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ABSTRACT This study introduces a trading decision support system (DSS) enhanced by an optimized
mean-variance model for algorithmic trading (AT), crucial in modern financial markets for its efficiency and
error reduction. Despite AT’s advantages, its limitations, including risks of losses and market instability, are
notable. The proposed DSS focuses on improving trading algorithms by embedding optimized forecasting
techniques to predict market movements accurately. By employing a recursive approach to refine return fore-
casts and trading signals, and continuously adjusting model parameters within a sliding window, the system
adapts to market changes, maintaining its robustness. Key contributions include optimizing the recursive
window length and addressing overfitting, significantly enhancing existing trading systems. The system is
validated through backtesting in the volatile natural gas market, highlighting its relevance amid the global
shift towards sustainable energy. Numerical findings show that the DSS portfolio achieved an annualized
Sharpe ratio of +0.8478 compared to the buy-and-hold strategy’s -0.4521, and the maximum drawdown
was reduced from 90.67% to 63.59%. These results demonstrate the system’s capability to create superior
portfolios, even in downturns, by optimizing rollingwindow lengths and covariate pool sizes whilemitigating
model performance issues and overfitting. This has significant economic and environmental implications,
facilitating a smoother energy transition, and providing trading professionals with advanced tools to enhance
portfolio performance and risk management in volatile markets.

INDEX TERMS Algorithmic trading, decision support system, financial markets, trading performance,
trading signals.

I. INTRODUCTION
Financial markets are complex systems influenced by eco-
nomic indicators, geopolitical events, investor behavior, and
technological advancements. Effective decision-making in
this environment is crucial for both investors and traders.
Decision Support Systems (DSSs) have become essential
in providing insights and data-driven strategies, particularly
through algorithmic trading.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wojciech Sałabun .

Algorithmic trading systems, or automated trading sys-
tems, are vital in modern financial markets [1], [2]. These
systems execute orders based on predefined strategies [3],
[4] and mitigate emotional biases, promoting rational trad-
ing decisions. The rise of high-performance computing and
advanced communication technologies has increased the use
of such systems in global markets [5], [6], [7], whereas the
algorithmic trading market is projected to grow at a CAGR
of 10.5% between 2022 and 2027 [8].

However, algorithmic trading systems are not without
risks. Poorly designed algorithms can lead to substantial
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financial losses, and their impact on market stability and
volatility is debated [9], [10], [11]. The effectiveness of
algorithmic trading heavily depends on the quality of DSS
and their ability to forecast market trends [12]. Against this
backdrop, this study focuses on the natural gas market, which
has gained significant financial prominence post-2008 finan-
cial crisis [13], [14] and plays an increasingly critical role
due to its interconnectedness with the broader energy price
ecosystem [15].

FIGURE 1. Time plot of daily prices for an ETF tracking the evolution of
the US Henry Hub natural gas prices (UNG); Source: Authors’
representation, data sourced from the Yahoo Finance platform.

Using the United States Natural Gas Fund LP (UNG) as a
proxy for the US natural gas market enhances tradability and
replicability. ETFs, known for liquidity and low transaction
costs, have grown popular among investors [16], [17].
The recent volatility in natural gas prices, influenced by

European market dynamics, weather patterns, and consump-
tion shifts [18] has caused significant losses in portfolios
heavily invested in natural gas (see Figure 1).
The observed volatility suggests the influence of algorith-

mic trading, which can amplify market instability, particu-
larly in distressed scenarios [19]. Market participants need
sophisticated trading strategies to enhance portfolio resilience
and performance. This necessity is highlighted by instances
of extreme volatility without pertinent news, such as the
157% increase in volatility in August 2022 with rapid price
fluctuations of $5/MWh [20], [21]. Geopolitical tensions also
significantly impact the natural gas market, influencing sup-
ply routes and pricing mechanisms [22], [23].
This research aims to develop a robust DSS to enhance

trading decisions in the natural gas market, addressing the
unique challenges of this volatile and geopolitically sensitive
sector. Key research questions include: How can algorith-
mic trading systems be enhanced to better predict market
movements and adapt to changing conditions in the natural
gas market? What impact does optimizing recursive window
length and addressing overfitting have on the performance of
trading algorithms? How does the proposed DSS compare to
traditional trading strategies in terms of risk-adjusted returns
and robustness in volatile markets?

