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ABSTRACT We utilize hybrid quantum deep reinforcement learning to learn navigation tasks for a simple,
wheeled robot in simulated environments of increasing complexity. For this, we train parameterized quantum
circuits (PQCs) with two different encoding strategies in a hybrid quantum-classical setup as well as a
classical neural network baselinewith the double deepQ network (DDQN) reinforcement learning algorithm.
Quantum deep reinforcement learning (QDRL) has previously been studied in several relatively simple
benchmark environments, mainly from theOpenAI gym suite. However, scaling behavior and applicability of
QDRL to more demanding tasks closer to real-world problems e. g., from the robotics domain, have not been
studied previously. Here, we show that quantum circuits in hybrid quantum-classic reinforcement learning
setups are capable of learning optimal policies in multiple robotic navigation scenarios with notably fewer
trainable parameters compared to a classical baseline. Across a large number of experimental configurations,
we find that the employed quantum circuits outperform the classical neural network baselines when equating
for the number of trainable parameters. Yet, the classical neural network consistently showed better results
concerning training times and stability, with at least one order of magnitude of trainable parameters more
than the best-performing quantum circuits. However, validating the robustness of the learning methods
in a large and dynamic environment, we find that the classical baseline produces more stable and better
performing policies overall. For the two encoding schemes, we observed better results for consecutively
encoding the classical state vector on each qubit compared to encoding each component on a separate qubit.
Our findings demonstrate that current hybrid quantum machine-learning approaches can be scaled to simple
robotic problems while yielding sufficient results, at least in an idealized simulated setting, but there are yet
open questions regarding the application to considerably more demanding tasks. We anticipate that our work
will contribute to introducing quantummachine learning in general and quantum deep reinforcement learning
in particular to more demanding problem domains and emphasize the importance of encoding techniques
for classic data in hybrid quantum-classical settings.

INDEX TERMS Reinforcement learning, autonomous agents, robotics, quantummachine learning, quantum
computing.

I. INTRODUCTION
Robotics research and applications pose various algorithmic
challenges, ranging from large-scale optimization, processing
of high-dimensional sensory input, planning the execution
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of complex tasks in demanding environments, and learning
of autonomous, adaptable behaviors. On the latter, deep
reinforcement learning is used to produce impressive results
in tasks such as learning complexmanipulation behaviors [1],
reaching, tracking and, navigation [2], manipulation based
on visual input [3] as well as dexterous hand move-
ments [4] among many others. It constitutes a central
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FIGURE 1. Main contribution: We use parameterized quantum circuits
(PQCs) as function approximators in the DDQN Deep Reinforcement
Learning algorithm to learn optimal policies for a simulated Turtlebot
robotic system in several simulated navigation tasks.

role on the path toward autonomous and life-long learning
robots.

Quantum computing algorithms [5] present a novel way
of approaching algorithmic problems and offer theoretical
advantages over classical algorithms for specific problems
like factoring numbers [6], unstructured search [7], and
solving systems of linear equations [8]. With more devel-
opment and further resources, quantum computing and,
in particular quantum machine learning [9] may contribute
to the development of artificial intelligence in general
and the learning of autonomous behaviors for robots in
particular [10].
The idea of robots controlled by quantum computers,

interacting with an environment on the scale of individual
quantum states has arguably first been hypothesized and
described by quantum computing pioneer Paul Benioff in
the late 1990s and early 2000s [11], [13], [14]. While those
envisioned Quantum Robots are very different from typical
mechanical robotic systems as they can be found in various
practical applications today, the idea of a mobile system
utilizing quantum computing hardware remains intriguing.

Quantum computing technology has not yet reached the
state of mobile, embedded, and potentially battery-powered
quantum hardware but has made remarkable progress over
the last two decades. Research institutions and companies are
building quantum computers with increasing capabilities, and
while current Noisy Intermediate-Scale Quantum Computers
(NISQ) are limited in the number of qubits, coherence times,
and fidelity of operation [15], they already enable exploring
solutions for various problems [16].
One potential application for NISQ devices is the hybrid

training of parameterized quantum circuits (PQCs) as
machine learning models [17]. While this technique has been
studied in various domains of machine learning [18], deep
reinforcement learning has only recently attracted substan-
tial research interest in this context. Existing works (see
Sec. II-D) demonstrate the applicability of hybrid quantum-
classical approaches for reinforcement learning tasks, with
performances similar to classical algorithms while learning
notably more compact models. However, their scope is cur-
rently limited to relatively simple benchmark environments,
mainly from the OpenAI gym suite [19].
Or main contributions, illustrated in Fig. 1, are as

follows. We demonstrate the feasibility of quantum deep

reinforcement learning in three simulated robotic navigation
tasks of increasing size and difficulty. Thereby, we extend the
scope of previously introduced methods to substantially more
complex tasks in the robotic domain, as we show by com-
parative experiments with typical benchmark environments.
Furthermore, we compare to different encoding strategies for
the classical state of the robot into a quantum circuit and
also analyze the scaling behavior of the quantum circuits
relative to a classical baseline. To validate the robustness
of the presented methods, we additionally demonstrate their
application in a substantially larger, more demanding and
dynamic environment. In comparison to previous works in
the field of quantum deep reinforcement learning, we thereby
increase the complexity of considered learning tasks and
furthermore provide a systematic evaluation of the scaling
behaviour of quantum models in this context. Finally,
we discuss various challenges and limitations of quantum
deep reinforcement learning in a robotic context, as well as
potential areas of research for quantum machine learning
to contribute to the future advancements in autonomous
robotics.

The rest of this paper is outlined as follows: In Sec. II,
we provide an overview of previous works regarding deep
reinforcement learning with PQCs. Subsequently, we outline
the quantum deep reinforcement learning framework under-
lying this work in Sec. III. Afterwards, the learning setup with
regard to the simulated environments and learning methods
is documented in Sec. IV. We present the training results of
the suggested methods compared to a classical baseline in
Sec. V before summarizing our main findings and discussing
their implications and limitations in Sec. VI. Finally, we give
an outlook toward potential future research directions in
Sec. VII.

II. RELATED WORK
Introducing quantum algorithmic techniques and quantum
mechanical effects into reinforcement learning (RL) methods
is an active and growing field of research. Meyer et
al. [20] give an overview over various proposed methods
and applications in this area. In the following, we highlight
important methods and results from this line of research.

A. QUANTUM RL AND QUANTUM INSPIRED RL
Quantum mechanics and quantum computing were intro-
duced reinforcement learning by Dong et al. [21], who
proposed Quantum Reinforcement Learning (QRL). In the
QRL algorithm, the classical states and actions of the
agent are expressed in the orthonormal eigenbasis of a
Hermitian observable. Actions are chosen by measuring in
that basis from a superposition state, where the amplitudes
of that superposition state are modified during learning
utilizing amplitude amplification, the essential building block
of Grover’s algorithm [7]. The authors evaluate the QRL
algorithm in a discretemazeworld, comparing it to the tabular
TD(0) RL algorithm [22], achieving convincing performance.
Quantum-inspired Reinforcement Learning (QiRL) [23] is

87218 VOLUME 12, 2024



H. Hohenfeld et al.: Quantum Deep Reinforcement Learning for Robot Navigation Tasks

a classical RL algorithm that builds on the ideas of QRL,
using a quantum-inspired probabilistic sampling technique
to address the exploration vs. exploitation [22] problem
in RL and a classical technique inspired by amplitude
amplification to control the sampling probabilities. The
algorithm is demonstrated on a simulated grid world and
real-world robot navigation task with a wheeled MT-R robot.
A variant of QiRL with flexible rotation angles in the ampli-
tude amplification step is proposed in [24], which shows
better performance on a UAV navigation problem compared
to tabular Q-learning [25] with two different exploration
strategies. Hu et al. [26] apply QRL to the MountainCar
and CartPole problems from the OpenAI Gym [19] suite,
focusing on the exploration vs. exploitation problem, finding
better overall learning performance compared to the classical
Q-learning algorithm with an ϵ-greedy policy. Quantum-
inspired Experience Replay (QER) [27] is an extension of
the concepts of QiRL to the representation of experiences
and sampling from the replay buffer in Deep Reinforcement
Learning (DRL), which the authors evaluate in several
Atari 2600 game environments [19] and compare to
baseline experience replay and prioritized experience replay
with several variants of the DQN [26] algorithm.
This line of work with QRL and QiRL emphasizes the

expression of states and actions in RL problems in quan-
tum states, efficiently updating measurement probabilities
leveraging amplitude amplification, and expressing the same
concepts in a classical learning setup. QER extends these
ideas to experience replay in DRL. Our contribution is
conceptually different, as we focus on substituting classical
neural networks in DRLwith parameterized quantum circuits
while keeping the learning algorithm and representation of all
aspects of the learning task unchanged.

