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ABSTRACT Vehicle classification (VC) is a prominent research domain within image processing and
machine learning (ML) for identifying vehicle volumes and traffic rule violations. In developed countries,
nearly 40% of daily accidents are fatal, while in developing countries, the figure rises to 70%. Traditionally,
vehicle detection and classification have been performed manually by experts, which is difficult, time-
consuming, and prone to errors. Furthermore, incorrect detection and classification can result in hazardous
situations. This highlights the need for more reliable techniques to identify and classify vehicles accurately
and practically. In existing applications, numerous automated methods have been proposed. However,
employing deep andmachine learning algorithms on complex datasets of vehicle images has failed to achieve
accuracy in various climate conditions and has been time-consuming. This paper presents an accurate, robust,
real-time system to classify vehicles from onsite roads. The proposed system utilizes a random wavelet
transform for pre-processing, edge and region-based segmentation for feature extraction, an embedded
method for feature selection, and the XGBoost algorithm for VC. The proposed work classifies vehicles
under complex weather, illumination, color, and occlusion conditions over 10 datasets, including a novel
dataset named SRM2KTR, containing 75,436 vehicle images on an FPGA platform. The results show
98.81% accuracy, outperforming the state-of-the-art (98%). The systemwas demonstrated with four different
classifiers, classifying images in 0.16 ns with an average accuracy of 97.79%. The system exhibits high
accuracy, rapid identification time, and robustness in practical use.

INDEX TERMS Vehicle classification, machine learning, eXtreme gradient boost algorithm.

I. INTRODUCTION
Intelligent transportation systems (ITS) have a profound
impact on the classification of vehicles through video surveil-
lance, contributing to vehicle tracking, accident prevention,
and route identification [1], [2]. Transportation bottlenecks
lead to environmental pollution and increased user travel
time, which can have economic repercussions. Therefore,
integrating vehicle information into information technology
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and communication (ICT) is essential for real-time traffic
monitoring, improved mobility, and congestion reduction.
In this context, ITS plays a crucial role in vehicle iden-
tification through computer vision and its application in
machine learning. To achieve accurate vehicle classification
despite challenges such as varying illumination, shadows,
and occlusions, an algorithm is employed. Diverse vehicles
in terms of structure, color, and model are used to train the
classification model [3], [4]. To represent specific vehicle
characteristics, a high-performing ensemble machine learn-
ing algorithm, XGBoost, is utilized. Accurate estimation of
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traffic-related factors necessitates the tracking and analysis
of vehicle parameters.

The computer-based approach for unique model identifi-
cation of vehicles hinges on a two-step process involving
feature selection and vehicle classification. Initially, vehicle
features are extracted and then subjected to a selection pro-
cess. Subsequently, these selected features are employed to
train a classifier, enabling it to categorize vehicles effectively.
In light of these considerations, extensive research has been
conducted, yielding a range of feature selection methods and
ensemble classifiers. Notably, the selected features encom-
pass both global attributes (e.g., class, shape, model) and local
descriptors (such as BRISK, MSER, FREAK) [5], [6]. Clas-
sifier algorithms leverage sophisticated mathematical and
statistical techniques to categorize vehicles based on the input
data’s likelihood [7], [8]. Among these algorithms, XGBoost
stands out as one of the most widely utilized classifiers for
vehicle image classification. Several experts in the field have
demonstrated XGBoost’s superior performance in specific
applications, even when prior task-specific knowledge is not
mandatory. For example, the co-occurrencematrix has proven
highly effective in medical image analysis but less so in
other domains. Similarly, character descriptors excel in text
recognition but may be less efficient in different tasks. In the
realm of object and vehicle detection, learning descriptors
have demonstrated their capability to yield superior results.
Furthermore, vehicle classification relies on correlating pre-
defined pattern classes or machine learning-based pretrained
vehicle images with various locations to identify vehicles
within a specific area, even with varying positions, which
presents a more hypothetical scenario.

Commonly, the inclusion of non-vehicle classes is
employed to enhance overall classification performance.
In scenarios involving predefined patterns, this approach can
be time-consuming due to the necessity of correlating test
images with multiple classes. Conversely, in machine learn-
ing (ML), utilizing pre-trained vehicle images stands out as a
more efficient method for current vehicle classification, offer-
ing advantages in processing speed and accuracy [9], [10].
Presently, research primarily addresses low or moderately
scaled datasets for vehicle classification, such as VEDAI,
DLR-3K, and DOTA. These datasets, although valuable, have
limitations in constructing highly complex and state-of-the-
art statistical models for vehicle categorization, chiefly due
to their limited vehicle class diversity and representation.
Consequently, incorporating larger-scale datasets becomes
imperative for advancing the field of normal vehicle image
classification and recognition. The introduction of addi-
tional large-scale vehicle datasets is essential for developing
advanced vehicle representation learning algorithms, which
can also cater to different aspects of vehicle images, includ-
ing vehicle re-identification and multiclass generation. As a
result, a novel large-scale benchmark dataset, SRM2KTR,
has been created. SRM2KTR comprises nearly 1,038,115
images, including 75,436 images across 10 categories related

to various vehicle classes, such as two-wheelers, four-
wheelers, LMVs (Light Motor Vehicles), and HMVs (Heavy
Motor Vehicles).

