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ABSTRACT This work investigates a multi-objective immune optimization approach to solve the general
type of nonlinear multi-objective chance constrained programming without prior noise information. One
such kind of model is first converted into a sample-dependent approximation one, while a sample bound
estimate model is theoretically acquired based on the empirical Bernstein bound, in order to control the
sampling size of random variable. Secondly, a feasibility detection approach with adaptive sampling is
designed to quickly justify whether an individual is empirically feasible. Inspired by the danger theory,
an artificial immune optimization model is drawn in terms of immune response mechanisms in the immune
system, which derives out a multi-objective chance constrained optimizer with small populations and
multiple evolutionary strategies. The computational complexity of the optimizer depends mainly on the
sample bound and the size of memory pool. Comparative experiments have validated that it is a robust,
stable, and effective optimizer with high efficiency while helping for solving complex chance constrained
problems.

INDEX TERMS Multi-objective chance constrained programming, immune optimization, adaptive sam-
pling, danger theory, sample-dependent approximation.

I. INTRODUCTION
Chance constrained programming (CCP) is a typical topic
of stochastic programming, proposed early by Charnes and
Cooper in 1959 [1]. Since its feasible region is usually
nonconvex, it is almost impossible to find the theoretical
optimal solution by means of mathematical programming
techniques. Therein, many researchers made great efforts to
study intelligent optimization methodologies so as to gain the
approximate optimal solution [2], [3], [4], [5], [44], in which
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the concerns on sample bound estimate and constraint han-
dling become extremely important. Generally, when random
variables are with normal distributions, CCP can be trans-
formed equivalently into an analytically deterministic model,
and meanwhile some existing numerical iterative approaches
and intelligent optimization techniques can effectively find
its approximate solution(s) [6], [7], [8]. Conversely, once
such uncertain factors are with unknown distribution infor-
mation or known complex distribution features, several kinds
of approaches, e.g., convex approximation [9], robust opti-
mization [10], scenario approximation [11], sample average
approximation [12], [13], can change CCP models into
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approximation ones, and subsequently intelligent approaches
as a competitive tool can be borrowed to find their approxi-
mate solutions.

Multi-objective chance-constrained programming (MCCP)
as a provoking topic of CCP is to simultaneously optimize
multiple conflicting sub-objectives under the limits of chance
constraints. Conventional optimization techniques face great
challenges, due to the difficulties of individual importance
discrimination and constraint handling. This activates us to
successively probe into advanced multi-objective stochas-
tic optimization techniques for MCCP problems from the
viewpoint of intelligent optimization. The main concern
includes three points: (i) high-effective individual dominance
in stochastic multi-objective environments, (ii) high-efficient
individual sampling, and (iii) advanced evolutionary models.
The main challenge consists in that, besides MCCP’s feasible
region is usually nonconvex, the stochastic factors perturb
seriously a search procedure to identify those non-dominated
solutions. This results that only few achievements have been
reported in the literature [14], [15], and consequently many
studies on MCCP still remain open. Especially, new multi-
objective chance-constrained optimization techniques are
desired, due to wide engineering application background.
Based on such consideration, our main contribution in the
present work includes three points: (i) a sample bound
estimate model is theoretically acquired to control the max-
imal sampling size of random variable, (ii) a feasibility
detection approach is designed to handle MCCP’s chance
constraints, (iii) a new artificial immune optimization model
and subsequently a related adaptive racing sampling-based
multi-objective immune optimization approach (ARSMIOA)
are developed, inspired by the danger theory in immunology.

II. RELATED WORK SURVEY ON CCP
A. CHANCE CONSTRAINT-HANDING
Usually, chance constraints are represented by probabilistic
equalities or inequalities. When their random variables are
with known distribution information, they can be equivalently
changed into analytic constraints. For example, Deb et al.
[16] converted this kind of random variable into a normally
distributed random variable, and hence the chance constraints
were handled by single- or decouple-loop optimization tech-
niques. Unfortunately, such constraint transformation will
cause high computational cost; especially, when a CCP
problem includes multiple chance constraints, it will be
equivalently transformed into a nested programming problem
with multiple sub- optimization models and accordingly, the
high computational complexity occurs inevitably. Thus, such
model transformation is not available generally, and hence
chance constraint approximation handling becomes popular.
Model approximation is a usual way to transform CCP into
a sample average approximation (SAA, [12]) model, and
some state-of-the-art static optimization approaches can be
adopted to solve it. However, SAA requires that any candidate
solutions be with the same large sample size [8], which
necessarily causes high computational complexity. Thereby,

it becomes extremely important to discuss sample-allocation
or adaptive sampling approaches [17], [18] for which the
sample size of a random variable depends on the quality of
each candidate solution, namely excellent candidate solutions
can attach large sample sizes and conversely those poor ones
can only be assigned few samples. Additionally, in order to
clearly know the relation of approximation between CCP and
the related SAA, studies on sample bound estimate have been
well done. Luedtke and Shapiro et al. [12], [19] investigated
the relation between solutions for single-objective chance
constrained programming and the related SAA in terms of
the probability theory or probabilistic inequalities, by which
some valuable sample bound estimate models were discov-
ered. Their valuable sample bounds can be used to control
the maximal sampling sizes of random variables.

B. INTELLIGENT OPTIMIZATION ON CCP
As we mentioned above, when random variables are with
known distribution information, CCP can be converted into
a static model and later solved by classical optimization
approaches. Conversely, usually it can only be replaced by
approximation models, and handled by intelligent optimiza-
tion techniques [8], [20], [21], [22], [23], [43]. For instance,
Liu et al [8] investigated its approximation model by replac-
ing its chance constraints and objective function with RBF
networks, and subsequently the conventional steady genetic
algorithm was adopted to seek its approximate solution.
Poojari et al. [20] developed two similar steady genetic
algorithms with a static sampling rule for a general type of
single-objective CCP, after designing two scoring functions
used for evaluating the quality of individual. Luedtke [23]
suggested an improved branch-and-bound method for solv-
ing a type of single-objective CCP problem with discrete
distribution, finite support and stochastic multi-sided con-
straints. One such approach is effective in certain limits,
but its application scope is narrow. Additionally, CCP has
also been well investigated in real-world engineering appli-
cation, since a large number of engineering problems can be
modeled into CCP models [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33]. This also motivates researchers to study
effective and efficient intelligent techniques for seeking their
decision schemes. For example, Tian et al. [32] designed
a hybrid optimization approach to process a disassembly
sequence planning problemwith stochastic factors, after inte-
grating stochastic simulation and RBF networks with genetic
algorithms.