To address these research questions comprehensively, this
paper makes several key contributions. The primary contribu-
tion is the development of an enhanced DSS that incorporates

dynamic and continuously optimized mean-variance speci-
fications. Focusing on optimizing recursive window length
and addressing overfitting, the proposed DSS significantly
enhances the robustness of existing trading algorithms.
The system, validated through backtesting in the natural
gas market, demonstrates superior performance in return
enhancement and risk reduction compared to traditional buy-
and-hold strategies. Additionally, the research highlights the
broader implications for market stability and the transition to
sustainable energy sources.

In exploring the implications of our DSS within financial
market efficiency, this study revisits the Efficient Market
Hypothesis (EMH), a foundational concept in financial eco-
nomics which posits that asset prices reflect all available
information [24], [25], [26], [27], [28], [29]. The application
of EMH to energy commodity markets, particularly natural
gas, has yielded mixed results [30], [31], [32], [33], [34],
necessitating a re-evaluation using current data. While much
of the existing research focuses on price and volatility fore-
casting [35], [36], [37], [38], [39], [40], [41] few studies have
explored the development of empirical portfolios based on
these forecasts in the context of algorithmic trading [42], [43],
[44], [45]. In this context, this research aims to fill that gap
by providing new insights into natural gas market efficiency
and introducing an enhanced DSS for algorithmic trading.

The DSS’s effectiveness in generating high-performance
portfolios within the natural gas market is validated in this
research. These contributions offer valuable tools and insights
for professionals navigating the complexities of energy com-
modity markets. By enhancing market predictability and
resilience, the DSS supports more effective trading strategies
and aids in achieving energy security and environmental
sustainability goals. This research extends its impact beyond
financial trading, contributing to the broader economic and
environmental strategies of nations heavily invested in nat-
ural gas, particularly significant for countries like China,
where natural gas plays a crucial role in energy policy [46],
[47], [48].

The rest of the paper continues as follows: Section II
presents the data employed in the study and explains the
system architecture. Section III contains an exploratory anal-
ysis, and then reports estimation results. Next, Section IV
discusses the main findings, while Section V concludes the
study.

II. MATERIAL AND METHOD
A. DATA SAMPLE
This study employs daily price data of the United States Nat-
ural Gas Fund LP (UNG), the largest Exchange-Traded Fund
(ETF) in terms of Assets Under Management (AUM) provid-
ing exposure to the US natural gas market. The data, spanning
from 2nd January 2019 to 1st July 2023, which includes the
period of the COVID-19 pandemic, were extracted from the
Yahoo Finance database (finance.yahoo.com). Subsequent to
data acquisition, one-period logarithmic returns were calcu-
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lated as:

rUNG,t = log
(

PUNG,t

PUNG,t−1

)
, (1)

where rUNG,t is the return of the ETF on trading day t .
To ensure a comprehensive analysis, encompassing a com-

parison in terms of risk-return characteristics, this study also
incorporates data from two additional exchange-traded funds.
These include an ETF tracking the S&P 500 index, identified
by its ticker SPY, representing the US equity market, and
the United States Oil Fund (USO), which offers exposure to
the US crude oil market. The price data for these ETFs were
sourced from the same database, Yahoo Finance.

The price series for these additional ETFs were similarly
converted into logarithmic returns, following the methodol-
ogy applied to the UNG ETF. Each of these return series
consists of 1132 daily observations. The length of these series
is particularly relevant as it influences the number of itera-
tions and optimizations undertaken by the proposed trading
system.

B. THE ALGORITHMIC TRADING DECISION
SUPPORT SYSTEM
In a recent development, [49] introduced an adaptable Deci-
sion Support System (DSS) for algorithmic trading, which
incorporates a dynamic mean-variance optimization proce-
dure. This DSS introduces a novel approach by implementing
a fitness function that operates within a user-defined pool of
covariates, optimizing the parameters of the embedded pre-
dictive model throughout the recursive window forecasting
strategy. This study extends the capabilities of this DSS and
backtests the new architecture on the US natural gas market,
a significant energy market that has increasingly attracted
financial interest since the 2008 financial crisis [13], [14].
This integrated framework encompasses several key

stages, as follows.

1) DATA SEGMENTATION AND MEAN–MODEL
SPECIFICATION
The implementation of the framework that develops the DSS
commences by segmenting the dataset of length N (i.e, 1132)
into two distinct components: a training dataset of length l,
which mirrors the rolling window’s duration, and a testing
dataset that extends from (l+1) to N. The length of l is
not preset, but instead fine-tuned, which further increases
the system’s capabilities. The most recent observation in the
training set serves as the forecasting origin. This origin pro-
gressively shifts through the time interval spanning from l to
N-1, concurrently generating one-step-ahead return forecasts,
denoted as ri, for each new origin.
In an extension of the work by [49] Tudor and Sova,

the current DSS architecture embeds an ARMA (p, q) –
GARCH(1,1) predictive model, under the assumption of a
Skewed Generalized Error Distribution (SGED) for the error
process.