B. QUANTUM ENVIRONMENTS
Dunjko et al. [28] propose a quantum-enhanced framework
that, in principle, covers supervised, unsupervised, and
reinforcement learning but, in its formulation, is closest to
the latter. In this framework, the agent and the environment
exchange actions and percepts by applying completely
positive trace-preserving (CPTP) maps to a shared quantum
register and their local quantummemory. The authors analyze
the conditions under which an agent in this framework can
outperform its classical counterpart. They extend this work
to a meta-learning scenario in [29] demonstrating further
improvements.

Saggio et al. [30] suggest a reinforcement learning setting
in which the agent and environment exchange information
on a classical and a quantum channel in an alternating
way and show how, in such a setting, an agent performs
better than with strictly classical information exchange. The
authors validate the concept by performing experiments
on a photonic quantum processor. Theoretical performance
analysis of this framework is provided in [31], where
the authors find a quadratic learning speed-up, which still

holds under hardware noise and limited coherence times.
Dalla et al. [32] successfully demonstrate a classical deep
reinforcement learner in a quantized maze environment based
on quantum walks, considering potentially noisy dynamics.

Quantum-enhanced learning frameworks, as considered
in these works, require some form of quantum information
based interaction between agent and environment and are,
in that aspect, different from our contribution. We consider
an environment from the robotic domain, where agent-
environment interaction is strictly classical.

C. PROJECTIVE SIMULATION
Projective simulation [33] is an extension of the RL learning
framework by an episodic and compositional memory,
which allows the agent to predict potential future events
using random walks on that memory. In [34], the authors
propose an extension of this learning method using quantum
walk on quantum memory instead to achieve a quadratic
speed-up, which was later demonstrated in a proof-of-
principle experiment on an ion-trap based quantum system
by Sriarunothai et al. [35].

The deep reinforcement learning algorithm we use in our
work does not utilize any form of episodic memory, hence
the suggested techniques in this line of research are not
immediately applicable.

D. QUANTUM DEEP REINFORCEMENT LEARNING
In quantum deep reinforcement learning (QDRL), the line
of research from which our contribution originates, one or
multiple classical neural networks are replaced or extended
by parameterized quantum circuits. In contrast, agent-
environment interaction and as the learning procedure are
kept classical. We give a detailed account of the underlying
theory in Sec. III. The focus in this relatively new field so far
has mostly been on showing the feasibility of the methods,
understanding their capabilities and limitations, as well as
finding quantum-classical separations in learning tasks.

In several works the Q-function approximation in the
DQN algorithm is implemented by a PQC. Chen et al. [36]
use basis encoding [37] followed by CNOT entangle-
ments and parameterized Pauli rotations without a data
re-uploading structure for the FrozenLake [19] and a
CognitiveRadio task [38] with discrete state and action
spaces. Lockwood et al. [39] use a different encoding
technique and combine the parameterized circuit with
quantum pooling operations [40] and classical neural network
layers without data re-upload. This setup is able to learn
a Blackjack environment but do not successful learn
Cartpole-v0 [19]. In [41] the circuit layout and encoding
scheme is similar to the one that we employ in this work.
The architecture also includes data re-uploading and enables
learning on FrozenLake and Cartpole-v0.

In addition, PQCs have also been used in the policy
gradient methods REINFORCE [22]. In [42] the PQC
architecture also includes data re-upload scheme. Included
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in the REINFORCE algorithm, the setup is able to solve
Cartpole-v1, Mountaincar-v0 and Acrobot-v1.
Additionally, the authors demonstrate experimentally and
formally that hybrid quantum deep reinforcement learning
can solve environments based on the discrete logarithm
problem [43] which are intractable for classical learning
methods. A variant of the REINFORCE algorithm is used
in [44] to optimize PQCs, which replace the classical
attention head layers originally introduced in [45], to solve
the vehicle routing problem and achieve similar results as the
classical counterpart.

Furthermore, actor critic methods such as proximal policy
optimization (PPO) [46] and soft actor-critic (SAC) [47]
have also been adapted with PQCs. In [48] the PPO
algorithm is augmented with PQCs by exchanging the actor
approximation network. The PQC has no data re-uploading
scheme and is trained onCartpole-v0without completely
solving it. In [49] unentangled PQCs with a fully connected
classical layer as post processing unit replace the classical
estimator for the actor and critic. This setup solves OpenAI
Gym environments Cartpole-v1, Acrobot-v1 and
LunarLander-v2.

Nagy et al. [50] simulate a hybrid quantum version
of PPO on a photonic processor which demonstrates that
PQC equivalences on photonic quantum computers can be
used for reinforcement learning as well. In [51] the author
demonstrates that the critic network in SAC can be exchanged
with a PQC followed by a classical neural network and still
solve the Pendulum-v0 problem from OpenAI gym with
continuous state and action spaces.

Several works introduce parameterized quantum circuits
into a hybrid quantum-classical learning setup, without
strictly falling into the category of deep reinforcement
learning. Cherrat et al. [52] implement a quantum ver-
sion of policy iteration to solve FrozenLake and the
InvertedPendulum environment. Franken et al. [53]
implement a gradient-free method based on evolutionary
methods to optimize a PQC that receives input data encoded
by a tensor network. This setup is able to solve MiniGrid
worlds [54] with discrete state space.
Or contribution extends upon these previous works in the

following way:

• We extend the scope of QDRL to considerably more
complex learning tasks from the robotic domain.
We establish that increase in complexity by comparative
experiments (see Appendix A).

• We systematically evaluate the scaling behaviour of
parameterized quantum circuits in QDRl across task
complexity as well as model size, which has previously
not been done.

• We compare different encoding strategies suggested in
the literature for re-uploading circuits with regards to
their performance in a QDRL scenario.

Thereby we extend the understanding of the feasibility of
QDRL from very simple benchmark environments towards

FIGURE 2. Reinforcement Learning setup (left) and main parts of the
DDQN algorithm (right). An agent interacts with an environment by
performing action at after observing a state of the environment st ,
causing a transition to state st+1 and receiving a reward rt . For the DDQN
algorithm, these interactions are stored in a replay buffer, from which
regularly random mini-batches are sampled to train an artificial neural
network Qθ approximating the action-value function.

more realistic application scenarios from the robotics domain
and contribute to the understanding of the model scaling
behaviour in this context.

III. QUANTUM DEEP REINFORCEMENT LEARNING
A. DOUBLE DEEP Q-NETWORKS
For all our experiments, we used the Double Deep Q-
Network (DDQN) [55] algorithm as it performed slightly
better on average compared to e. g., the basic Deep Q-
Network algorithm (DQN) [56]. DDQN is a model-free,
off-policy deep RL algorithm that uses a neural network
to approximate the Q-function from the basic Q-learning
algorithm [25].
RL is used to solve Markov Decision Processes (MDPs),

that is, discrete-time, stochastic processes (S,A,T , r, p0)
with

• S: The state space, a set of all possible states of an
environment

• A: The action space, a set of all possible actions for an
agent

• T : S × A × S → [0, 1]: The possibly stochastic
transition function with T (s, a, s′) = p(s′|s, a) being the
probability of transitioning to state s′ after taking action
a in state s.