Since multiple conflicting performance indices and chance
constraints, MCCP becomes extremely difficult in finding its
non-dominated solutions. To this point, only a few pioneering
works have been reported in the literature [29], [30], [31],
[32], [33], [34]. Themain concern concentrates on addressing
the problems of individual’s dominance, diversity mainte-
nance, adaptive sampling and population evolution. Liu et al.
[30] developed a multi-objective algorithm to solve a
bi-objective chance-constrained programming problem,
based on sequential optimization, Latin hypercube sampling
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and the idea of parallel processing. Nikokalam-Mozafar et
al. [31] converted a single-allocation hub covering problem
with the variable capacity and uncertainty parameters into
a bi-objective chance constrained programming model with
normally distributed random variables. One such problem is
required to simultaneously minimize the total transportation
cost and the transportation time from an origin to a desti-
nation, solved by a discrete multi-objective invasive weed
optimization approach. Kamjoo et al. [34] designed a MCCP
model which was used to formulate a hybrid renewable
energy system, and coped with it by stochastic simulation-
based NSGA-II.

III. PROBLEM FORMULATION AND TRANSFORMATION
Consider the following nonlinear MCCP problem of the form

MCCP min
x∈D

E [f1 (x, ξ) , · · · , fm (x, ξ)]

s.t.,


pi(x) ≡ Pr {Gi (x, η) ≤ 0} ≥ αi,

gj (x) ≤ 0, hk (x) = 0,
1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K ,

with bounded and closed decision domain D in Rp, x ∈ D,
confidence levels αi, and unknown distributional random
vectors ξ and η in Rq, where fi(., ξ ) is the i-th stochastic
sub-objective function;Gi(., ξ ) is the i-th stochastic constraint
function; gj(.) and hk (.) denote the deterministic constraint
functions;E[.] is the expected operator, namely

E[f1(x, ξ ), . . . , fm(x, ξ )] = (E[f1(x, ξ )], . . . ,E[fm(x, ξ )];

Pr{.} stands for the probability operator. We say that x ∈ D
is a feasible solution if satisfying the above constraint limits.
Introduce the following constraint violation function,

0(x) =
∑
i=1

max
{
αi − Pr{Gi(x, ηi) ≤ 0}, 0

}
+

1
J

∑J

j=1
[max(gj(x), 0)]2 +

1
K

∑K

k=1
h2k (x),

(1)

and define

x ≺ y⇔ E[fi(x, ξ )] ≤ E[fi(y, ξ )]

∧ ∃j, s.t.,E[fj(x, ξ )] < E[fj(y, ξ )]. (2)

Obviously, if0(x) = 0, x is feasible.We give the following
concept of constraint dominance.
Definition 1 ([14]): For given x, y ∈ D, x is said to

constrain- dominate y, i.e., x ≺c y, if one of the following
conditions holds

1) x and y are feasible, and x ≺ y;
2) x is feasible, but y is infeasible;
3) x and y are infeasible, but 0 (x) < 0 (y).
Let {ξ1, ξ2, · · · , ξ l} and {η1, η2, · · · , ηs} be the observa-

tions of random vectors ξ and η, respectively. By the law of
large number, once l and s are sufficiently large, the above

MCCP can be replaced by the following sample average
approximation model (SAAM),

min
x∈D

(
f̂1(x), f̂2(x) · · · , f̂m(x)

)

s.t.,


p̂i(x) ≥ βi, gj (x) ≤ 0, hk (x) = 0,

f̂q(x) = 1
l

∑l
r=1 fq (x, ξ r ),

p̂i(x) ≡ 1
s

∑s
s=1 I (Gi (x, ηs) < 0) ,

1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ q ≤ m,

with 0 ≤ βi < αi, where I(.) is an indicator function,
namely when ‘.’ is true, it takes 1 and 0 otherwise. However,
once l and s are large enough, the computationally expensive
cost will occur necessarily. In order to reduce such high
computational cost and acquire MCCP’s solutions, we in the
present work require that l and s be dynamically determined,
namely each candidate solution x is attached two dynamical
sample sizes of l(x) and s(x) and accordingly, SAAM can
be reformulated by a sample-dependent approximationmodel
(SDAM) below,

min
x∈D

(
f̂1(x), f̂2(x) · · · , f̂m(x)

)

s.t.,



p̂i(x) ≥ βi, gj (x) ≤ 0, hk (x) = 0,

f̂q(x) =
1
l(x)

∑l(x)

r=1
fq
(
x, ξ r

)
,

p̂i(x) ≡
1
s(x)

∑s(x)

r=1
I
(
Gi
(
x, ηr

)
< 0

)
,

1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ q ≤ m.

Audibert [37] intensively investigated the sample estimate
theory of random variable, and acquired some valuable prob-
abilistic inequalities. When random variables X1, X2,. . . and
Xm take values on a non-negative and bounded interval [0,
b], they acquired a probabilistic inequality capable of being
used in controlling the sampling size of a random variable.
In fact, after carefully analyzing the process of proof of the
inequality, we notice that it also holds over a more general
bounded and closed interval, which can be described below.
Theorem 1 (Bernstein Bound Estimate [37]): Let

X1, · · · ,Xt be i.i.d real random variables on [a, b] with mean
µ and b > 0; X̄t and σt denotes their empirical mean value
and variance, respectively. Then, for any given ρ > 0 the
following inequality holds,

Pr

{
|X̄t − µ| ≤

√
2ρσt

t
+

3bρ
t

}
≥ 1− 3e−ρ . (3)

IV. SAMPLE BOUND AND FEASIBILITY DETECTION
Introduce a finite set X in Rp, and define

Xα = {x ∈ X |p(x) ≡ Pr {G (x, η) ≤ 0} ≥ α} , (4)

and

X tβ =
{
x ∈ X |p̂(x) ≡

1
t

∑t

j=1
I
(
G
(
x, ηj

)
≤ 0

)
≥ β

}
,

(5)

with 0 < α, β ≤ 1 and β < α.
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FIGURE 1. Artificial immune optimization model.

