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ABSTRACT Skin-based infections are one of the primary causes of the global disease burden. Digital
Health Technologies powered by data science models have the potential to revolutionize global health care.
Health data poverty refers to the failure of individual people, teams, or communities to profit in research or
development owing to a deficiency of representative data. Generative Adversarial Network-based synthetic
images can be viable solutions to health data poverty since timely detection and frequent monitoring are
extremely critical for the survival of the patients. This study aims to investigate the possibility of obtaining
photo - realistic dermatoscopic images of Skin Lesions via Generative Adversarial Networks (GAN),
followed by distributing the images to augment the existing dataset to further enhance the performance of
a Convolutional Neural Network for the task of classification. The medical and technological publications
in six databases: PubMed, Web of Science, IEEE Xplore, Science Direct, Scopus, and Google Scholar were
investigated. A Deep Learning pipeline has been created and a set of deep learning models such as VGG16
(Visual Geometry Group 16), DenseNet, Xception, and Inception-ResNet v2 have been assembled. We have
used condition-based generative adversarial networks (GANs) besides the traditional data augmentation
approaches such as rotation and scaling. To highlight the image features that eventually lead to classification
are highlighted using a Local Interpretable Model-Agnostic Explanation (LIME) strategy. It was inferred
from the results of the classification that DenseNet-201 with GAN Augmentation was the best individual
model, with an accuracy of around 82%, while models such as VGG-16 and SVM (Support Vector Machine)
were unable to compete. It was also observed that starting with the pre-trained ImageNet weights sped
up the convergence and prevented models from over fitting in the absence of the regularization effect of
augmented data. However, the exploitation of the data was still not perfectly optimal, as over fitting with
data augmentation and early stopping was observed, which can be used by more extensive data augmentation
techniques. The GAN augmentation showed to reduce the data imbalance and increase the data percentage of
the less representative classes. A data augmentation approach based on synthetic data that has been obtained
from GAN helps us to classify images of lesions of the skin with high accuracy. We can also infer from the
results obtained that, enriching the data with GAN-produced data samples results in a significant performance
increase. In the field of medical imaging, where particularly large training datasets are not available, novel
data augmentation and generation procedures can be beneficial.

INDEX TERMS Deep learning, health data poverty, machine learning, scalability, digital health, GAN.

L. INTRODUCTION
The associate editor coordinating the review of this manuscript and With the emergence of technology and continual advance-
approving it for publication was Yu-Da Lin " . ment in the field of Deep Learning, it has been demonstrated
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that digital health solutions have the potential to revolu-
tionize health care [1]. If such tools and approaches could
be implemented reliably and at scale, they would have the
possibility of providing equal access to high-quality treat-
ment - in Digital Health - for everybody, anywhere, and so
reduce the global wellness and health disparity. However,
it is quite probable that these technologies would hinder
the existing equity in health care. With this perspective
in mind, the challenge called “Health Data Poverty” for
Skin Lesions has been discussed in this paper. Skin Dis-
eases and particularly, Skin Cancer the most common type
of cancer, as a result, it is often ignored by most people
in its early stages. Of all the cancer-related cases that are
reported, around 33% are related to Skin Cancer, in one
form or the other. It was reported by dermatologists who
conducted a study in 2013 that about 85 million Americans
(27% of the population; more than 1 in 4 individuals) and
more than 9,500 people in the U.S. are diagnosed with skin
cancer every day [12]. The first step for the diagnosis of
such a disease is usually through visual examination of the
dermatoscopic images, which is quite inaccurate at times
since the perception and the inferences drawn by the naked
eye can be quite misleading. One such type of disease is
Melanoma, which is life - threatening. The usual stages
of diagnosis of Melanoma involve a visual inspection, fol-
lowed by a biopsy. Hence, the precision of ocular inspection
is essential due to the invasiveness of biopsy on patients.
A study conducted in 2005 [31] proposed a popular rule for
the screening of patients that were suspected of Melanoma,
based on the geometric characterization of the Skin Lesions.
The proposed rule was famously called the “ABCDE” rule,
which stands for Asymmetric Shape, Border, Color, Diam-
eter and Evolution. However, melanoma patients might not
be aware of the severity of their condition without the aid
of these clinical insights, missing the ideal opportunity for
treatment, which is exactly what gives rise to the problem of
“Health Data Poverty”. Such cases are seldom seen in India,
due to the presence of Eumelanin in India’s people (who
are relatively dark-skinned), which offers some protection
against the development of skin cancer. Nevertheless, as per
a study conducted in 2016 [21], 3.18% of all cancer patients
in India had skin cancer. Of these, basal cell carcinomas
made up 54.76 %, squamous cell carcinomas 36.91 %, and
malignant melanoma only 8.3 %. Most patients (88%) were
from rural areas, and most (92%) of them worked in agricul-
ture. A significant amount of skin photos has been gathered
recently due to the quick growth of computer hardware
and software technologies, and sophisticated deep-learning-
based models have been built to automatically analyze these
skin images. These models’ exceptional image analysis abil-
ities make them highly promising as screening tools for
skin conditions. Mao et al. for instance, suggested that the
Google Inception v3 mode could be modified for melanoma
diagnosis from skin images [27]. The model’s classification
performance was on par with that of human dermatologists
after its parameters were tweaked using 130K skin picture
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samples. Alex et al. proposed a Fully Convolutional Neural
Network (FCNN) model to extract multi-scale features from
skin images and perform lesion classification and achieved
an accuracy of 81.8% on a 10-class skin disease classifi-
cation problem [28], where the best-reported accuracy for
classification on the same dataset was about 67%. Similarly,
a more contemporary approach was suggested by [33] who
recommended using the deep Residual Network (ResNet),
and they reached cutting-edge performance to accomplish
all cases of Melanoma detection. Based on previous studies,
prior efforts have also been made to deploy GAN to solve
the problem of tackling skin lesions. A study conducted in
2018 made use of the deployment of GAN to create incredibly
realistic representations of skin lesions [46]. These studies,
however, have not shown how much (if any) performance
advantage may be obtained by supplementing the training
data with these artificial images. Instead, they have con-
centrated on the creation and synthesis of genuine images.
Gains in performance on a task involving the classification of
liver lesions have been made using GAN-generated data [48].
AlexNet was used in yet another previously published study
that employed DCNN [53]. 200 images made up the data
collection. However, 4400 images were created using image
augmentation (rotating all the photographs). The AlexNet
model was trained on ImageNet data for this study’s transfer
learning model, and the last layer—which is divided into
melanoma, seborrheic keratosis, and nevus—was substituted
with the softmax layer. They employed stochastic gradient
descent (SGD) algorithmic software to alter the weights.
They managed to obtain a 98% accuracy rate.

Despite these models’ excellent quantitative performance,
there are still several issues that need to be resolved, some of
which are:

1. Robustness of the Training Model - Inception and
ResNet, two well-known deep learning models trained on
common computer vision tasks, are frequently adopted in
existing research. It is challenging to ensure that one model
will perform consistently well on various skin lesion images.

2. Limitation of the samples - the number of skin photos
supplied in most of the research is insufficient to train the
intricate deep learning model [58]. Due to the low number
of skin photos, these models will likely need to be trained
on other large-scale image data sets before being utilized to
enable convergence.

3. Interpretation and Inference - in actual clinical practice,
decision support would not be sufficient with just quantitative
classification results. As mentioned before, dermatologists
must use diagnostic standards to make the diagnosis.

