
Received 12 May 2024, accepted 16 June 2024, date of publication 21 June 2024, date of current version 28 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3417445

An Enhanced Activated Zeroing Neural Dynamics
for Solving Complex Matrix Inverse and Tracking
Trajectory of Robotic Manipulator
JIALIANG CHEN 1, YIHUI LEI 2, AND BOLIN LIAO 1
1College of Computer Science and Engineering, Jishou University, Jishou 416000, China
2College of Mathematics and Statistics, Jishou University, Jishou 416000, China

Corresponding author: Bolin Liao (mulinliao8184@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 62066015, and in part by the Natural
Science Foundation of Hunan Province of China under Grant 2023JJ30485.

ABSTRACT As an important branch of recurrent neural dynamics (RND), zeroing neural dynamics (ZND)
can effectively deal with the dynamic complex matrix inverse (DCMI) issues. The convergence and
robustness are two key performance indicators of the neuromotor system. For simultaneously realizing
faster convergence rate and good noise-tolerance, some variant ZND models combined nonlinear activation
function (NL-AF) and modified evolution formula are proposed. Though the performance of these ZND
models is improved, the computational burden is sharply increased and some efficiency is lost. Furthermore,
existing NL-AFs accelerate the convergence speed but still cannot satisfy the need of rigid time constraint.
As we know, many classical NL-AFs have been put forward, few of them synthetically refer to achieving
fixed time convergence and robust. Therefore, this work constructs a modified nonlinearly-activated ZND
(MNAZND) model by implanting a novel versatile activation function (NV-AF) for solving the noise
disturbed DCMI, the designed NV-AF includes the original term, the linear term and the discontinuous
term, the original term ensures fixed time convergence, the linear and the discontinuous terms suppress
different dynamic noises. Furthermore, with different noise state, the fixed-time convergence upper bound
of the MNAZND model is deduced in theoretical proof. The numerical experiment verifies the MNAZND
model with the proposed NV-AF has better fixed-time convergence and noise tolerance, the convergence
time is less than theoretical fixed time 1/(στ1), and comparative simulation results also demonstrate that
the designed NV-AF are advantageous over the previous AFs. Finally, the designed MNAZND is applied to
tracking trajectory of robotic manipulator, which further illustrates reliability of the MNAZND.

INDEX TERMS Zeroing neural dynamics, nonlinear activation function, fixed-time convergence, robust,
dynamic complex matrix inverse.

I. INTRODUCTION
As an essential step in many solution, matrix inverse
problems arise frequently in mathematical and engineering
applications, such as pattern recognition [1], metamaterial
absorbers [2], machine learning [3], robots [4], [5], probabil-
ity measures [6], UAVs control [7] etc. Due to the essential
role of matrix inverse, lots of numerical iteration algorithms
have been used to solve matrix inverse [8], [9], [10], [11],
[12], [13]. For instance, in [9], a QR decomposition algorithm
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for solving matrix inverse was presented and applied to
MIMO systems. Stanimirović et. al developed some matrix
inverses algorithms which are applicable to real and complex
matrix [10]. Leithead and Zhang proposed an iteration
algorithm based on quasi-Newton BFGS method gain on
the inverse of covariance matrix [12]. As we know, these
presented algorithms with sequential processing property are
inherently designed for static matrix inverse. When these
iteration algorithms are applied to solving dynamic matrix
inverse, it has been proven that the time complexity of
complete the solving task is proportional to n3 (n denotes the
size of matrix). It means that the computational complexity
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will rapidly increase, if these algorithms are used to dealing
with high-order dynamic matrix. That means the calculation
task will fail.