• r : S × A × S → R: A reward function with r(s, a, s′)
denoting a numeric reward for taking action a in state s
and transitioning to state s′ and

• p0: A probability for each state to be a starting state of
the MDP.

The general scheme of interaction for an agent in an
environment governed by an MDP is illustrated on the left
side of Fig. 2. At each time step t , the agent observes a state
st of the environment, takes an action at , which causes a
transition to state st+1 and the agent to receive a reward rt .
The agent’s action selection is governed by a policy π : S →
A and the goal is to maximize the total cumulative reward R
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for a possibly infinite time horizon, given by

R =
∞∑
t=0

γ trt (1)

with γ ∈ [0, 1], called discount factor, encoding the
preference for immediate over long-term rewards.

In the DDQN algorithm, this is achieved by learning an
optimal action-value function Q : S × A → R. The
action-value function Q(s, a) expresses the expected total
cumulative reward for taking action a in state s

Q(s, a) := ⟨R⟩s,a,π , (2)

and the greedy policy can be expressed in terms of Q(s, a) by

π(s) := argmax
a

Q(s, a). (3)

The action-value function, also referred to as Q-function,
is approximated by an artificial neural network Qθ with
parameters θ . The neural network takes a state s ∈ S as input
and computes Q(s, a(i)) for all a(i) ∈ A as output. During
learning, an ϵ-greedy policy is employed by the agent, that is
at each time step t with probability ϵ ∈ [0, 1], the agent takes
a random action from A to further explore the environment
and with probability 1 − ϵ, it follows the greedy policy (3)
to exploit its current knowledge. At the beginning of training,
ϵ is commonly chosen with a value close to 1 and gradually
reduced toward 0 as learning progresses.

Interactions (st , at , rt+1, st+1) are stored in a replay
buffer [57] from which at a predefined interval e. g., at each
time step, a mini-batch is sampled to update Qθ with
stochastic gradient descent, minimizing the loss

L(θ ) = (yt − Qθ (st , at ))2, (4)

with yt given by

yt = rt+1 + γQθ ′ (st+1, argmax
a′

Qθ (st+1, a′)). (5)

The target network Qθ ′ is used to stabilize the training
process [56]. It has the identical structure as Qθ and is
periodically updated with θ ′← θ .

B. QUANTUM COMPUTING
We give a short introduction to the common notation of
quantum computing and refer the interested reader to [58] for
a comprehensive explanation of basic and advanced concepts
of this topic. The fundamental objects in quantum computing
are qubits, analogous to bits in classical computing. Unlike
classical bits, which can be in one of the two states, 0 and
1, a qubit can be in a state, which is a linear combination of
those states. Using the bra-ket notation, a qubit state |9⟩ can
be written as

|9⟩ = α|0⟩ + β|1⟩,with α, β ∈ C, |α|2 + |β|2 = 1, (6)

where |0⟩ and |1⟩ are basis states of the underlying
single-qubit Hilbert Space. During the probabilistic measure-
ment process, the qubit will collapse to one of the two basis

FIGURE 3. Basic principle of a parameterized quantum circuit as function
approximator. A unitary U(θ, x), which may be composed of any number
of quantum gates, is applied to an n qubit register initialized in its basis
state. The unitary is parameterized by trainable parameters θ and input
data x. Thereby, the expectation value of an observable ⟨O⟩ can be
defined as a parameterized function fO(θ, x). The parameters θ are
optimized toward a desired outcome, by minimizing a task specific loss L
using a classical optimization technique e. g., gradient descent.

states, and |α|2 and |β|2 can be interpreted as the probabilities
for the respective basis states. Before the measurement, the
state can be modified by applying quantum gates U

|9 ′⟩ = U |9⟩, (7)

formally described by unitary operators U . This formulation
can be extended to multi-qubit systems by preparing an
n-qubit quantum register. For quantum computers, this is
commonly initialized in its computational basis state |0⟩⊗n.

C. PARAMETERIZED QUANTUM CIRCUITS FOR DEEP
REINFORCEMENT LEARNING
Variational quantum algorithms are a promising method to
implement algorithms on current and near-term quantum
computers as they are well suited for systems with a relatively
small number of qubits, noisy operations, and limited
coherence times [59]. Their basic principle of operation is
the combination of a parameterized quantum circuit whose
parameters are adjusted by a classical optimizer toward
the desired outcome while evaluating the quantum circuit
with adjusted parameters at each optimization step [60].
First introduced in the context of variational quantum
eigensolvers [61], they became a major research area in
quantum machine learning [59].

A parameterized quantum circuit (PQC) is a series of
unitary quantum gates U (θ , x), which is applied to the
computational basis of n qubits |0⟩⊗n. These gates are
parameterized by variational parameters θ and classical input
data x. Fig. 3 shows this general ansatz for a machine learning
application.

The PQC’s quantum state |U (θ , x)⟩ = U (θ , x)|0⟩⊗n is
computed and measured for many repeated iterations to
gather sufficient statistics for the expectation value

⟨O⟩ = ⟨U (x, θ )| O |U (θ , x)⟩ (8)

for an observable O. ⟨U (x, θ )| denotes the conjugate
transpose of |U (θ , x)⟩. The measured expectation value of the
quantum computation can be interpreted as the computation
of a parameterized function fO(θ , x) depending on the
observable, circuit parameters, and input.

The parameters θ are tuned with an appropriate method to
fit a target function. E.g., in the domain of supervisedmachine
learning, a loss function L can be minimized by performing

VOLUME 12, 2024 87221



H. Hohenfeld et al.: Quantum Deep Reinforcement Learning for Robot Navigation Tasks

FIGURE 4. Data re-upload in parameterized quantum circuits: After an
initial parameterized unitary V (θ0), L layers of data encoding unitaries
Uin(xl ) and parameterized unitaries V (θ l ) are applied to the n qubit
quantum register.

gradient descent. Several analytic and numeric methods
enable calculating gradients of quantum circuits with respect
to their parameters, such as the finite difference methid [62],
the parameter shift rule [63] and adjoint differentiation [64].
Various encoding methods for quantum machine learning

tasks have been suggested [37], but recent results on the
expressiveness of quantum circuits emphasize the advantages
of repeated encodings, also referred to as data re-upload [65],
[66]. Such an ansatz enables the circuit to compute functions
of the form

f (θ , x) =
∑
ω∈�

cω(θ )eiωx, (9)

which is a partial Fourier series with frequency spectrum
� depending on the data encoding and coefficients cω(θ )
determined by trained variational parameters θ and the
entanglement gates [66].
PQCs with data re-upload have L layers, which consist of

data encoding unitaries Uin(xl) followed by parameterized
unitaries V (θ l) in each layer l. As introduced in [66], the
circuit starts with parameterized unitaries V (θ0) applied
on the n-qubit register |0⟩⊗n followed by a sequential
implementation of the layers. Fig. 4 depicts the circuit layout
for such an ansatz.

We consider two different re-upload strategies resulting in
two different implementations of Uin(xl). In the first case,
we follow [41] by rescaling each continuous classical feature
si of the state s with trainable parameters ξli for each layer
l using the function xli = arctan(ξlisi) ∈ [−π, π]. The
index sets of the trainable input parameters are given by i ∈
{1, . . . , ns} and l ∈ {1, . . . ,L} resulting in Lns parameters.
In the following, x denotes the set of all encoded and rescaled
input data and xl a subset of all encoded, and rescaled input
data for layer l. In this encoding style, each state feature si is
encoded on one qubit:

s 7→ Uin,1(xl(s)) =
n⊗

q=1

U (q)
in,1(xlq), (10)

where U (q)
in,1 is one of the Pauli rotations Rx ,Ry,Rz with

rotation angle xlq depending on state feature sq acting on qubit
q. For this type of encoding the number of qubits n has to be
equal to the number of input features ns.
In the second case, we encode, in line with [65], three

features of the rescaled state s in a universal, single qubit gate
U (q)
in,3 composed of three parameterized Pauli rotation gates.