Hence, the model that has been developed will address the
following research questions related to GAN in digital health
data poverty:

o Health Tasks - Diseases addressed in health data poverty

using GAN

« Asserting the availability of sufficient digital health data

for augmentation using GAN

« Obtaining effective real-time results.
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Il. MATERIALS AND METHODS

A. SEARCH STRATEGY

We carried out a thorough search utilizing a mix of topics
and keywords to incorporate the topics of GAN and digital
health. In addition, we ran referential retracing using the
most current research to verify that all relevant papers were
included. The medical and technological publications in six
databases: PubMed, Web of Science, IEEE Xplore, Science
Direct, Scopus, and Google Scholar were investigated. The
study focused on recent publications from 2019 to 2022.
During the filtering and review process, publications with
flawed methods and results were removed.

B. SEARCH TERMS

The search was done using interventions and applica-
tion keywords, including ‘““‘generative adversarial networks”’,
“GANs”, “digital data augmentation” and ‘“digital data
impoverishment.”

C. SEARCH ELIGIBILITY CRITERIA

This research focuses on the applicability of GANs in
digital medical data augmentation. Only papers that pre-
sented GAN-based approaches for health data augmentation
were considered. We did not evaluate studies that examined
GAN-based approaches for other applications. Also omit-
ted was any research that used deep learning, and machine
learning techniques but did not include GANs. Also omitted
were characteristics of students’ GANs for non-imaging data.
Purely peer-reviewed articles, conference proceedings and
papers, and published works were included in this list of
credible research. There were no limits on publishing country,
research design, or results. Included are studies written in
English and published between 2019 and 2022. In addition to
removing duplicate data, unnecessary titles and contents were
eliminated. Only those research that described direct and
indirect GAN-based strategies for medical data enhancement
were considered. The search and selection are clearly shown
in Figure 1.

D. METHODS
The 2 baseline models that are used for the working of the
pipeline are GAN and CNN.

Convolutional Neural Network (CNN) - CNN is a pop-
ular deep neural network whose architecture is inspired by
the neural connectivity patterns in the animal visual cortex.
It has been established through previous studies that CNN
performs exceptionally well on computer vision tasks like
image and video analysis. Convolution and pooling are two
fundamental procedures used in CNN. A tiny filter that mim-
ics the response of the receptive field (specified by the filter)
centred on each pixel is applied to the entire image during
convolution, and the resulting map is then passed through a
nonlinear activation function to get the final response.

E. GAN
Following the breakthrough by Goodfellow et al. [1], GANs
have demonstrated promising results for image creation in
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computer recognition in general. GANs produce realistic
pictures while lacking a well-defined objective function and
requiring rigorous training accompanied by oscillations and
mode collapse, where the generator learns a minimal number
of patterns. Two subnetworks comprise GAN: G-generator
and D- discriminator. The generator network produces data
with a particular distribution while training and the Discrimi-
nator network is used to detect if the data collected is genuine
or fake. The ultimate objective of the procedure is to develop
a G that can produce information with a distribution near the
actual data distribution. When used for digital health, it can
extend datasets with insufficient quantities of digital health
data, allowing neural network approaches to be employed in
conjunction with the big datasets.

The purpose of a Generative Adversarial Network in the
context of the above-mentioned issue is to produce synthetic
data while reducing patient identifiability, which may be
characterized based on the likelihood of re-identification pro-
vided the combination of all supplied patient data. The frame-
work is used to produce synthetic information that closely
resembles the joint variation distribution in the selected
dataset, giving a readily available, legally and morally sound
alternative to facilitate more outstanding open data sharing
and allowing the creation of Al-based solutions—comparing
the ability to support to the synthetically created data to those
fit to the actual data across datasets to assess the similarity
in simulation results and to assist in identifying the original
observations from the synthetic data. As aresult, a data-driven
GAN is anticipated to regularly outperform state-of-the-art
approaches and exhibit dependability in joint distributions.
Furthermore, this approach was created to produce datasets
that may be made public while substantially reducing the
danger of patient confidentiality violations.

In recent years, several GAN variations have been pro-
posed. In this work, the GAN technique is used to generate
more skin image samples, and those samples should not
only be real but also be able to enhance the performance of
lesion categorization. A conditional GAN was proposed by
Sarra et al., which depends on the data classes for both data
generation and discrimination probability [78]. By extending
the conditional GAN [81], Frid-Adar et al. further proposed
“Auxiliary Classifier GANs” (AC-GAN). In the AC-GAN
framework, the discriminator evaluates the likelihood that the
image is real or false along with the class probability, and the
generator accepts a class label or condition along with the
random noise vector. The GAN pipeline used in the proposed
work is shown in Figure 2 and the basic GAN model is shown
in Figure 3.

Iil. METHODOLOGY
The proposed workflow of the pipeline has 4 sections, which
are as follows:

A. PRE-PROCESSING OF DATA
The dataset used (HAM10000, ISIC 2018 challenge) has
around 10014 RGB images of skin lesions, with a pixel
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Reports of studies
included in previous
version of review (n =
116)
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Machine Image Repository (7
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DIRECT METHODS
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Health Analysis

IDENTIFIED: 63 PAPERS

Super Resolution, Dataset
Expansion, Pseudo Image

FIGURE 1. PRISMA: Preferred Reporting items for systematic reviews and meta-analyses for the review process.

resolution of 450 x 600 px. Since this dataset is heavily
biased towards 3 of the classes namely, Melanoma, Nevus
and Benign Keratosis, which constitute around 8900 of the
total image samples, the model will initially exclude the
remaining classes as shown in Table 1. This is done so that
our GAN is fed with ample input data for it to learn the
conditional distributions. 80% of the samples included were
segregated under training data and the rest were treated as
part of final testing/ validation data. Similarly, 20% of the
training dataset was set aside when training the CNNs for
internal validation. For greater attention on the regions of
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interest, the training dataset was preprocessed using the Gray
World colour constancy technique, and the testing dataset
was processed using a 90% square centre cut of the images.
Then, all images were scaled to 224 x 224 pixels for training
the CNNs and to 64 x 64 pixels for training the GAN (later
sampled to match the CNN input size).

B. DATA AUGMENTATION

Each training sample had a set of random distortions in
contrast and brightness applied to it, along with clipped zoom,
rotations, and flips generating 4 samples per training sample.
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Lime Approach

FIGURE 2. Proposed method.
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FIGURE 3. PRISMA: Basic model architecture for GAN-based classifier.

TABLE 1. HAM10000 dataset - lesion type vs. Image count.

Lesion Type Image
Count
Melanocytic 6705
Nevi
Melanoma 1113
Benign 1099
Keratosis
Basal Cell 514
Carcinoma
Actinic 325
Keratosis
Vascular Lesion 142
Dermatofibroma 115

Additional images were generated using the AC-GAN which
follows the concept of a two-member mini max game. The
generator function is used to accept the result of combining
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Apply square cropping, color consistency, algorithm and resize

Perform random distortion of training (real) and AC-GAN generated
(synthetic) images

Train and ensemble the CNN base model for final evaluation

Provide inferences for individual model predictions

TABLE 2. HAM10000 dataset - training and testing distribution for
3 most heavily biased classes.

Melanocytic Melanoma Benign
Nevus Keratosis
Training 890 5364 879
Testing 223 1341 220

a random noise vector with a class embedding, producing a
picture with the dimensions 64 x 64 x3 and pixel values
within the range [—1, 1]. The discriminator accepted both real
and false images and produced probabilities of the images’
veracity using a sigmoid function as well as probabilities
of the images’ membership in a certain class using a soft
max function. Both the generator and discriminator network
made use of Leaky Rectified Linear Units (Leaky Re-LU) as
the activation functions to batch normalization layers, which
shall improve the training stability of the GANs [56], [57].
The training and testing data distribution is shown in Table 2.

