
Received 24 May 2024, accepted 12 June 2024, date of publication 21 June 2024, date of current version 12 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3417422

Improved xDeepFM With Single Value
Decomposition and Attention
Mechanism
YIWAN ZHANG , ZHAN WANG , AND INWHEE JOE
Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Inwhee Joe (iwjoe@hanyang.ac.kr)

ABSTRACT Due to the sheer volume and variety of data in industrial manufacturing, manually creating
features can be costly. Therefore, appropriate feature processing methods become crucial. Most existing
feature processing methods abstract feature engineering as a feature search problem, i.e., finding feature
transformations that optimize model performance. However, for automated feature engineering, the number
of searches and the number of transformation combinations are huge. Therefore, we use a factorization-based
model that measures interactions in terms of vector products, automatically learns patterns of combined
features, and generalizes them to unseen features. Prior to this paper, theDeepFMalgorithm (which combines
an FM model with a deep neural network model) and the xDeepFM algorithm (which proposes a novel
Compressed Interaction Network (CIN) designed to make feature interactions explicit) were available.
The LRCIN proposed in this paper focuses on improving the CIN network in the xDeepFM method,
by introducing a low-rank approximation method in the CIN network to reduce the number of parameters,
and adding an attention mechanism after the CIN to ensure the accuracy of the model. The experimental
results show that our method can effectively reduce the time complexity of the model and improve the model
accuracy to some extent.

INDEX TERMS Automatic feature engineering, compressed interaction network, attention mechanism.

I. INTRODUCTION
A feature is actually an abstract representation of information
about a particular behavior. Because a behavior needs to
be transformed into a mathematical form in order to be
learned by a machine learning model [1], and in order
to accomplish this transformation, we need to extract the
information from these behaviors in the form of features
[2]. In recommendation systems, the model in training and
learning has the following characteristics:

(1) Contains a large number of discrete features, such as
demographic attributes, device attributes, user classification
interests, etc [3]; Contains a large number of sparse features
with high latitude;

(2) Feature overlap or combination is very critical to the
prediction effect [4]. For a recommendation system based
on CTR prediction, the most important thing is to learn the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

feature crossover behind the user’s click behavior. In different
recommendation scenarios, low order feature crossover or
high order feature crossover can have an impact on the final
CTR [5].

The Factorization Machine (FM) [6] algorithm extracts
feature combinations, i.e., feature crossovers, by performing
inner product operations on the hidden variables of the
features. Although FM can theoretically model higher-order
feature crossovers, in practice it generally uses only
second-order feature crossovers due to computational com-
plexity. Years of research have shown that both higher-
and lower-order cross-features are very important, and that
learning both cross-features at the same time is better than
considering only one of them. The key question now is how
to extract these cross-features efficiently. To extract these
cross-features efficiently, many methods have been proposed
in academia and industry: Wide&Deep [7], DeepFM [8],
and xDeepFM [9]. In the Wide&Deep model, the Wide and
Deep parts are used to ensure the ‘‘memory capacity’’ of the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 106447

https://orcid.org/0009-0003-5959-2776
https://orcid.org/0000-0002-3193-8208
https://orcid.org/0000-0002-8435-0395
https://orcid.org/0000-0002-3945-4363


Y. Zhang et al.: Improved xDeepFM With Single Value Decomposition and Attention Mechanism

model, i.e., the retention of low-order features, and the LR is
used directly here, while the Deep part is used to ensure the
‘‘generalization capacity’’ of the model, i.e., the cross-over of
high-order features, and the MLP is used directly here.

DeepFM uses the FM model on the wide side, which is
able to preserve not only the original features (non-feature
crossover), but also the second-order feature crossover
compared to low-rank (LR) [10]. xDeepFM is an improved
version of Wide Deep with the addition of a CIN layer to
explicitly construct finite-order feature combinations [11].
This paper focuses on some improvements to xDeepFM.