In stark contrast to the existingVEDAI vehicle datasets, the
newly proposed dataset surpasses them in both the number of
classes and the volume of images, thus demonstrating supe-
rior dimensions and scalability. To achieve a high standard of
images, meticulous processes such as dimension modeling,
data refinement, elimination of redundancies, and multiple
expert reviews have been diligently executed. This large-
scale (LS) dataset holds immense value for advancing the
field of vehicle image representation learning, particularly
in the context of vision-based vehicle classification. Further-
more, the SRM2KTR dataset anticipates a new paradigm for
large-scale visual vehicle detection, contributing significantly
to the advancement of vehicle classification. Building upon
these datasets, the paper introduces techniques like random
and wavelet transforms for pre-processing, feature extrac-
tion involving edge and region-based segmentation, and an
embedded feature selection method, all aimed at enhancing
the effectiveness of vehicle classification.

An advanced training strategy has been implemented to
systematically capture a wide array of vehicle features from
vehicle images, encompassing a diverse range of model data.
This approach involves the comprehensive examination of
both global and fine-grained data during the training process.
Simultaneously, the proposed prototype or model effectively
incorporates various scales of local descriptors, enhancing
local feature representation and, thus, the model’s adapt-
ability. A thorough evaluation of the SRM2KTR dataset
underscores the effectiveness of the proposed XGBoost
techniques. Furthermore, extensive experiments have been
conducted, examining various state-of-the-art techniques for
vehicle image representation learning, emerging models,
fine-grained processes, and prevalent vehicle classification
(VC) methods. Ensemble learning on large-scale datasets
holds promise for addressing diverse vehicle-related com-
puter vision tasks, including vehicle detection and classifi-
cation, vehicle image retrieval, cross-modal vehicle retrieval,
vehicle identification, and segmentation. These advance-
ments signify improved generalization capacity. Implement-
ing this state-of-the-art algorithm on the provided dataset
is expected to offer substantial assistance across a broad
spectrum of offline tasks centered around vehicles, especially
those of a complex and developmental nature.

The contribution of our paper can be summarized as
follows:

• The novel LS top-quality SRM2KTR dataset is provided
with 1,038,115 images containing 10 categories.

• The random and wavelet transform is used for pre-
processing technique, in which images are augmented
and compressed.

• The edge and region-based segmentation are used for
the feature extraction process, in which the data are
extracted and dimensions are reduced.

VOLUME 12, 2024 98339



M. Pemila et al.: Real-Time Classification of Vehicles Using ML Algorithm

• The embedded method for feature selection aims to
increase the efficiency of the classifier model.

• The XGBoost algorithm is used in the classifier model
for the efficient classification of vehicles.

• Different models are trained on SRM2KTR to convert
into various vehicle-relevant tasks including visual vehi-
cle recognition, retrieval, detection, segmentation, and
cross-modal categories retrieval, and to determine its
better generalization of SRM2KTR on these tasks.

The structure of this paper is organized as follows:
Section II provides a comprehensive review of related
work focusing on vehicle classification with machine learn-
ing algorithms. In Section III, the paper delves into an
explanation of XGBoost. Section IV outlines the FPGA
implementation of vehicle classification using the XGBoost
Algorithm. The experimental setup for FPGA implemen-
tation with XGBoost is detailed in Section V. Lastly, the
concluding section offers a summary of the paper’s findings
and insights.

II. RELATED WORK AND PROBLEM DESCRIPTION
This section conducts a review of the most relevant research
on vehicle classification across large-scale (LS) datasets
employing classifier techniques. In recent years, vehicle
classification (VC) methods have been a focal point of
research within the realm of image processing, incorporat-
ing machine learning techniques involving coils, sensors,
videos, and more. With the burgeoning global population
and increasing vehicular demand, the development of intel-
ligent traffic monitoring systems has become imperative
to manage city traffic effectively. Nevertheless, these tech-
niques encounter formidable challenges, including climatic
variations, low luminance conditions, varying camera posi-
tions, and noise interference. VC predominantly revolves
around feature extraction and classification. Initially, features
are extracted to train the classifier, and the classification
model is subsequently employed to categorize the vehicles.
In this context, [1] presents a robust YOLOv4-based vehicle
identification model that effectively deciphers the distin-
guishing features within images. A feature pyramid network
is integrated to enhance the efficacy of features for VC.
This approach achieves a mean average precision (mAP) of
83.45% and 77.08% on BIT-Vehicle and UA-DETRAC vehi-
cle datasets, respectively, each consisting of approximately
10,000 vehicle images across multiple classes. Additionally,
diverse modes of data fusion are explored for extracting
valuable information, which finds applications in various
use cases. In the domain of vehicle detection and tracking,
precision is notably improved, especially in non-line-of-sight
environments. The study in [2] demonstrates performance
enhancements, achieving 9.39% in Area Under the Curve
(AUC) and 7.66% in Average Precision (AP) across three
different datasets. Worth noting is the absence of annotated
images in this context.