Particularly, themeanmodel embeddedwithin the DSS has
the following equation form:

ri,t = ci +
p∑
j=1

ki,jri,t−j +
q∑
j=1

µi,jεi,t−j (2)

where p and q denote the order of autoregressive and moving
average terms, ki,j is the autoregressive constant, and εi,t−j is
the realized error.

The choice of the SGED is grounded in the research find-
ings of [50] Lee et al. (2008), which define the probability
density function for the skewed GED. Furthermore, the cur-
rent selection is motivated by the work of [51], confirming
the superiority of GARCH-SGED specifications compared
to other common choices, highlighting the significance of
skewness and tail-thickness on the conditional distribution of
financial commodities returns.

In this process, a comprehensive exploration is carried out
for every conceivable pair of autoregressive (p) and moving
average (q) parameters, with the notable exception of the (0,0)
pair. This parameter exploration is specifically focused on the
meanmodel as specified in Equation (2) and is complemented
with a GARCH (1,1) model to address the variance compo-
nent of the equation, as explained later. The outcome of this
exploration is a covariate pool characterized by a dimension
of [(p + 1) × (q + 1)]−1. The Akaike Information Crite-
rion (AIC) is employed as a decisive criterion for selecting
the best-fitting model specifications from pool of candidates
within each recursive window, due to its ability to maximize
‘‘short-term predictive success’’ [52]. This entire process
entails N-l iterations and is instrumental in generating one-
step-ahead return forecasts that span the forecasting horizon
from (l + 1) to N.

2) MODEL SPECIFICATION FOR VOLATILITY
Subsequently, after the determination of the most appropriate
(p, q) pair for the ARMA model using AIC, the {rugarch}
package is leveraged to construct the variance equation, still
performed in the context of each rolling window. In this
model, the mean model incorporates the previously identi-
fied optimal (p, q) parameters, while a GARCH(1,1) model
is applied to model the variance. Of note, the conditional
variance model within the framework is based on previous
studies that indicate the lack of need for higher-order ARCH
and GARCH polynomials (for example [53], [54], [55], [56]
and consequently is restricted to the form of a GARCH(1,1)
model, given by:

σ 2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (3)

which in turn provides an additional benefit in the form of
increased computing efficiency.

To enhance the convergence of the model, the system
introduces a ‘‘hybrid’’ solver in the ugarchfit() syntax. This
solver sequentially tests different solvers, including ‘‘solnp,’’
‘‘nlminb,’’ ‘‘gosolnp,’’ and ‘‘nloptr,’’ in cases where conver-
gence is not initially achieved [57].
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3) SIGNAL GENERATION AND TRADING STRATEGY
The predictions obtained through the fitted model,
which dynamically optimizes forecasting, are subsequently
employed as trading signals. To ensure that the system is
not engaged in forward-looking practices and to preserve its
practical applicability within the realm of financial markets,
the system introduces a one-day lag in the series containing
these trading signals. Consequently, at each forecasting origin
li, situated within the range from l to N-1, a predetermined set
of trading rules instructs the Decision Support System (DSS)
to initiate buy actions at the closing price from the forecasting
origin day, denoted as Pi, when the forecasted return for
the next day (ri+1) is positive. Conversely, the system is
guided to execute sell actions when the forecasted return is
negative (ri+1 < 0) and to remain inactive in the absence of
market opportunities (ri+1 = 0). TheDSS complies with these
directives, executing transactions based on the issued trading
signals, and these transactions are executed at the closing
price from the previous day.

4) PORTFOLIO CREATION AND EVALUATION
The system proceeds to construct an empirical portfolio with
exposure to natural gas, derived from each distinct DSS
architecture, colloquially termed the DSS portfolio. In par-
allel, a buy-and-hold (BH) trading strategy is devised for the
equivalent duration. Subsequent to the portfolio construction,
the system assesses the portfolios’ performance, estimating
key metrics encompassing risk, return, and risk-adjusted
performance.