Since the xDeepFM model combines FM and deep neural
networks, its internal structure is more complex, so the model
is less interpretable and it is difficult to explain the model’s
contribution to the prediction results. We will first introduce
a low-rank approximation method [12] to simplify the CIN
network and thus reduce its time complexity, and then add
an attention mechanism [13] after the CIN output part of
xDeepFM to dynamically learn the weights between features
to better capture the interactions between features. In this
way, the model will be able to predict the target variable
more accurately and generalize well to new and unseen
data. Incorporating the attention mechanism also improves
the interpretability of the model, allowing us to more
intuitively understand the importance of the model’s ranking
of features, which in turn helps in feature selection and model
optimization. Our main contributions are summarized below:

We propose a newmodel that adds an attention mechanism
to the original xDeepFM for learning the weights between
features.

We simplify the number of parameters of the CIN network,
which reduces the time complexity of CIN, lowers the
computational requirements of the model, and drastically
reduces the running cost so that the model can survive in
resource-constrained environments.

We take the output of the CIN part as the input of the
attention mechanism, and then use the attention mechanism
to compute the weights of the cross-features to obtain the
weighted cross-feature representation. Finally, the weighted
cross-features are combined with the output of the DNN and
the output of the linear part. By introducing the attention
mechanism, the model not only improves its prediction
performance, but also improves its interpretability, which is
especially important for complex models.

The method combines the low-rank approximation
and the attention mechanism, and the experiments demon-
strating the application of themodel to different datasets show
that the new model has good generalization ability, and we
find that the accuracy of this newmodel is significantly better
than that of the original xDeepFM model.

II. RELATED WORK
Extracting higher-order and lower-order cross-features is
critical in business. And people are looking for good solutions
again.

FIGURE 1. The architecture of Cross Network. The original feature vector
of the output and input of the fully connected layer is used as the input
of the cross-layer to perform feature cross and obtain cross features.
Then the cross and continuous features are stitched together and used as
the input of the second fully connected layer. The output is a vector.

A. CROSS NETWORK
In many competitions on Kaggle, most winning solutions
use manual feature engineering to construct low-order
combinatorial features that are meaningful and efficient
[14]. In contrast, the features learned by DNN are highly
non-linear, and high-order combinatorial features were very
difficult to interpret in a meaningful way [15]. The DCN
(Deep Cross Network) [16] using cross networks is then
designed to improve the efficiency of learning features.
Figure 1 shows only the structure of the cross network, and
the output of the deep cross network is concatenated with the
output of the cross network and the deep network.

The original feature vector of the output and input of the
fully connected layer is used as the input of the crossover
layer to perform feature crossover and obtain crossover
features. Then, the crossover and continuous features are
merged and used as the input of the second fully connected
layer. The output is a vector [17].

Each cross layer is crossed using the following formula:

xl+1 = x0xTl wl + bl + xl = f (xl,wl, bl) + xl (1)

where xl , xl+1∈Rd are column vectors denoting the outputs of
the l-th and (l+1)-th cross layers, respectively, andWl ,bl∈Rd

are the weight and bias parameters of the l-th layer. Each cross
layer adds back its input after a feature crossing operation f .

B. EMBEDDING LAYER
The embedding method represents an object as a
low-dimensional vector (a word, a product, a movie, etc.).
If one-hot is used to encode the category, id-type features,
it leads to extremely sparse sample feature vectors, and the
structural features of deep learning make it unfavorable for
processing sparse feature vectors. Here, embedding plays

106448 VOLUME 12, 2024



Y. Zhang et al.: Improved xDeepFM With Single Value Decomposition and Attention Mechanism

FIGURE 2. The structure of the embedding layer, k is the dimension of the
embedding.

a very good role by converting numerical features into
dense vectors, and the distance between vectors reflects the
similarity between objects. The distance between objects with
low similarity is generally larger.

The input features in a recommendation system are usually
in the form of strings, and we first use field-aware one-hot
encoding to convert the raw features into a high-dimensional
sparse feature [18]. Figure 2 shows the structure of the
embedding layer. The output of the embedding layer can be
described as:

a0 = [e0, e1, . . . em] (2)

where ei is the embedding of the i-th patch and m is the
number of patches. In this model, the implicit high-order
interaction part and the explicit high-order interaction part
share the same feature embedding. All inputs are mapped to
the same embedding space, which allows the model to better
understand the semantics and features of the input data. The
number of parameters to be trained is reduced, reducing the
time and computational resources required to train the model.