To address this limitation, [3] investigates the acquisition
of information from unannotated images, encompassing data

such as bounding boxes, images, and point-level labeling.
Additionally, semantic segmentation is leveraged to differen-
tiate between the internal and external vehicle components.
The experiments conducted on the BSB vehicle dataset
involve the manipulation of over 120,000 unique vehicle
polygons derived from 1,066 DL samples with spatial dimen-
sions of 256 × 256. Notably, real-time vehicle detection in
traffic areas is not within the scope of this study. Instead,
the paper proposes an EnsembleNet model for traffic density
estimation, achieving an accuracy rate of 98% and enabling
vehicle identification using various types of images, fine-
tuning the models [4]. Likewise, hybrid methodologies have
been deployed in the realm of vehicle classification (VC). For
instance, in [11], the author introduced a hybrid model that
combines Faster RCNN and YOLO for vehicle and traffic
flow detection within a traffic scene dataset. Additionally,
the study explores the predominance of voting classifiers,
comparing their performance with the base estimator across
various vehicle datasets. The utilization of the Cityscapes
dataset, comprising 8 categories and 30 subcategories with
a total of 5,000 images, is pivotal in the context of vehicle
detection. Due to its robust perception and decision-making
capabilities, this dataset is highly sought after in applications
related to autonomous driving, leveraging edge intelligence
for enhanced data security and overall scalability. The pro-
posed approach yields an accuracy of 86.22% and a mean
Intersection over Union (mIOU) of 75.63%, although it does
not address complex scenes. In a different vein, [12] presents
brain-inspired technology for traffic management systems,
employing the YOLOv3model for vehicle detection and clas-
sification under complex scenarios. This innovative approach
utilizes vehicle images from Kaggle and Google’s platforms,
incorporating 160 images spanning 5 different classes. The
results indicate an impressive average precision of 94.1% and
a recall rate of 86.3%.

Furthermore, the model incorporates the highly accurate,
stable, and speedy Mobilenet network [13], [14], which
offers both technical and non-technical support for the imple-
mentation of single-stage object detection, addressing the
challenges associated with identifying small objects. The
model’s efficacy is demonstrated on the BDD100K and
KITTI datasets, each comprising 7,481 images, achieving
precision rates of 82.59% and 84.83%, respectively. In the
realm of traffic information, encompassing parameters such
as flow, speed, and vehicle types, novel approaches are
adopted to bridge various learning methods with transformer
technology, enhancing the accuracy of driving condition pre-
dictions. Notably, a Cars Overhead with Context dataset is
introduced for experimentation, featuring vehicle detection
in diverse weather conditions. The combination of densely
connected convolutional networks and transformer in trans-
former layers results in accuracy improvements ranging from
5% to 10%when compared to PoolFormer andViT [15], [16],
[17]. Deep learning-based CSPDarknet53 is introduced as a
means to minimize traffic congestion by identifying vehicles
from the DAWN dataset, achieving a mean average precision
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of 86% [18], [19]. Although themodel is structurally complex
for vehicle detection, an alternative approach is presented
in [20], which proposes a compact and separable feature
learning technique for vehicle identification. This approach
yields an accuracy rate of 80.2%. Furthermore, [21] and
[22] introduces an enhanced YOLOv5 model for vehicle
detection, employing the Flip-Mosaic algorithm to enhance
network perception for small objects. The investigation, con-
ducted on the BITs dataset, results in an impressive mean
average precision (mAP) improvement to 95%.

Moreover, [23] and [24] incorporates ShuffleNetv2 and
GhostNet into YOLOv5 to enhance vehicle detection. The
utilization of a convolution block module results in improved
detection accuracy with greater efficiency. In the context of
overcoming occlusion challenges, [25], [26] introduces the
EfficientLiteDet model, which addresses the occlusion of
targets due to fewer targets. This model is tested on five
different datasets and pedestrian detection, surpassing Tiny
YOLOv4 by 2.4% in mean average precision (mAP). The
model is trained using supervised learning, which involves
classifying objects, regression, and predictions on labeled
datasets. A prominent approach for image classification is
the extraction of features from raw images, followed by
training the model using the extracted feature set [27], [28].
In some cases, specific learning algorithms have proven to
be highly effective in computer vision for vehicle detec-
tion and classification. For instance, [29], [30] employs
the DenseNet121 model in a single dataset, outperforming
MobileNetV2, ResNet-50, VGG 19, Inspection-ResNet-V2,
Xception, and Inception-V3, achieving an impressive accu-
racy score of 95.14%. Additionally, aside from vehicle
classification (VC), there are efforts to detect and address
illegal parkingwith a remarkable accuracy rate of 99.41% and
an increased number of detected violations. These endeavors
employ the YOLOv4 and DeepSORTmodels for vehicle vio-
lation detection, as well as YOLOv4 + Tesseract for number
plate detection and extraction [31], [32]. Furthermore, [33]
and [34] explores various research on a 3-layer architecture
designed for detecting vehicles from video frames. Each layer
performs specific tasks, including feature mapping, sliding,
and bounding box creation that contains vehicles.

