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ABSTRACT Purpose: We propose an FDK-based neural network to directly learn the filter from an iterative
reconstruction (IR) algorithm and apply the learned filter in the FDK algorithm to obtain a high-quality
CBCT reconstruction.Methods: The FDK algorithm is transformed into a linear expression of several matrix
multipliers and embedded into neural network layers. Then, the FDK-based neural network framework is
built including two fundamental modules and four core network layers. This network model can learn a
filter directly from the iteratively reconstructed CBCT images by cascading the network layers of cosine
weighting, filtering, backprojection, and leaky rectified linear unit and setting filter as the only trainable
parameter. Preliminary and simulation studies performed on abdominal CT datasets are conducted to explore
the correctness and effectiveness of the learned filter. Then, the head and neck CT data and Catphan phantom
are utilized to demonstrate the generalization performance of the learned filter. Results: Preliminary study
shows that the learned filter is consistent with the target filter, and the mean absolute difference is around
0.001. Compared with conventional FDK, the FDK-based neural network shows a better image quality
with the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) increasing by 67% and 6%,
respectively. In terms of the line-pair slice in the Catphan phantom, the SSIM and PSNR are improved by
13.75% and 42.78%, respectively.Conclusions: The FDK-based neural network can reconstruct high-quality
images by directly learning a filter from the label images and provides a new perspective on solving the
time-consuming problem of IR methods.

INDEX TERMS CBCT iterative reconstruction algorithm, CBCT FDK algorithm, neural network, learnable
filter.

I. INTRODUCTION
Traditional three-dimensional reconstruction algorithms for
cone-beam computed tomography (CBCT) are mainly
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divided into two categories: iterative reconstruction (IR) and
analytical reconstruction (AR). IR leverages multiple for-
ward projection and backprojection operations to constantly
narrow the difference between calculated and measured pro-
jections to generate accurate reconstructed images. Many
IR methods have been developed for image regularization,
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such as total variation (TV) [1], [2], nonlocal regularization
methods [3], [4], and low-rank models [4]. IR is of good
image quality, but the reconstruction speed is generally slow.
Conversely, AR represented by the Feldkamp-Davis-Kress
(FDK) algorithm [5] is well explained and fast. The con-
ventional FDK reconstruction includes operations of cosine
weighting, ramp filtering, and distance-weighted backprojec-
tion, where the ramp filter is used to eliminate the blur effect
of backprojection. The filter plays an important role in the
FDK algorithm and determines the image quality of the FDK
reconstruction in most cases. Filters with different frequency
attributions may lead to distinguishable image quality [6],
[7]. Marinus et al. [8] proposed a computationally efficient
numerical algorithm for computing a reconstruction filter that
provided decent CT reconstruction across a broad range of
scenarios. Yuuki et al. [9] designed a modified Shepp-Logan
filter with high-frequency enhancement and performed it on
the CBCT projections of two skull phantoms. The spatial
resolution of the periodontal ligament space was substantially
improved. However, the above methods are not flexible to
manually optimize the filter weights according to different
scenarios.

Deep learning (DL) methods can break through the lim-
itations of traditional algorithms and bring better flexibility
via automatic training. Some literature reviews have sum-
marized and sorted out the existing applications of DL
in medical CT image reconstruction, and made reasonable
speculation and elaboration on the possibility of its future
development [10], [11], [12], [13]. Relevant studies can be
divided into three categories. The first is the DL-based image
post-processing from image domain to image domain. For
example, with the good performance of a convolutional neu-
ral network on image feature extraction, DL-based methods
are applied to transform the limited-angle CT images into
full-angle CT images [14], sparse-view images into full-
view images [15], [16], and low-resolution CT scans into
high-resolution reconstruction [17]. The second is DL-based
reconstruction directly from the projection domain to the
image domain. Researchers have proposed many novel deep
neural networks by introducing state-of-the-art DL methods
into CT reconstruction, such as DEER [18], iCT-Net [19],
LEARN [20], DRONE [21], andMAGIC [22]. The above two
categories are concentrated on improving the image quality
or highlighting the region of interest through a well-trained
deep neural network at the cost of computation complexity
and poor mathematical interpretability.