C. DEEP COMPONENT
This part uses Deep Neural Networks (DNN) to capture
the implicit higher order interactions (e.g. second and third
order interactions). The embedding vectors are combined
using feedforward neural networks to generate higher order
interaction features. The feedforward process is expressed as:

a(l+1) = f (W lal + bl) (3)

where l is the layer depth and σ is an activation function. al is
the output of the l-th layer,W l is the weight of the l-th layer,
bl is the bias of the l-th layer. f is often rectified linear units
(ReLUs).

The structure of the deep neural network (DNN) in this
paper is shown in Figure 3. Deep neural networks (DNNs)
have a wide range of applications in both image recognition
and CTR prediction, but the applications in these two areas
are very different. The most important is the difference in
data type and network structure. The input data type for
CTR prediction is usually sparse data (e.g. user’s gender,
age, historical click behavior, etc.); the main input for image
recognition is continuous data (e.g. pixel values, RGB values,

FIGURE 3. The architecture of DNN, each hidden layer is calculated as
equation 3.

etc.). The second is the difference in network structure. CTR
prediction usually uses the structure of a fully connected
network or embedding and fully connected network, while
image recognition uses the structure of a convolutional neural
network (CNN). This is because image data has spatial
continuity, and CNN is more effective at extracting features
from images.

III. METHOD
The LRCIN model mainly improves the Compressed Inter-
action Network by introducing low-rank approximation and
attention mechanism based on the xDeepFM model. The
number of parameters and computational complexity are
reduced by introducing low-rank approximation in the CIN
network. The approximation is performed using two weight
matrices W[i] and V[i], which optimizes the computational
efficiency of the CIN layer. And the attention mechanism
unit is added after the output part of CIN. The attention
mechanism is used to dynamically learn the weights between
features to better capture the interactions between features.
The final output is a combination of the attention-weighted
cross-feature representation combined with the outputs of the
deep neural network and the linear part.

The low-rank approximation reduces model parameters
and computational complexity and is suitable for large-scale
data processing. The attention mechanism enhances the
model’s ability to automatically recognize the importance of
features and improves the model’s interpretability and accu-
racy. To perform the feature selection process, Field-aware
One-hot Encoding is used to transform the original features
into high-dimensional sparse vectors, and Embedding Layer
transforms the sparse vectors into dense embeddings that
capture the implicit relationships between the features. In the
experiments, all numerical features are first normalized to
ensure the numerical stability of the model training. And the
outliers and missing values in the data are handled to ensure
the integrity of the data using appropriate padding strategies.

VOLUME 12, 2024 106449



Y. Zhang et al.: Improved xDeepFM With Single Value Decomposition and Attention Mechanism

A. COMPRESSED INTERACTION NETWORK WITH
LOW-RANK APPROXIMATION (LRCIN)
This section uses a low-rank approximation of the original
Compressed Interaction Network (CIN) to reduce its compu-
tational complexity. Algorithm 1 describes the entire process.

Algorithm 1 Compressed Interaction Network With Low-
Rank approximation(LRCIN)
Require: inputs with shape [None, n, k], cin_size
Ensure: output with shape [None,

∑n
i=1 field_num[i], k]

1: Initialize CIN Layer with cin_size
2: Build method:
3: Set input_shape: [None, n, k]
4: Set field_num: [input_shape[1]] + cin_size
5: for i in range(len(field_num)-1) do
6: Initialize W[i] with shape (1,field_num[0] ∗

field_num[i],field_num[i+ 1])
7: Initialize V[i] with shape (1,field_num[0] ∗

field_num[i],field_num[i + 1]) (for low-rank
approximation)

8: end for
9: Call method:

10: Split inputs along the last dimension into k parts: X0
11: for each layer i in range(len(field_num[1:])) do
12: Split res_list[-1] along last dimension into k parts: Xi
13: Perform matrix multiplication between X0 and Xi,

transpose Xi before multiplication
14: Reshape the result and transpose it
15: Apply low-rank approximation usingW[i] * V[i] and

perform 1D convolution with input x
16: Transpose the result and append it to res_list
17: end for
18: Remove the first element (X0) from res_list
19: Concatenate res_list along axis 1
20: Set output as the concatenated result

Algorithm 1 describes this process of improving
cross-interaction networks using low-rank approximations,
and I’ll explain each step in detail below.