Any combination of rotation gates capable of representing

a general single qubit rotation, e. g. RxRyRx , suffices for
U (q)
in,3. The state features si are encoded as the rotation angles.

Therefore, the rescaling is done by using different trainable
variables ξ

q
li for each qubit q ∈ {1, . . . , n}, which formally

can be written as: xqli = arctan(ξqli si) ∈ [−π, π]. This
encoding uses nLns trainable input parameters. Similar to the
first encoding, all trainable parameters used for layer l are
denoted by xl . A state s is encoded as:

s 7→ Uin,3(xl(s)) =
n⊗

q=1

U (q)
in,3(x

q
l1, x

q
l2, x

q
l3). (11)

For a state space with more than three features, Uin,3 is
repeated until all features are encoded. Each Uin,3 then
encodes a subset of three features, potentially padding the
state space with features set to zero tomake its dimensionality
divisible by three [65]. We perform experiments with both
encoding styles, Uin,1(x) and Uin,3(x), and unify the notation
by referring to both with Uin(x).

The parameterized part of the PQC, V (θ ), consists of two
parts. One part includes universal, single qubit gates:

Upar(θ l) =
n⊗

q=1

U (q)
par(θ

q
l1, θ

q
l2, θ

q
l3), (12)

which can be implemented by any general, parameterized
rotation with three Pauli-rotation gates contributing 3nL
trainable circuit parameters. The second part contains fixed
entangling gates Uent to create entanglement by acting on all
n qubits. We choose controlled Z gates on all neighboring
pairs of qubits and between the last and the first qubit.

Combining all segments, the PQC ansatz with data
re-upload is constructed by applying the parameterized part
V (θ0) to the initial register, followed by a layer of data
encoding Uin(xl) and another parameterized part V (θ l),
which are repeated L times. The entire circuit is given by:

U (θ , x) =
L∏
l=1

(
UentUpar(θ l)Uin(xl)

)
UentUpar(θ0). (13)

This operator is applied to the initial state |0⟩⊗n leading
to the final state |U (θ , x)⟩, and the expectation value of an
observable O:

fO(θ , s) := ⟨O⟩θ ,s = ⟨U
(
x(s), θ

)
| O |U

(
θ , x(s)

)
⟩. (14)

As observables, we choose Pauli-Z gates σ
(1)
z ⊗ . . .⊗σ

(n)
z ,

each acting on another qubit to obtain n different output
values. The output values can either be directly interpreted as
values for Q(s, a) in the reinforcement learning scenario or
combined, scaled, or further post-processed by any classical
means including additional classical neural network layers.

Let aj be one action of the action space A = {a0, . . . ana}
with na ≤ ns. If na < ns, the PQC output values can
either be combined, e. g., by multiplying some of them [41],
to reduce the number of output values to the number of
possible actions na, or the first na qubits are measured.
Four our comparative experiments with the Cartpole-v0

87222 VOLUME 12, 2024



H. Hohenfeld et al.: Quantum Deep Reinforcement Learning for Robot Navigation Tasks

FIGURE 5. The three simulated static navigation environments for the Turtlebot 2 robot. In each, the robot has to navigate from its
starting position in the upper left corner to the position marked with a green circle in the lower right while avoiding collisions with the
enclosing walls and any obstacles. With the configured control scheme, this takes about 20 steps in the 3 × 3 environment (left), 30 in
the 4 × 4 (center), and 45 steps in the 5 × 5 environment (right) for a (near) optimal trajectory. Possible paths the robot can take to
solve each environment are marked with a red dotted line.

FIGURE 6. Dynamic environment in which the robot is equipped with a
front facing lidar, depicted with orange rays. The robot starts in the center
of the environment, the goal position is sampled at random from either
of the four corners at the start. While navigating to the goal, the robot has
to avoid several static and moving obstacles. The trajectories of the
moving obstacles is indicated by green arrows. Solving the environment
takes between 60 and 70 individual steps, depending on the sampled
goal, position of dynamic obstacles and path the robot takes.

environment we use the former strategy, for the dynamic
robot navigation environment the latter.

In our learning scenario, the Q-values range exceeds the
interval [−1, 1] and thus needs additional post-processing.
The authors of [41] suggest rescaling each output value with
an additional trainable parameter ωj:

Q(s, aj) = ⟨σ (j)
z ⟩θ ,s · wj, (15)

which adds na trainable output variables to the model.

IV. METHOD
A. ENVIRONMENTS
In our experiments, we use four environments based on a
simulated Turtlebot 2 robot.1 We chose this robotic system
as it enables relatively simple yet realistic navigation tasks
while being a readily available and extensible system we can

1https://www.turtlebot.com/turtlebot2/

build upon in future work. The robot is controlled via two
independent motors by setting target velocities for its two
wheels.

The first three environments are static navigation tasks
depicted in Fig 5. The 3 × 3 environment shown on the left
is the smallest, the 4 × 4 environment (center) is of medium
size, and the 5× 5 environment (right) is the largest. In each
environment, the robot starts at a fixed position in the upper
left corner and has to navigate to a fixed goal position marked
with a green sphere while avoiding collisions with the outer
walls and the obstacles within the environment. The robot
has a state space with three components for these tasks. The
first two are its position in the plain in sx and sy coordinates,
and the third is its orientation sϕ around the z-axis in radians.
We use these environments to understand the scaling behavior
of parameterized quantum circuits in the learning task, assess
their behavior and performance for trajectories of increasing
length and complexity and evaluate the effect of an increasing
exploration demand.

We furthermore created a considerably more demanding
environment to validate the robustness of the presented
method with a higher dimensional state space and dynamic
components in the learning task. In this environment, shown
in Fig. 6, the robot is equipped with a simple, front-facing
lidar that covers a range of 180◦ in the plane. The robot’s state
space contains ten distance measures in 20◦ intervals as well
as the current distance and orientation to the goal. The robot
starts in the center of the environment and has to navigate to
a goal position, which is sampled at random at the beginning
of each episode to be in either of the four corners.

We created all environments with the pybullet [67] real-
time physics engine and set a control frequency of 100Hz for
collision detection and calculating forward dynamics.

The robot has three actions available (forward, turn left,
turn right) to move in the environment. To move forward,
the same target velocity is applied to both wheels, whereas
for turning left and right, equal velocities but with opposing
directions are set. Turning left or right causes a change in
orientation between 40◦ and 50◦ depending on the current
forward and angular velocity of the robot. Similarly, the
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robot moves between 0.15 and 0.2 units in the direction of
its current orientation, where one unit corresponds to the
length of one square on the environment floor. An action
is chosen every 50 simulation steps, corresponding to an
execution time of 0.5 seconds. With this control scheme,
the robot needs about 20 consecutive actions to reach the
goal in the 3 × 3 environment on a near-optimal trajectory,
30 steps in the 4 × 4 environment, and 45 steps in the large
5 × 5 environment. Possible paths the robot can take to
solve the static environments are marked with red dotted lines
in Fig. 5. In the dynamic environment, where the robot is
equipped with a lidar, a typical trajectory leading to the goal
takes about 60 to 70 steps, depending on the current goal,
position of dynamic objects and path taken by the robot.