The last category is to combine the conventional recon-
struction algorithms with DL methods. Chen et al. [23]
proposed a new CT image reconstruction framework named
AirNet by fusing analytical and iterative algorithms with
a deep neural network. Zhang et al. [24] proposed a new
DL-based model, MetaInv-Net, for sparse-view CT image
reconstruction with the backbone network architecture built
by unrolling an iterative algorithm. Würfl et al. [25] proposed
the FBP neural network for limited-angle CT reconstruction.
They mapped the FBP algorithm to the layers of a neural

network, and the classic CT reconstruction of the parallel-
beam, fan-beam, and cone-beam was realized at a learnable
level. Wang et al. [26] further improved the performance of
the FBP neural network by adding the encoding and decoding
network called U-Net [27] into the image domain. This new
type of DL reconstruction framework has become popular
in recent years with its simplicity and interpretability. How-
ever, one critical issue needs to be pointed out. The FBP
neural network [25] was applied to a limited angle problem,
showing an effective restoration of missing data by training
the Parker redundant weights [28]. The learning rate related
to filter weights is set to zero and unchangeable during the
whole training process, which makes the neural network pay
no attention to the dominant influence of the filter on the
reconstructed image quality. Research on utilizing the neural
network to learn a filter to achieve high-quality analytic
reconstruction is limited.

Considering the fact that FDK is fast and TV-based iter-
ative methods are slow but with better quality, a neural
network was designed to learn the filter in an FDK-based
network to improve the image quality, so that image qual-
ity can be improved without increasing reconstruction time.
Specifically, in this study, an FDK-based neural network
framework is built to learn a filter directly from the iteratively
reconstructed CBCT images by cascading the operations of
cosineweighting, filtering, and backprojection and setting the
filter as the only trainable parameter. The high-quality images
reconstructed by the TV regularized IR algorithm based on
the Alternating Direction Method of Multipliers [29], [30]
(ADMM-based TV) are regarded as the label of the network.
Our work is mainly carried out around two points: leveraging
the power of the neural network to break through the defi-
ciency of manually designed filter weights and providing a
new perspective to solve the time-consuming problem of IR
methods.

The remainder of this work is organized as follows:
Section II first explains how to build the FDK-based neu-
ral network by introducing the conventional FDK algorithm
used in CBCT imaging and then describes the datasets used
in the study. Section III shows the representative recon-
structed images and related evaluation metrics in the study.
Sections IV and V present the discussion and conclusion,
respectively.

II. METHOD
A. WORKFLOW OF THE FDK-BASED NEURAL NETWORK
The framework of our FDK-based neural network including
two fundamental modules and four core network layers is
illustrated in Fig. 1. The FDK-based neural network cascades
cosine weighting layer, filtering layer, distance weighted
backprojection layer, and leaky rectified linear unit (Leaky
ReLU) [31] activation layer to perform FDK reconstruction
in a learnable way. In the training process, the projection
after logarithmic transformation is first weighted by the
cosine weighting layer to properly eliminate the influence of
cone angle formed by the distance and angle between the
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FIGURE 1. FDK-based neural network framework. The reconstruction filter in the training process is initialized as the ramp filter (blue dotted line).
When the preset convergence condition is satisfied, the learned filter (red solid line) is saved and applied to the FDK reconstruction.

voxel and the X-ray source. Then, Fourier transform (FT)
is applied to the weighted projection, the filtering opera-
tion is implemented by multiplying FT weighted projection
with a one-dimensional filter in the frequency domain, and
the inverse Fourier transform (IFT) is applied to obtain the
filtered projection. Next, the filtered projections at differ-
ent scanning angles are backprojected along the opposite
direction of the X-ray to get the reconstructed images.
As the output is physically defined as a linear attenuation
coefficient, the Leaky ReLU activation layer with a leaky
parameter 0.15 is used to constrain the non-negative nature
of the reconstruction to some extent. The filter weights are
the only trainable parameters, which are initialized with a
projection-dependent ramp filter. The other initial weights
directly originate from the FDK algorithm and maintain con-
stant values during the training process. The neural network is
trained by propagating the analytical gradients of these layers
and updating the filter weights when the training process is
finished. Finally, the learned filter is saved and applied to
replace the ramp filter of the FDK algorithm to achieve the
CBCT reconstruction in the testing phase.