5) TERMINOLOGY
For illustration, a specific instance is presented, highlight-
ing a ‘‘restricted’’ DSS architecture that employs a fixed
rolling window length of 100 days (l = 100). In this con-
figuration, the ARMA autoregressive and moving average
polynomials are permitted to assume values within the range
of [0;1], except for the (0,0) pair. As a result, mean param-
eters are optimized on each rolling window by applying the
fitness function after evaluating a covariate pool containing
3 covariates (i.e., [(1+1) × (1+1) – 1], hence the system is
dubbed ‘‘restricted’’). This specific architecture is denoted as
DSS(100_1_1), specifying the rolling window length and the
maximum boundaries for the twoARMA equation polynomi-
als. Furthermore, an alternative architecture is introduced by
extending the rolling window to 120 days, and concurrently
expanding the covariate pool for mean parameter optimiza-
tion. This more intricate DSS-based portfolio is denoted as
DSS(120_p_q), where p and q establish the upper bound-
aries for the autoregressive and moving average polynomials
within the mean equation. For the particular situation when
p and q are both set to 3, the covariate pool for each
rolling window serving as a training dataset comprises [(4 ×

4) -1], or 15 covariates. This architecture is identified as
DSS(120_3_3). Starting with the ‘‘restricted’’ architecture
for a given window length, the upper boundary is success-
fully increased in increments of 1 (i.e., when l = 100, from

DSS (100_1_1), DSS (100_2_2), (DSS (100_3_3), (DSS
(100_4_4), . . . ,) until the performance of the corresponding
DSS portfolios is maximized. Increasing pools of covariates
are tested until the performance of the ith DSS (100_p+1_q+
1) portfolio is below the performance of the DSS(100_p_q).

In all systems, considering prior research findings and aim-
ing to maintain reasonable computational efficiency, given
the intricacy of the iterative mean optimization process
and the comprehensive scope of the integrated architecture,
including signal issuance, trading execution, portfolio con-
struction, and backtesting, the order for both the GARCH
andARCHpolynomials within the variance equation is stead-
fastly established at 1.

FIGURE 2. Flowchart of the proposed algorithmic trading
decision-support system.
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Figure 2 includes a simplified flowchart of the algorithmic
trading decision-support system.

C. INNOVATION AND METHODOLOGICAL
ADVANCEMENTS
The proposed methodology represents a significant devia-
tion from traditional rolling window forecasting approaches
commonly utilized in financial market analysis. Traditional
methods typically involve the adaptation of model parame-
ters through the re-estimation of a fixed-configuration model
within a recursive window. The innovative approach adopted
by [49] however, leads to a more refined in-sample fit and
enhanced forecasting accuracy, distinguishing it from con-
ventional practices. Going further, central to the novelty of
the enhanced system proposed here, in comparison to the
Decision Support System (DSS) developed by [49], is the
strategic fine-tuning of the rolling window’s length coupled
with a focused effort to mitigate overfitting risks, particularly
those that may arise from the expansion of the covariate
pool. This marks a significant shift from the prior study that
relies on predetermined lengths for the rolling window and
mitigates the risk that such fixed lengths may not always
align optimally with the dynamic nature of financial data.
Consequently, the current system adopts a more dynamic,
data-driven approach. It operationalizes this by integrating
three distinct ‘‘restricted’’ DSS architectures, each charac-
terized by different rolling window lengths (l ∈ {100, 120,
250}). This variation allows for an empirical evaluation of
the system’s performance across different temporal scales,
maintaining the integrity of other core components of the
DSS architecture. The subsequent assessment of these mod-
els focuses on their risk-adjusted performance, enabling the
identification of the most effective rolling window length.
This selection process is driven by estimation-based proce-
dures rather than reliance on predefined, static parameters,
thereby significantly boosting the predictive capabilities and
overall performance of the trading system. As the complexity
inherent in the DSS architectures escalates, the study strate-
gically employs the rolling window length as a foundational
parameter. This parameter serves as the cornerstone upon
which the covariate pool is progressively expanded, adhering
to a data-driven methodology. Such an approach ensures that
the expansion of the model’s complexity is closely aligned
with the evolving nature of the data, thereby maintaining the
relevance and effectiveness of the model. This dynamic, data-
driven strategy infuses the methodology with a high degree
of innovation. It notably enhances the adaptability and appli-
cability of the system within the realm of financial market
analysis. By acknowledging and responding to the fluidity
of market data, the system positions itself as a versatile
and robust tool, capable of delivering insightful and accu-
rate predictions in the ever-changing landscape of financial
markets. This methodological advancement not only demon-
strates a significant leap in the field of algorithmic trading
and financial forecasting but also sets a new benchmark for
the development of decision support systems in finance.

TABLE 1. Descriptive statistics.