We use the same simple yet informative reward function
to train the robot in all environments. The agent receives a
positive reward for decreasing the distance to the goal as
well as for reaching it, whereas increasing or maintaining
the distance as well as collisions are penalized. The reward
function is given by:

r(st , st+1) =


10.0 if st+1 is within the goal area
0.1 if dgoal(st+1) < dgoal(st )
−1.0 for any collision
−0.2 else

(16)

where dgoal : S → R is the euclidean distance of the robot to
the goal area. The penalties in the reward function ensure that
shorter trajectories are preferred by the agent. We consider
the static environments solved when a total reward of 10.5
(3 × 3), 11.0 (4 × 4), and 10.0 (5 × 5) is reached. Higher
rewards are possible, as the two larger environments have
more than one possible path to the goal and we furthermore
allow some tolerance for the length of the trajectory and the
exact route. Therefore, these thresholds are a lower bound
based on several manually determined valid trajectories. For
the dynamic environment we do not set a threshold and
observe the average evaluation reward over the entire training
time.

In all environments, an episode ends when the robot
reaches the goal, collides with an object, or when a maximum
of 200 steps were executed during training.

B. LEARNING
We trained the simulated robot using three different
paradigms: A baseline with a classical neural network
as approximator for the action-value function and two
different parameterized quantum circuits, distinguished by
their encoding strategy for the classical input data.

For the classical baseline agent, we employ a three-layer,
fully connected neural network with rectified linear unit
activation on all but the final layer, which has a linear
activation. In the static environments, the network takes the
three components of the robot’s state s = (sx , sy, sϕ) as input,
followed by two layers with u1 and u2 number of hidden units

FIGURE 7. Circuit layout for layer l of our PQC ansatz used for the static
environments. The encoding unitary Uin on each qubit q is given by U (q)

in,1,

resp. U (q)
in,3. The encoding is followed by a general rotation gate Upar with

three variational parameters θ
q
l0, θ

q
l1, θ

q
l2 for each qubit and a full

entanglement among all qubits with three controlled-Z gates. We omit
the qubit index on all gates for readability. For the dynamic environment
we use the same ansatz extended to 12 qubits.

FIGURE 8. The two input encoding strategies used for training a
parameterized circuit as action-value function. For the PQC-1 strategy
shown on the left, each feature of the state s = (sx , sy , sϕ ) is encoded on
an individual qubit in each layer using a single Rx gate. The PQC-3
encoding scheme uses three consecutive parameterized rotation gates
Rx Ry Rx to encode the entire state s on each qubit and layer as depicted
on the right. For both strategies, before encoding, each feature of the
state is scaled by a trainable parameter λ

q
li individual to each encoding

gate, and an activation function g : R → R is applied. Through all our
experiments, we use arctangent as activation functions.

and three outputs corresponding to Q(s, ai), i ∈ {1, 2, 3}. For
the dynamic environment, we use the same neural network
architecture, albeit with a 12 dimensional input for the ten
lidar distance measurements as well as the distance and
orientation to the goal. The number of trainable parameters
|θNN | including weights and biases for the classical neural
network is therefore given by:

|θNN | = |s|u1 + u1︸ ︷︷ ︸
first layer

+

second layer︷ ︸︸ ︷
u1u2 + u2+ 3u2 + 3︸ ︷︷ ︸

third layer

. (17)

Here |s| is the dimensionality of the state space and ui the
units in the i-th layer.
In both quantum cases, we build our circuit on three

qubits for the static environments, which aligns well with
the dimensionality of the state space and the number of
actions available to the agent. Both circuits follow the general
approach depicted in Fig. 4 and are only different in their data
encoding structureUin and the number of layers L. The circuit
layout for a single layer l > 0 is illustrated in Fig. 7, whereas
the encoding strategies are shown in Fig. 8.

Our first data re-upload PQC model uses the encoding
U (q)
in,1 on each qubit with the rotation gate Rx to encode

one state feature on each qubit (PQC-1). For the second
model, we use U (q)

in,3 for each qubit with rotation gates
RxRyRx to encode all three state features on each qubit (PQC-
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TABLE 1. The configurations used for the classical baseline in all three
static environments with the number of units u1 and u2 for the first two
layers of the neural network and the number of trainable parameters
|θNN | for each configuration.

3). As introduced in Sec. III, we scale each feature with
a trainable parameter that is individual for each encoding
gate and furthermore apply an activation function for which
we choose the arctangent in all our experiments. The
universal rotation U (q)

par on each qubit is composed of three
parameterized Pauli rotation gates RxRyRz with trainable
parameters.

For the large, dynamic environment with a 12 dimensional
state space, we use circuits with 12 qubits. The PQC-1 as
described above directly translate to this setting, whereas for
the PQC-3 encoding we distribute all 12 features of the state
space across four layers, each encoding three of the features,
as outlined in Sec. III.
The number of trainable parameters for each quantum

circuit |θPQC | is the sum of variational parameters in the
initial parameterized and the following L layers, the input
scaling and the output scaling parameters, in total:

|θPQC | = 3Q(L + 1)︸ ︷︷ ︸
variational

+

input︷ ︸︸ ︷
QnencL+ 3︸︷︷︸

output

. (18)

Here nenc = 1 for the PQC-1 and nenc = 3 for the PQC-3
encoding, Q is the number of qubits in the circuit.
Based on these three architectures, two quantum and one

classical, we performed experiments with different sizes of
each architecture for the static environment. For the classical
neural network, we evaluated a total of ten configurations for
the number of units u1 and u2 in the first and second hidden
layers. The configurations and their number of trainable
parameters |θNN | are outlined in Table 1.
Likewise, we included ten configurations for each quantum

encoding strategy with an increasing number of layers L.
As the different types of encoding lead to a different amount
of trainable parameters for each layer, we arranged the num-
ber of layers to have an equal number of parameters between
both. The number of layers L for both strategies, as well as the
number of trainable parameters, including variational, input,
and output scaling parameters are summarized in Table 2.

TABLE 2. The configurations used for both quantum encoding strategies
while training the three static environments. The number of layers L as
well as the number of trainable parameters |θPQC |, which include the
variational, input, and output scaling parameters, are outlined.

With regard to the parameter scaling, we emphasize that
the number of trainable parameters roughly doubles with
each increase of the configuration size for the classical
baseline, whereas the scaling for the quantum circuits is only
linear. Thus, the largest neural network we employed has
about two orders of magnitude (34,307) more parameters
than the largest quantum circuits (480). With the dynamic
environment, we only perform experiments with a single
configuration for each architecture, due to the considerable
computational effort involved in simulating very large
quantum circuits. The neural network used as baseline has
256 and 128 hidden units (36,611 trainable parameters), the
PQC-1 circuit has 24 layers, and the PQC-3 circuit 16 layers
(bot 1,191 trainable parameters).

We set a learning rate for the stochastic gradient descent of
10−3 for the classical baseline as well as for the variational
parameters in both quantum circuit architectures. The input
and output scaling parameters were trained with a learning
rate of 10−2 for both PQC-1 and PQC-3 as encoding.
For the hyper-parameters specific to the DDQN algorithm,

we use the same values for all experiments. The replay
buffer was set to a capacity of 20,000 experience samples
and is initially filled with 5,000 samples from executing a
fully random policy in the environment, before each training
starts. The agent is trained after each step it executes in
the environment with a mini-batch of 64 samples from the
replay buffer. Exploration is handled with an ϵ-greedy policy
as introduced in Sec. III, starting at ϵ = 1.0 and setting
ϵ ← 0.99ϵ every 250 training steps. Total training time
is limited to 50,000 steps in all environments, except for
the dynamic environment, in which we train 100,000 steps.
We evaluate the current performance of the learned policy
after every 100 training steps by performing 10 consecutive
runs within the environment. Once the average total reward
over those 10 runs surpasses the solution criterion for any of
the static environment outlined above, the training is stopped
early, whereaswe do not stop the training early in the dynamic
environment.
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To gather sufficient data on the robustness and repro-
ducibility of the learning procedure, we repeat the training
for each combination of static environment, architecture, and
configuration 20 times, each time with a different random
seed. We do not set the random seeds to specific values but
have them provided by the operating system’s randomness
source instead. We consider a configuration successful if at
least 15 of 20 training runs solve the environment. In the
dynamic environment, we repeat each training 10 times and
record the evaluation performance to evaluate the robustness
of the presented methods in a considerably larger and more
challenging environment and large quantum circuits.