Below, we discuss the relation between Xα and X tβ in terms
of Theorem 1, in order to yield a sample bound estimate
which Xα includes X tβ .
Theorem 2: If 0 ≤ β < α, then

Pr
{
X tβ ⊆ Xα

}
≥ 1− 3|X |e−ρ0 , (6)

where ρ0 =
t[(6b(α−β)+2σt ]

18b2
.

Proof. Assume that x ∈ X tβ\Xα . Since p(x) < α, Eqs.(4)
and (5) derive

Pr
{
x ∈ X tβ\Xα

}
= Pr

{
1
t

∑t

j=1
I
(
G
(
x, ηj

)
≤ 0

)
≥ β, x /∈ Xα

}
≤ Pr

{
1
t

∑t

j=1
I
(
G
(
x, ηj

)
≤ 0

)
− E [I (G (x, η) ≤ 0)]

> −(α − β)} . (7)

Take a positive ρ0 satisfying√
2ρ0σt
t
+

3bρ0
t
= α − β. (8)

Hence, Theorem 1 and Eq.(7) imply the following inequality
by defining ρ = ρ0,

Pr
{
x ∈ X tβ\Xα

}
≤ 3e−ρ0 . (9)

Accordingly, Eq.(9) follows

1− Pr
{
X tβ ⊆ Xα

}
= Pr

{
∃x ∈ X tβ , s.t., x /∈ Xα

}
≤

∑
x∈X\Xα

Pr
{
x ∈ X tβ

}
≤ 3|X |e−ρ0 .

(10)

Consequently, the above conclusion is true.
Remark 1: The above theorem derives a lower bound esti-

mate model to be used in estimating the probability of each
chance constraint in MCCP. More precisely, under a given
significance level δ if

t ≥ M̄ ≡
1
ρ0

ln
3|X |
δ

, (11)

then Pr{X tβ ⊆ Xα} ≥ 1− δ.

Remark 2: Under given confidences αi, βi with βi < αi,
let M̄ i denote the lower bound estimate of the i-th chance
constraint in MCCP acquired by Eq.(11). If

t ≥ M ≡ max{M̄ i, 1 ≤ i ≤ I }, (12)

then Pr{X tβ ⊆ Xα} ≥ 1 − δ for all the given chance
constraints in MCCP.

Based on the above lower bound estimate on sample size
in Eq.(12), a feasibility detection approach in the above
algorithm 1 is designed to check whether a candidate solution
x is empirically feasible.
Through the above algorithmic formulation, the computa-

tional complexity of Algorithm 1 is decided by Tk , where m
is updated gradually, where Tk = m0+ (k+1)1, and k is the
maximal positive integer satisfying Tk ≤ M . Additionally,
for two candidates x and y in X we say that x empirically
dominates y or that y is empirically dominated by x if one
of cases (a), (b) and (c) in Definition 1 holds in the case
where the expected sub-objective values and the probabilities
of chance constraints in MCCP for x and y are replaced by
their empirical values.

V. DANGER THEORY
The classical immune theory claims that the immune system
can recognize non-self and self-bacterial materials. Once
one such system includes non-self-materials, it will trigger
a specific immune response and destroy them by immune
learning. This theory has been stricken by a recently birthed
novel immunological theory, Danger Theory (DT) originally
developed by Matzinger [38]. DT differs from self-non-self
discrimination. She points out that an immune response is
triggered only when some organs or cells are destroyed
by some harmful bacteria or apoptotic cells called danger.
Namely, the immune system only reacts to the danger. She
thinks that some auto-reactive processes in the immune sys-
tem are useful and there must be discrimination happening
that goes beyond the self-non-self distinction. She also devel-
ops a danger theory model by inserting a new signal called
signal zero and the danger into the extended two signal
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FIGURE 2. The flowchart of ARSMIOA.

model. In one such model, when some immune cells take
place abnormal apoptosis because of infection or patholog-
ical factors, they activate APCs to create signal two through
discharging signal zero (i.e., endogenic danger signals). Such
a type of signal helps T cells react to the danger, and hence
the adaptive immune response is triggered. It is pointed
out that those bacteria, which does not make immune cells
abnormally die, cannot urge the immune system to elicit any
immune response.

Through the danger theory, the root of which an immune
response occurs consists in that there must be some infected
immune cells to have harmed one or more cells or organs in
bodies. Therefore, we divide immune cells into three broader
classes- infected, unaffected and infectible cells. Usually,
an infected cell can produce a danger region which makes
those cells around it be infected. It is worth mentioning that
this theory has become popular. Although there exist different
opinions amongst immunologists, such theory leads to a wide
way in studying artificial immune systems. Here, an artificial
immune optimization model in Fig.1 above is developed to
help us solve MCCP in Sect.III.

Fig.1 displays an artificial immune model based on the
danger theory, including four functional modules- danger
level detection, co-evolution, genetic drift and memory pool.
The first is to divide a given cell population into three
sub-populations of infected, infectible and unaffected cells.
The second makes those unaffected cells gradually become
better by cloning and affinition maturation, whereas those
infectible cells change their pattern structures by means of
memory cells and unaffected ones. The third admits those
infected cells to take place genetic drift so that they will
be gradually transformed into new unaffected cells. The last

collects the best unaffected cells and updates the memory
pool.

VI. ALGORITHMIC PRINCIPLE AND STATEMENT
As related to SDAM’s optimization model as in Sect.III,
the danger is viewed as SDAM itself. For a given finite set
X composed of real-coded candidate solutions in D, unaf-
fected cells are regarded as those best candidate solutions in
X , namely they are not empirically dominated by other candi-
date solutions in X through Definition 1 in Sect.III; infectible
cells are taken as those candidate solutions in X only empir-
ically dominated by some unaffected cells; infected cells are
treated as those worst cells among which each is empiri-
cally dominated by some infectible cell; memory cells are
taken for the best unaffected cells found until now, i.e., best
solutions acquired. Based on these formulations and Fig.1,
ARSMIOA’s flowchart can be found in Fig.2 above. In this
flowchart, Algorithm 1 is first used to check the empirical
feasibility of cells in the current population. Once there exist
empirically feasible cells, ARRA, proposed by us [39] is
cited to compute their empirical objective vectors. There-
after, the population is divided into three sub-populations
of unaffected, infectible and infected cells, each of which
executes evolution through cloning and mutation. Finally,
a new population is created by non-dominated sorting and
comparison. ARSMIOA can be formulated in Algorithm 2.