III. RESULTS
A. EXPLORATORY ANALYSIS
This initial phase of analysis is critical to gauge the efficacy
of the buy-and-hold strategy, which serves as the comparative
standard for the DSS-driven portfolios. It also provides a
benchmark against significant energy markets, notably the
crude oil market, and the US equity market, represented here
by the S&P 500 index. Furthermore, this exploratory phase
aids in identifying the factors contributing to the superior per-
formance of portfolios generated through automated systems.

Descriptive statistics for the return series of the three ETFs,
representing the target financial markets, are detailed in
Table 1. Concurrently, Table 2 elucidates the metrics for risk
and risk-adjusted performance of these alternative investment
options, spanning from January 2019 to July 2023

During the analysis period, the natural gas fund, specif-
ically the United States Natural Gas Fund LP, exhibited
the most unfavorable price performance. This is quantita-
tively evidenced by a negative daily mean return of -0.11%,
coupled with the highest level of risk, as delineated by a
daily standard deviation of 3.71%. Conversely, the equity
portfolio that tracks the S&P 500 index is characterized
by the most advantageous financial performance within the
same timeframe, delivering the highest return at +0.05% and
maintaining the lowest risk profile, evidenced by a standard
deviation of 1.38%. These observations are consistent with
established empirical findings, as all examined series display
negative skewness and positive excess kurtosis, indicative of
heavy-tailed distributions in the data.

FIGURE 3. Time plot of daily ETF prices; Source: Authors’ representation.
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Figure 3 presents a time-series plot of the price trajectories
for the three Exchange-Traded Funds (ETFs) from January
2019 to July 2023. This graphical representation effectively
illustrates the underperformance in price of the natural gas
portfolio in comparison to the other two ETFs.

FIGURE 4. Daily UNG fund returns; Source: Authors’ representation.

Conversely, Figure 4, which illustrates the daily returns
of the United States Natural Gas Fund LP (UNG), sub-
stantiates the existence of volatility clustering within the
natural gas market. This phenomenon is characterized by
periods where high levels of market volatility are followed
by similar periods, and vice versa for low volatility levels.
The manifestation of such volatility clustering suggests that
Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) models, renowned for their capacity to effectively
capture and model this type of market behavior, are suit-
ably aligned with the requirements of the Decision Support
System (DSS) employed in this study. The compatibility of
GARCH models with the DSS framework is thereby under-
scored, highlighting their utility in accurately reflecting the
underlying market dynamics of the natural gas sector.

The relative underperformance of the natural gas portfolio
is further accentuated by its downside risk and risk-adjusted
return metrics. Analytical results presented in Table 2 reveal a
pronounced negative Sharpe ratio for the natural gas-focused
fund, quantified at -0.4523 as per Sharpe’s methodology [58].
This metric is substantially inferior to the risk-adjusted per-
formance of the US equity portfolio, which boasts a Sharpe
ratio of 0.6576 on an annualized basis. Furthermore, it is
significantly lower, by more than a factor of four, compared
to the fund exposed to the crude oil market. It is noteworthy
that the computation of the adjusted Sharpe ratio, as proposed
by [59], which integrates a penalty for negative skewness and
excess kurtosis, corroborates this finding.

Additionally, all applied risk measures consistently under-
score the underperformance of the United States Natural Gas
Fund LP (UNG ETF). These indicators suggest that decision
support systems with the capacity to effectively mitigate
risk and enhance the performance of portfolios exposed to
natural gas, both in absolute and risk-adjusted terms, are
of paramount importance in this sector. Such systems could
play a crucial role in mitigating the substantial downturns
observed in this high-risk, low-return market, where current
downturns exceed 90%.

TABLE 2. Downside risk and risk-adjusted performance.

FIGURE 5. Drawdown of the UNG fund (2019-2023).

Concluding the exploratory analysis, Figure 5 presents a
visual representation of the considerable drawdown expe-
rienced by this segment of the energy market in recent
years. This graphical illustration provides a clear and detailed
depiction of the market’s challenging conditions during the
specified period.

B. EMPIRICAL RESULTS
As delineated earlier, the process of determining the opti-
mal length of the recursive window, denoted as ‘l’, involves
an estimation-based approach. This approach assesses both
the performance and the risk-adjusted performance of three
distinct portfolios. These portfolios are constructed based on
trading strategies derived from ‘‘restricted’’ Decision Support
System (DSS) architectures. In these ‘‘restricted’’ configura-
tions, all fundamental components remain consistent except
for the variable ‘l’, which assumes values from the set
{100, 120, 250}. Within such a ‘‘restricted’’ DSS framework,
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FIGURE 6. The cumulative return of the restricted DSS 100_1_1 portfolio
versus the buy-and-hold strategy. Annualized Sharpe ratio of the
DSS(100_1_1) portfolio (Rf=0%) = −0.1388.