Over the last two decades, RND has received consid-
erable research and has made great progress in theory
and application. So RND has become the most powerful
alternative for online calculations [14], [15], [16], [17], [18].
Especially, gradient-based RND (GND) and its extensions
were proposed for handling matrix inverse [19], [20], [21].
However, on account of neglecting the velocity compensation
of time-varying coefficients, the solution of GND always
lags behind the theoretical solution when GND is used to
solve dynamic computing problem. In order to eliminate the
lag error in solving dynamic computing problem (including
dynamic matrix inverse ). Zhang and Sam Ge formally
presented zeroing neural dynamics (ZND) [22]. The core
design of ZND is constructing a derivative evolution formula,
which can perfectly trace dynamic solution by employing the
time derivative of time-varying parameters. Therefore, the
dynamic lag error of ZND reduces to zero with the time goes.
This is a huge leap forward in the field of RND. Since then,
ZND and its extensions have been widely applied and gotten
great success in the real domain [5], [23], [24], [25], [26],
[27], [28], [29].

It is well known that the complex dynamic problems
frequently occur in some fields, such as electronics, infor-
matics, social systems, etc [30], [31]. In contrast to the ZND
models defined in the real domain, the complex ZND models
have shown competitive advantage in pattern recognition,
signal and image processing [32], [33], [34]. To ensure the
stability and global convergence of the complex ZND, usually
only linear activation function (L-AF) is utilized. Actually,
nonlinearly activated ZND (NAZND) model implanted well-
designed nonlinear activation function will demonstrate
superior performances. To improve convergence speed,
the researchers exploited some special nonlinear activation
functions (NL-AFs). For example, the bipolar-sigmoid acti-
vation function (BS-AF), power activation function (P-AF),
power-sum activation function (PS-AF), hyperbolic sine
activation function (HS-AF) and smooth power-sigmoid
activation function (SPS-AF) were often be employed to
accelerate the convergent speed in the early phase [23].
Compared with the ZND model activated by L-AF, the one
activated by aforementioned NL-AFs significantly improved
the convergent rate. However, it still takes a long time
to converge to the exact solution. Under this background,
efforts were further made to explore more specific activation
functions to achieve finite time convergence. In [35], a sign-
bi-power activation function (SBP-AF) was designed and
studied in ZND models. It is heartening to note that the
ZND model embedded the SBP-AF has superior finite time
convergence. Moreover, an optimized SBP-AF (OSBP-AF)
is proposed, which has more concise structure and also
endows ZND better finite time convergence [36], [37], [38].
Nevertheless, according to theoretical demonstrations and

simulation results, these finite-time convergent speed decided
by NL-AFs (including SBP-AF and OSBP-AF) is closely
related to the initial error of the corresponding ZND
model, which can’t satisfy the application need in hard
time constraint states. On the other hand, all kinds of
external noise will inevitably appear during ZND model
online processing, which reduces the convergence speed and
deteriorates the accuracy. To enhance the anti-noise capacity
of ZND model, some improved evolution formulas were
presented [5], [39], [40]. In [5], an integral evolution formula
is introduced in ZND model for reducing the sensitivity to
noises. Xiao et.al proposed a time-varying parameter ZND
model, the design of time-varying parameter guarantees that
the ZND model owns noise suppression capability [39].
However, the convergence effect of ZND model with
improved evolution formula is not so good, and activation
functions still be embedded in the improved formulas
to enhanced convergence, which increases computational
burden and brings efficiency loss.

As suggested above, this work constructs a modified
nonlinearly-activated ZND (MNAZND)model by implanting
a novel versatile activation function (NV-AF) for solving the
noise disturbed dynamic complex matrix inverse (DCMI).
the proposed NV-AF includes the original term, the linear
term and the discontinuous term, thereinto, the design
of the discontinuous term is inspired in slid mode noise
control. The NV-AF makes the MNAZND model have both
fixed-time convergence (i.e. the convergence time can be
inferred in advance) and noise tolerance. It means that the
MNAZND model can not only converge to exact analytical
solution in a explicitly definite time but also can tolerate
bounded dynamic vanishing noise, non-vanishing noise et al.
In contrast to the existing ZNDmodels, the MNAZNDmodel
improves the convergence and noise tolerance simultaneously
only by implanting an ingenious complex-valued NL-AF,
which conveniently enhances the online processing capability
of the ZND. This is a remarkable improvement on the
complex NAZND models, such a fixed-time and noise-
tolerant MNAZND model in complex domain has not been
mentioned in literature. Moreover, in view of exponential
form is more concise and convenient in dealing with
complex mathematical problems, a novel exponent nonlinear
activation type is adopted in this paper. For better readability,
all the abbreviations and corresponding full titles are listed
in Table 1.