Additionally, [35] and [36] introduces a novel frame-
work architecture for vehicle classification (VC) that delves
into vehicle model, type, and fuel identification. This
framework leverages microelectromechanical systems and
machine learning, founded on the principle of privacy-by-
design, achieving an impressive accuracy rate exceeding
90%. In [37] and [38], explores the application of lightweight
graph-based cryptography to address authentication and secu-
rity challenges within Intelligent Transportation Systems
(ITS). The optimization of machine learning models is tack-
led, with the establishment of six different models. Notably,
Logistic Regression (LR) outperforms multinomial NB, GB,
RF, DT, and SVM in terms of accuracy. In [39] and [40],
a combination of K-means clustering and KLT tracker is

TABLE 1. Comparison of contemporary vehicle classification datasets
including proposed dataset.

integrated into YOLOv2 to enable vehicle counting, detec-
tion, and speed estimation. This enhancement results in a
5.5% improvement in recall accuracy and an average time
improvement of 93.3% across various sequences. Similarly,
[41] and [42] presents a novel YOLT technique for detecting
vehicles from aerial imagery. This model achieves a mean
average precision (mAP) of 80% and effectively addresses
challenges related to category variation, contrast scalability,
and complex scenery within dominant resolution process-
ing. Using UAV video data, [43], [44] demonstrates the
identification of vehicles through deep learning techniques,
specifically SSD and Faster CNN. The video data is captured
using a DJI Phantom 3 Professional drone with a resolution
of 3840 × 2160, yielding a remarkable vehicle detection
accuracy rate of 96.49%. The varying shapes and structures
of roads, which can impact the accuracy of vehicle detec-
tion, are addressed in [45] and [46] with the proposal of
YOLOv7-RAR. This model aims to reduce errors in the
detection of random features and significantly enhance pro-
cessing speed, achieving up to 160 frames per second (FPS)
and an Average Precision (AP) of up to 56.8%. Feature
extraction for vehicles in low-light situations poses a sig-
nificant challenge in machine learning models. In response,
[47], [48] conducts experiments using a trained model named
YOLOv3, achieving amean average precision (mAP) of 72.8.
However, the model excels at identifying cars but faces chal-
lenges in recognizing buses and trucks. To improve vehicle
model detection in low illumination conditions, [49], [50]
adopts the YOLOv5model with the assistance of the k-means
clustering algorithm.

The performance of vehicle detection using modified
YOLO and Faster CNN has been evaluated on three different
datasets, resulting in accuracies of about 94.00%, 94.22%,
and 95.67% [51], [52]. In recent technology, [53], [54], [55]
parallel edge AI is implemented for multi-task ITS, in which
the data is preprocessed with parallelism for real-time vehicle
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detection with an accuracy of 95% in buses and cycles,
90% in cars, and 87% in truck classification [56], [57],
[58]. The CatBoost algorithm is used to identify the internal
categorical data, which slows down the training time while
classifying the vehicle images from the image dataset [59],
[60], [61]. Table 1 displays the statistics of existing vehicle
classification benchmarks jointly with SRM2KTR. The size
of SRM2KTR in both model and images surpasses the size
of the existing dataset. Although there are a few datasets,
such as SOCARwith greater models, the quantity and quality
of images for unique models are less. The literature survey
reveals certain limitations in existing datasets [62], [63]. For
instance, the GRAM-RTM dataset does not provide vehicle
type classification. Even large-scale datasets like MIO-TCD
face significant challenges in classifying vehicle images
when employing models such as ImageNet, COCO, AlexNet,
and Inception-V3. In contrast, the SRM2KTR dataset offers a
comprehensive solution, encompassing both vehicle models
and images. This versatile dataset is compatible with various
models, including Sparse coding, SIFT + FV, AlexNet, and
VGG-Net. However, existing datasets encounter bottlenecks
during the preprocessing stage of vehicle image classifica-
tion. These challenges arise from the extensive multiclass
variance in vehicle images, as well as the scattered grayscale
intensities. Moreover, distinguishing between vehicles of
similar sizes and colors can be challenging. Noise and irrel-
evant features may also persist after feature extraction. The
substantial multiclass variance and scattered grayscale inten-
sity further complicate the accurate classification of vehicles
within large-scale datasets.

Consequently, the proposed methodology aims to over-
come these challenges, specifically addressing the issues of
scattered grayscale intensities and high-dimensional features
through an algorithm. This approach results in a remarkable
accuracy rate of 98.8% in vehicle classification, particularly
using the XGBoost model, on a large-scale dataset.