All hyper-parameters were determined empirically before
the actual experiments. Our main goal was to find a set of
parameters that would enable reliable and robust training
under mostly identical premises for all three architectures,
their respective configurations, and for all three environ-
ments, as our main interest is not in absolute performance
but in comparison of architectures and scaling behavior.
An overview of all hyper-parameters can be found in Table 6
in App. B.

C. HARDWARE, SOFTWARE AND COMPUTATIONAL
RESOURCES
All experiments were conducted on a workstation equipped
with an AMD Ryzen Threadripper Pro 3975WX 32 core/64
thread CPU, 128 GB of RAM, and an NVIDIA RTX A6000
GPU. On the software side, we used TensorFlow [68] as
framework for all general and classical machine learning
tasks, TensorFlow Quantum [69] for quantum machine
learning specific tasks, as well as TensorFlow Agents [70]
for all components related to Deep Reinforcement Learning
and a stable DDQN implementation. TensorFlow Quantum
integrates the Cirq [71] quantum computing framework
for building and running quantum circuits, as well as the
Qsim [72] quantum circuit simulator.
All quantum circuit simulations in Qsim were executed

under idealized noise-free conditions. We compute the
expected value of observables directly from the system’s
state vector. If experiments were to be conducted in a
shot-based simulation, a large enough number of circuit
receptions would need to be chosen to estimate the expected
values of observables with sufficient accuracy. Similarly,
if experiments were to be reproduced on quantum hardware
or with simulated hardware noise, appropriate measures for
error mitigation would have to be taken into account, which
is outside of the scope of this work.

All simulated robotic environments were built using the
PyBullet [67] python bindings to the Bullet real-time physics
SDK. For the baseline experiments described in App. A,
we furthermore used the OpenAI Gym [19] suite.
We released our robotic environments as well as the

entire experimental setup under an Open Source license for
interested researchers to reproduce, verify, or build upon our

TABLE 3. Average wall-clock time for 1.000 training steps with the PQC-1
and PQC-3encoding in the 5 × 5 environment. The time necessary to train
the model grows nearly linear in the number of layers.

work. Both can be found together with installation and usage
instructions under the following addresses:
• Environments: https://github.com/dfki-ric-quantum/qdrl-
turtlebot-env

• Experiments: https://github.com/dfki-ric-quantum/qdrl-
turtlebot-eval

Concerning the computational resources and wall-clock
time needed to conduct our experiments, we observe the
following: For the classical baseline, training a single neural
network within the range of configurations and across
all environments requires 1.5 GB of RAM and 600 MB
of VRAM, assuming TensorFlow uses GPU acceleration.
Training the network for 1.000 steps takes on average
25 seconds wall-clock time with our hardware setup, which
is relatively stable overall environments and network sizes.

For the three static environments, the number of qubits of a
quantum circuit, which is the same in both our encodings and
across all configurations, primarily determines the memory
requirements for its simulation. Simulating the training of
each quantum circuit requires about 2.2 GB of system
memory and 500 MB of VRAM. The quantum circuit
simulator imposes a substantial computational overhead,
resulting in much longer execution in terms of wall-clock
time and a nearly linear growth with respect to the number of
layers. The average wall-clock time for 1.000 training steps
in the 5×5 environment with the PQC-1 and PQC-3 encoding
are summarized in Table 3.

Learning the dynamic environment with either encoding
on 12 qubits for the number of layers we use, requires
considerably more computational resources. A single run
requires about 18 GB of system memory and 1.2 GB of
VRAM. Training for 1.000 steps takes on average one hour,
hence the training the full 100.000 steps is finished in about
four days.

V. RESULTS
A. OPENAI GYM ENVIRONMENTS
As we work with custom environments, we first compared
their complexity to established OpenAI Gym environments,
namely FrozenLake and Cartpole-v1. The results for
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FIGURE 9. Statistics on training time for all three static environments, architectures, and configurations. The results per environment are shown from
the top to bottom row, whereas the classical baseline neural network architecture (NN), as well as both types of quantum circuits (PQC-1 and PQC-3)
are arranged from left to right. For each combination of environment and architecture all related configurations, that is number of units (u1, u2) for the
classical baseline and number of layers L for both quantum encoding strategies, are reported. Each box shows the median training steps over 20 runs
for each configuration with different random seeds as well as the lower and upper quartile, range and flier points.

both environments with classical neural networks and PQCs
are described in Appendix A. With these comparative experi-
ments, we can demonstrate that our navigation environments
are indeed substantially more difficult to solve for the DDQN
algorithm.

B. STATIC ENVIRONMENTS
Performing experiments with the 10 classical neural network
configurations and 10 configurations for both PQC input
encoding variants provides insight into the scaling behavior
and robustness across multiple training runs for each
architecture in the given robotic reinforcement learning task.
The complete statistics for all experiments in the static
environments are outlined in Tables 7 to 9 in Appendix C and
visualized in Fig. 9.

The first noteworthy result is that all three architectures,
the classical neural network as well as both types of quantum
circuits are capable of learning an optimal action-value
function in all three environments in 20 out of 20 training runs
with a sufficiently large configuration (see column Solved in
the Tables 7 to 9). More precisely, for the 3 × 3 and 4 ×
4 environments, all configurations of the architectures solve

the environments, whereas in the 5 × 5, the three smallest
neural networks, the two smallest PQC-1, and the smallest
PQC-3 configurations were unable to solve the environment
in at least 15 out of 20 runs. Also, we find that an increase of
the model size in terms of the number of trainable parameters
leads to a decreased median and mean in required training
steps. This trend converges after the model size reaches a
sufficient size. In our case, the two biggest configurations
of all three architectures are similar in terms of median and
mean of training steps. In addition, in most cases, the range
and standard deviation decreases as the model size increases,
resulting in our largest models being the best-performing and
most stable configurations.

In the following, we focus on the two best PQC-1 and
PQC-3 configurations and compare them with four different
neural network configurations. From our data, we select
the classical neural networks such that they have a similar
number of parameters or one or two orders of magnitude
more parameters than the PQC configurations. Table 4
summarizes the mean and standard deviation of the required
training steps for these configurations. From this, we observe
the following general trends with regard to the number of
trainable parameters:
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FIGURE 10. Evaluation results for the configurations with the best mean performance for each architecture in all three static environments. From left to
right the mean evaluation performance over 20 consecutive runs with the trained policy outlined by the 95% confidence interval for the 3 × 3, 4 × 4, and
5 × 5 environments is shown. Negative rewards are rescaled by a factor of 0.1 to improve readability. When not bound by the number of trainable
parameters, the classical baseline models performs slightly better than both quantum architectures in all three environments. Training was stopped once
the mean evaluation reward reached the solution threshold in the environment, plots are padded with additional evaluation runs for better
comparability.

FIGURE 11. Evaluation performance for the three tested configurations in the dynamic environment with regards to the
evaluation rewards (left) and number of solved evaluation runs (right). Both metrics are recorded every 100 training
steps for 10 consecutive evaluation runs and 10 receptions of the experiment with different random seeds. The outlines
mark the 95% confidence interval. Negative rewards are scaled by a factor of 0.1 to improve readability. For both
metrics we find, that while there is learning progress for both quantum circuit architectures, the classical baseline
provides better and more robust results, albeit with about 30 times the number of trainable parameters.

• With about the same order of magnitude of parameters,
the quantum circuits perform better and converge to an
optimal solution faster. This is especially true for the
PQC-3 architecture.

• With about one order of magnitude more parameters for
the classical neural network, its performance is about
equal compared to the parameterized quantum circuits.