The first step is to initialize the CIN layer with inputs
of the form [N,n,k], where N is the number of samples, n is
the number of fields, and k is the embedding dimension.
And cin_size is the number of output fields for each CIN
layer. Then comes the build method section, which sets the
input shape ‘input_shape’ to [N,n,k]. Set ‘field_num’ to the
number of fields in the input layer n plus ‘cin_size’. The next
step is to initialize the weights. For each CIN layer i, two
weight matrices W[i] and V[i] are initialized for the low-rank
approximation.

Then comes the implementation section. First, the input is
split into k parts along the last dimension to obtain X0, and
then the following operations are performed for each CIN
layer i Split the output of the previous layer ‘res_list[-1]’ into
k parts along the last dimension to obtain Xi, perform matrix
multiplication of X0 and Xi, where Xi is transposed before

multiplication, after which the result of the multiplication
is reshaped and transposed, and a low-rank approximation
is applied to the input x using W [i] · V [i] to perform 1D
convolution, and finally the convolution result is transposed
and added to ‘res_list’.

Finally, the output result part, starting from the first
element X0 in a place in ‘res_list’, joins all elements of
‘res_list’ along the first dimension (axis 1), and the output
is the result after joining.

B. ATTENTION MECHANISM
We add an attention activation unit after the LACIN,
get the attention weights, sum the output of the CIN to
get the attention vector, and then splice the attention vector
with the output of the CIN to get the final attention output.
Since the introduction of the attention mechanism in neural
network modeling, it has been widely used in many tasks
such as recommendation, information retrieval, and computer
vision [19]. Motivated by the drawbacks of CIN, we decided
to obtain the output by weighting the crossing features with
attention, thus selecting the more important features for
crossing. Specifically, attention weights can be computed
separately for each feature cross term in the CIN network,
and then the attention-weighted cross terms are accumulated.
Meanwhile, the computational complexity of the model can
be reduced by using the low-rank approximation method. The
attention mechanism in this method is explained below. The
formula of the attention mechanism is:

O = (AT · X ) = [softmax(h · ReLU (W · X ))]T · X (4)

X is the input feature matrix (the form is [None, Field,
k]), W is the attention weight matrix (the form is [None,
Field, Field]), h is the matrix for calculating the feature
weights (the form is [None, Field, 1]), A is the attention
score matrix (the form is [None, Field, 1]), O is the output
feature vector (the form is [None, k]), AT is the transposed
attention score matrix (the form is [None, 1, Field]). First, the
ReLU function is applied to the input features X to perform
a weighting operation, and then the weights are computed
and entered to compute the attention score. The softmax(·)
function normalizes the weights between 0 and 1, so that
the sum of the weights is 1. Finally, the attention score is
multiplied by the input features to obtain the weighted feature
vector O.

C. COMBINATION WITH ALL LAYERS
In this section, we will connect all the layers mentioned above
to form a new model, the overall structure of which is shown
in Figure 5. In this model, we connect all the outputs together,
as can be seen in the figure, our LRCIN method evolves from
the original CINmethod and takes the outputs as inputs to the
attention unit, which is finally connected with the output of
the DNN and the linear outputs to form the final output unit:

y = σ (yLR + yATT + yDNN ) (5)

106450 VOLUME 12, 2024



Y. Zhang et al.: Improved xDeepFM With Single Value Decomposition and Attention Mechanism

FIGURE 4. This figure shows the flowchart of the attention part, which
includes weighting the input features, calculating the feature weights,
normalizing the feature weights using the softmax function to obtain the
attention score, and matrix multiplying the attention score with the input
features to obtain the weighted feature representation. Finally, the tensor
shape is fitted to obtain the output tensor.

where σ is the sigmoid function, yLR, yATT , yDNN are the
outputs of the linear, attention, and DNN layers, respectively.