C. TRAINING CLASSIFICATION MODEL

Keeping in mind the robustness of the model, an aggregation/
ensemble scheme of models has been adopted instead of
just a single model. For base classification models, popular
image classification architectures such as VGG-16, DenseNet
(shown in Figure 4), Xception (shown in Figure 5), and
Inception ResNet v2 are deployed [67], [68], [69]. While
VGG only combines convolutional and pooling layers, it is
incredibly inefficient and has a poor parameter-to-accuracy
ratio. To increase performance, more modern architectures
use microarchitectures like the Inception module, residual
connections, and dense connections between layers, intend-
ing to enable deeper and more accurate networks. By stacking
depth-wise convolutions with residual connections, Xception

VOLUME 12, 2024
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TABLE 3. GAN implementation available online for digital health.

Methodology Dataset Code Refe
Source | renc
e
GAN brain MRI Git [1]
images Hub
CGAN COVID-19 Kaggle | [2]
CT
Cycle GAN Multi- Git [3]
Contrast MR | Hub
Images
GAN brain tumour | Git [4]
multi-contrast | Hub
MRI
Hierarchical MRI Git [5]
Amortized GAN Hub
GAN Liver Lesion Git [6]
Hub
GAN MRI Git [7]
Hub
Patho-GAN: Diabetic Git [8]
Retinopathy Hub
GAN mammograph | Git [9]
y Hub
GAN XRay Git [10]
Hub
Fila-sGAN retinal fundus | Private | [11]
images
GAN melanoma Kaggle | [12]
S
Input : Conv(4) Convi4)  Conv(4) :
-+ :
e
X

——— Transition Layer
DenseNet Architecture

Each convolutional block receives some input from its preceding layers. The number
of feature maps initially learnt in the convolutional operations is initially set to K = 4.

FIGURE 4. DenseNet model architecture.

alters the Inception v3 architecture and exhibits a more effec-
tive utilization of model parameters.

Inception ResNet v2 enhances Inception v3 with residual
connections to quicken training and maybe increase accuracy.
By implementing dense connections across layers, DenseNet
promotes feature reuse and parameter sharing, resulting in
improved performance with fewer parameters. The purpose
of using an ensemble of designs is to minimize variance
and increase accuracy because the methodologies used by
various architectures allow for variation in the errors observed
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1x1 Convolution
B ———

P

3x3 Convolution

5x5 Convolution

Previous Layer Output (K) - Filter Concatenate

Xception Model Architecture

33 Max - Pooling

FIGURE 5. Xception model architecture (CNN).

during testing. The individual deep learning classifiers are
trained using Categorical Cross Entropy (CCE) as the loss
function. The size of different classes is taken while calcu-
lating the weight of the cross entropy of the input classes.
The performance of each model has been calculated using
Balanced Multiclass Accuracy (BACC). This is the sum of
the probabilities of all classes in terms of their True Posi-
tive (TP) and False Positive (FP) predictions, divided by the
total number of classes taken as input (n). Data Imputation
for the ensemble strategies adopted makes use of flattening
out the soft max layers of the CNNs to get the predicted
class labels of the image, with a Support Vector Machine
(SVM). Using the SVM ensemble approach, we evaluated the
ensemble on the holdout test set after training the ensemble
on concatenations of soft max layers from the validation data.
The baseline comparison has been done by comparing the
model to SIFT (Scale Invariant Feature Transform) with an
SVM [59]. The RGB images received as input are changed to
grayscale measure, followed by quantifying the image vector
points as 128 length - vector clusters through K - Means
clustering. The vector points are then taken as a reference to
evaluate the RBF - kernel-based SVM [74].

D. INTERPRETATION OF MODEL USING LIME
Local Interpretable Model-Agnostic Explanations (LIME)
tool that aims to provide classifier interpretations indepen-
dent of the model. Being model agnostic means that LIME
operates as a black box, treating a classifier’s internal opera-
tions as irrelevant, and locally figuring out an input-to-output
mapping. LIME additionally treats the CNNs as ‘“black
boxes,” perturbing the picture it feeds to a particular CNN
and estimating the CNN’s decision function to comprehend
the decisions made by our models. Using a sparse linear
model centred on a single image, CNN’s decision function
is estimated. By mastering this decision function, LIME can
identify image super pixels that, depending on their signifi-
cance, influence the diagnoses made by CNNss.

The objective of the pipeline is to learn the generator
network’s distribution over the given data. The Generator
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consists of a neural network that takes in the parameters
Weight (W), input noise vector (z), and a prior distribution
function (P(z)). As for the Discriminator network, it rep-
resents a CNN that indicates the probability of an input
vector (x), being a part of the skin lesion classes, or from
the generator distribution (P(g)). Hence, its output consists
of a dimensional vector of “n 4 1 classes while the ini-
tial probability distribution consists of only “n” classes.
While the discriminator model is being trained, it attempts
to maximize the chances of assigning the correct label to
the input vector (x) by running multiple cycles in its effort
to distinguish images that are generated synthetically using
the generator sampling function (P(g)) from those that are
part of the actual data samples. This happens parallelly along
with the execution of the Generator function (G), which has
been trained initially to deceive the Discriminator network by
minimizing the value of [log (1 - D(G(z)))].

IV. RESULTS

A. MEASURES AND METRICS FOR DIGITAL HEALTH DATA
AUGMENTATION

The quantitative assessment measures of synthetic images are
based on the following criteria: synthetic image pixel level
precision evaluation, generative dataset allocation overlaps
assessment, subjective evaluation of radiologist evaluations,
and informal evaluation of downstream task performance
enhancement. The direct measures include pixel accuracy
measures calculated based on the authentic images with mono
modality to compare with the generated images. Evalua-
tion of distribution overlap in the dataset generated to find
the data’s total fidelity. Evaluation of the ratings given by
radiologists in which the generated images are quantified
by the doctor based on the level of accuracy. The indirect
measurement includes the task performance in which the
usability of the data generated is increased using the model
and improvement in its performance. The data augmentation
of digital health develops data of different diversity, making
the medical data reachable to all geographical locations.

B. GAN-DIRECT AND INDIRECT CONTRIBUTIONS TO
DIGITAL HEALTH

Researchers find it harder to collect labelled medical pictures
than unlabeled images for several reasons, including time,
effort, and economic costs. However, there is currently a
high demand for medical photographs among researchers.
When dealing with such a vast quantity of data, the deep
learning-based model may produce a higher performance
in medical picture classification, segmentation, and aug-
mentation than the hand-crafted components. However, the
distribution of the pictures created by conventional aug-
mentation techniques is comparable to that of the originals.
Therefore, these techniques are unsuitable for creating more
significant instances among patients. As a result, GAN is
increasingly used in medical imaging analysis, particularly
for data augmentation and multimodal image translations.
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GAN in Data Augmentation

[

Direct Methods Indirect Methods

Super Dataset
Resolution Expansion

Cross Modality

Segmentation
9 Transfer

Pseudo Healthy

fic - Dete
mage Synthesis Classification Detection

Denoising Registraton

FIGURE 6. GAN in data augmentation.

Traditional data augmentation techniques can only provide
data with a pattern that closely resembles the original data.
GAN provides an answer to the shortage of information in
medical imaging analysis. The advent of health digitization,
hospital data management, IoT-based health platforms, wear-
able technology, and other systems have contributed to the
exponential increase of patient records, including electronic
healthcare records.

In Digital Health Domain, the most effective use of GAN
is digital healthcare data generation and augmentation, which
helps ease the issues of inadequate medical pictures or
unbalanced data categories which come under the direct
methods. GAN’s Contribution to Digital Health Data Poverty
is through Segmentation, Cross modality transfer, Classifica-
tion, Detection, Registration, Denoising, and Reconstruction.