III. XGBOOST ALGORITHM
The eXtreme Gradient Boosting (XGBoost), an ensemble
algorithm, has been widely preferred for image classifica-
tion. In recent times, this algorithm is considered to be the
most productive technique for vehicle classification. These
algorithms are much extendable complete tree boosting for
classification and regression [64], [65]. The specified dataset
is taken in the form of dimensions. These classification and
regression are considered in terms of decision trees. The
selectedmap is fed to the node of the tree. The count and score
are taken into account of calculation. The nodes are ordered
and investigated the factors to obtain the optimal model. The
model is then used for XGBoost modeling. Initially,

Obj(t) = 6n
a=1B(xi, x

′
i)+6t

a=1�(yi) (1)

�(yi) = αT + 1/2β6t
a=1W

2
j (2)

In the equation 1, xi and x’I are given as real and predicted
value of deviation square loss function. Regularization term

is mentioned as �(yi). Splitting tree co efficient is given by
the α, β. The predicted value is given once the iteration is
stopped

C
′(t)
i = C

′(t−1)
i + d t (bi) (3)

Objective function are expressed as

Obj(t) = 6n
i=1B(x i, x

′
i) + f i(bi)+�(yi) (4)

Loss function depend on Taylor series with nearest rate and
accuracy.

Obj(t) = 6n
i=1[E i−[E

′(t−1)
i + ft (xi)]]2 + h (5)

The Obj(t) calculate the node to minimize loss function.

IV. VEHICLE CLASSIFICATION USING XGBOOST
ALGORITHM
In this section, a comprehensive explanation of the FPGA
implementation for vehicle classification using the XGBoost
algorithm is provided. The process initiates by collecting
vehicle images from the designated dataset, capturing them at
different time frames and angles. Notably, this dataset encom-
passes vehicle images under varying illuminance conditions
and angles, thereby facilitating the validation of real-time pro-
cesses. The dataset contains vehicle images that vividly depict
real-world scenarios, offering invaluable support for both
scholars and scientists. Researchers can employ this dataset to
evaluate the performance of their existing deep learning mod-
els, particularly those trained on diverse datasets. It proves
especially beneficial for scholars engaged in the development
of vehicle type and model classification systems, enabling
them to train and assess their models under real-time condi-
tions. Within this dataset, all vehicle images are meticulously
annotated and categorized into ten distinct classes based on
vehicle type and model. The schematic representation of
the proposed vehicle classification approach employing the
XGBoost algorithm is illustrated in Figure 1.

A. DATA ACCESSION AND PRE-PROCESSING
The initial steps of the data collection process involved
recording videos using a high-quality camcorder designed for
vehicles. These videos were captured at varying frame rates
and under different environmental conditions, including day,
night, rain, and fog.

In this paper, real world dataset is utilised for evaluation.
The dataset consist of vehicle images for classification and
identification. SRM2KTR is a large-scale containing two-
wheeler, three-wheeler, four wheeler, auto, tempo, jugad,
car, pick up, bus, truck, tractor, backhoe, defense vehicle
and equipment vehicle includes 1,038,115 images of 28,000
identifies. These images are picked under various vehicle
viewpoint and climate condition in daylight, evening and
night. Some identifies are used for training and rest for
testing. It is taken under complex environments. The cam-
era used was the SA-TATYA PZCR50ML42CWP, equipped
with a 5MP Pan-Tilt-Zoom Camera featuring 42x Optical
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FIGURE 1. Overall architecture of the proposed for vehicle classification.

Zoom and powered by the Wide Dynamic Range (WDR)
algorithm. The video recordings were conducted on the
main National Highway (NH) in front of SRM IST, Kat-
tankulathur, following the necessary permissions for video
capture. The recorded videos were subsequently divided into
individual frames, with a one-second interval between each
frame. To ensure data quality, duplicate images or videos of
the same vehicles were manually removed. Moreover, most
background elements were eliminated to safeguard privacy
and enhance security, leaving only the vehicle images intact.
Subsequently, these curated vehicle images were organized
into various datasets, with each dataset being categorized
into different folders. Each folder was labeled to indicate the
type and model of the vehicles contained within. To protect
the personal details of vehicle owners, particular attention
was given to keeping the number plates intentionally unfo-
cused and some with owner permission the licence plates is
focused. Out of 1,038,115 images of 28,000 categories only
75,436 images with 10 categories are considered. Following
these comprehensive annotations, a split of 60% for training
and 40% for testing was employed. This balanced division
enabled the evaluation of various machine learning mod-
els. Thus SRM2KTR dataset are substantial, comprehensive,
diverse, and valuable for diverse tasks. The overall process
of creating the SRM2KTR dataset is visually depicted in
Figure 2. Following the dataset collection, the importance
of a pre-processing phase becomes evident. Attempting to