IV. EXPERIMENT AND RESULTS
In this section, the parameter selection and results of our
experimental method are described in detail.

A. DATASETS
The Criteo Dataset is a famous industry benchmark dataset
used to develop models for predicting ad click-through rates
and is publicly available [20]. Given a user and the page they
are visiting, the goal is to predict the probability that they
will click on a given ad. The dataset contains click records,
each record consisting of feature values and labels (clicked
or not). Data cleaning is performed first: processing missing

FIGURE 5. This illustration shows the entire process of model.

values, removing duplicate records and outliers. Most of the
feature values are categorical and need to be coded. The click
rate in the dataset is typically around 0.1%, the distribution of
certain categorical features is extremely uneven, the number
of occurrences of some categories is extremely high, and the
distribution of most numerical features is concentrated in a
small range with a long-tailed distribution.

The MovieLens dataset contains rating data from multiple
users for multiple movies, as well as movie metadata and
user attribute information [21]. Data cleaning operations are
performed to ensure that the user ID, movie ID, and rating of
each record are valid. Ratings are typically between 3-4, with
a small number of extremely high and low ratings.

The Avazu dataset, provided by Avazu Corporation,
including information on whether a user clicked on an ad, and
is a widely used dataset in the ad tech industry for predicting
click-through rates. Click-through rates are typically around
0.02%, with a relatively even distribution of attributes across
most categories, but some attribute values are more common.
Certain feature values are significantly correlated with higher
click-through rates, suggesting an important influence on
click-through behavior.

Tables 1 and 2 provide basic information about the statisti-
cal analysis of Criteo, MovieLens, and Avazu datasets.Criteo
and Avazu datasets are mainly used for click-through-rate
prediction, with a large number of features and high sparsity,
and the main feature type is categorical. MovieLens dataset is
mainly used for movie recommendation, with a small number
of features, medium sparsity, and contains both categorical
and continuous features. Category-type and continuous-type
features. The Criteo dataset has the highest number of
instances at 45.8 million, while the MovieLens dataset has
the lowest number of instances at 10 million.

B. EVALUATION
The experiments use AUC and LogLoss as metrics to evaluate
the model. AUC is the area under the ROC curve, which
measures the probability that the positive cases predicted

VOLUME 12, 2024 106451



Y. Zhang et al.: Improved xDeepFM With Single Value Decomposition and Attention Mechanism

TABLE 1. Specific information about the datasets.

TABLE 2. Summary of Key Characteristics of Criteo, MovieLens, and
Avazu Datasets.

TABLE 3. The AUC results between this model and other traditional CTR
models on Criteo, Movielens and Avazu datasets.

by the model are in front of the negative cases, and the
higher the value of AUC, the better the binary classification
performance [22]. LogLoss, as logarithmic loss, is also a
widely used evaluation metric in the binary classification
task, which canmeasure the gap between the predicted results
of the CTR and the true value, and the lower the value of
LogLoss, the better the performance of the model.

C. PARAMETER SETTING
Each user’s click time is used to form a user click sequence of
items and item categories, where the last bit of the sequence is
the target to be predicted. The sequence of items not clicked
by the user in each sample is randomly selected in a positive to
negative ratio of 1:1, forming a pair of positive and negative
samples. The length of the historical click sequence is too
short, resulting in the loss of effective feature information,
and too long, introducing too much noise. Experiments were
run in increments of 10 to find the best length setting of 100,
with the missing portion filled with 0 and the excess portion
intercepted. The data is randomly divided into two parts, 80%
for training and 20% for testing, the epoch is set to 100, and
the learning rate is set to 0.01. Optimization is done with the
Adam optimizer. A mini-batchware regularization was added
to avoid overfitting.

D. RESULTS AND ANALYSIS
Table 3 shows the results of the AUC comparison between
this model and other traditional CTR models on the Criteo,
Movielens and Avazu datasets. We can see that the difference
between the AUC indexes of BaseModel and PNN is not
too big, but the difference is quite big when we go to

FIGURE 6. AUC results.