C. GAN TECHNIQUES FOR DIGITAL HEALTH DATA
AUGMENTATION TO ALLEVIATE DIGITAL DATA POVERTY
The study focuses on how GAN aids digital health data
poverty directly and indirectly and is shown in (Figure 6).
GAN has been used to process digital health images for
various tasks, including segmentation, modality transfer, dis-
ease classification, image reconstruction, and registration as
shown in Table 4.

1) SEGMENTATION

GAN enhances the precision of digital health image seg-
mentation due to its proven ability to create and capture
data distribution. Implementing GAN and its extended varia-
tions may increase the segmentation results of digital health
images [14], [15]. Gaining the acceptance of physicians and
patients and eliminating the volatility, poor reproducibility,
and un-interpretability of Generative Adversarial Networks
might make this a significant future study path.

2) CROSS-MODALITY TRANSFER
The primary purpose of the Cross-Modal Generative Adver-
sarial Network (CM - GAN) is to get a deeper understanding

VOLUME 12, 2024
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TABLE 4. Data implementation available online for digital health.

Objects Analysed Model Task Remarks Reference
Healthcare Providers GAN Detection Area Under [13]
Curve — 97.4%
Synthetic Datasets GAN Comparison Accuracy - 79% | [14]
(after 35000
epochs)
Multispectral Satellite Images | CNN Prediction the correlation [15]
coefficient of
0.66
Biomedicine GAN Segmentation Applications of | [16]
GAN in the
medical domain
and applications
of GAN in
medical
informatics and
bioinformatics
Human Brain GAN Un sampling Accuracy - [17]
83.88% (sample
size = 20)
Health monitoring Sensors Auto Monitoring Accuracy [18]
Encoders 99.86%
(including latent
losses)
Prostate Gland GAN Prediction - [19]
Human Brain GAN Detection AUC-93.72% [20]
(sample size =
6)
Private Hospital’s Medical GAN Anomaly Max correlation | [21]
Data Detection =0.19 (sample
size 30389)
Wireless Devices Selective Data - [22]
GAN Augmentation
High-Risk Pregnancies DCGAN Monitoring Accuracy - 97% | [23]
Disease Image Bio - marking | GAN Anomaly Sensitivity - [24]
Detection 93.01%
Chest X-Ray Images GAN Generation Accuracy [25]
93.75% (+-
5.33%)
Chest X - Rays GAN/ CNN Segmentation - [26]
Pixel-wise analysis of the Multi-Task Prediction Accuracy [27]
Human Body cGAN 96.46%
Super Resolution of Medical Progressive Image Analysis Accuracy 83% [28]
Images GAN
Human Brain Generative Lesion Detection Sensitivity [29]
GAN 93.1% (mean =
3.67,SD =1.32)
Human Pancreas/ Prostate GAN Blood Glucose Accuracy [30]
Gland Prediction 91.03%
Human Lungs GAN Segmentation Intersection [31]
Over Union
94%

VOLUME 12, 2024
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TABLE 4. (Continued.) Data implementation available online for digital health.

Air Quality Conditional Imputation Accuracy 67% [32]
GAN (sample size =3
polluting gases)
Glaucoma Clinical Trials Cyclical GAN | Classification Accuracy 96% [33]
(Mean
Difference =
0.69 um)
Protein Function Synthetic Prediction Accuracy [34]
GAN 99.99% (for
Leave-One-Out
Cross-
Validation)
Human Brain — EEG Signals GAN Imputation Accuracy [35]
82.85% (SD =
5.89)
Accelerated Multi Contrast GAN Image - [36]
MRI Signals Reconstruction

of the discriminative generic model for overcoming the het-
erogeneity barrier. It is offered to simulate the joint probabil-
ity distribution across data of diverse modalities [16]; this is
their primary contribution. The cross and intra-modality cor-
relations in GAN models may be investigated concurrently,
with both competing to enhance cross-modal correlation
learning. In addition, cross-modal autoencoders featuring
weight-sharing restrictions are presented as generative model
components. This allows them to use cross-modal training for
a generic model and to keep reconstruction data for capturing
consistent experience in each modality [17].

3) CLASSIFICATION

To increase classification performance, GANs battle with
generative and discriminative classifiers. The proposed sys-
tem provides users of GANs with classification and detection
challenges. Several GAN network architectures and train-
ing data set dimensions were tested with the discriminative
network baseline and Bayes’ classifiers [18]. As processor
power, cache, and storage capacity increase, neural networks
keep increasing the number of hidden layers and the num-
ber of elements in each layer to solve more problems [19].
Deep Learning’s fundamental issues have not been solved
by the most recent algorithms offered with a given amount
of processing power. They could include performance versus
a multitude of class labels, generalization — overfitting, and
having adequate data to train the exponentially expanding
number of distinct computing units.

4) DETECTION

In recent years, unsupervised methods have been adopted
for detecting anomalies because GAN may draw aberrant
conclusions via adversarial training of a sample represen-
tation. To give some motivation for the development of
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GAN-based anomaly detection, this study - analyses the idea
of anomaly, provides some criteria for addressing the problem
of anomaly detection and discusses the present issues associ-
ated with anomaly detection [20]. The paper concentrates on
the conceptual and technical progress, theoretical foundation,
practical tasks, and other practical relevance of GAN-based
outlier detection for current works [21].

5) REGISTRATION

The traditional techniques that use any kind of Generative
Adversarial Network attempt to solve the issue of image
registration using methods that are primarily repetitive and
time-consuming. Modern Deep Learning based registration
approaches often extract deep characteristics for iterative
usage. In [22], the research attempts to provide an end-to-
end deep learning approach for recording patient data while
ensuring the security and privacy of multimodal picture data.
The method uses GAN to reduce the cost function to generate
the correct dataset in less than one second. Various studies
confirm its precision for multimodal pictures and data [23].

6) DE-NOISING

A compound Generative Adversarial Network (GAN) may
also be used for de-noising. A GAN can be utilized to
learn, generate noise, and generate paired-image data. This
paired-image data can train a de-noising network, such as
CNN [24], [25], [26]. GAN is capable enough to perform
the above-mentioned process because a GAN model can be
trained to learn sophisticated data in terms of real noise [27].
The trained and realistic noise model solves the problem of
poor de - noising performance due to a lack of data [28]. This
is where the proposed work aims to take the use of GAN in
the sense of its de-noising capability to alleviate ‘‘Health Data
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Poverty.” Some of the significant works in recent times on
indirect applications are listed in Table 4.

V. CASE STUDY

The ImageNet weight of all models was made available from
Keras Applications repository [72]. The processing for the
initial sample batch (size = 40) was done through Adam
optimizer with the learning rate being close to (1/ 10000),
after 20 cycles of training. This was stopped when the train-
ing accuracy did not show much improvement. Alongside,
DenseNet-169 was trained with initial AC-GAN samples
(shifted to model input size) along with data augmentation
techniques. The balanced accuracies of each training model
and their ensemble are mentioned below. SIFT with SVM,
Xception, and DenseNet 121 are not a part of the ensemble
models as they did not boost the accuracy of the final model
considerably. While considering only 80% of the total data
(input + generated) as the validating data (the rest 20% is
assigned as independent training data), it can be seen that the
pipeline can achieve a classification accuracy of more than
85% while considering the 3 most heavily biased classes i.e.,
Melanoma, Nevus, and Benign Keratosis. This is modelled
in comparison to the traditional image classification models
such as SVM trained on SIFT, which fetches an accuracy
of a little over 53% [26], [27]. As it is evident from the
3 confusion matrices plotted for the data using DenseNet
169 (with 40% GAN augmentation), DenseNet 201 (with
50% GAN augmentation), and Ensemble SVM, the accuracy
in predicting the correct class of disease across each row
increases as we move from the DenseNet models towards
the SVM ensemble approach. These confusion matrices show
how individual model predictions can be balanced by an
ensemble to increase classification accuracy. For instance,
the accuracy of Melanoma classification in DenseNet 201 is
relatively poor but is balanced out through DenseNet 169.
Similarly, the accuracy of prediction of Benign Keratosis
is relatively poor in DenseNet 169, which is balanced out
through DenseNet 201 [59]. The confusion matrix for the
Dense Net 169, DenseNet 201 and SVM ensemble model is
shown in Figures 7, 8 and 9 respectively.