B. FDK-BAESD NEURAL NETWORK
The schematic diagram of FDK reconstruction is shown in
Fig. 2, where the x, y, and z axes form the world coordinate
system. The FDK algorithm is given by:

f (r, ϕ, z) =
1
2

2π∫
0

D
D− s

+∞∫
−∞

D
√
D2 + l2 + ẑ2

g (l, ẑ, β) h
(
l ′ − s

)
dldβ

(1)

FIGURE 2. Coordinate diagram of FDK reconstruction.

where (r , ϕ, z) denotes three-dimensional coordinate in the
polar system and z refers to the coordinate along the rotation
axis. D denotes the Euclidean distance from the X-ray source
to the center of the detector, and s is the Euclidean distance
from the reconstructed point to the virtual detector. Generally,
the virtual detector is located in the center of rotation and
parallel to the actual detector, which simplifies the analysis
and implementation of the algorithm. g(l, ẑ, β) is the CBCT
projection produced by the object f(r , ϕ, z); h(l) is the con-
volution kernel of the one-dimensional row-wise ramp filter;
D/

√
D2 + l2 + ẑ2 and D/D − s are the cosine weighting

factor of the incidence angle of cone-beam and the distance
weight of cone-beam backprojection, respectively; and l and ẑ
denote the coordinates in the horizontal and vertical direction
of the considered detector pixel, respectively.

To map the FDK algorithm into a neural network frame-
work, the whole reconstruction procedure of the CT imaging
system is described as a discrete linear expression, so that the
above reconstruction process can be represented by several
matrix multiplier operators and embedded into a neural net-
work. The derivation from the acquisition of projection g of
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an object x can be described as:

Ax = g (2)

where A is the system matrix describing the geometry of the
imaging system. The reconstruction can be obtained by:

x = A−1g (3)

where A−1 denotes the inverse system matrix. In terms of
the CBCT system, we assume that the x=[x1, x2, . . . , xI ] and
g=[g1, g2,. . . ,gJ ] are I -dimensional and J -dimensional vec-
tors, respectively, the system matrix A is a non-square matrix
with the shape of I×J , in which the inverse transformation is
unable to be taken directly. Consequently, theMoore–Penrose
generalized inverse matrix A+ is introduced to replace A−1

and rewrite Eq. (3) as:

x = AH
(
AAH

)+

g (4)

where AH is the conjugate transpose of system matrix A, also
called adjoint projection matrix, which can be implemented
as the backprojection operator in the study. According to
the analytical filtered backprojection approach, the opera-
tor (AAH )+ corresponds to convolution between the cosine
weighted projection with the ramp filter. Then, considering
the FDK reconstruction algorithm given by Eq. (1), Eq. (4)
can be rewritten as:

x = AH · K ∗ (Wcos · g) (5)

where the acquired projection g multiplies the pixel-wise
cosine weights Wcos and then makes a convolution oper-
ation between weighted cone-beam projections and one-
dimensional ramp filter kernel K along the l-direction.
Finally, the backprojection via the adjoint projection matrix
AH is used to obtain the reconstruction x. The transformation
of the reconstruction process into matrix operators makes
FDK-based neural network strongly interpretable.

The FDK-based neural network framework provides two
fundamentalmodules and four core network layers to perform
cosine weighting and filtered backprojection to reconstruct
images. In the network, a cone-beam geometry module
is defined by the detector shape, detector resolution, vol-
ume shape, volume resolution, scanning range, number of
projections, source-to-detector distance, and source-to-axis
distance. Then, a circular trajectory module constructs the
scanning trajectory according to the geometric attributes and
generates a group of projection matrices to describe the
whole imaging process. We construct the network layers by
embedding the C++ and CUDA-based FDK algorithm into
the TensorFlow platform. By specifying these layers that
implement the operators Wcos, K, and AH , the FDK recon-
struction is mapped to a neural network directly. Specifically,
the operator Wcos is modeled as a two-dimensional multi-
plication layer, called the cosine weighting layer, where the
input tensors correspond to the projection after logarithmic
transformation. This layer uses the cosine function of the inci-
dence angle to weight the pixels in projection, projecting all