In algorithm 2, Step 2 is to decide the maximal sampling
size which limits the bound of sample size of random vari-
able. Step 4 estimates the amount of constraint violation of
each cell by Algorithm 1, by which those empirically feasible
cells found are required to further compute their empirical
objective values and ranks by ARRA [39]. Steps 6 to 8 divide
the current population into three sub-populations with dif-
ferent importance, among which the best sub-population is
required to update the memory pool; these sub-populations
with different evolutionary fashions urge their elements to
discover those high-quality and diverse cells though cloning
and mutation, by which a new population is created after
comparison between cells. The main modules are designed
below.

(a) Evaluation (An,M ). This computes the probability esti-
mate of each chance constraint for each cell in An, depending
on Algorithm 1 with the maximal sample size of M . Once
some cells in An are empirically feasible, they are required to
further compute their empirical objective vectors by ARRA
with the sample size M .

(b) Division (An). This divides An into three sub-
populations, i.e., Bn, Cn and Dn. More precisely, based
on the constraint violations of cells in An, those empirical
feasible cells constitute An1, and others form another sub-
population An2. Subsequently, An1 is segmented into three
sub-populations by the conventional non-dominated sorting
approach [40], i.e., Bn,Cn and An1\{Bn∪Cn}; Bn andCn only
includes those empirically non-dominated cells in An1 and
An1\Bn, respectively. Dn consists of three sub-populations
Dn1, Dn2 and Dn3, where Dn1 is formed by those cells in
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Algorithm 1 Feasibility Detection Approach
Step 1. Input: Candidate solution x, all the constraint conditions in MCCP, initial sample size m0,

maximal sample size M in Eq.(12), and sampling increment 1;
Step 2. i← 1;
Step 3. While i≤ I do
Step 3.1. t ← m0, σt ← 0,D← 0;
Step 3.2. Under sample size t , compute p̂i(x) in SDAM, and set D← p̂i(x);

Step 3.3. If t > M or βi − p̂i (x) >

√
2ρ0σt
t +

3bρ0
t , then return Step 3.8, and Step 3.4 otherwise;

Step 3.4. According to sample size increment 1, calculate
p̂′i(x) ≡

1
1

∑1
r=1 I (Gi (x, ηr ) < 0) ;

Step 3.5. p̂i (x)←
(
p̂i (x)× t + p̂′i (x)

)
/ (t +1) ,D← p̂(x)− D

Step 3.6. σt ← [(p̂i(x)− p̂′i(x))
2
+ iσt + iD2]/i;

Step 3.7. t ← t +1, return Step 3.2;
Step 3.8. i← i+ 1, return Step 3;

Step 4. End while.
Step 5. Compute the amount of constraint violation by replacing pi(x) with p̂i(x) in Eq.(1),

and justify whether x is empirically feasible.

Algorithm 2 Adaptive Racing Sampling Multi-Objective Algorithm (ARSMIOA)
Step 1. Input population size N , initial sampling size m0, memory size Mmax,
threshold σth, sampling increment 1, clonal size c, maximal iterative number Gmax;

Step 2. Decide the maximal sampling size M as in Eq.(12);
Step 3. Set n =: 0, Mset: = φ, and generate An composed of N random cells; // Initialization
Step 4. While n < Gmax do
Step 5. Evaluate all elements in An: Evaluation (An, M ); // cell evaluation
Step 6. Execute division: (Bn, Cn, Dn): = Division(An); // Create sub-populations
Step 7. Update memory pool: Mset =: Update(Mset, Bn); // Memory cell update
Step 8. Perform evolution: // Co-evolution

Step 8.1. (B∗n, C
∗
n ): = Evolution a(Bn, Cn, Mset);

Step 8.2. D∗n: = Evolution b(Dn);
Step 9. Implement population update:
An+1: = Comparison(Bn ∪ B∗n; Cn ∪ C

∗
n ; Dn ∪ D

∗
n); // Population update

Step 10. n =: n+ 1;
Step 11. End while;
Step 12. Output memory cells.

An1\{Bn ∪ Cn}; depending on the version of danger region
in Sect.V, Dn2 includes those empirically infeasible cells in
An2 which their constraint violations are smaller than a given
threshold σth; other cells in An2 constitutes Dn3. Therefore,
Dn = Dn1 ∪ Dn2 ∪ Dn3.

(c) Update (Mset, Bn). This first sends those elements in Bn
intoMset. Second, those identical and empirically dominated
cells in Mset are directly eliminated. Thereafter, if |Mset| >

Mmax, those memory cells with small crowding distances [40]
are deleted.

(d) Evolution a(Bn,Cn,Mset). Each cell x inBn andCn pro-
liferates c and (c-1) clones, respectively; the variants of the
clones of x in Bn execute local mutation, i.e.,

x ′i ← xi + ξ (bi − ai), 1 ≤ i ≤ p;

with uniformly distributed random variable ξ ∈ (−1, 1) and
mutation rate pm(x) = (1 + er(x))−1, where ai and bi are
the lower and upper bounds of xi, and r(x) is the rank of x

acquired by ARRA. Each clone of x in Cn implements the
following polynomial-like mutation with pm(x),

x′← xM + d (z− x), d =

{
(2ς)

1
1+λ − 1, η < 0.5,

1− (2 (1− ς))
1

1+λ , else,

with uniformly distributed random variables ς, η ∈ (0, 1); xM
and z is randomly picked up inMset and Bn∪Cn, respectively.
The mutated clones of cells in Bn and Cn constitute B∗n and
C∗n , respectively. Here, λ denotes the variation amplitude,
usually taking 5.

(e) Evolution b(Dn). Recall Dn = Dn1 ∪Dn2 ∪Dn3 above.
Each cell x in Dn1 produces (c-1) clones, but each element in
Dn2 andDn3 only creates a clone. Each element x inDn1 with
mutation rate 1 performs the Gaussian mutation, but that in
Dn2 mutates by the following fashion,

x′← ξ (xM − x) .
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Additionally, the clones of elements in Dn3 implement
genetic drift with mutation rate 0.5, i.e.,

(x1 . . . , xi, . . . , xp)← (x1 . . . , x ′i , . . . , xp).