The Convoluted Neural Networks were trained using dif-
ferent classification models on GAN for different levels of
accuracy of Data Augmentation. The generated images were
iterated over DenseNet 169 and DenseNet 201 for no levels
of GAN implementation, followed by 10%, 20%, 40% and
50% implementation in subsequent stages. It was observed
and inferred through these cycles that the best accuracy for
each model was achieved when DenseNet 169 was trained
with 40% GAN augmentation (resulting in an accuracy of
over 82%), while for DenseNet 201, the best accuracy (above
88%) was recorded with 50% GAN augmentation.

Tables 6 and 7 show that compared to DenseNet-169,
a deeper and much more complex model like DenseNet-
201 has a greater capacity for additional features offered by
generated images.
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DenseNet 169 (40% GAN Augmetation)
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FIGURE 7. Confusion matrix using DensetNet 169 model (40% GAN
augmentation).

DenseNet 201 (50% GAN Augmetation)
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FIGURE 8. Confusion matrix using DensetNet 201 model (50% GAN
augmentation).

SVM Ensemble
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FIGURE 9. Confusion matrix using SVM ensemble model.

Since only 20% of the total data has been assigned as
“Independent Training Data”, we estimate the count of
photo —realistic images for every class based on this criterion.
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FIGURE 10. Sample images fed as Input (part of 1SIC 2018 challenge -
HAM10000 dataset)n data augmentation.

Hence, for each classification model, we can calculate the
count of photo — realistic images (indistinguishable by the
discriminator function) generated by the Auxiliary Classifier
GAN (AC-GAN).

Count of photo — realistic image generated for a
class (Nearest Whole Number) = (20/100)
* (class count in initial dataset)

* (max. accuracy in Epoch). D

The trend for both models shows that a performance enhance-
ment at a moderate level (using GAN augmentation) is ideal.
The Auxiliary Classifier Generative Adversarial Network
(AC-GAN) plays its role to generate synthetic copies of the
input sample data, keeping them juxtaposed with the origi-
nal input data with the original class labels. The metric for
placing the images side-by-side is through the calculation of
the Euclidean Distance, between the 2 nearest neighbours
(implemented through K - Means Clustering algorithm) in
the training dataset. One striking inference made from the
AC-GAN-generated synthetic images was that although the
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FIGURE 11. Sample auxiliary classifier generative.

images of Skin Lesions produced resemble those present in
the initial training set (recorded using the parameters of size,
form, and colour), the AC-GAN succeeded in creating its
unique images of Skin Lesions. Among the seven classes four
classes are underrepresented in terms of data and the inequal-
ity needs to be removed. The GAN data augmentation aids
to reduce the class imbalance and the fewer representative
classes are augmented and the data percentage is increasing
as shown in Table 8.

These images were not generated by memorizing and
recreating images of Skin Lesions from the training dataset.
Furthermore, even though some samples within classes are
remarkably similar, there is still some diversity in the skin
lesions that were generated, both within each class and among
the three classes, demonstrating the ability of AC-GAN to
capture multiple modes of data distribution.

Adversarial Network (AC-GAN) generated synthetic
images.To provide a demonstration of how a Convoluted
Neural Network (CNN) works to make decisions based on
classification, we have adopted a model-agnostic method,
known as LIME (Local Interpretable Model-Agnostic Expla-
nations) [42]. Here, we make use of the DenseNet 201 model
to provide Positive diagnoses of the region of Skin esion that
contains the top group of pixels for each prediction. It has its
primary application in highlighting the meaningful regions
of the input data images containing Skin Lesions. A True
Positive diagnosis for the 3 most heavily biased classes of
Skin Lesions (Melanoma, Nevus, and Benign Keratosis) was
done from the test set, with DenseNet 201 as the classification
model.

1) All the data collected for CNN and AC-GAN was
processed and the results were analyzed using an NVIDIA
GTX - 1050 GPU. To further boost the processing and to
look for better results, we made use of the Google COLAB
(P100) GPU. Figure 12 shows the percentage improvement
in the less representative classes using GAN and overcoming
class imbalance.

The method of early stopping of execution cycles (stopping
after 5 Epochs), will increase the amount of training data that
is to be fed into the model (around 80% of the total data is
Training Data, and 20% is Testing Data), and performed Data
Augmentation in the initial stages of the pipeline execution.
From Table 10 it was found that the average F1 — Score:
is 0.83, and the Lowest F1 — Score is obtained for Actinic
Keratosis (AKIEC) which is equal to 0.71. The Highest
F1 — Score is obtained for Melanocytic Nevus (NV) which
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FIGURE 12. Sample improvement in less representative classes using
GAN.

is equal to 0.94. This is because of the large number of Train-
ing Samples available for Melanocytic Nevus. The count of
initial samples classified as Melanocytic Nevus, along with
its discussion as one of the three most heavily biased classes
has been mentioned in Table 2. The accuracy of Vascular
Lesions remains constant after multiple cycles since it is
one of the least represented/ biased classes. The count of
photo-realistic images generated by the ACGAN for Vascular
Lesions remains fairly constant, even after 5 epochs. Hence,
to cater to the need for the overfitting of data, we have resorted
to the early stopping of the cycles so that the problem of
overfitting data is solved. Also, Data Augmentation has been
performed on the data that involves generating new training
data from the existing data by applying transformations like
rotation, scaling, or flipping. This can increase the size of the
training data and help prevent overfitting.

VI. CHALLENGES

A. CHALLENGES IN DIGITAL HEALTH DATA

1) DATA PRIVACY/SECURITY

The patient’s permission is required to collect medical pho-
tographs for scientific study. It is unclear whether produced
pictures or datasets derived from them should be deemed
original or fresh data and consequently receive consent from
the patient. In addition, the legal status of further data is
undetermined. GAN uses domain conversion, which may
endanger patients’ privacy far more than the original pho-
tographs. To apply new technology, it is vital to assess not
only its practicality but also its morality and legality.

2) DATA SHORTAGE

Although several datasets are available to the public, the
majority were not created to be used with GAN but for other
healthcare applications. Existing medical databases are of
varying quality, with some being obsolete and fragmented.
For specialized tasks, like the transition from MRI and CT
scans, distinguishing images of a specific scale is not practi-
cal. The bulk of investigators receives them from hospitals.

3) IMAGE CONFIDENCE

The perception of a medical picture may influence the
patient’s life in digital health; hence, many strategies that
are useful in other disciplines for equivalent applications
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may not be applicable in this medical sector. On occasion,
clinicians may not have good trust in a standard medical
image, necessitating multi-level identification. As a result,
the generalization performance of an adequately trained
model is substandard, or changes across certain data domains
cannot be consistently executed. This issue merits consider-
ation. However, it does not indicate that all GANs will be
misdiagnosed.