ray vectors to the central ray direction. The number of weights
is consistent with the total pixel number of the detector and
equal to the number of nodes in this layer. The operator
K implements the convolution operation within the Fourier
frequency domain to avoid the high computation complexity
in the spatial domain, where the FT and IFT are the layers
straightforwardly provided by the TensorFlow framework.
Then, the one-dimensional filter is realized as the weight of
an element-wise multiplication layer, where the filter size is
equal to the spatial length of the detector along the vertical
axis and equal to the number of nodes in this layer. In a word,
the filter layer consists of the FT layer, IFT layer, and multi-
plication layer, which takes the cosine-weighted projections
as input tensors. The filtering layer is expected to adjust the
frequency distribution of the projection, eliminating the latent
blur effect of backprojection.

Compared with the direct conversion from the projection
domain to the image domain by the fully connected layer,
which leads to a sharp increase in the number of parameters
in the whole network model, we choose to directly imple-
ment the backprojection operator AH as a kernel function
inspired by Syben et al.’s package in TensorFlow [32]. With
the help of the CMake tool, the corresponding C++ code
functions are packaged and compiled into a dynamic link
library for external Python function calls, so as to cascade
with the cosine weighting layer and filtering layer within
the TensorFlow platform. This backprojection layer leverages
the projection matrices obtained from the circular trajectory
module to reconstruct the filtered projection in a voxel-driven
manner. Moreover, a texture interpolation mode is provided
for memory management of the GPU to interpolate the dif-
ferent measured line integrals.

Finally, it is necessary to limit the negative output in terms
of the reconstruction of linear attenuation values. However,
when training a neural network, the rectified linear unit
(ReLU) function will lead to silent neurons, causing defects
in the updatedweights. The LeakyReLU activation layer with
the leaky parameter 0.15 is used to address the negative output
that should not be set to zero directly, avoiding the ‘‘value
defects’’ and ‘‘dead neuron’’ problem in the training process.

By automatically calculating the gradient vectors of the
loss function corresponding to all network layers, the training
process is continuously well performed to estimate the error
in the image domain and update the filter weights in the
projection domain.

C. ADMN-BASED TV RECONSTRUCTION
In this study, high-quality reconstructed images of ADMM-
based TV are regarded as labels to train an analytical filter.
The objective function of the ADMM-based TV reconstruc-
tion is formulated as:

x = argminx
µ

2
∥Ax − y∥22 + ∥x∥TV (6)

where ||·||2 denotes the 2-norm in the projection vector space.
The first fidelity term is used tomaintain consistency between
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the reconstructed image and the observed value, and the
vector µ is a balance factor for adjusting the weight between
the fidelity term and the second penalty term. Given that
TV is able to maintain the feature edge of the reconstructed
image and suppress artifacts and noise well, the penalty term
is defined as follows:

∥x∥TV =

∫
|∇x (i)| di (7)

where ∇x(i) represents the gradient of image x at voxel i.
In Eq. (6), this problem is difficult to be solved directly due to
the coupling of image gradient and binary norm. Therefore,
an auxiliary variable is introduced to decouple them, that is:

(x, z) = argminx,z
µ

2
∥Ax − y∥22 + ∥z∥1 s.t.∇x − z = 0 (8)

Then, the ADMMmethod is introduced to solve the convex
optimization problem with constraints expressed by:

LA (x, z,w) ≜
µ

2
∥Ax − y∥22

+ ∥z∥1 + wT (∇x − z) +
λ

2
∥∇x − z∥22 (9)

where w is the dual variable or Lagrange multiplier and µ is
a positive weighting parameter corresponding to the penalty
term.

The ADMM-based TV relies on the collaboration between
the fidelity hyperparameterµ and the penalty hyperparameter
λ to reconstruct an ideal image. Generally, when the fidelity
hyperparameter remains unchanged, the larger the penalty
hyperparameter λ is, the smoother the reconstructed images
are. For simplicity, the ADMM-based TV reconstruction with
λ at 0.01 and 10 are separately named as standard TV recon-
struction and smoothed TV reconstruction, whereasµ at 10 is
fixed. A comparison of ADMM-based TV reconstruction
with different penalty hyperparameters is shown in Fig. 3.

