different privacy

budgets, demonstrating the adaptability and flexibility of our
proposed method across various settings and environments.
Furthermore, we extended our evaluation to include practical
healthcare datasets. This step was essential to showcase
the real-world applicability of our proposed system, par-
ticularly within the healthcare sector. Given the prevalence
of resource-constrained devices in healthcare applications,
in terms of both computational power and communication
capabilities, we recognized the need to evaluate the total
communication costs generated by our method and previous
approaches. Our evaluation results provide valuable insights
into the communication burdens imposed by our proposed
method and its impact on network bandwidth in real-world
environments compared to prior methods. This insight is
invaluable for understanding the practical implications and
scalability of our approach within the broader context of
privacy-preserving federated learning in healthcare.

IX. CONCLUSION AND FUTURE WORKS
This paper outlines a novel technique aimed at enhancing the
privacy measures of Differential Privacy (DP) within the con-
text of Federated Learning (FL) for healthcare. Our approach
integrates a DFTAggregator and leverages adaptive Gaussian
clipping. To gauge the effectiveness of our proposed system,
we conducted evaluations using two healthcare datasets:
PIMA Indian Diabetes and Breast Cancer Histopathology,
each operating under different privacy budget constraints.
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Our simulation results demonstrate that our method surpasses
the traditional DP algorithms typically employed in FL,
achieving heightened accuracy. Notably, this enhanced accu-
racy is accomplished while reducing total communication
costs and training time. Through our proposed method,
we enhance patient confidentiality and data security, which
are crucial in modern healthcare. Additionally, our method’s
increased efficiency can streamline processes, improving
patient outcomes and resource allocation. In future work,
we aim to optimize hyperparameters and refine our algorithm
to enable implementation on real devices and for use with
more complex and larger datasets.
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