II. MODEL DESCRIPTION
In this section, we describe the MNAZND model for solving
the CDMI. Firstly, the DCMI is introduced as:

Z (t)8(t) = I , or 8(t)Z (t) = I , (1)

where 8(t) ∈ Cn×n denotes a known nonsingular time-
varying matrix, I is the identity matrix of the same order as
8(t), Z (t) denotes the complex square matrix to be solved.
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TABLE 1. The abbreviations and corresponding full titles.

According to the design process of ZND model in [35],
an error function D(t) = 8(t)Z (t) − I is defined to trace
and optimize the solving process of ZND for dealing with
the DCMI. The core design of ZND is a proportion derivative
controller, and the evolution formula is

Ḋ(t) = −σD(t).

Literatures [35], [36], and [37] revealed that NL-AF prompts
the ZND achieving finite-time convergence, therefore, the
evolution formula activated by nonlinear function is given as

Ḋ(t) = −σA(D(t)), (2)

where A(·) represents a complex-valued activation type,
the definition of the complex-valued activation type A(·) is
given as:

A(P+ iQ) = J(τ ) ◦ exp(i2), (3)

where P + iQ is a complex number, τ and 2 respectively
indicates the modulus and the argument of P + iQ, and
J(·) denotes a NL-AF. Though NL-AF can significantly
improve the convergence of ZND, poorly designed activation
function may lead to chattering in ZND implementation.
To facilitate online processing, as revealed by simulations
in [33], [35], and [37], the following NL-AF: PS-AF, HS-AF,
SBP-AF and OSBP-AF were frequently employed to raise
convergence speed. However, all of these activation functions
have weak noise suppression ability. To overcome this
defect, this paper proposes a NV-AF to ensure a fixed time
convergence and a stronger noise suppression performance,
J(·) is designed as:

J(e) = (τ1 exp(|e|k )|e|1−k/k + τ2)sign(e) + τ3e, (4)

where the parameters 0 < k < 1, τ1 > 0, τ2, τ3 ≥ 0,
and sign(·) is the signum function. J(·) consists of three
terms, τ1 exp(|e|k )|e|1−ksign(e)/k is the original term, which
is to ensure fixed time convergence, τ3e is the linear term,
which is to suppress dynamic vanishing noise, τ2sign(e) is
the discontinuous term, which is to suppress dynamic non-
vanishing noise, the design idea of adding the discontinuous
term is inspired by literature [41]. In this literature, to deal
with noises in slid mode control, discontinuous terms

are universally used. Then, substituting the error function
into (2), the MNAZND model for solving the CDMI can be
obtained as

8(t)Ż (t) = −8̇(t)Z (t) − σA(8(t)Z (t) − I ). (5)

In addition, the perturbed MNAZND model by additional
noise is described as

8(t)Ż (t) = −8̇(t)Z (t) − σA(8(t)Z (t) − I ) +9(t), (6)

where 9(t) denotes additional noise. The MNAZND model
with the proposed NV-AF(4) can not only have a explicitly
given convergence time but also can endure various noises
(including bounded vanishing noise, bounded non-vanishing
noise) in fixed time.

III. THEORETICAL ANALYSIS
In this section, we mainly present the theoretical results of the
MNAZND model. At first, the global stability and fixed time
convergence of the MNAZND model are proven in theory.
Then, the robustness of the MNAZND model is discussed
by analyzing the perturbed MNAZND model with unknown
additive noises.

A. GLOBAL STABILITY
Theorem 1: Given a complex-valued time-varying matrix

8(t) of full rank, the state matrix Z (t) synthesized by the
MNAZND model (5) with NV-AF (4), starting from any
stochastic initial state Z (0), always converges to theoretical
solution of Eqn.(1), i.e. the error matrix D(t) global
converges to 0.
Proof: Based on Eqn.(2), element-wise, we have

Ḋmn(t) = −σA(Dmn(t)),

then, we construct a Lyapunov function

ωmn(t) = |Dmn(t)|2 = Dmn(t)Dmn(t),

where |Dmn(t)| denotes the modulus of Dmn(t). The deriva-
tive of ωmn(t) can be written as

ω̇mn(t) = Ḋmn(t)Dij(t) + Dmn(t)
˙Dmn(t).