D. EXPERIMENTAL MATERIALS
To evaluate the performance of our proposed FDK-based
neural network, two open source CT datasets are collected
in this study [33], [34]. In total, 52 abdomen CT data and
another 10 head and neck CT data are selected and resized
to a resolution of 110 × 512×512 with a voxel size of
0.16 cm×0.078 cm×0.078 cm. We perform the cone-beam
forward projection on the CT image to generate projection
and take the logarithm transformation. For each CT dataset,
360 projection images are generated using a two-dimensional
detector of 512 × 384 pixels with each pixel having a size
of 0.12 cm×0.12 cm. The source-to-detector and source-to-
object distances are 150 cm and 100 cm, respectively. The
angular increment between each projection is one degree.
Finally, the projection and reconstruction counterpart are
regarded as the sample and label with respect to the neural
network, and the original CT data is the corresponding ground
truth.

A preliminary study is conducted to verify whether the
filter learned by the FDK-based neural network is consistent

FIGURE 3. ADMM-based TV reconstruction with different
hyperparameter λ. (a) Standard TV reconstruction, (b) smoothed TV
reconstruction, and (c) corresponding profiles along the yellow line.

with the assumption. The ramp filter is set as the initial
filter, and the FDK reconstruction with hamming filter and
cosine filter is regarded as the label to train the network. The
hamming filter and cosine filter are implemented as:

FilterHamming = FilterRamp ∗ [α + (1 − α) ∗ cos(ω ∗ cutoff )]

(10)

FilterCosine = FilterRamp ∗ cos(
ω

2
∗ cutoff ) (11)

where α is a positive constant value less than 1.0 (usually at
0.54) and ω is the range of spatial frequency. In our study, the
cutoff is set as a hyperparameter to extend the distribution
of the filter curve, where 0.5 is set for the hamming filter
and 2.0 for the cosine filter. During the preliminary study,
we randomly select 20 abdomen projection-reconstruction
datasets to train the FDK-based neural network. These data
are divided into 15 for training, 3 for validation, and 2 for
testing.

Given that the accuracy of the learned filter is verified
in the preliminary study, with the purpose of reconstructing
high-quality images based on the analytical method, we con-
duct a simulation study and re-train the neural network using
the standard TV reconstruction to learn a filter directly from
the reconstructed images. The ADMM-based TV reconstruc-
tion is performed on the 52 abdomen projections to get
the reconstructed images. Then, we divide them into 40 for
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FIGURE 4. Results of the preliminary study reconstructed by (a) ramp filter, (b) hamming filter, (c) learned hamming filter, (d) cosine filter, and
(e) learned cosine filter. (f) Profiles along the yellow line of (a), (b), and (c). (g) Profiles along the yellow line of (a), (d), and (e). (h) Comparison of
filter shape in the frequency domain. Diff_1. and Diff_2 refer to the absolute difference between the learned cosine filter and the cosine filter, and
the learned hamming filter and the hamming filter, respectively.

training, 8 for validation, and 4 for testing. In the general-
ization study, we replace the ramp filter in the conventional
FDK algorithm with the learned filter and perform the gen-
eralization study on the 10 collected head and neck CT scans
and a Catphan phantom to investigate the effectiveness of
the learned filter. Finally, we re-train the neural network by
a new group of label data, the smoothed TV reconstruction,
to learn a new filter to explore the flexibility of the neural
network.

E. IMPLEMENTATION DETAILS
When all the important components of the FDK-based
neural network are in place, the loss function L, mathemat-
ically expressed as Eq. (12), is chosen to train the neural
network.