4) INTERRELATIONSHIP BETWEEN HEALTH,
SOCIO-ECONOMIC STATUS AND RACE/ETHNICITY

Diseases and illnesses, functional decline, disability, and
mortality are just a few of the characteristics of health. Even
though they are typically not clinically diagnosed until at least
middle age, chronic diseases and disorders are influenced by
lifelong factors that are associated with both socioeconomic
position and race/ethnicity. Socioeconomic and racial/ethnic
disparities are more pronounced in some aspects of health
and from some sources than others. Even though there have
been some studies done and data about the impact of socioe-
conomic status and race/ethnicity on many diseases’ onsets
are accessible, they are not all-inclusive. Furthermore, there
aren’t any data sets available for many developing and under-
developed countries.

B. CHALLENGES IN GAN

Despite the usefulness of GAN, there remain obstacles to
overcome before it can be used effectively in medical imaging
research.

1) OPTIMIZING METHOD

The sophistication of the optimization problem is the most
typical GAN problem. The Nash equilibrium represents the
ideal state in a mini-max game where each participant must
achieve optimum cost. However, achieving this balance is
challenging.

2) MODE COLLAPSE

During the training phase, GAN is susceptible to mode col-
lapse, which causes the creation of pictures with an odd look
or just one kind. Several reasons for the collapse include
instability and declining gradients, converging issues, and
generator dominance. Generator domination indicates that
GAN is learned in alternation with discriminator. However,
the generator could be dominant. GAN lacks clear mathemat-
ical evidence for adversarial learning and structure change.
Medical pictures with extensive dimensions and intricate pat-
terns are prone to pattern collapse.

3) CROSS DOMAIN INTEGRATION

With the fast growth of computer hardware, fully convolu-
tional training time will be drastically decreased. Instances
in which GANs are merged with networks from these other
fields. However, the incorporation and mixing of better
models from other domains are currently restricted in medical
image enhancement.
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4) CLASS LEAKING

Another problem for GAN is class leaking, which occurs
when an image created from one class contains attributes
from another class. This topic is complex because it neces-
sitates the definition of suitable metrics to restrict the created
classes better and avoid property mixing.

5) METRICS FOR EVALUATION

The first obstacle is the absence of standards to assess
the quality of synthetic pictures. Presently, medical image
production has been proved to be aesthetically compelling.
However, the quality of created pictures is still evaluated
using conventional indices, such as Mean Square Error, peak
signal-to-noise ratio, and structural similarity index measure.
These assessment indices are insufficiently objective to assess
the quality of health image production [104]. Future trends
include GAN loss functions and assessment indices appro-
priate for medical imaging. Unlike authentic images, medical
visuals often have a complex structure, and the particulars
might transmit essential pathological data. Additionally, there
are substantial distinctions between the different types of
healthcare images.

6) PRACTICAL IMPLEMENTATION

Medical imaging uses of GAN are primarily in the lab setting
and have not yet entered the clinical phase. The combination
of GAN with surgical simulation is effective. Generated pic-
tures may guide and imitate surgery, especially those in three
dimensions. In this environment, there is a need for more
collaboration and communication with physicians.

VII. DISCUSSION

Increasingly, deep learning approaches are being used in the
medical field for various reasons, including disease classifi-
cation and prognosis, monitoring patients, and systems that
support clinical decisions. In addition, the increasing use of
remote surveillance medical devices as part of the IoMT has
eased the retrieval of health information by enabling constant
monitoring and immediate data services by healthcare prac-
titioners. However, the obtained data may not be adequate
to construct correct algorithms due to potential problems in
real-world environments, such as loss of connection, rough
usage, abuse, or poor adherence to a surveillance system.
Therefore, to train neural network models, data augmentation
methods may be utilized to generate synthetic datasets of suit-
able size. A recent examination of Al models divided across
racial subpopulations has shown disparities in how individ-
uals are evaluated, treated, and billed for their healthcare
expenses [101]. In deep learning for medical data, fairness
issues have been observed, leading to the unjust distribu-
tion of scarce medical resources or high health risks for
specific populations. Considering this, the healthcare sector
has lately shown a growing interest in addressing issues of
justice. However, the convergence between deep learning
in the medical sector and fairness in deep learning has not
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yet been thoroughly investigated. In [102], have established
the bridge by identifying fairness issues, outlining probable
biases, classifying mitigation techniques, and highlighting
future difficulties and possibilities.

Increasing the number of training examples is the objective
of medical image improvement. After research and assess-
ment, GAN-based augmented networks can generate new
training samples for the two reasons outlined below. First,
conventional, and improved models may be optimally trained
on medium-sized datasets, including medical photos and
metadata. Using the upgraded approach to expand the amount
of the data set enables the model to be trained on the orig-
inal foundation more effectively and achieve more robust
performance. Second, GAN models will adapt to data with
a high number of pictures but few labels, but it may be
challenging to train traditional models to perform well on
such datasets. For example, more endoscopic pictures of the
digestive system without illness and fewer with tumours and
accompanying labelling. A blend-GAN may utilize synthetic
pictures and many authentic photos as positive and negative
instances, accordingly, and may employ adversarial learning
to enhance the texture consistency of pictures. GANs might
be unable to produce sufficiently faultless synthetic pictures
for datasets with particular challenges within the period.
However, synthetic pictures share many characteristics with
genuine photos and might thus be used to train future models.
The performance of subsequent models may be boosted in the
presence of augmented images, as opposed to their absence.
For instance, researchers may filter synthetic images and
choose higher-quality photos for further task training. The
existing digital medical is sufficient for augmentation using
GAN. The review showed that model accuracy was improved
with the synthesized images compared to the existing dataset-
based operations.

GAN’s Contribution to Digital Health Data Poverty is
through Segmentation, Cross modality transfer, Classifica-
tion, Detection, Registration, Denoising, and Reconstruction.

In [103] conditional Generative Adversarial Networks are
employed to produce fresh synthetic fair data with chosen
attributes of the original data. A method for evaluating data
biases is essential for determining the quantity and kind of
synthetically collected and labelled data required for each
demographic group. The experimental findings demonstrate
that the suggested strategy may effectively minimize various
forms of biases while simultaneously improving the predic-
tive performance of the model. In this study, they explore
the possibility of using Al to identify and correct biases by
focusing on biased information, the fundamental source of
bias in Al In [104] a broad method, debiased-GAN, to solve
this issue by intentionally supplementing an NLP dataset with
unbalanced examples. The study was used for finding the race
in tweets. They define bias as learnt connections between the
race of the user and the conversational style of tweets. That,
relative to tweets by African American individuals, tweets by
white users are much more frequently connected with conver-
sational tweets. Because biases frequently take the form of
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explicit or implicit assumptions, the learnt connections in the
study are comparable to those in real life. The synthetic data is
created using a language model which creates realistic tweets
that are ethnicity low vision. Debiased LMs using generative
adversarial networks using reinforcement learning. A reward
is supplied by a classifier separately trained to determine
the ethnicity of Twitter users based on their tweets. The
debias-GAN may increase the classifier’s fairness measures
by a factor of up to seven while retaining classification results.
The GAN algorithm could be applied to medical data to limit
the impact of sensitive variables such as race, gender, etc.
Likewise, the algorithm will lessen the link between sensitive
features and biased outcomes.

While addressing racial inequalities in digital health would
be neither easy nor clear, a substantial amount of scientific
evidence, considerably greater than most academics and prac-
titioners realize, has indicated critical goals for holistic efforts
to minimize and eventually eradicate health inequities [105],
[106]. We have two options for achieving the suggested
objective. One is to lessen the dominance of one type of
group by reducing bias in the underlying model, and the
other is to incorporate a sub-model to boost bias in favour of
the weaker group. The first method is known as Controlled
GAN (CGAN), and the second is known as VAE-GAN.
By using Class-Conditional GAN, the diversity of a class can
be improved.