apply raw data directly to any classifier model often yields
suboptimal accuracy in vehicle classification. Therefore, pre-
processing techniques are introduced to enhance the data.
In this study, a combination of randon and wavelet transform
techniques is employed during the pre-processing stage to
augment and compress the images. Initially, the dimension
of the images is computed, and the background is subtracted.
Subsequently, the images are normalized and standardized,
and the transformation process is utilized to extract image
edges. Randon transform proves effective in edge detection.
However, since it does not provide extensive information
about patterns, wavelet transform is incorporated into the
process. This combination of randon and wavelet transforms
serves to reduce the scattering of grayscale intensity. More-
over, these pre-processing techniques assist in mitigating
noise within the patterns and contribute to image compres-
sion, facilitating subsequent feature extraction processes.
In the Figure 3 and 4 show the flow diagram and stimulation
process of randon and wavelet transform. comprehensive
annotations, a split of 60% for training and 40% for testing
was employed. This balanced division enabled the evaluation
of various machine learning models. The overall process of
creating the SRM2KTR dataset is visually depicted in
Figure 2. Following the dataset collection, the importance
of a pre-processing phase becomes evident. Attempting to
apply raw data directly to any classifier model often yields
suboptimal accuracy in vehicle classification. Therefore,
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FIGURE 2. A novel dataset named SRM2KTR dataset containing various
types of vehicles with different classes.

FIGURE 3. The workflow diagram of preprocessing images in which the
images are augmented and compressed.

pre-processing techniques are introduced to enhance the data.
In this study, a combination of random and wavelet transform
techniques is employed during the pre-processing stage to
augment and compress the images. Initially, the dimension
of the images is computed, and the background is subtracted.
Subsequently, the images are normalized and standardized,
and the transformation process is utilized to extract image
edges. Random transform proves effective in edge detection.
However, since it does not provide extensive information
about patterns, wavelet transform is incorporated into the

FIGURE 4. The result of preprocessing methods using randon and wavelet
transform for real time images. (a) implies the raw images to be feed into
preprocessing techniques (b) Shows the result of randon transform in
which the edge of the vehicles images are highly bedrock for vehicle
classification (c) The result of the wavelet transform in which the output
of the randon wavelet is store the images in various scales of resolutions.

FIGURE 5. The workflow diagram of feature extraction from preprocessed
images in which the feature of the vehicle images are extracted for
feature selection processes.

process. This combination of random and wavelet transforms
serves to reduce the scattering of grayscale intensity. More-
over, these pre-processing techniques assist in mitigating
noise within the patterns and contribute to image compres-
sion, facilitating subsequent feature extraction processes.

B. FEATURE EXTRACTION
The image features are represented in numerical form, pro-
viding a comprehensive definition of the characteristics
inherent to the vehicle image.

These features serve as the basis for structural and
meaningful depiction. Grayscale images are acquired and
subsequently combined, feeding into the model. However,
it’s essential to note that these images are in a high-
dimensional format. Within this high-dimensional format,
a set of 50 statistical features is extracted. These features
encompass characteristics such as correlation, dissimilarity,
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FIGURE 6. General block diagram of feature extraction for vehicle
classification using edge and region base segmentation.

FIGURE 7. General flow diagram of feature selection processes for
vehicle classification using embedded method.

and non-uniformity. To more accurately represent the tex-
ture of the image, these characteristics are amalgamated
using edge and region-based segmentation techniques. This
approach involves the segmentation of vehicle feature images
based on similar pixel criteria, effectively reducing dimen-
sionality. Through this process, variations in intensity levels
and the discontinuity of edges are effectively detected and
interconnected as part of the feature selection processes.
In Figure 5 and 6, show the general workflow and block
diagram of extraction technique.

C. FEATURE SELECTION
Feature selection is a pivotal aspect of machine learning, as it
strives to identify a concise subset of features that are both
essential and accurately represent the relevant information
present in each dataset. This proposal introduces an embed-
ded technique that assesses the significance of features and
subsequently selects the most pertinent ones. These selected
features are then supplied to the trained model, enhancing the
accuracy of vehicle image classification. The general flow
diagram is illustrated in Figure 7.

D. CLASSIFICATION
Following the feature selection process, the subsequent step is
classification, a fundamental task within the classifier model.
After the selection of features via the embedded technique,
these features are utilized to train a machine learning (ML)
model. Notable ML models include the Multilayer Percep-
tron (MLP), Support Vector Machines (SVM), Naïve Bayes
(NB), K-nearest neighbors (KNN), and XGBoost Classifier.

FIGURE 8. Hardware setup for vehicle classification using FPGA board
(a) shows the general hardware setup (b) shows the real time video for
vehicle classification using FPGA board.

The images, labeled ac-cording to their type and model,
are used to train the ML model. Subsequently, the trained
model is evaluated against a test dataset to gauge its perfor-
mance. Thus, the combined utilization of feature selection
processes and model training, particularly employing the
XGBoost algorithm, contributes to the identification of valu-
able features and serves to enhance the accuracy and overall
performance of the ML model.