TABLE 4. The Logloss results between this model and other traditional
CTR models on Criteo, Movielens and Avazu datasets.

FIGURE 7. Logloss results.

Wide& Deep, and then DeepFM changes the manual feature
engineering in Wide & Deep to automatic, which improves
the effect to some extent, and then xDeepFM optimizes
the feature explicit crossover by adding several groups of
different order explicit crossover, which improves the AUC
score significantly. We can see that the effect of this method
on the Criteo dataset is higher than the AUC score on the
Movielens dataset, mainly due to the fact that the Criteo
dataset has a large number of sparse features as well as amuch
larger scale than the Movielens dataset, which makes it very
suitable for deep neural network model learning. We can see
that the Wide & Deep model performs better on Movielens
than on Criteo, mainly because the Wide & Deep model is
closer to its original design for the recommendation task.
While on the Criteo dataset, it may face more challenges due
to its high sparsity and size.

106452 VOLUME 12, 2024



Y. Zhang et al.: Improved xDeepFM With Single Value Decomposition and Attention Mechanism

TABLE 5. Accuracy, Recall, F1 Score using Wide & Deep, xDeepFM, LRCIN
on Criteo dataset.

Table 4 shows the results of LogLoss comparison between
this paper’s model and other traditional CTR models, and
it can be seen that the LogLoss of this paper’s model is
significantly smaller than other models, which proves the
superiority of this paper’s model.

Table 5 shows the precision, recall and F1 score usingWide
& Deep, xDeepFM and LRCIN on the Criteo dataset. It can
be seen that our model performs better.

The AUC results of the LRCIN model on all three datasets
outperform those of the other models, demonstrating its
effectiveness in improving the accuracy of CTR prediction.
Specifically, LRCIN achieves an AUC of 0.8230 on the
Criteo dataset, which is significantly higher than other
comparative models such as xDeepFM and DeepFM, which
are 0.8136 and 0.7740, respectively. The LogLoss results
also show the superiority of the LRCIN model. On the
Criteo dataset, the LogLoss of LRCIN is 0.4851, which
is lower than that of xDeepFM at 0.5032 and DeepFM at
0.5248, indicating that LRCIN performs better in terms of
both prediction accuracy and error rate. LRCIN also shows
better performance on the Movielens dataset, especially in
the recommender system task, where its design allows it
to better understand the complex relationship between user
preferences and movie attributes. In the field of advertising
technology, especially when dealing with ad click data such
as Avazu, LRCIN is able to effectively handle large and high-
dimensional datasets, which are crucial for the real-world
application of ad placement and optimization strategies.

These results suggest that by introducing the low-rank
approximation and attention mechanism, the LRCIN model
is not only more effective in handling feature interactions,
but also demonstrates higher operational efficiency and
prediction accuracy in resource-constrained environments.
The design of LRCIN allows it to better capture and exploit
the information in sparse data, which is difficult to achieve
with traditional models such as FM and PNN.

E. TIME COMPLEXITY ANALYSIS
Let us first analyze the time complexity of the original CIN.
In CIN, the operations in each layer are roughly matrix
multiplication. If we consider the worst case (i.e., we have
the same number of fields in each layer), then the complexity
of each layer is O(n2k), where n is the number of fields and k
is the dimension of the embedding. The key to the low-rank
approximation is to reduce the number of multiplications
required. If there are L layers, the total time complexity is
O(Ln2k). In LRCIN, the purpose of a low-rank approximation
is to reduce the number of multiplications required in each

TABLE 6. Comparison of Time Complexity between CIN and LRCIN.

layer. By using an approximation of rank r instead of the
original embedding dimension k. For L layers, the total time
complexity is O(Ln(r2 + nrk)).
In the following, we compare the time complexity of the

two methods. The complexity of LRCIN is significantly
lower than that of normal CIN when the approximation
rank r is much smaller than the number of fields n and
the embedding dimension k. And in LRCIN, since the r2

terms and the rk terms are usually smaller compared to n2k ,
this reduces the size of the matrix operation and improves
computational efficiency.