L = (A · e(−1)((x2+y2)
/
2σ 2)) ∗ (

1
N

∑
i∈I

|y′i − yi|) (12)

where ∗ denotes the convolution operation. Essentially, the
left-hand side of the ∗ is a Gaussian function where the
items A and σ 2 are the pre-setting amplitude and variance,
respectively, and the right-hand counterpart denotes the mean
absolute error, in which y’ and y are the prediction and
reference, respectively. N refers to the total pixel numbers
of the image. Additionally, the Adam optimizer with learning
rate of 5 × 10−4 is utilized for updating the filter weights.
By leveraging cross-validation and early-stopping strategies,
the model is converged after 1085 epochs with a batch size
of 1.

All experiments were implemented on the TensorFlow
platform with Python programming language, and training
was performed on a computer equipped with an NVIDIA

Titan Xp with 12 gigabytes of VRAM and an Intel Core
i7-7700 @ 3.60 GHz with 55 gigabytes of RAM.

F. EVALUATION METRICE
Two common metrics, structural similarity (SSIM) [35] and
peak signal-to-noise ratio (PSNR) [36], are employed for
evaluation. The computation of SSIM is given by:

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(13)

where µx and µy are the mean intensities of two images x
and y, respectively. σx and σy separately denote the standard
deviation value, σxy is the covariance of x and y, and c1 and
c2 are two constants to maintain stability.

The PSNR between reference and testing images with the
same size is defined by:

PSNR = 10 × log10(
f 2max

MSE
) (14)

whereMSE is themean squared error between the two images
and fmax denotes the possible maximum gray value of the
reference image.

III. RESULTS
A. PRELIMINARY STUDY
Fig. 4 shows the results of the preliminary study. Fig. 4(a)
is the FDK reconstruction with original ramp filter.
Figs. 4(b) and (c) refer to the FDK reconstruction with ham-
ming filter and corresponding learned filter, respectively. The
comparison of profiles along the yellow line is shown in
Fig. 4(f). Figs. 4(b) and (c) are consistent with each other,
as well as the corresponding profile distribution. The same
conclusion can be drawn from the network trained by the
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FIGURE 5. Abdominal CT images reconstructed by (a) conventional FDK,
(b) standard TV reconstruction, and (c) FDK-based neural network.
(d) Ground truth.

FDK reconstruction with cosine filter, which is shown in
Figs. 4(a), (d), and (e).

The shapes of the five filters involved in the preliminary
study are shown in Fig. 4(h). In terms of two different filter
label cases, consistent filter shape and distribution can be
learned by the FDK-based neural network after sufficient
training. Moreover, the mean value of the absolute difference
between the learned filter and corresponding label filter is
around 0.001. The good consistency between the learned
filter and the label filter in the preliminary study proves the
accuracy of the FDK-based neural network and demonstrates
the feasibility of applying the learned filter in the FDK
algorithm.

B. PRELIMINARY STUDY
In the simulation study, the FDK-based neural network is
re-trained by the high-quality reconstructed images of the
standard TV reconstruction. The results of an abdominal
image reconstructed by different methods are shown in Fig. 5.
The corresponding slice of the CT dataset is regarded as
the ground truth for comparison. To better visualize the
performance of different methods, we magnify the region
indicated by the red rectangle in Fig. 5. These enlarged parts
are presented in the bottom right corner. As can be seen,
the conventional FDK reconstruction is not ideal for the
restoration of soft tissues and bone structures, suffering from
visible artifacts. By contrast, the trained FDK-based neural
network is consistent with the ADMM-based TV reconstruc-
tion, generating a noticeable improvement compared with
conventional FDK reconstruction. The FDK-based neural
network shows better consistency with the ground truth than
the conventional FDK with respect to the profiles plotted in
Fig. 6(a). Moreover, it is comparable to the ADMM-based
TV. The shape of the learned filter is shown in Fig. 6(b).

FIGURE 6. (a) Profiles along the yellow line of Fig. 5. (b) Shape of the
learned filter in the frequency domain compared with the initial ramp
filter.

TABLE 1. Comparison of PSNR, SSIM, STANDARD DEVIATION, and runtime
in Fig. 5.

Table 1 lists the PSNR, SSIM, and runtime (refers to the
time required for complete 3D reconstruction) of Fig. 5. The
FDK-based neural network gains improvements by 67% for
PSNR and 5% for SSIM compared with the conventional
FDK. Besides, it is remarkably similar to the ADMM-based
TV reconstruction. Additionally, the reconstruction speed of
the FDK-based neural network is nearly 42 times higher than
that of the ADMM-based TV reconstruction.