A multi-class classifier [107] is employed as a baseline
against which the algorithm’s performance may be measured.
Moreover, the GAN technique is used with the classifier to
reduce its output bias. In this research, the method is judged
valid if the p-percentage exceeds 80 per cent. The p-% of
the classifier, which was initially 39% for race as well as
30% for gender, climbed to 76% for race and 82% for gender
following the use of the GAN method developed in this work.
Whereas the p-% for race also isn’t considered fair, it has
increased significantly since the GAN was implemented.
In the future, a more varied dataset might be utilized with
the GAN algorithm to improve the p-percentage to be more
equitable. GAN algorithm may be used to résumé data to
reduce the impact of sensitive characteristics, such as race and
gender, on digital health. Similarly, the algorithm may lessen
the association between sensitive characteristics and biased
outcomes for a variety of additional applications.

By analyzing and manipulating the racial distribution of
different learning datasets, the effects of different training
distributions on produced picture quality as well as the racial
distributions of the synthesized images are studied. The racial
compositions of produced pictures are faithful to the training
examples. Moreover, it was noticed that truncation, a method
employed to create pictures of greater quality in interpreta-
tion, magnifies racial disparities in the information.

In the analyzed UTKFace dataset, the linked VAE has high
fairness for gender and education levels but does not com-
pare to the regular VAE for other variables, notably gender
and race variables, as measured by the demographic’s parity
differential metric. It implies that the suggested linked VAE
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has been stated to be robust and accurate, but fairness is
still an issue that must be addressed and enhanced. In the
future, researchers may be able to improve the autoencoder
gradient descent against biased attribute types in digital health
data. Researchers could research several forms of fairness
definitions, such as equality of opportunity and fair subgroups
accuracy, as well as the fairness of the model.

Several works in modern medical image enhancement
research do not employ GAN as the reference model.
Instead, it may be disassembled by researchers and included
in GANs. The present refinement and development of
computer-assisted diagnostic imaging technology enable the
acquisition of multimodal pictures of patients. Consequently,
improved diagnostic and treatment procedures based on com-
bined medical pictures have gradually attracted the interest
of scientists, and the need for multimodal healthcare image
enhancement has evolved appropriately. Picture generation
has been employed for 4D medical image problems; however,
the present work is not intended for dataset enhancement but
gives a strong illustration of GAN in health image augmenta-
tion.

VIil. FUTURE DIRECTION

In the future, improved models would be advantageous for
jobs like predicting 4D time series. Supported diagnostic
and treatment strategies based on multimodal medical pic-
tures have steadily drawn researchers’ interest, increasing
the demand for innovative multimodal healthcare for image
analysis. Imaging creation has been employed for 4D medical
image tasks, but this study mainly provides the impact of
GAN-based health data augmentation, thus overcoming digi-
tal data poverty. It is envisaged that future uses of augmented
models will include 4D time series prediction.

There are several efficient data augmentation techniques
other than GAN (Generative Adversarial Networks) that can
be used to increase the size of a dataset and reduce the data
imbalance. Here are a few examples:

A. COLOUR JITTERING

This technique involves applying random colour transforma-
tions to images, such as changing brightness, contrast, and
saturation. This can be used to make models more robust to
lighting conditions.

B. ADDING NOISE

This technique involves adding random noise to images, such
as Gaussian or salt-and-pepper noise. This can be used to
simulate real-world conditions and improve model robustness
to noise.

C. MIXUP

This technique involves linearly interpolating between two
randomly selected images to create a new image. This can be
used to create new images that are a combination of multiple
images in the dataset, which can improve model performance.
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TABLE 5. Direct methods for data generation and augmentation.

Organ | Dataset Model Remarks Reference
Head /Neck | (BraTS) 2020 dataset, brain AGGrGAN- style transfer [37]
-Brain tumour dataset (DCGAN

+WGAN)
MRI-Based Brain Tumour Vanilla GAN Automatic image [38]
and DCGAN quality checking using
CNN, MobileNetV2,
and ResNet152V?2
Tumour Public dataset cGAN Detection and [39]
Classification.
Accuracy measure
Detection -99%
Classification - 98%
BRATS GANs Sensitivity 97.48% [40]
BRATS CPGGANSs Accuracy improves by | [41]
0.64%
Brain Axial MR Images CPGGANSs Sensitivity 91% [42]
TCGA-GBM GAN Accuracy 88.82% [43]
TCGA-LGG
Nanfang Hospital General GAN Accuracy 98.57% [44]
Hospital MRI Brain Images
during 2005-10
Figshare BRATS MSG GAN Accuracy 88.7% [45]
1133 private images MAD GAN Accuracy 92.1% [46]
ADNI database PET images DCGAN 71.45% classification [47]
accuracy
Private Dataset GAN Accuracy 93% [48]
Abdomen - DDSM + CBIS and MIAS GAN image enhancement [49]
Breast technique
INBreast blend- Detection [50]
GAN 0.01 Test positivity
Rate
DDSM NcGAN Detection [51]
0.013- Area under the
curve
DDSM cGAN Classification [52]
0.009- Area under the
curve
INBreast NcGAN Classification [53]
0.03- Area under the
curve
DDSM GAN Classification [54]
0.002- Area under the
curve
Private dataset with 357 images | semi-supervised | Classification [55]
GAN accuracy 90.41%
Private dataset Conditional 69.59% pixel-wise F1 | [56]
GAN score
METABRIC (MB) dataset WGAN 78% accuracy [57]
UKE dataset Cycle GAN Precision 82% [58]
ACDC tsf-GAN Lesion segmentation [59]
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TABLE 5. (Continued.) Direct methods for data generation and augmentation.

Abdomen
Heart

ACDC

tsf-GAN

Cardiac segmentation

[60]

ACDC /SCD

tsf-GAN

Cardiac segmentation

[61]

ACDC

cGAN

Cardiac segmentation

[62]

CTG signal dataset

TSGAN

solves data imbalance.
Increase in the Quality
Index by 44% from
other models.

[63]

Private dataset

3D GAN

Segmentation
quantitative  analysis
was done to show the
effectiveness of GAN

[64]

200 real FHR data

CCWGAN-GP

Accuracy improvement
of 12%

[65]

PTB Diagnostic ECG Database

SLC-GAN

Overcome data
shortage and imbalance
in ECG classification
99.06% accuracy

[66]

Cleveland and Statlog datasets

GAN

99.3% accuracy

[67]

Abdomen

LiTS , IRCAD

tGAN

Vessel segmentation
Differential scanning
calorimetry 0.02  and
0.06

[68]

Private dataset

NcGAN

Liver tumour
classification
Sensitivity

improvement by 6.3%

[69]

Private dataset

NcGAN

Liver tumour
classification
Sensitivity
improvement by 4.4%

[70]

Private dataset

tGAN

Liver registration

[71]

Private dataset of endoscopic
images of gastro

GAN

Lesion location
detection

[72]

CBIS-DDMS

TMP-GAN

lesion detection
augmented dataset
improves by  the
precision of 2.59%

(73]

Private Dataset

GAN

synthesizes high-
resolution virtual
contrast CTs.

[74]

434 patient’s Private dataset

GAN

AUC-83.2

[75]

Thorax

NIH

cGAN

Xray Lesion
Detection-
0.041
improvement

Accuracy

[76]

RSNA

NcGAN

X-ray Disease
Classification 2.02%
Accuracy improvement

[77]

CXR

NcGAN

X-ray Disease
Classification

(78]

Covid 1,2,3

cGAN

X-ray Disease
Classification 10%
Accuracy improvement

[79]
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TABLE 5. (Continued.) Direct methods for data generation and augmentation.