= −σA(Dmn(t))Dmn(t) − σDmn(t)A(Dmn(t)). (7)
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According to the definition of the complex-valued activation
type A(·) in (3), we have

ω̇mn(t) = −σDmn(t)J(|Dmn(t)|) exp(iθ)

− σDmn(t)J(|Dmn(t)|) exp(−iθ)

= −σ |Dmn(t)| exp(−iθ )J(|Dmn(t)|) exp(iθ)

− σ |Dmn(t)| exp(iθ )J(|Dmn(t)|) exp(−iθ)

= −2σ |Dmn(t)|J(|Dmn(t)|), (8)

where θ denotes the argument of Dmn(t), apparently,
ω̇mn(t) is negative definite, so Dmn(t) globally converges to
0. Therefore, the error matrix D(t) global converges to 0 is
proven. □

B. FIXED TIME CONVERGENCE
Theorem 2: Given a complex-valued time-varying matrix

8(t) of full rank, the state matrix Z (t) synthesized by the
MNAZND model (5) with NV-AF (4), starting from any
stochastic initial state Z (0), can converge to theoretical
solution of Eqn.(1) in fixed time tf .

tf ≤
1
στ1

.

Proof: Same as Theorem 1, we also have Ḋmn(t) =

−σA(Dmn(t)), and also construct the Lyapunov function as
ωmn(t) = |Dmn(t)|2 = Dmn(t)Dmn(t). According to Eqs. (7)
and (8), we have

ω̇mn(t) = −2σ |Dmn(t)|J(|Dmn(t)|)

= −2σ |Dmn(t)|(τ1 exp(|Dmn(t)|k )|Dmn(t)|1−k/k

+ τ2 + τ3|Dmn(t)|)

≤ −2σ |Dmn(t)|τ1 exp(|Dmn(t)|k )|Dmn(t)|1−k/k

= −στ1 exp(ωmn(t)
k
2 )ωmn(t)1−

k
2 /
k
2
.

That is
1
στ1

k
2
exp(−ωmn(t)

k
2 )ωmn(t)

k
2−1dωmn(t) ≥ dt. (9)

Integrating on both sides of (9), we obtain

tf ≤
1 − exp(−ωmn(0)

k
2 )

στ1
=

1 − exp(−|Dmn(0)|k )
στ1

. (10)

Since 0 < exp(−|Dmn(0)|k ) ≤ 1, the fixed convergence
time is

tf ≤
1
στ1

.

Therefore, the MNAZNN model (5) activated by NV-AF (4)
can exhibit a fixed time convergence. □

C. ROBUSTNESS ANALYSIS
When the perturbed MNAZND model (6) is inlaid the
NV-AF (4) with dynamic bounded noise or large constant
noise, the robustness analysis can be inferred by following
theorems.

Theorem 3: Given a complex-valued time-varying matrix
8(t) of full rank and dynamic bounded time-varying noise
9(t) with its element satisfying |ψmn(t)| ≤ ρ (ρ ≥ 0),
and the NV-AF (4) with στ2 ≥ ρ, the state matrix Z (t)
synthesized by the perturbed MNAZND model (6) with the
NV-AF (4), starting from stochastic initial Z (0), can converge
to theoretical solution in fixed time tf .

tf ≤
1
στ1

.

Proof: According to the error matrix D(t), when choosing
the activated type A(t)(·) in (3), element-wise, we get

Ḋmn(t) = −σA(Dmn(t)) + ψmn(t).