C. GENERALIZATION STUDY
In this study, we first replace the ramp filter of the conven-
tional FDK algorithm with the learned filter and perform the
generalization study on the collected head and neck CT data
and a Catphan phantom to investigate the potential of the
learned filter. Then, we re-train the neural network with the
smoothed TV reconstruction and observe whether the learned
smooth filter can be effectively applied to the FDK algorithm
to reconstruct the image consistent with the new label, so as
to explore the flexibility of the neural network.
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TABLE 2. Quantitative assessments of different methods in the generalization study.

FIGURE 7. Generalization study on the Catphan phantom. (a),
(e) Conventional FDK; (b), (f) standard TV reconstruction; (c), (g) FDK with
learned filter; (d), (h) Ground truth.

The relevant reconstructions of the head and neck CT data
are shown in Fig. 7. FDK with the learned filter shows good
consistency with the ADMM-based TV and yields a smaller
difference from the reference comparedwith the conventional

FIGURE 8. (a) and (b) are the profiles along the yellow line shown in the
first and second rows of Fig. 9, respectively.

FDK reconstruction. The conventional FDK suffers from
severe boundary ambiguity and distortion of the intubation
at the patient’s trachea marked by the red arrow in Fig. 7(e).
Better performance in recovering the shape and size of the
intubation can be observed in Fig. 7(g). The FDK with the
learned filter also reaches a higher fitting with the ground
truth than conventional FDK reconstruction in terms of the
corresponding profiles depicted in Figs. 8(a) and (b).
The results of the generalization study on the Catphan

phantom are shown in Figs. 9 and 10. The first row in
Fig. 9 is the comparison of the line-pair image reconstructed
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FIGURE 9. Generalization study on the head (the first row) and neck (the
second row) CT data. (a), (e) Conventional FDK; (b), (f) standard TV
reconstruction; (c), (g) FDK with learned filter; (d), (h) Ground truth.

by different methods. The conventional FDK suffers from
severe noise and artifacts as shown in Fig. 9(a), and the
structure of line-pairs is blurred. Although the FDK with
learned filter is still slightly fuzzy, it can restore the structure
basically and maintain good consistency with the standard
TV reconstruction. A comparison of the circular spot slice
is shown in Figs. 9(e)-(h). The conventional FDK cannot
reconstruct these small spots correctly, and some distortion
occurs. However, the FDKwith the learned filter reconstructs
almost all details and avoids the distortion of fine structure,

FIGURE 10. (a) and (b) are the profiles along the yellow line shown in the
first and second rows of Fig. 7, respectively.

thus obtaining a better image quality and resolution than the
conventional FDK reconstruction.

The evaluationmetrics in the generalization study are listed
in Table 2. FDK with learned filter produces better image
quality than the conventional FDK, yielding smaller differ-
ence from the ground truth and eliminating more noise and
artifacts. In the Catphan phantom study, SSIM and PSNR are
improved by 13.75% and 42.78%, respectively. Additionally,
the quantitative results of FDK with learned filter is much
closer to the ADMM-based TV counterpart, which demon-
strates the feasibility of the learned filter method.

For further observation, the penalty hyperparameter λ

is reset at 10 to obtain the smoothed TV reconstruction
to re-train the FDK-based neural network. The abdominal
images reconstructed by differentmethods and corresponding
comparison of profiles are shown in Figs. 11 and 12(a),
respectively. Similar smoothing effect on the texture can
be observed in the FDK with the learned smooth filter
and ADMM-based TV. The corresponding profiles also
show a flatter trend compared with the conventional FDK
reconstruction and the ground truth. In addition, the FDK
with the learned smooth filter demonstrates better perfor-
mance on recovering the shape and boundary of the structure
(magnified region in the red rectangle) than the conventional
FDK. Fig. 12(b) shows the shape of the learned smooth
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FIGURE 11. Reconstruction of abdominal image by different methods.
(a) Conventional FDK, (b) smoothed TV reconstruction, (c) FDK with
learned smooth filter, and (d) ground truth.