FIGURE 7. The cumulative return of the restricted DSS 120_1_1 portfolio
versus the buy-and-hold strategy. Annualized Sharpe ratio of the
DSS(120_1_1) portfolio (Rf=0%) = 0.3717.

FIGURE 8. The cumulative return of the restricted DSS 250_1_1 portfolio
versus the buy-and-hold strategy. Annualized Sharpe ratio of the
DSS(250_1_1) portfolio (Rf=0%) = −0.1375.

the fitness function iteratively evaluates a limited pool of
3 covariates, specifically 2 × 2.1, across N-l-1 iterations (in
this instance, 1132-l-1). Consequently, this dynamic opti-
mization is termed ‘‘restricted’’ due to the constrained size
of the covariate pool. The outcomes of these evaluations and
optimizations are graphically represented in Figures 6 to 8,
illustrating the resultant trading strategy performances under
the varying window lengths.

The visual representations, alongside the risk-adjusted
performance as indicated by the Sharpe ratios, furnish sub-

FIGURE 9. The cumulative return of the optimized DSS 120_2_2 portfolio
versus the buy-and-hold strategy. Annualized Sharpe ratio of the
DSS(120_2_2) portfolio (Rf=0%) = +0.8478.

FIGURE 10. The cumulative return of the optimized DSS 120_3_3 portfolio
versus the buy-and-hold strategy. Annualized Sharpe ratio of the
DSS(120_3_3) portfolio (Rf=0%) = +0.6441.

stantive evidence that portfolios generated by the Decision
Support System (DSS), despite being derived from restricted
system architectures, have outperformed the corresponding
Buy-and-Hold (BH) strategy implemented on the UNG natu-
ral gas ETF over the designated analysis period.

The findings further reveal that of the three distinct
‘‘restricted’’ DSS configurations developed, the portfolio
constructed using the DSS framework with a window length
of l = 120 days for its recursive forecasting process, denoted
as DSS(120_1_1), demonstrates superior risk-adjusted per-
formance. Notably, this portfolio markedly excels over the
BH strategy in both absolute returns and risk-adjusted mea-
sures, exhibiting particularly robust performance in the first
half of 2023—a period marked by considerable corrections in
the UNG market.

In addition, the development of increasingly optimized
DSS frameworks involves the sequential expansion of the
covariate pool size, which is used iteratively in the fitness
function. The performance trajectories of portfolios gener-
ated using DSS architectures, which employ this dynamic and
optimized recursive forecasting method with varying covari-
ate pool sizes—8 (i.e., for p, q each within the range {0,1,2})
and 15 (i.e., for p, q each within the range {0,1,2,3})—are
delineated in Figures 9 and 10. This approach highlights the
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TABLE 3. Performance metrics of DSS-based portfolios.

iterative refinement process and its impact on the perfor-
mance of the portfolios.

Throughout the examined period, portfolios developed
using the Decision Support System (DSS) consistently exhib-
ited superior performance compared to the Buy-and-Hold
(BH) benchmark. Notably, these DSS-based portfolios main-
tained positive returns even during phases when the BH
strategy experienced negative returns. The most efficacious
DSS framework was identified as the DSS_120_2_2, execut-
ing a total of 1011 optimizations (calculated as 1132-120-1)
and 8088 estimations (equivalent to 8 × 1011).
The performance of the DSS(120_2_2) portfolio was par-

ticularly notable during the onset of the COVID-19 pandemic,
a period characterized by a significant downturn in the nat-
ural gas market. This decline was primarily due to global
lockdowns and the subsequent reduction in worldwide energy
demand, disproportionately impacting the natural gas sec-
tor [60]. Moreover, this portfolio’s robust outperformance
was even more pronounced during recent episodes of price
decreases, largely attributed to a substantial reduction in
demand [18].

From these analytical results, three principal conclusions
can be drawn: (i) all DSS configurations, including those
with restricted system architectures, succeeded in construct-
ing portfolios that surpassed the performance of the BH
strategy; (ii) the most effective performance was achieved
with a covariate pool size of 8 (i.e., p and q ∈ {0,1,2}); and
(iii) upon expansion of the covariate pool to a size of 15
(i.e., p and q ∈ {0,1,2,3}), there was a noticeable decline
in the DSS’s predictive accuracy. Nevertheless, the overall
outperformance of these portfolios remained significant, with
their equity curves consistently outstripping that of the BH
strategy.