V. EXPERIMENT SET UP FPGA IMPLEMENTATION USING
XGBOOST
The experimental setup for the FPGA implementation of
Vehicle Classification (VC) using the XGBoost algorithm
is visually depicted in Figure 3. The experiment entails
the utilization of ten publicly available vehicle datasets,
including VEDAI, DLR-3K, DOTA, Real-world fuel effi-
ciency, NYS Electric Vehicles Data, CMS, Monthly HELP,
Motorized access trails, SRM2KTR, and the 2023 Cars
dataset. This extensive experiment was con-ducted using an
Intel® Xeon® Processor E3-1225 v5 with 8M Cache and
a clock speed of 3.30 GHz. The system is equipped with a
64GB memory. The dataset employed for this experiment
comprises 43,224 images for training and 32,212 images
for testing, with each image labeled according to its vehicle
type and model. In the classification process, the XGBoost
algorithm is configured with specific parameters, including
a learning rate of 0.5, a maximum of 100 leaves, and a
maximum depth of 20. The model is designed to classify
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vehicles based on their type and model, and it is trained using
all relevant features. To facilitate the processing of images
and vehicle classification, the algorithm is implemented on
an FPGA board known as myRIO. The myRIO board man-
ages the image processing flow and rapidly retrieves images
while categorizing them by vehicle type. The classification
of vehicles is achieved with precision using a huskylens
camera. Furthermore, the experiment encompasses various
challenging conditions, including scenarios involving low
light, adverse weather conditions, vehicles of the same color
but different types, identical vehicles with varying colors,
and occlusions. The hardware setup for this experiment is
illustrated in Figure 8.

A. FPGA DESIGN FLOW USING MY RIO
To implement the classification of vehicles using the
XGBoost algorithm on an FPGA, the myRIO platform is
employed. This choice is made due to constraints related
to the size of the vehicle. The myRIO-1900, developed
by National Instruments, serves as the control system for
executing programs in mechanical and electronic systems.
It is a compact and specialized solution designed to support
the educational needs of research scholars, academics, and
scientists.

The myRIO platform features an FPGA processor with
a Xilinx Z-7010 processor operating at a frequency of
667MHz. Themaximum power consumption of this system is
14W, and it is equippedwith a 256MBmemory. Once the nec-
essary software is installed, the LabVIEW window becomes
readily available for use in conducting the experiments and
implementing the vehicle classification system.

When the toggle switch is turned on, the vehicle is iden-
tified, and as it crosses the system’s field of view, an LED
indicator is illuminated. On the other hand, when the switch
is turned off, the system initiates the extraction of vehicle
information and proceeds to classify the vehicle based on its
type, color, categories, and class. The illuminated LED indi-
cates the system’s active condition during vehicle crossing,
and it returns to an off state once the vehicle has completed
its passage. The Huskylens camera is an integral part of this
system, continuously recording real-time images or videos.
If a vehicle is detected, the system checks its memory to
verify whether the vehicle’s features match those of a trained
vehicle. If the vehicle is recognized as trained, the system
displays information about its type, color, and class in a serial
or sequential manner.

Alternatively, if the vehicle is not recognized, it is associ-
ated with another set of features from the trained database,
thus identifying the vehicle based on assigned factors such as
color pattern, class, andmodel. This configuration is typically
executed through a programming interface where parameters
like intensity and color are defined. The cameras are equipped
with an algorithm that predicts the vehicle’s image and
identifies its color, model, or class. The entire process is
visually represented in the flowchart depicted in Figure 9.
This research is conducted by merging hardware and

TABLE 2. Evaluation metric of the classifier implemented in 10 datasets
including proposed dataset.

software components. In the hardware segment, the
Huskylens module is connected to the FPGA board. The per-
formance of the classifier is evaluated using a set of metrics,
and Table 2 provides an overview of the evaluationmetrics for
the classifier when implemented on different datasets, includ-
ing the proposed dataset. The results are compared to those
of various classifiers using different datasets, demonstrat-
ing that the proposed model achieves similar performance
standards but with reduced processing time, setting it apart
from existing models and datasets. In the Table 2, SRM2KTR
dataset have better evaluation metric with XGBoost classifier
nearly 98.81%. The reduction in grey scale intensities and
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FIGURE 9. Flowchart of FPGA implementation of vehicle classification
using XGBoost Algorithm.

FIGURE 10. Sample vehicle images under dark conditions.(a)shows the
raw images under dark environment from real time videos (b) The classes
of vehicle images are highlighted with red boxes.

high dimensional data make the classifier much stronger in
classification accuracy. In case of SVM classifier, it have
better classification rate of 2% when compared to the NB
classifier. NB classifier gain 1% accuracy when compared
to KNN. KNN required lot of memory for computation
resources and also it take long processes for training time.

VI. RESULTS AND DISCUSSION
In this section, the paper presents the performance of the pro-
posed framework under various conditions, including vehicle
images captured in dark conditions (Figure 5), different
weather conditions (Figure 6), a wide range of vehicle col-
ors and types (Figure 7), and scenarios involving occluded
vehicles (Figure 8).Figures 9 illustrate the mean Average

FIGURE 11. Sample vehicle images under different weather conditions
such as fog, mist and rain.