Thereafter, all the mutated clones constitute D∗n.
(f) Comparison (Bn ∪ B∗n; Cn ∪ C

∗
n ; Dn ∪ D

∗
n). This is to

acquire a new population of An+1. To this end, let En = B∗n ∪
C∗n ∪ D

∗
n, and cl(x) denotes the set of mutated clones of x in

An. Firstly, all elements in En need to carry out evaluation by
Step 4. Secondly, all clones in B∗n,C

∗
n and D∗n participate in

competition with their parents so as to acquire An+1. In other
words, for each given cell x in An if its best clone y, which is
not empirically dominated by other mutated clones in cl(x),
empirically dominates x, An+1 includes y, and x enters An+1
otherwise.

VII. COMPUTATIONAL ANALYSIS
A. COMPUTATIONAL COMPLEXITY
ARSMIOA’s computational complexity is decided by Steps 5,
7, 8 and 9, for which the conclusion is given below.
Theorem 3: Assume that I , J and K in Sect.III are small.

Then, in the worst case ARSMIOA’s computational complex-
ity is with

O((N +Mmax) log(N +Mmax)

+ N (cp+M2 + c log cN + ITk )).

Proof. For each element in the current population,
Step 5 needs to estimate the probability and the amount
of constraint violation for each chance constraint by
Algorithm 1withO(N (ITk+J+K )). In addition, sinceARRA
is with O(N (M2 + logN )), its complexity is with

O(N (M2 + logN + ITk + J + K )),

where

M2 ≡

(√
2(b−a)
0.05

)2
ln 2N

δ
, (13)

and a and b denote the lower and upper bounds of the stochas-
tic sub-objectives in MCCP in Sect.III. Since the size of the
memory pool is belowMmax, Step 7 is with O((N +Mmax)×
log(N + Mmax)). Step 8 enforces mutation with at most cN
times, as the size of its clones is not beyond cN. Consequently,
its computational complexity is O(cpN ). Further, Step 9 is
with O(cN log cN ). Summarily, since I , J and K are small,
ARSMIOA’s computational complexity in the worst case can
be decided by

Oc = O(N (ITk + J + K ))+ O(N (M2 + logN ))

+ O((N +Mmax) log(N +Mmax))

+ O(cpN )+ O(cN log cN )

= O((N +Mmax) log(N +Mmax)+ N (cp+M2

+ c log cN + ITk )).

Through the above theorem, the complexity of ARSMIOA
is determined by Tk ,N ,M2,Mmax, c and p. However, since
Tk ≤ M , Eqs.(11) to (13) indicate that the complexity is

decided mainly by N , p, c and Mmax. Once N and c are
small enough, ARSMIOA will be with low computational
complexity. Thus, we in the current work require that N and c
be small as possible.

B. PERFORMANCE CRITERIA
Three popular criteria [4] are recalled to execute comparison
between two multi-objective algorithms A and B. Assume
that such two algorithms solve some optimization problem
with one times, and correspondingly they acquire empirically
non-dominated sets P and Q in order.

A1. Coverage rate (CR). This canmeasure the difference of
the qualities of solution sets P and Q by means of the version
of constraint dominance as in Sect. III, given by

CR(A,B) =
|{x ∈ Q|∃y ∈ P, s.t., y ≺ĉ x}|

|Q|
, (14)

where y ≺ĉ x denotes that y empirically constrain-dominates
x by Definition 1. Obviously, 0 ≤ CR(A,B) ≤ 1.
If CR(A,B) > CR(B,A), algorithm A can achieve better
solution search than algorithm B. IfCR(A,B) = 1, the quality
of set P is absolutely superior to that of set Q.

A2. Coverage density (CD). This can measure the distribu-
tional characteristic of solutions in P, defined by

CD =
1

|P| − 1

|P|∑
j=1

(dj − d̄)2,

dj = min
j ̸=i,1≤k≤|P|

{ ∥∥xj − xk∥∥ , xj, xk ∈ P
}
, d̄ =

1
|P|

|P|∑
j=1

dj.

(15)

Eq.(14) indicates that CD takes values within 0 and 1.
If CD=0, all elements in P is with uniform distribution, and
thus if CD is smaller, the distribution of solutions in P is
better.

A3. Coverage scope (CS). This represents the coverage
width of solutions in P, given by

CS = max
1≤j,k≤|P|

{ ∥∥xj − xk∥∥ , xj, xk ∈ P
}
. (16)

If CS is large, set P covers a wide scope, and thus set P is
better when CS is larger.

VIII. EXPERIMENTAL STUDY
Our experiments are implemented on a computer with
CPU/3.50GHz and RBM/3.00 GB by means of Visual C++
platform. The proposed approach, ARSMIOA as in Sect.VI,
is compared against three competitive multi-objective
approaches, namely one non-dominated sorting genetic
algorithm (NSGA-II [40]) and two multi-objective immune
optimization algorithms (MCCIOA [14], NNIA [42]). All the
approaches are executed on seven theoretical multi-objective
chance constrained benchmark problems in Appendix A and
two engineering MCCP problems in Appendix B acquired
by modifying the reported static benchmark problems [41].
It is emphasized that, although designed to solve static
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TABLE 1. Comparison of statistical results for problems CP1 to CP7; the bold color denotes the best result under a given index for a given problem.

multi- objective programming problems, NSGA-II andNNIA
are competitive for MCCP problems when each individual is
attached the same large sample size;MCCIOA is an optimizer
with the strategy of adaptive sampling, specially designed
for MCCP problems. We also emphasize that, apart from
MCCIOA, no other algorithmic achievements with adaptive
sampling have been found for nonlinear MCCP. Among the
three compared algorithms, by experimental trails NNIA
and NSGA-II are with the same population size 100 and

also the same sample size 300 for each individual; NNIA’s
crossover rate and memory size are 0.1 and 100, respectively;
NSGA-II’s crossover and mutation rates are 0.6 and 0.1 in
order. MCCIOA takes population size 60 and memory size
50. Their other parameter settings can be found in their
literatures. In order to ensure the fairness of comparison,
all the approaches terminate their solution search procedures
when the total of their respective evaluations is 5×106, while
each approach executes 100 single runs on each test example.
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FIGURE 3. Comparison of box plots of values on CD and CS for e problem CP1.