Table 3 consolidates the performance metrics for the opti-
mal DSS-derived portfolio (specifically, the DSS120_2_2
portfolio), the most effective restricted DSS architecture
(namely, DSS120_1_1), and, for comparative purposes,
includes the performance metrics of the corresponding BH
portfolio over the analysis period. This compilation offers

an extensive comparative analysis of their respective perfor-
mances.

IV. DISCUSSION
Natural gas, as a pivotal component of the global energy
mix, plays an essential role in a diverse range of applications,
from power generation and heating to industrial processes and
transportation, thus underscoring its vital place in the global
energy landscape [61], [62], [63], [64]. Its significance is fur-
ther accentuated as the world shifts towards more sustainable
and low-carbon energy sources, with natural gas emerging
as a cleaner and reliable alternative [65], [66], [67], [68].
The natural gas market, therefore, not only offers substantial
investment opportunities but also plays a critical role in the
transition to greener energy solutions.

This study gains particular relevance in light of the global
economic implications of natural gas market trends. Recent
patterns have seen a marked decline in natural gas prices,
along with pronounced volatility, influenced by multiple fac-
tors including European market dynamics, warmer weather,
enhanced energy efficiency, and shifting consumption pat-
terns [18]. Such volatility has precipitated substantial losses
in portfolios heavily invested in natural gas, underscoring
the necessity for robust trading strategies that can adeptly
improve risk-adjusted performance.

The formulation of effective trading strategies for natural
gas portfolios is crucial not only for reducing investment
risks but also for supporting broader goals of energy security,
economic stability, and environmental sustainability. This
is particularly pertinent for major economies like China,
where rapid industrialization and urbanization have escalated
energy demand. Natural gas plays a significant role in meet-
ing this demand, facilitating the transition to a lower-carbon
economy. Therefore, addressing the challenges posed by
natural gas price volatility within financial markets through
sophisticated trading strategies holds wide-ranging impli-
cations, influencing the intricacies of the global energy
landscape and the economic dynamics of key players like
China.

The importance of accurately predicting natural gas prices,
as highlighted by [69], is a paramount concern for vari-
ous stakeholders, including policymakers, whereas poorly
designed algorithms can exacerbate losses [70]. However, the
literature on the predictability of natural gas prices is rela-
tively scant [71] and existing algorithmic trading strategies
in this market have been limited and predominantly based on
statistical arbitrage or machine-learning methods. This study
addresses these gaps by proposing an advanced Decision
Support System (DSS) for algorithmic trading, expanding
upon the work of [49].

Thus, informed by the foundational work of [49] and
guided by the characteristics of the natural gas market –
high volatility, structural changes, and time-varying nature
as identified by [72], [73], and [74]– the proposed system
incorporates a dynamic ARMA-GARCH model. This choice
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is in line with previous studies [53], [54], [55] that question
the value of higher-order ARCH and GARCH polynomi-
als. Instead, a GARCH(1,1) specification for the variance
equation is adopted, optimizing mean parameters within a
rolling window.

The research further relies on the conclusions of [75]
regarding the value of the window length in a recursive
forecasting framework, enhances the Tudor-Sova DSS archi-
tecture by introducing an estimation-based selection of the
rolling window length, moving away from an a priori setting.
The identification of a 120-day window as most suitable for
modeling and forecasting the natural gas market corrobo-
rates [49] findings for the crude oil market. Beyond previous
research, the results indicate that the system’s predictive per-
formance diminishes when the pool of covariates exceeds a
size of 8. This finding underscores the importance of halting
the training process early to avoid overfitting and to reduce
computational resources, aligning with the assertions of [76]
regarding the benefits of curtailing the learning process in
decision-making.

The DSS(120_2_2) architecture, with a rolling window
length of 120 days and an optimized covariate pool size of 8,
yields the most promising results, and manages to effec-
tively navigate the tumultuous market conditions induced
by the COVID-19 pandemic and subsequent demand shifts,
delivering superior returns and risk-adjusted performance,
evidenced by a high Sharpe ratio. At least as important, the
proposed system managed to construct trading portfolios on
the UNG natural gas market with significantly lower draw-
down than passive portfolios following the BH strategy. This
achievement is noteworthy, especially in light of the findings
of [11], who posited that algorithmic trading could potentially
destabilize markets and amplify volatility. The results from
the current study provide a compelling counterargument to
this perspective. Furthermore, the DSS’s effectiveness chal-
lenges the idea that algorithmic trading increases volatility.
Instead, it suggests that well-designed algorithmic systems,
which incorporate sophisticated risk management and predic-
tive modeling techniques, can navigate market complexities
more adeptly than simpler systems or passive investment
strategies. By dynamically adjusting to market conditions
and employing predictive analytics, the DSS was able to
sidestep substantial market downturns and maintain portfolio
stability.