To prove the robustness, we also construct a Lyapunov
function ωmn(t) = |Dmn(t)|2 = Dmn(t)Dmn(t), θ =

arg(Dmn(t)). Then, we have

ω̇mn(t) = Dmn(t)
(
− σA(Dmn(t)) + ψmn(t)

)
+ Dmn(t)

(
− σA(Dmn(t)) + ψmn(t)

)
= −σDmn(t)J(|Dmn(t)|) exp(iθ) + Dmn(t)ψmn(t)

− σDmn(t)J(|Dmn(t)|) exp(−iθ) + Dmn(t)ψmn(t)

= −2σ |Dmn(t)|J(|Dmn(t)|)

+ Dmn(t)ψmn(t) + Dmn(t)ψmn(t)

= −2σ |Dmn(t)| exp(|Dmn(t)|k )|Dmn(t)|1−k/k

− 2στ3|Dmn(t)|2 + Dmn(t)ψmn(t)

+ Dmn(t)ψmn(t) − 2στ2|Dmn(t)|

≤ −2σ |Dmn(t)| exp(|Dmn(t)|k )|Dmn(t)|1−k/k

+ 2|Dmn(t)|(|ψmn(t)| − στ2)

≤ −2σ |Dmn(t)| exp(|Dmn(t)|k )|Dmn(t)|1−k/k

+ 2|Dmn(t)|(ρ − στ2)

≤ −2σ |Dmn(t)| exp(|Dmn(t)|k )|Dmn(t)|1−k/k

= −στ1 exp(ωmn(t)
k
2 )ωmn(t)1−

k
2 /
k
2
.

Hence, when the perturbed MNAZND model (6) with
dynamic bounded noise, according to Eqn.(9) and Eqn.(10)
in Theorem 2, the fixed convergence time can be gotten as

tf ≤
1
στ1

.

Therefore, the perturbedMNAZNDmodel (6) activated by
NV-AF (4) under a dynamic bounded noise still exhibits a
fixed time convergence. □
Theorem 4: Given a complex-valued time-varying matrix

8(t) of full rank and a large fixed constant noise 9(t) = L,
that is, ∃ε, σ ≪ ε ≪ +∞, L ≤ ε, as the time goes, the
Frobenius norm of the error function ∥Dmn(t)∥F synthesized
by the perturbed MNAZND model (6) with the NV-AF (4)
satisfies the inequality as:

lim
t→+∞

∥Dmn(t)∥F ≤ q
(

k2L5L−1
ι=0 (ι!)

2

(L + 2)L+2τ 2L1 (τ2τ3)2

) 1
ϖ

(
ε

σ

) 2L+4
ϖ

,

whereϖ = Lk(L − 3) + 2(L + 1).
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Proof: Firstly, a Lyapunov function ωmn(t) = |Dmn(t)|2/2
is constructed. According to Ḋmn(t) = −σA(Dmn(t))+9(t)
and the large fixed constant noise L, the time derivation of
ωmn(t) is

ω̇mn(t) =
1
2

(
Dmn(t)

(
− σA(Dmn(t)) + L

)
+ Dmn(t)

(
− σA(Dmn(t)) + L

))
= −

1
2

(
σDmn(t)J(|Dmn(t)|) exp(iθ) + Dmn(t)L

− σDmn(t)J(|Dmn(t)|) exp(−iθ) + Dmn(t)L
)

≤ −σ |Dmn(t)|J(|Dmn(t)|) + |Dmn(t)||L|

≤ −|Dmn(t)|(σJ(|Dmn(t)|) − ε).

According to [42], we have limt→+∞ J(|Dmn(t)|) ≈ ε/σ .
Then, we can get

lim
t→+∞

J2(|Dmn(t)|)