As show in table 6, for CIN, the time complexity is
quadratic in the number of fields and linear in the number
of layers and the embedding dimension. For LRCIN, it is
shown that a low-rank approximation reduces the complexity
and is more computationally efficient. Here, n represents
the number of fields, k the dimension of embedding, L the
number of layers, and r the rank of approximation.

V. CONCLUSION
In this paper, we propose an innovative algorithm called
Low-Rank Approximation for Compressed Interaction Net-
works (LRCIN), which focuses on the CIN layer and uses
low-rank approximation techniques to compress it efficiently
and capture the key feature interactions to reduce the com-
putational complexity. Specifically, by performing a series of
accurate and optimized matrix operations on the input data,
such as transposition, matrix multiplication, and convolution,
not only is the size of the model reduced, but the performance
of the model is maintained at the same time. In addition,
by using low-order approximations of the W[i] and V[i]
matrices, we further optimize the memory and computational
efficiency of the model.LRCIN not only provides a new
perspective on deep learning model compression, but also
lays a solid foundation for future research, especially in
application domains that target large datasets and require high
computational performance. However, the efficiency and
accuracy of LRCIN still need to be improved when dealing
with extremely sparse datasets. In the future, the combination
of other compression techniques can be explored to further
reduce the model’s memory requirements and improve the
model’s execution speed.

Although LRCIN effectively reduces computational com-
plexity and model size, the method relies on appropriate
rank selection; choosing too low a rank may weaken the
learning ability of the model, while choosing too high a rank
may not effectively reduce the consumption of computational
resources. Therefore, how to balance approximate rank
and model performance is a key issue. One can consider

VOLUME 12, 2024 106453



Y. Zhang et al.: Improved xDeepFM With Single Value Decomposition and Attention Mechanism

introducing amechanism that dynamically feeds back the size
of the rank based on the error in the training process and
adjusts it at any time.

REFERENCES
[1] L. Yu, P. Cui, F. Wang, C. Song, and S. Yang, ‘‘From micro to macro:

Uncovering and predicting information cascading process with behavioral
dynamics,’’ inProc. IEEE Int. Conf. DataMining, Nov. 2015, pp. 559–568.

[2] A. Wang, V. V. Ramaswamy, and O. Russakovsky, ‘‘Towards inter-
sectionality in machine learning: Including more identities, handling
underrepresentation, and performing evaluation,’’ in Proc. ACM Conf.
Fairness, Accountability, Transparency, Jun. 2022, pp. 336–349.

[3] D. Liang, C.-F. Tsai, and H.-T. Wu, ‘‘The effect of feature selection
on financial distress prediction,’’ Knowledge-Based Syst., vol. 73,
pp. 289–297, Jan. 2015.

[4] Y. Xiao, W. He, Y. Zhu, and J. Zhu, ‘‘A click-through rate model of
e-commerce based on user interest and temporal behavior,’’ Expert Syst.
Appl., vol. 207, Nov. 2022, Art. no. 117896.

[5] X. Xia and R. Tong, ‘‘Click-through rate prediction based on feature
importance and feature interaction,’’ in Proc. 2nd Int. Symp. Comput. Appl.
Inf. Syst. (ISCAIS), Jun. 2023, pp. 86–91.

[6] S. Rendle, ‘‘Factorization machines,’’ in Proc. IEEE Int. Conf. Data
Mining, Dec. 2010, pp. 995–1000.

[7] H. T. Cheng, L. Koc, and J. Harmsen, ‘‘Wide & deep learning for
recommender systems,’’ in Proc. 1st Workshop Deep Learn. Recommender
Syst., 2016, pp. 7–10.

[8] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, ‘‘DeepFM: A
factorization-machine based neural network for CTR prediction,’’
2017, arXiv:1703.04247.

[9] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, ‘‘XDeepFM:
Combining explicit and implicit feature interactions for recommender
systems,’’ in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Jul. 2018, pp. 1754–1763.