Private DataSet

NcGAN

X-ray Disease [80]
Classification  94.5%
accuracy

LIDC-IDRI

Blend GAN

location [81]
detection- Lung CT
lesion

average CPM
improvement by 0.03.

LIDC-IDRI

cGAN

Lung CT  Lesion | [82]
contour
segmentation

LIDC-IDRI

cGAN

Lung CT
contour
segmentation

Lesion | [83]

LUNA

cGAN

Classification [84]
Accuracy improvement
of 1%

Private Dataset

NcGAN

Classification [85]
Accuracy improvement
by 5%

Private Dataset

NcGAN

Classification [86]
Accuracy improvement
by 6%

LIDC-IDRI

cGAN

Classification [87]
Accuracy 1.17%

Fujita Health University
Hospital 133 lung images

StyleGAN

Obtained multiple | [88]
images from a single
sketch

673 lung cancer CT

SLS-PriGAN

knowledge acquisition | [89]
network
accuracy 91%,

COVID-19 CT
dataset

segmentation

cGAN

lung lesion | [90]
segmentation
Accuracy 99.87%

loss function learns
based on the entire
image

Dataset of NLM, USA

Cyclic GAN

Accuracy 97.19% [91]

Covidx public dataset

U-Net GAN - [92]

D. curour

This technique involves masking out a random portion of
an image and replacing it with black pixels. This can be
used to create new images and improve model robustness to
occlusions.

These techniques can be used individually or in combi-
nation to create a larger and more diverse data set, which
can improve the performance of the model. In future work,
we will use other data augmentation techniques to solve the
data poverty issue.

1) DIRECT METHODS FOR DATA GENERATION AND
AUGMENTATION

Data Augmentation study is broadly classified based on dif-
ferent techniques in augmentation based on the dataset and

122718

diseases on which data is augmented. The prime goal of GAN
deployment in digital health is to enhance the effectiveness
of models, including classification and classification algo-
rithms. However, insufficient dataset sizes and poor image
quality diminish the performance of digital health deep learn-
ing models. Therefore, pseudo-healthy image creation may
also be seen as data augmentation.

2) CLASSIFICATION BASED ON THE METHODS OF DATA
AUGMENTATION

Super-resolution uper-resolution techniques generate higher
images from limited images to get extra data. Using GAN
technology, the super-resolution of health data primarily
depends on the generator’s capabilities. Combinations of low-
and high-resolution images are often used for GAN-based

VOLUME 12, 2024



A. Ravikumar et al.: Alleviation of Health Data Poverty for Skin Lesions Using ACGAN

IEEE Access

TABLE 6. Recorded observations for classification.

Classification Validation/ Train | Test Accuracy
Model Accuracy

SIFT with SVM 0.56 0.54
Xception 0.74 0.72
DenseNet 121 0.74 0.73
DenseNet 169 (40% | 0.80 0.80
GAN

Augmentation)

DenseNet 201 (50% | 0.81 0.81
GAN

Augmentation)

Mean Ensemble | 0.83 0.81
(Non-GAN trained

CNN)

Mean Ensemble | 0.86 0.85
(GAN-trained

CNN)

SVM Ensemble 0.86 0.86

TABLE 7. Results using SVM ensemble - maximum accuracy achieved for
each epoch (Max. 5 Epochs).

Epoch Number | Iteration Range | Max. Accuracy
Achieved

1 0-350 0.68

2 351 -700 0.74

3 701 — 1050 0.78

4 1051 — 1400 0.83

5 1401 - 1750 0.85

medical image super-resolution. Almalioglu et al. [43]
designed a hybrid loss function with excellent fidelity for
a framework that combines an attention mechanism with
Conditional GAN for endoscopic pictures.

3) DATASET EXPANSION

Like a data expansion technique, GAN can generate med-
ical pictures that seem somewhat lifelike to the human
eye [44]. This section analyses the effect of synthetic

VOLUME 12, 2024

TABLE 8. Improvement in less representative classes using GAN.

Classes Data Percentage | Data Percentage
without  GAN | with GAN
Augmentation Augmentation

Basal Cell | 29.65 47.05

Carcinoma

Actinic Keratosis 12.95 2941

Vascular Lesion 12.95 10.16

Dermatofibroma 10.49 13.36

Basal Cell | 29.65 47.05

Carcinoma

TABLE 9. Types of skin lesions.

S.No Abbreviation Lesion Type

1 AKIEC Actinic Keratosis

2 BCC Basal Cell Carcinoma

3 BKL Benign Keratosis

4 DF Dermatofibroma

5 MEL Melanoma

6 NV Melanocytic Nevi

7 VASC Vascular Lesion

TABLE 10. Evaluation metrics for each lesion type.
S.No | Class/ Precision Recall F1 -
Lesion Score
Type

1 AKIEC 0.71 0.70 0.7050

2 BCC 0.82 0.91 0.8627

3 BKL 0.78 0.83 0.8042

4 DF 0.86 0.77 0.8125

5 MEL 0.8 0.78 0.7899

6 NV 0.93 0.96 0.9448

7 VASC 0.87 0.94 0.9036

pictures on the precision of deep learning models. Typically,
there are a few medical photos with annotations. To augment
datasets, GAN may create pictures with specified labels.
Diaz-Pinto et al. [45] provided a precise technique for assess-
ing glaucoma using GAN and semi-supervised learning. Not
only can the system produce pictures synthetically, but it can
also classify them automatically. Because of privacy concerns
and medical organizations’ reluctance to share data, health
datasets tend to be unbalanced. Salehinejad et al. [46] used
Deep CNNs, which were trained to recognize the genesis of
five kinds of CXR pictures using a mix of actual and fake data.
The findings demonstrate that these systems outperformed
comparable ones trained solely with genuine pictures. It is
unlikely that every synthetic picture is acceptable for the
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training procedure; hence it is also required to implement
effective selection methods for synthetic images.

4) PSEUDO-HEALTHY IMAGE SYNTHESIS

The goal of pseudo-healthy data synthesis is to produce a
healthy picture from an unhealthy one. Discovering irregu-
larities and grasping disease-related changes is possible using
healthy synthetic images. The method proposed in [47] pro-
poses a straightforward and effective limitation to enhance
the mapping of abnormal to normal by setting stricter limits
on the generator. Typically, domain transformation alters the
whole appearance of a picture, but in this manner, the genera-
tor can just modify the aberrant portion. Consequently, it must
be susceptible to the features of aberrant portions. Some of the
significant works in recent times based on organs are listed in
Table 5.

IX. CONCLUSION

In this work, several augmentation techniques using arti-
ficial data derived from generative adversarial networks
(GANs) were examined. These ensemble techniques help
us accurately characterize images of skin lesions, along
with generating photo - realistic synthetic images of the
input data. Results also reveal that adding GAN-produced
image samples to the training data does significantly improve
performance when compared to the conventional way of
optimizing the current deep neural network architectures.
In application domains like medical imaging, where sizable
training datasets are often not easily available, these and
other unique data generation and augmentation techniques
can be very helpful. Further, scaling up the resolution of the
images produced by the AC-GAN while maintaining signif-
icant aspects of the training data could enhance the training
of the CNNs, albeit in our testing, higher-resolution GANs
were quite unstable. Different GANS’ generation abilities can
be assessed in subsequent attempts at high-resolution image
generation by their contribution to increasing the classifica-
tion task’s accuracy.
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