= lim
t→+∞

(
τ1 exp(|Dmn(t)|k )|Dmn(t)|1−k/k

+ τ2 + τ3|Dmn(t)|
)2

= lim
t→+∞

(
τ1

k

+∞∑
ι=0

|Dmn(t)|1+(ι−1)k

ι!
+ τ3|Dmn(t)| + τ2

)2

≥ lim
t→+∞

(
τ1

k

L−1∑
ι=0

|Dmn(t)|1+(ι−1)k

ι!
+ τ3|Dmn(t)| + τ2

)2

≥ lim
t→+∞

(
(
τ1

k
)2
L−1∑
ι=0

|Dmn(t)|2+2(ι−1)k

ι!2

+ (τ3|Dmn(t)|)2 + τ 22

)2

≥ lim
t→+∞

(L + 2)(
τ1

k
)2L

(
(τ2τ3)25

L−1
ι=0

|Dmn(t)|ϖ

(ι!)2
) 1
L+2 ,

whereϖ = Lk(L − 3) + 2(L + 1), then

lim
t→+∞

|Dmn(t)|2 ≤

(
k2L5L−1

ι=0 (ι!)
2

(L + 2)L+2τ 2L1 (τ2τ3)2

) 2
ϖ

(
ε

σ

) 4L+8
ϖ

.

Hence, we finally get

lim
t→+∞

∥Dmn(t)∥F ≤ q
(

k2L5L−1
ι=0 (ι!)

2

(L + 2)L+2τ 2L1 (τ2τ3)2

) 1
ϖ

(
ε

σ

) 2L+4
ϖ

.

The proof completes. □

IV. NUMERICAL EXPERIMENTS AND APPLICATION
For computing CDMI efficiently, the MNAZND model
embedded the NV-AF is mentioned in Section II. In addi-
tion, we comprehensively analyze the performance of the
MNAZND model, including global stability, fixed time
convergence and noise resistance in Section III. In this
section, numerical examples will be adopted to authenticate
the comprehensive performance of the MNAZND model.

FIGURE 1. The residual error of Z (t) synthesized by the proposed
MNAZND model with the NV-AF.

A. EXAMPLE 1
Let’s first adopt a relatively simple complex-valued time-
varying matrix 8(t) as following:

8(t) =

[
eit − ie−it

−ieit e−it

]
∈ C2×2, (11)

the theoretical solution of 8(t) can be easily gotten by
mathematical calculations,

8−1(t) =
1
2

[
e−it ie−it

ieit eit

]
.

We first check the effectiveness and accuracy of the
MNAZND model (5) activated by NV-AF (4). In this exam-
ple, the parameters in the MNAZND model are set as τ1 =

τ2 = τ3 = 1, k = 1/2, and σ = 2. According to Theorem 2,
we can get the fixed convergence time as: tf ≤ 1/(στ1) =

0.5s. From Fig. 1, the convergence time approximately is
0.2s, which is less than theoretical fixed time tf = 0.5s. Fig. 2
shows the trajectories synthesized by MNAZND model, In
Fig. 2(a), starting from a randomly initial state Z (0), the
blue trajectories Z (t) synthesized by the MNAZND model
coincide with the theoretical solution precisely and rapidly.
Fig. 2(b) depicts the profile of trajectories. The simulation
results verify theoretical derivation in Theorem 1 and 2.
According to [35], [38], and [37], L-AF J1(e) = e

and NL-AFs
(
mainly including SBP-AF J2(e) = (|e|k +

|e|
1
k )sign(e) and OSBP-AF J3(e) = αsignk (e) + βe

)
were used for improving converge speed. In this section,
to demonstrate the advantage of NV-AF (4), aforementioned
existing NL-AFs are implanted in MNAZND model. Fig. 3
shows the residual errors synthesized by the MNAZND
model under different situations. To make this a fair
comparison, the same initial value of Z (t) is set under same
situation. Fig. 3(a) depicts that shorter converge time can be
obtained by employing NV-AF (4) in free noise situation,
the actual time of the residual error decreases to zero is less
than the theoretical fixed time 0.5s. Fig. 3(b) and Fig. 3(c)
respectively shows convergence situations under dynamic
vanishing noise and dynamic bounded noise. In these cases,
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FIGURE 2. Dynamic trajectories of Z (t) synthesized by the proposed MNAZND model with the NV-AF. (a) Dynamic trajectories. (b) Profile
of dynamic trajectories.