FIGURE 12. Sample vehicle images of same colour but different vehicle
(left). Similarly, same vehicle but different colour (right).

FIGURE 13. Sample vehicle images with occlusion condition.

Precision (mAP) at Intersection Over Union (IOU) thresholds
ranging from 0.6 to 0.98, as well as box loss, class loss, and
object loss resulting from the proposed training conducted
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FIGURE 14. Output waveform of classification loss for classifying vehicles.

FIGURE 15. Time utilization for each dataset accessible vehicle
classification.

FIGURE 16. Classification accuracy under different iterations.

over 70 epochs. These metrics are calculated based on the
validation set while training with the extensive dataset. The
obtained results show that the mAP reaches 80% at a 0.6 IOU
threshold, while the highest IOU score is 40%. The precision
reaches 90%, indicating that true positives are significantly
higher compared to false positives. The recall rate is 80%,
reflecting a large number of true posibtives. The box loss
measures the algorithm’s ability to accurately locate the vehi-
cle within the bounding box, while the object loss represents
the identification of vehicles within the region of interest.
The class loss pertains to the precise classification of vehicle
types. These loss metrics collectively reflect the quality of
vehicle image predictions from the dataset.

Furthermore, the proposed model shows substantial
improvements after approximately 35 to 40 epochs, reduc-
ing the training time by 50%, as indicated in Figure 10.
In comparison to SVM, Naïve Bayes, and KNN, the pro-
posed method offers significantly reduced training times,
taking only 2 milliseconds. This is in contrast to the com-
putational time consumed by real-time processing, which
involves around 4,000,000 instances, while SVM requires
considerably more time, even under 1,000,000 instances
when implemented on a Graphical Processing Unit (GPU).
Figure 11 visually represents the classification accuracy,
demonstrating that an ac-curacy rate of 98.8% is achieved

after 40 iterations, underlining the effectiveness of the pro-
posed model. Figure 12 to Figure 16 represents the different
data sets and predicted accuracy using the proposed approach.

VII. LIMITATIONS AND FUTURE SCOPE
While our work demonstrates significant advancements in
vehicle classification using XGBoost, limitations exist. These
include hardware complexity, potential environmental vari-
ability, generalization to unseen data, and resource consump-
tion during training. For future work, we propose enhancing
hardware implementations, addressing extreme environ-
mental conditions, expanding dataset diversity, exploring
advanced ensemble techniques, optimizing for real-time pro-
cessing, and conducting field deployments for practical
insights. By tackling these limitations and pursuing these
future directions, we aim to advance vehicle classification
research and contribute to the development of robust real-
world applications. For future work, the algorithm can be
applied in hardware implementations within complex envi-
ronments. Moreover, advanced ensemble techniques may
be employed to train extensive datasets. Predictions across
various categories of vehicle identification, classification,
and localization within real-time vehicle images should be
accomplished with faster computational speeds.

VIII. CONCLUSION
This paper introduces the SRM2KTR dataset, distinguished
by its substantial volume, comprehensive class coverage,
and wide-ranging diversity of vehicle images compared to
existing datasets. Serving as a valuable benchmark for Vehi-
cle Classification (VC), it aids researchers and scientists
in diverse VC tasks such as identification, retrieval, recog-
nition, segmentation, and cross-class retrieval due to its
remarkable generalization capabilities. The primary focus
lies on vehicle classification using the XGBoost algorithm
to enhance accuracy, leveraging a large-scale dataset encom-
passing 75,436 images across 10 categories. The proposed
methodology involves high-dimensional data reduction dur-
ing pre-processing through random and wavelet transfor-
mations, alongside dimensionality reduction via region and
edge-based segmentation.

Employing the ensemble algorithm XGBoost as the clas-
sifier for VC, chosen for its effectiveness in handling
large-scale datasets and mitigating overfitting, various mod-
els including Sparse coding, SIFT + FV, AlexNet, and
VGGNet are evaluated for efficiency. Experiments conducted
on an FPGA board named myRIO, interfaced with devices
controlling program flow, and Huskylens for vehicle classifi-
cation based on various conditions including type, color, dark
environments, poor weather, and occlusions.

Comparisons across various datasets and classifiers (SVM,
Naïve Bayes, KNN, andXGBoost) highlight the effectiveness
of the proposed algorithm, achieving a maximum accuracy of
98.8%. XGBoost’s superiority is evident in its interpretation
speed, reduced training time, higher true positives, fewer
false positives/negatives, and more precise trained weight
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compared to traditional algorithms. Notably, features such
as regression to address overfitting, parallel processing, han-
dling missing values, cross-validation, and effective pruning
make XGBoost a stable and efficient choice for VC. Execu-
tion on GPUs drastically reduces computation time, enabling
real-time processing capabilities, a significant advantage over
CPU-based models like SVM.
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