• A further increase in the number of parameters up to two
orders of magnitude more for the neural network puts it
slightly ahead of both quantum circuit architectures in
all observed metrics.

Furthermore, we can compare the results of the two
best PQC-1 and PQC-3 configurations in Table 4. For
all environments, the best PQC-3 architecture yields faster
convergence to an optimal policy compared to the best PQC-1
encoding scheme.

This advantage is relatively stable across all three static
environments, suggesting that for the navigation setup
considered in this work, a larger number of encoding gates
is beneficial. A larger variety of environments with regards

to complexity and type of task to learn would need to be
evaluated to make more definitive statements on this.

The evaluation performance for the best configuration
for each architecture in all three environments is shown
in Fig. 10. During training, we observed the agent’s
performance with the trained policy every 100 steps for
10 consecutive runs and evaluated its mean reward. In all
three environments, the classical baseline converges to an
optimal policy faster, albeit with two orders of magnitude
more trainable parameters. In the 3 × 3 environment, the
PQC-3 architecture reaches a solution notably faster than
the PQC-1 architecture. With increasing environment com-
plexity, both types of quantum circuits perform increasingly
similarly, whereas the classical neural network remains ahead
of both. This finding emphasizes the trends discussed above.

C. DYNAMIC ENVIRONMENT
In the large, dynamic navigation environment, our main inter-
est is the robustness of the presentedmethod in a substantially
more demanding task and employing considerably larger
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TABLE 4. Mean number of training steps and standard deviation in all three environments for the two largest configurations for both quantum circuit
architectures in comparison to two classical baseline models with about the same order of magnitude of trainable parameters as well as two larger
neural networks. We find, that with about the same order of magnitude of parameters, the two quantum architectures converge to an optimal solution in
fewer training steps. With an order of magnitude more parameters, the classical neural network performs comparable or better and achieves better
performance compared to both quantum architectures with further increasing number of trainable parameters.

quantum circuits. To this end, we trained a classical baseline
and two large quantum circuits with the two encoding strate-
gies for 100,000 iterations on the environment. We evaluated
the performance in 10 consecutive runs every 100 training
steps. Fig. 11 shows the training progress regarding the mean
evaluation reward and number of solved evaluation runs, with
averages taken over 10 repetitions of the experiment with
different random seeds.

The classical baseline neural network performs consider-
ably better in this task than both employed quantum circuits,
learns policies that achieve higher mean rewards, solves more
evaluation runs on average and is more robust in the dynamic
setting. Both quantum architectures perform about the same
concerning to both metrics. The fact that the difference
between the classical model and quantum circuits regarding
the mean reward is larger than for the number of solved
evaluation runs is explained by the observation that the envi-
ronment allows for much larger negative rewards on failed
runs than positive rewards on the successful ones. Hence, the
negative rewards will dominate the result if several runs fail.

Table 5 summarizes the best results achieved by all
three architectures. The classical baseline reaches its best
average performance after 81,500 training steps, whereas
both quantum circuits require more than 94,000 steps.
Additionally, the mean evaluation reward of 10.27 for the
classical neural network is considerably larger than 5.50 and
3.87 for the PQC-1 and PQC-3 architecture.

After this training duration, the robot can successfully
navigate to the goal on average in 8.5 out of 10 evaluation runs
over 10 repeated experiments. Solving 6.7 and 6.3 evaluation
runs on average for the quantum architectures shows
noteworthy training progress for both, but with considerably
worse performance. We furthermore observe larger standard
variations on both metrics for the quantum models compared
to the classical baseline, suggesting less robust and less
reliable training results.

VI. DISCUSSION
In this work, we investigated the potential and scaling of
hybrid quantum deep reinforcement learning as a method

TABLE 5. Statistics over the training in the dynamic navigation
environment. For all three configurations the number of training steps to
the best performing evaluation runs, the mean evaluation reward, the
mean number of solved evaluation runs as well as their respective
standard deviations are reported. Statistics are taken over 10 consecutive
evaluation runs executed every 100 steps and 10 repetitions of the
experiment with different random seeds.

to learn autonomous robotic behaviors. We systematically
evaluated two different quantum circuit architectures in three
simulated static environments of increasing difficulty and
with increasing circuit sizes. These results were compared to
a classical neural network baseline. Additionally we tested
the robustness of the presented method in a considerably
more demanding learning task, using a dynamic navigation
environment.

Both quantum architectures as well as the classical baseline
yielded sufficient action-value functions for the simulated
robot in all three static environments. Not considering
the number of trainable parameters, the classical baseline
models outperformed the quantum circuits in terms of
training speed and stability. A noteworthy result, which
is in line with previous findings from the quantum deep
reinforcement learning research is that both best-performing
quantum circuits were capable of solving the environments
within a similar number of training steps as classical neural
networks with about one order of magnitude more trainable
parameters. This observation is consistent across all three
environments. The best-performing quantum models have
444 and 480 trainable parameters, the classical baseline was
sufficient to solve the 3× 3 and 4× 4 with a similar amount
of parameters, albeit with substantially more training steps.
At this model size, the neural network was unable to fit an
optimal action-value function for the 5 × 5 environment in
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FIGURE 12. Evaluation results of the FrozenLake and CartPole environment. Each plot shows the mean evaluation
performance over 20 consecutive runs with the trained policy. The evaluation was performed every 25, resp. 100,
training steps and training stopped, once the environment was solved with the policy. Plots are padded with additional
evaluation runs to have equal lengths for better comparability. The outline of each plot is the 95% confidence interval.

TABLE 6. Summary of all hyper-parameters used in the training of the four simulated robotic environments and the two OpenAI gym environments used
for reference and comparison in App. A.

most of the 20 training runs within the 50, 000 training step
threshold we set, whereas both quantum architectures still
succeeded with only 300 parameters.

Comparing both quantum circuit architectures, we find
that the PQC-3 embedding performs better than the PQC-1
embedding in all three environments, suggesting that in this
context, having more encoding gates for the same data is ben-
eficial, although the difference becomes less pronouncedwith
increasing environment difficulty.Moreover, our experiments
show that with increasing environment size, quantum circuits
with more layers are needed to solve the tasks consistently,
especially for the 5×5 environment. This finding is consistent
with the results from [66], as adding more layers increases
the expressiveness of the circuit, which makes it possible to
approximate more complex action-value functions.

Testing the same learning methods in a more demand-
ing, dynamic navigation environment, we find that both

quantum circuit architectures get outperformed by the clas-
sical neural network regarding reward, solved evaluations,
training duration and robustness. Given the limited scope
of this experimental setup, it remains open, if this result
can be improved by changes on the training procedure,
circuit architecture, encoding strategies or by increasing
the circuit size. We consider these questions to be out
of scope for this work, but plan to address them in
future.

Additionally, our results demonstrate that PQCs of this size
are trainable in a quantum circuit simulator for a practical
problem class, which does not necessarily follow from
previous considerations on the expressiveness of PQCs [65],
[66]. Beyond these results, we can confirm, similar to
e. g., [73], that training PQCs is fairly unstable regarding
changes in the hyperparameters compared to classical neural
networks.

87230 VOLUME 12, 2024



H. Hohenfeld et al.: Quantum Deep Reinforcement Learning for Robot Navigation Tasks

TABLE 7. Statistics on the experiments executed in the small 3×3 environment for all three architectures and their configurations. The best statistical
values (mean, median, minimum, maximum, and standard deviation) in terms of number of training steps for each architecture are marked bold, the best
overall configuration for each architecture is marked with a green background.