The findings from this study not only validate the DSS’s
capabilities in algorithmic trading but also demonstrate
its effectiveness in generating profitable trading strategies
within the natural gas market, specifically using the United
States Natural Gas Fund LP (UNG). This evidence sup-
ports earlier findings by [32], [33], and [34], providing
updated proof of the market’s inefficiency. By leverag-
ing dynamic and continuously optimized mean-variance
specifications, the DSS can adapt to market changes and
generate returns that exceed those of traditional buy-and-hold
strategies.

This result has significant implications for the Efficient
Market Hypothesis (EMH), which posits that asset prices
fully reflect available information, making it challenging to
consistently achieve higher returns than the overall market
through active trading strategies [24], [25], [26], [27], [28],
[29]. Specifically, our findings challenge the weak-form and
semi-strong form of the EMH in the context of the natural
gas market. The weak-form EMH asserts that past trading
information is already reflected in stock prices, and the
semi-strong form claims that all publicly available informa-
tion is already accounted for in stock prices. The ability
of our DSS to outperform the market by identifying and
exploiting inefficiencies challenges these forms of the EMH,
particularly in the context of the natural gas market. The
observed inefficiencies may stem from several factors unique
to the natural gas market, including its high volatility, the
influence of geopolitical events, and the complexity of sup-
ply and demand dynamics [15]. These factors can create
opportunities for well-designed algorithmic trading systems
to capitalize on short-term price movements and anomalies
that are not immediately corrected by the market.

Moreover, the study’s findings highlight the importance of
advanced trading strategies that can dynamically adjust to
changing market conditions. This adaptability is crucial for
maintaining robustness and avoiding the pitfalls of overfit-
ting, which can plague less sophisticated models. The DSS’s
success in this volatile market underscores the potential for
similar systems to be applied to other energy commodities or
volatile financial markets, further questioning the universality
of the weak-form and semi-strong forms of the EMH.

Consequently, the enhanced DSS not only serves as a
powerful tool for improving trading performance but also
provides empirical evidence that markets, particularly com-
modity markets like natural gas, may not always be efficient.
This challenges the weak-form and semi-strong forms of the
EMH and suggests that there are still opportunities for active
trading strategies to generate excess returns. Future research
should continue to explore these inefficiencies and develop
more advanced models to better understand and exploit them.

In conclusion, the findings of this research add a
nuanced perspective to the debate on algorithmic trading’s
impact on market dynamics. By demonstrating the ability
of a well-structured algorithmic trading system to reduce
drawdowns and manage risks effectively, the study pro-
vides evidence that algorithmic trading, when implemented
judiciously, can indeed contribute to portfolio stability and
contradict assertions of inherent market destabilization. This
enhanced DSS provides traders in the natural gas markets
with essential tools for informed decision-making and strat-
egy optimization, thereby gaining a competitive advantage in
a complex market environment [9], [10]; [77], [78], [79].

V. CONCLUSION
With the development of information technology, intelligent
algorithms have demonstrated powerful decision-making
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capabilities and have been widely utilized [80], [81], [82].
Algorithmic trading in financial markets has expanded
rapidly, yet its application in natural gas markets faces
significant challenges due to high volatility driven by geopo-
litical events and supply-demand imbalances, necessitating
advanced strategies to improve performance andmanage risk.

This study addresses this gap by developing a robust
trading decision-support system (DSS) that enhances trad-
ing algorithms through optimized forecasting techniques and
adaptive model parameter adjustments. Validated through
backtesting from January 2019 to July 2023, the proposed
DSS incorporates dynamic mean-variance specifications.
The system’s adaptability to evolving market dynamics
has shielded the DSS-issued natural gas portfolios from
significant downturns. Performance metrics demonstrated
consistent outperformance in both return enhancement and
risk reduction compared to the buy-and-hold strategy, high-
lighting the system’s capability to create superior portfolios
even in volatile conditions.

Despite these promising results, the research acknowl-
edges limitations. The historical market conditions and
back-testing period may not fully capture future market
dynamics. Future research could extend the system’s appli-
cation to other volatile markets and explore ensemble or
machine-learning methods to enhance the DSS’s potential.
This study enriches the literature on algorithmic trading in the
natural gas market and significantly contributes to optimizing
returns while managing risk effectively.
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