FIGURE 4. Comparison of box plots of values on CD and CS for e problem CP2.

FIGURE 5. Comparison of box plots of values on CD and CS for e problem CP3.

A. PARAMETER SETTING
As mentioned in Algorithm 2, ARSMIOA includes five
parameters, i.e., N , m0, σth,Mmax and 1. Theorem 3
shows that N , Mmax decides the computational complexity
of ARSMIOA. if they take large values, ARSMIOA can
ultimately acquire many solutions, and meanwhile its perfor-
mance characteristics can be more clearly found. However,
in such case, its computational cost is large. Thus, N take
values within 5 and 10, and Mmax does so within 60 and
100.Additionally, m0 as an initial sample size influences the

quality of solution search, generally changing within 40 and
50. σth as a danger radius divides an empirically infeasible
population into two sub-populations, usually taking values
within 0.05 and 0.2. c as a clonal size influences the ability
of individual exploitation and the speed of solution search,
taking values within 3 and 10. 1, presented in Algorithm 1
is a sampling increment to influence the speed of feasibil-
ity detection; its value range is usually within 10 and 15.
Additionally, αi and βi, displayed in MCCP and SDAM
in Sect.III respectively are the confidence levels, changing
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FIGURE 6. Comparison of box plots of values on CD and CS for e problem CP4.

FIGURE 7. Comparison of box plots of values on CD and CS for e problem CP5.

FIGURE 8. Comparison of box plots of values on CD and CS for e problem CP6.

within 0.8 and 1. By experimental tuning, we define N=10,
m0 = 30, 1 = 10, c = 3, Mmax = 100, σth = 0.1, αi =

0.2 and βi = 0.19 with 1 ≤ i ≤ I .

B. PROBLEM DESIGN AND ANALYSIS
Zhang et al. [41] developed a suite of static multi-objective
programming problems including 13 non- constrained
multi-objective programming problems UF1 to UF13 and
10 constrained ones CF1 to CF10. In order to sufficiently
examine the performance characteristics of ARSMIOA,

we here modify seven of them (i.e., CP1 to CP7) into MCP
problems, by respectively adding a Gaussian noise with the
standard normal distribution to their respective sub-objective
functions and transforming their constraints into chance con-
straints (See Appendix A). Such MCCP problems are still
named by the same versions as their original ones. It is
worth pointing out that the original problems CP1 to CP7
with strong non-linearity or multi-modality include respec-
tively two sub-objective functions which link up only by
variable x1.
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FIGURE 9. Comparison of box plots of values on CD and CS for e problem CP7.

Among these problems, CP1 has a Pareto front composed
of (2n+1) discrete points; CP2 and CP3 involve in two dis-
connected Pareto fronts, each of which is formed by discrete
points. Other test problems CP4 to CP7 involve in piece-wise
sub-objective functions, and meanwhile their Pareto fronts
consist of extremely complex piece-wise segments. There-
after, each of the above four approaches solves each of the
nine problems with 100 times, while the related experimental
results are used to compare the performance characteristics
of the algorithms.

C. EXPERIMENTAL ANALYSIS
Based on the three test criteria, the above four approaches
acquire their statistical results given in Table 1. Correspond-
ingly, the distributional characteristics of their solutions are
formulated by the box plots in Figs.3 to 6 above and 7 to
9 below.

Table 1 indicates that there exist some distinct differences
between the above approaches with the aspects of solu-
tion quality, solution search stability, solution distribution,
coverage scope and so forth. We can draw the following
conclusions.
Comparison on Solution Quality: The values on FR illus-

trates the above four algorithms have different abilities of
exploiting those regions at which feasible solutions exist.
ARSMIOA can find feasible solutions with a higher prob-
ability than each compared approach for each problem.
It can acquire feasible solutions with probability 100%
for CP2, CP5 and CP7, 98∼99% for CP1 and CP3, and
88∼94% for CP4 and CP6. This hints that its adaptive sam-
pling approaches on objective and constraint handling can
effectively decide the importance of a cell in the current
population, namely such sampling approaches enable the esti-
mates of objective and constraints of each cell to approach the
related theoretical values with increasing iterative number. Its
multiple mutation strategies help those existing cells move
towards the feasible region(s) as possible. We also notice that
by comparison, the three compared approaches can acquire
their feasible solutions with relatively high probabilities for
some test problems but are opposite for others. We emphasize

TABLE 2. Comparison of values on ACD, ACS and FR under different
parameter settings.

a fact that, since any feasible solution can dominate any
unfeasible solutions according to Definition 1 as in Sect. III,
a feasible solution set always covers any infeasible solu-
tion set. Based on this point, those average coverage rates
in columns 3 to 6 in Table 1 expose that the above four
approaches have significantly different capabilities of popu-
lation evolution and noise handling. ARSMIOA can clearly
acquire the best solution qualities for the above examples,
since there are always the following average coverage rela-
tionships for any given test example:

ACR(ARSMIOA, NSGA-II)

≥ ACR(NSGA-II, ARSMIOA),

ACR(ARSMIOA, NSGA-II NNIA)

≥ ACR(NNIA, ARSMIOA),

ACR(ARSMIOA, MCCIOA)

≥ ACR(MCCIOA, ARSMIOA).

The above inequalities can sufficiently illustrate that
ARSMIOA is superior to other approaches with the aspect
of solution quality when solving each test problem, for
which one of the main reasons consists in that Algorithms 1
and ARRA can effectively suppress noisy interference when
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discriminating those high-quality cells from those poor ones
in the current population. For example, for CP7 those non-
dominated sets, found by ARSMIOA cover averagely in
order 88%, 94% and 100% of those obtained by NSGA-II,
NNIA and MCCIOA. Conversely, the latter three approaches
can only get smaller ACR values by comparison with
ARSMIOA. On the other hand, NSGA-II can acquire a better
solution quality than either NNIA or MCCIOA when han-
dling CP 4, CP 5 or CP7, but behaves worse for CP1, CP2
and CP3. When solving CP6, it is superior to MCCIOA only
with the aspect of search effect; NNIA performs well over
NSGA-II for CP 1, CP 2, CP 3 and CP6 as well as MCCIOA
for all the test problems but CP3; MCCIOA outperforms
NSGA-II for CP 1 and CP 2 as well as NNIA for CP3.
Summarily, we can assert that with regard to solution qual-
ity, ARSMIOA behaves best; NNIA is secondary, whereas
MICCIOA performs poor.
Distribution and Coverage Scope: The values on Mean