Considering the best-performing PQCs architectures in
this work, we have to emphasize that this configuration is not
to be considered efficient or even viable for current quantum
hardware. The largest employed circuit using the PQC-3
architecture has almost 200 gates per qubit, not considering
additional gates that could be introduced by transpiling it to a
native gate set of any quantum hardware platform. Circuits
with long execution times and more gates are more prone
to noise on current quantum hardware. Hence, we would not
expect meaningful results without substantial error mitigation
efforts. Training the circuits directly on quantum hardware
was also not a realistic option, given the total number
of experiments we conducted and the limited availability
and access to quantum computing hardware. Consequently,
we limited our study to an idealized environment in a
noise-free quantum circuit simulator.

VII. OUTLOOK
Understanding the characteristics of PQCs is an ongoing
research topic. For PQCs to offer advantages over classical
solutions, there are still some open questions that have to

be addressed. Concerning expressiveness, the authors of [66]
showed that PQCs with the data-reupload technique can
represent real-valued truncated Fourier series. While this
could be considered a weak restriction on the expressiveness,
it remains unclear if they are rich enough to approximate deep
RL algorithm outputs for more complex behaviors. In [74],
the authors leverage that PQCs represent truncated Fourier
series by showing that classical models can be obtained
efficiently from trained PQCs. They also report no advantage
in the performance nor trainability of PQCs over classical
models for the problems they consider. The trainability of
PQCs is analyzed in more detail by Bittel et al. [75], who
rigorously prove that classical training is NP-hard, and by the
authors of [76], who found many sub-optimal local minima
in the gradient landscape. Moreover, barren plateaus [77] are
one additional hurdle for trainability. These works and our
results indicate that PQCs mark the beginning of quantum
machine learning in general and quantum deep reinforcement
learning specifically. These methods have to be developed
further substantially to yield potential improvements over
classical learning techniques.
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TABLE 8. Statistics on the experiments executed in the medium sized 4×4 environment for all three architectures and their configurations. The best
statistical values (mean, median, minimum, maximum, and standard deviation) in terms of number of training steps for each architecture are marked
bold, the best overall configuration for each architecture is marked with a green background.

Our results provide additional insight into the scaling
behavior and applicability of hybrid quantum deep reinforce-
ment learning based on PQCs, especially with regard to
more demanding problems than previously considered. Our
experimental setting is focused on three static environments
and two different quantum circuit architectures. Furthermore,
we studied the robustness of these methods in a more
demanding, dynamic navigation task, although with limited
scope. Hence more empirical research is needed to sub-
stantiate our findings further, and produce more conclusive
results.

The second area is the applicability of quantum machine
learning and quantum deep reinforcement learning in real-
world applications, especially in the field of robotics. While
we have demonstrated quantum deep reinforcement learning
in a limited robotic scenario, actual advantages of the
presented method over classical deep reinforcement learning
have yet to be shown. While previous works demonstrated
a quantum advantage for a certain class of problems [42]

intractable for classical learning methods, it remains an open
question if this advantage can be translated to problems from
e. g., robotic domains.

Another crucial topic linked to real-world applications,
is the encoding scheme of classical data into the quantum
circuit. With the proposed methods, the required number of
qubits and the operations per qubit scale linearly in the best
case with the dimensionality of the state space. It will be
interesting to see how different encoding techniques like e. g.,
amplitude encoding [78] would impact the learning behavior.
Also, we limited our experiments to state spaces of small
dimensionality to account for the computational demands
of simulating quantum circuits on a classical computer.
While this imposed no detriments on our learning scenarios,
having high dimensional sensory data, e. g., high-resolution
image data, is common in more complex robotic tasks.
How to encode classical data with hundreds, thousands,
or more dimensions efficiently onto quantum devices with
their current limitations is an open question. Investigating
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TABLE 9. Statistics on the experiments executed in the large 5×5 environment for all three architectures and their configurations. The best statistical
values (mean, median, minimum, maximum, and standard deviation) in terms of number of training steps for each architecture are marked bold, the best
overall configuration for each architecture is marked with a green background. Configurations for which fewer than 15 runs succeeded are considered
insufficient and are marked with a red background.

classical pre-processing, compression, and dimensionality
reduction techniques in this context could potentially enable
quantum deep reinforcement learning for such scenarios.
Tensor networks, as indicated by Chen et al. [79], are one
further promising candidate for encoding more complex
robotic data.

Additionally, the scope of our work is limited with regards
to actual quantum hardware and its properties. We performed
all our experiments with a quantum circuit simulator which,
enabled us to employ circuits with a depth beyond what
current hardware provides and also removed the necessity to
deal with the noise that typically comes with the execution
of algorithms on current quantum hardware. The execution
of even simpler machine learning tasks on actual quantum
hardware would be further limited by their sparse availability,
complexity, and high usage cost. To circumvent these issues,
research into techniques to combine quantum simulators and
quantum hardware in an efficient training setup could be a
practical route forward.

We understand our work as a contribution toward
application-focused empirical research on quantum algo-
rithms in a robotic context. We see this as a viable route to
accelerate the development and understanding of quantum
algorithms, quantum machine learning, and the application
of quantum techniques in deep reinforcement learning.
Looking forward, we believe that quantum algorithms,
together with future hardware developments in the field of
quantum computing, will contribute to the advancement of
autonomous robotics.

APPENDIX A
COMPARISON TO BASELINE ENVIRONMENTS
We use our learning setup to solve the benchmark OpenAI
gym [19] environments FrozenLake and CartPole-v1.
This way, we underline our argument that the navigation tasks
are indeed more complex and difficult to learn.

To learn the FrozenLake environment, we use binary
encoding for the state features, adapt the circuit to four qubits,
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and adapt the parameters for epsilon decay and max steps per
episode. All other learning hyper-parameters are unchanged.
We also use the arctangent activation function and trainable
parameters on the input features as well as four trainable
output parameters. A full list of the hyper-parameters is given
in Table 6 in App. B. The left plot of Fig. 12 shows that 20
runs with a classical neuronal networks with (128, 64) hidden
units learn an optimal policy in fewer than 1,250 training
steps with a mean of 510 steps, a median of 513 steps, and
a standard deviation of 204 steps. The classical architecture
takes roughly 20 times as long to learn an optimal policy in
our simplest navigation task. Similar results hold for PQCs
with one input encoding and 15 layers (PQC-1-15). Here,
the training finishes on average in 593 steps, with a median
of 613 steps and a standard deviation of 205 steps. This
result is in alignment (slightly better) with [41]. We want to
emphasize that we did not fine-tune the hyper-parameters for
theFrozenLake environment but were still able to learn the
task much faster than for our 3× 3 navigation environment.
We obtained similar results for the Cartpole-v1

environment as depicted in the right plot of Fig. 12.
For this environment, we adapted the PQC to 4 qubits
and used the measurements σ

(1)
z σ

(2)
z and σ

(3)
z σ

(4)
z for the

post-processing. We adapted the epsilon decay parameters
and other hyper-parameters slightly, as shown in Table 6.
Averaged over 20 runs, the classical network with (256, 128)
hidden units is able to solve CartPole-v1 with an
average of 3,645 training steps (median: 2,350, standard
deviation: 2,600) with slightly adapted hyper-parameters.
That is approximately twice as fast as the same network
architecture learns the 3 × 3 navigation environment. For
the PQCs, the configuration with one input encoding and
five layers needed fewer than 10,000 training steps to learn
the optimal policy, which is notably faster than reported in
the literature (e. g., [41] for Cartpole-v0). The PQC-1-
5 ansatz solves CartPole-v0 in a similar time (mean:
4065, median: 4050, standard deviation: 1933) and thus
solves it faster than larger PQC-1 configurations solve the
3× 3 navigation environment.

Hence, we conclude that our navigation tasks are
considerably more challenging than FrozenLake and
Cartpole-v1 for the (hybrid quantum) DDQN algorithm.

APPENDIX B
HYPER-PARAMETERS FOR EXPERIMENTS
The hyper-parameters used in all environments and learning
setups are outlined in Table 6.

APPENDIX C
RESULT DETAILS
Detailed statistics over all conducted experiments are
reported in Tables 7, 8 and 9.
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