[10] N. Kishore Kumar and J. Schneider, ‘‘Literature survey on low rank
approximation of matrices,’’ Linear Multilinear Algebra, vol. 65, no. 11,
pp. 2212–2244, Nov. 2017.

[11] G. Brauwers and F. Frasincar, ‘‘A general survey on attention mechanisms
in deep learning,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 4,
pp. 3279–3298, Apr. 2023.

[12] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang,
‘‘AutoInt: Automatic feature interaction learning via self-attentive neural
networks,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019,
pp. 1161–1170.

[13] Z. Li, W. Cheng, Y. Chen, H. Chen, and W. Wang, ‘‘Interpretable click-
through rate prediction through hierarchical attention,’’ in Proc. 13th Int.
Conf. Web Search Data Mining, Jan. 2020, pp. 313–321.

[14] R. Wang, B. Fu, G. Fu, and M. Wang, ‘‘Deep & cross network for ad click
predictions,’’ in Proc. ADKDD, Aug. 2017, pp. 1–7.

[15] L. Guo, Y. Yu, H. Gao, T. Feng, and Y. Liu, ‘‘Online remaining useful
life prediction of milling cutters based on multisource data and feature
learning,’’ IEEE Trans. Ind. Informat., vol. 18, no. 8, pp. 5199–5208,
Aug. 2022.

[16] J. Yu, W. Liu, M. Zhou, Y. Chen, D. Ji, and N. Sai, ‘‘Recommendation
ranking method combining graph convolutional network and factorization
machine,’’ in Proc. 10th Int. Conf. Intell. Comput. Wireless Opt. Commun.
(ICWOC), Jun. 2022, pp. 55–62.

[17] F. Khawar, X. Hang, and R. Tang, ‘‘Autofeature: Searching for feature
interactions and their architectures for click-through rate prediction,’’
in Proc. 29th ACM Int. Conf. Inf. Knowl. Manag., 2020, pp. 625–634.

[18] P. P. K. Chan, X. Hu, and L. Zhao, ‘‘Convolutional neural networks based
click-through rate prediction with multiple feature Sequences,’’ in Proc.
IJCAI, 2018, pp. 2007–2013.

[19] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua, ‘‘Attentional
factorization machines: Learning the weight of feature interactions via
attention networks,’’ 2017, arXiv:1708.04617.

[20] J. Zhu, J. Liu, and S. Yang, ‘‘Open benchmarking for click-through rate
prediction,’’ in Proc. 30th ACM Int. Conf. Inf. Knowl. Manag., 2021,
pp. 2759–2769.

[21] F. M. Harper and J. A. Konstan, ‘‘The movielens datasets: History and
context,’’ ACM Trans. Interact. Intell. Syst., 2015, vol. 5, no. 4, pp. 1–19.

[22] D. Chicco and G. Jurman, ‘‘The Matthews correlation coefficient (MCC)
should replace the ROC AUC as the standard metric for assessing binary
classification,’’ BioData Mining, vol. 16, no. 1, pp. 1–23, Feb. 2023.

YIWAN ZHANG received the B.S. degree in
software engineering from Nanyang Institute of
Technology, China, in 2022. She is currently pur-
suing the master’s degree in computer science with
Hanyang University, South Korea. Her research
interests include recommendation systems and
explainable AI.

ZHAN WANG received the B.S. degree in com-
puter science and technology from Zhengzhou
University of Light Industry, in 2020, China. She
is currently pursuing the integrated master’s and
Ph.D. degree in computer science with Hanyang
University, South Korea. Her research interests
includemachine learning, deep learning, computer
vision, and explainable artificial intelligence.

INWHEE JOE received the B.S. degree in elec-
tronics engineering from Hanyang University,
Seoul, South Korea, and the Ph.D. degree in
electrical and computer engineering from Georgia
Institute of Technology, Atlanta, GA, USA,
in 1998. Since 2002, he has been a Faculty
Member with the Division of Computer Science
and Engineering, Hanyang University. His current
research interests include the Internet of Things,
cellular systems, wireless power communication

networks, embedded systems, network security, machine learning, and
performance evaluation.

106454 VOLUME 12, 2024