in CD given in columns 7 and 8 in Table 1 can draw a
conclusion that the above four approaches have distinct solu-
tion distribution characteristics. By comparison against the
compared approaches, ARSMIOA can find some solutions
with relatively uniform distributions for all the test examples,
due to its small means and variances in the table. NNIA
can also obtain better solution distributions than NSGA-II
and MCCIOA for all the test problems except for CP6 and
CP7. The latter two can only get satisfactory solution dis-
tributions for a very few test problems. On the other hand,
the values on St.Dev in CD indicate that ARSMIOA can
always acquire relatively stable solution distribution for any
given test problem in each execution, whereas the compared
approaches cause instable solution distribution for some of
the test problems. Figs.3 (a) to 9(a) show that the solution
distribution of ARSMIOA is relatively uniform for each test
problem and can keep stable for each run. Such figures also
hint thatMCCIOA presents distinctly instable solution search
performance while the phenomenon of fluctuation of its solu-
tion quality is severe. Additionally, NSGA-II also causes
instable solution distribution for CP 1, CP2, CP3 and CP6,
while NNIA does so for CP6 and CP7.

The values on CS, displayed in columns 9 and 10 derive
that all the solutions, acquired by ARSMIOA in each run can
widely spread over the relatively stable non-dominated fronts
for all the test examples except for CP5. This indicates that
ARSMIOA has the capabilities of strong diversity and popu-
lation exploitation. It is pointed out that, whereas ARSMIOA
can only find some solutions with a relatively narrow average
coverage scope by comparison to MCCIOA when coping
with CP5, MCCIOA causes a larger variance on CS and
thus its solution coverage scope is instable. Additionally,
we observe that NNIA and MCCIOA need to make further
improvements on their diversity of population, since their
solution sets acquired for CP1, CP5 or CP6 only cover very
narrow scopes and hence they get easily into local search.
NSGA-II can widely perform solution search because of its

strong exploration. Figs.3 (b) to 9(b) also hint that NSGA-II
and MCCIOA present instable solution search on solution
coverage scope. ARSMIOA’s solution coverage scope keeps
relatively stable for each test problem above. NNIA can
obtain stable but relatively narrow solution coverage scopes
for the test problems.

D. SENSITIVITY ANALYSIS
ARSMIOA includes two crucial parameters (m0, 1) which
directly influence its search effect and efficiency. m0 is the
initial sampling size of handling each chance constraint in
MCCP, while 1 is the sampling increment. Take CP1 for
example. Under different combinations of values on m0 and
1, ARSMIOA’s statistical results are given in Table 2.

Table 2 illustrates that the settings of the two parame-
ters slightly influence ARSMIOA’s solution quality. When
m0 is directly proportional to 1, the values on ACD and
ACS, acquired by ARSMIOA increase totally; in other words,
when m0 and 1 are large, ARSMIOA’s solution distribu-
tion becomes poor but the solution’s coverage scope does
wide. When m0 is conversely proportional to 1, the distri-
bution density and coverage scope of ARSMIOA’s solution
set degrade gradually, namely when m0 decreases and 1

increases, ARSMIOA’s solution quality becomes poor. Sum-
marily, ARSMIOA is not sensitive to the settings of m0 and
1, provided that 40 ≤ m0 ≤ 60 and 5 ≤ 1 ≤ 15.However,
in order to take a trade-off between effect and efficiency, the
two parameters should take values with 40 ≤ m0 ≤ 50 and
10 ≤ 1 ≤ 15.

IX. CONCLUSION
This work concentrates on probing into an adaptive rac-
ing sampling-based multi-objective immune optimization
approach (ARSMIOA) inspired by the danger theory, solv-
ing a challenging and provoking topic in the context of
stochastic programming- nonlinear multi-objective chance
constrained programming with unknown noise distribution.
We first transform one such kind of multi-objective pro-
gramming into a sample-dependent multi-objective chance
constrained programming model which the sampling size of
random variable depends on the quality of each candidate
solution. For a given finite set in the decision space, the
relation of inclusion between theoretically and empirically
feasible solution subsets is studied, and correspondingly a
useful sample bound estimate on sample size is derived, based
on a mean-valued estimate theorem. Once a candidate solu-
tion is required to detect whether to be empirically feasible,
one such estimate can be used to control its maximal sampling
size, which can reduce ARSMIOA’s computational complex-
ity. To effectively execute individual evaluation, a reported
racing-based objective evaluation algorithm (ARRA) with
adaptive sampling is adopted to compute the empirical objec-
tive values of individuals included in a given population;
a new feasibility detection approach is designed to effi-
ciently justify whether an individual is empirically feasible,
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by which the probability estimate of a chance constraint can
be acquired. Thereafter, as related to the danger theory in
immunology, some bio-immune inspirations are borrowed to
develop an artificial immune optimization mechanism and
accordingly, ARSMIOA is developed to solve MCCP prob-
lems. The theoretical analysis demonstrates that ARSMIOA’s
computational cost is decided mainly by N , p and Mmax.
By seven hard MCCP problems, comparative experiments
have illustrated that ARSMIOA is a competitive optimizer
and also performs well over the compared approaches for
the nonlinear multi-objective chance constrained problems
without prior noise information. The sensitivity analysis has
indicated that its crucial parameters only slightly influence
its robustness. Additionally, whereas we do our best to study
how to explore an immune optimization approach for MCCP,
some issues still need to be further studied. For example,
its structures need to be optimized in the precondition of
improving its solution quality, while the stability of its solu-
tion search for the above engineering problems needs to be
further advanced.

APPENDIX
A. CP1

min (f1(x), f2(x))

s.t.,



f1(x) = x1 +
2
|J1|

∑
j∈J1

(
xj − x

0.5
(
1.0+ 3(j−2)

n−2

)
1

)2

,

f2(x) = 1− x1 +
2
|J2|

∑
j∈J2

(
xj − x

0.5
(
1.0+ 3(j−2)

n−2

)
1

)2

,

J1 = {j |j is odd and 2 ≤ j ≤ n } ,
J2 = {j |j is even and 2 ≤ j ≤ n } ,
Pr {(f1+f2−a |sinNπ (f1 − f2 + 1)|−ξ ≥ 0}≥0.8,
ξ ∼ U (1.2, 1.8),N = 10, a = 1,
n = 10, x1, . . . , xn ∈ [0, 1] .