FIGURE 12. (a) Profiles along the yellow line in Fig. 11. (b) Shape of the
learned smooth filter in the frequency domain compared with the initial
ramp filter.

filter. Compared with the filter learned from the standard TV
reconstruction, the learned smooth filter presents a narrower
curve distribution.

Table 3 compares the SSIM and PSNR of images in Fig. 11.
The smoothed TV reconstruction and the FDK with the
learned smooth filter get higher PSNR and lower SSIM than
conventional FDK. One reasonable explanation is that the
ADMM-based TV with a large penalty parameter generates a
striking difference from the ground truth, and the structural

TABLE 3. Compares the SSIM and PSNR of images in Fig. 11.

details are less visible, which leads to a lower evaluation
performance than the conventional FDK reconstruction in
terms of SSIM. However, the noise level is reduced by the
smoothing effect. The smoothed TV reconstruction and the
FDK with the learned smooth filter still perform better than
the conventional FDK on the PSNR metric.

IV. DISCUSSION
In this study, we build an FDK-based neural network by
transforming the conventional FDK reconstruction algorithm
into the matrix multiplier operators and embedding them
into neural network layers. With the purpose to learn a filter
directly from the high-quality iterative algorithm, filter within
the FDK reconstruction is set as the only trainable parameter
in the neural network. A preliminary study is conducted to
verify the accuracy and feasibility of the learned filter by
applying hamming filter and cosine filter to FDK reconstruc-
tion to train the FDK-based neural network. The preliminary
study shows good fitting between the learned filter and the
target filter, which is consistent with the comparison of image
slice and profiles. Then, simulation and generalization studies
are performed by training the FDK-based neural network
utilizing theADMM-based TV reconstruction. The FDKwith
learned filter is demonstrated to reconstruct higher-quality
images than conventional FDK, suppressing the distribution
of noise and artifacts effectively. Moreover, the conventional
FDK is not ideal for line-pair and circular spots. Some dis-
tortion and deficiency can be observed in the reconstructed
images, whereas the FDK with learned filter improves the
accuracy of the reconstruction, advancing the spatial resolu-
tion and density resolution to some extent.

The strong advantages of the FDK-based neural network
are its simplicity and interpretability, which are significant to
clinical practice in medical CT imaging. This reconstruction
framework can achieve better performance based on the DL
strategies to train the reconstruction filter. Two representa-
tive related works, the FBPConvNet [37] and CNN-based
BPF [38], utilize a deep convolution neural network to
post-process the images reconstructed by the FBP method
or direct backprojection, achieving good results based on a
previous reconstruction. The FDK-based neural network is
of lower computational complexity and capable of learning a
specific filter directly from the selected label data.

Two other applications of the FDK-based neural network
are discussed as follows. First, it is meaningful to further
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develop the potential of the reconstruction filter by applying
the FDK-based neural network in sparse-view or limited-
angle scenarios, which are not applicable for conventional
FDK reconstruction. We also look forward to verifying its
strong practicability by seeking more high-quality medical
CT images available for network training. Second, as a
heuristic attempt to replace IR method with an analytical
algorithm, this study provides a new perspective to solve
the time-consuming problem with respect to IR. From the
generalization study shown in Section III, compared with
the conventional FDK reconstruction, applying the learned
filter in the FDK algorithm obtain better results indeed, but
there are still relative differences compared with the corre-
sponding ADMM-based TV reconstruction. Moreover, when
we take the smoothed TV reconstruction as the label data to
train the FDK-based neural network, the FDK reconstruction
with the learned filter appears slightly fuzzy in addition to
smoothness. This problem can be solved by introducing addi-
tional deep neural networks, such as the three-dimensional
U-Net [39] and generative adversarial network [40], which
gives credit to the strong scalability of the FDK-based neural
network.

V. CONCLUSION
This study enriched the application of the neural network
in CT image reconstruction. We put forward a new solution
for optimizing the AR filter by directly learning a filter
from the high-quality images, which can maintain the same
level of computational complexity as the conventional FDK
reconstruction, effectively improving the image quality of
reconstruction.
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