B. CP2

min (f1(x), f2(x))

s.t., f1(x) = x1 +
2
|J1|

∑
j∈J1

(
xj − sin

(
6πx1 +

jπ
n

))2

,

f2(x) = 1−
√
x1 +

2
|J2|

∑
j∈J2

(
xj − cos

(
6πx1 +

jπ
n

))2

,

J1 = {j |j is odd and 2 ≤ j ≤ n } ,

J2 = {j |j is even and 2 ≤ j ≤ n } ,

Pr
{

t
1+ e4|t|

− ξ ≥ 0
}
≥ 0.8,

t = f2 +
√
f1 − a sin

[
Nπ

(√
f1 − f2 + 1

)]
− 1,

ξ ∼ N (1, 0.5), x1 ∈ [0, 1] , x2, . . . , xn ∈ [−1, 1] ,

N = 2, a = 1, n = 10.

C. CP3

min (f1(x), f2(x))

s.t.,



f1(x)=x1+
2
|J1|

4∑
j∈J1

y2j −2
∏
j∈J1

cos
(
20yjπ
√
j

)
+2

 ,

f2(x) = 1− x21 +
2
|J2|4

∑
j∈J2

y2j − 2
∏
j∈J2

cos
(
20yjπ
√
j

)
+ 2

 ,

J1 = {j |j is odd and 2 ≤ j ≤ n } ,
J2 = {j |j is even and 2 ≤ j ≤ n } ,

yj = xj − sin
(
6πx1 +

jπ
n

)
, j = 2, . . . , n,

Pr
{
f2+f 21 − a sinNπ

(
f 21 − f2 + 1

)
− ξ ≥ 0

}
≥0.8,

ξ ∼ N (400, 0.5), x1 ∈ [0, 1] , x2, . . . , xn ∈ [−2, 2] ,
N = 2, a = 1, n = 10.

D. CP4

min (f1(x), f2(x))

s.t.,



f1(x)=x1+
∑
j∈J1

hj
(
yj
)
, f2(x) = 1− x1+

∑
j∈J2

hj
(
yj
)
,

J1 = {j |j is odd and 2 ≤ j ≤ n } ,
J2 = {j |j is even and 2 ≤ j ≤ n } ,

yj = xj − sin
(
6πx1 +

jπ
n

)
, j = 2, . . . , n,

h2 (t) =

{
|t| , t < 3

2

(
1−

√
2
2

)
,

0.125+ (t − 1)2 , else,
hj (t) = t2, j = 3, 4, . . . , n, n = 10.

E. CP5

min (f1(x), f2(x))

s.t.,



f1(x) = x1 +
∑
j∈J1

hj
(
yj
)
, f2(x) = 1− x1 +

∑
j∈J2

hj
(
yj
)
,

J1 = {j |j is odd and 2 ≤ j ≤ n } ,
J2 = {j |j is even and 2 ≤ j ≤ n } ,

yj =


xj − 0.8x1 cos

(
6πx1 +

jπ
n

)
, if j ∈ J1

xj − 0.8x1 sin
(
6πx1 +

jπ
n

)
, if j ∈ J2

,

h2 (t) =

{
|t| , t < 3

2

(
1−

√
2
2

)
,

0.125+ (t − 1)2 , else,
hj (t) = 2t2 − cos (4π t)+ 1 j = 3, 4, . . . , n ,

Pr
{
x2 − 0.8x1 sin

(
6πx1+

2π
n

)
− 0.5x1+ζ ≥ 0

}
≥0.8,

ξ ∼ N (−1.1, 1), x1 ∈ [0, 1] ,
x2, . . . , xn ∈ [−2, 2] , n = 10.
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F. CP6

min (f1(x), f2(x))

s.t.,



f1(x) = x1 +
∑
j∈J1

y2j , f2(x) = (1− x1)2 +
∑
j∈J2

y2j ,

Pr
{
x2 − 0.8x1 sin

(
6πx1 +

2π
n

)
−

sign
(
0.5 (1− x1)− (1− x1)2

)
√∣∣0.5 (1− x1)− (1− x1)2

∣∣+ ζ1 ≥ 0
}
≥ 0.8,

Pr
{
x4 − 0.8x1 sin

(
6πx1 +

4π
n

)
−

sign
(
0.25

√
1− x1 − 0.5 (1− x1)

)
√
|0.25 (1− x1)− 0.5 (1− x1)| + ζ2 ≥ 0

}
≥ 0.8,

ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1), x1 ∈ [0, 1] ,
x2, x3, . . . , xn ∈ [−2, 2] , n = 10.

G. CP7

min (f1(x), f2(x))

s.t.,



f1(x) = x1 +
∑
j∈J1

hj
(
yj
)
, f2(x) = (1− x1)2

+

∑
j∈J2

hj
(
yj
)
,

J1 = {j |j is odd and 2 ≤ j ≤ n } ,
J2 = {j |j is even and 2 ≤ j ≤ n } ,

yj =

 xj − x1 cos
(
6πx1 +

jπ
n

)
, j ∈ J1,

xj − x1 sin
(
6πx1 +

jπ
n

)
, j ∈ J2,

h2 (t) = h4 (t) = t2, hj (t) = 2t2 − cos (4π t)+ 1,
j = 3, 5, 6, . . . ,

Pr
{
x2 − sin

(
6πx1 +

2π
n

)
−

sign
(
0.5 (1− x1)− (1− x1)2

)
√∣∣0.5 (1− x1)− (1− x1)2

∣∣+ ζ1 ≥ 0
}
≥ 0.8,

Pr
{
x4 − sin

(
6πx1 +

4π
n

)
−

sign
(
0.25

√
1− x1 − 0.5 (1− x1)

)
√
|0.25 (1− x1)− 0.5 (1− x1)| + ζ2 ≥ 0

}
≥ 0.8,

ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1), x1 ∈ [0, 1] ,
x2, . . . , xn ∈ [−2, 2] , n = 10.
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