FIGURE 3. The residual error of Z (t) (11) synthesized by the MNAZND model with different AFs. (a) Free noise. (b) 9(t) = Dmn(t).
(c) 9(t) = cos(2t) + cos(2t)i . (d) 9(t) = 10 + 10i .

the converge speed of the MNAZND model embedded NV-
AF (4) almost same as the free situation. The numerical
experiment results validate the analysis of Theorem 2 and 3.
In contrast, the MNAZND model embedded L-AF, SBP-AF

and OSBP-AF cannot vanish to zero under dynamic bounded
noise. In Fig. 3(d), compared with the aforementioned
existing popular NL-AFs under the constant noise situation,
the NV-AF (4) also obtains the best performance.
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FIGURE 4. The residual error of Z (t) (11) synthesized by the MNAZND model with different AFs. (a) Free noise. (b) 9(t) = 0.5Dmn(t).
(c) 9(t) = 0.8sin(3t) + 0.8sin(3t)i . (d) 9(t) = 50 + 50i .

B. EXAMPLE 2
To further investigate the superiority of the MNAZND
model (5) activated by NV-AF (4), a more compli-
cated complex-valued time-varying matrix is considered as
following.

8(t) =


φ11(t) φ12(t) · · · φ1q(t)
φ21(t) φ22(t) · · · φ2q(t)
...

...
. . .

...

φq1(t) φq2(t) · · · φqq(t)

 (12)

with φmn(t) denotes the mnth element of φ(t), and

φmn(t) =


2sin(3t)i, m = n,
n− 1 + 2cos(3t)i, m < n,
n+ 2cos(3t)i, m > n.

In the simulation, the dimension of the matrix 8(t) equals 4,
the relevant parameters are set as σ = 1, τ1 = τ2 =

τ3 = 2 and k = 1/2. According to theoretical analysis result,

the theoretical fixed convergence time tup ≤ 1/(στ1) =

0.5s can be obtained in free noise, dynamic vanishing
noise and bounded noise. According to the PS-AF also
have good performance in some situation [36], so in this
example, PS-AF is employed for comparison. The corre-
sponding experimental results are demonstrated in Fig. 4,
which substantiates that NV-AF (4) endows ZND model a
superior stability, convergence and robustness under different
situations than other NL-AFs. Thereinto, from Fig. 4(a) to
Fig. 4(c), the convergence time of the perturbed MNAZND
model (6) activated by NV-AF (4) is almost the same, about
0.2s, which satisfies the theoretical fixed convergence time
0.5s. In Fig. 4(d), under a large constant noise, the residual
error of the perturbed MNAZND model (5) activated by
NV-AF (4) remains in a smallest stable level, which further
validates advantage of NV-AF (4).

As pointed in [35], the parameter σ can scale the
convergence of the ZND model. Therefore, in this part,
we further investigate the convergence performance of the
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FIGURE 5. The residual error of the examples synthesized by the MNAZND model with different values of
parameter k . (a) Example 1. (b) Example 2.

FIGURE 6. The space and the end effector trajectories. (a-b) controlled by CZND. (c-d) controlled by MNAZND.

MNAZND model (5) at different parameters value. Based on
the structure of the NV-AF (4), τ1 exp(|e|k )|e|1−ksign(e)/k is
the original term, which is to ensure fixed time convergence.

Obviously, as to the convergence speed, the parameter τ1 is
the same as σ , larger value of τ1 achieves faster convergence
speed. For the tunable parameter k , set different values,
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the convergence effect of Example 1 and 2 is respectively
shown in Fig. 5(a) and Fig. 5(b), from the simulation results,
it is suggested that a small value of k accelerates the
convergence.

C. APPLICATION
In order to verify the effectiveness of the proposedMNAZND
in actual application, a robotic manipulator controlling is
employed in this section. According to [14], the position
of the end effector is a vital control component, and the
kinematical model of which can be represented as follows:

ϒ(t) = J(4(t)) ∈ Rk ,

where4(t) = [h̄T (t),2T (t)]T ∈ Rl+2 includes the two angle
vectors, thereinto, h̄T (t) denotes the mobile platform angle
vector, 2T (t) denotes the manipulator angle vector, ϒ(t) is
the actual position of end effector in three dimensions. and
J(·) is a nonlinear mapping from 4(t) to ϒ(t).
Based on the dynamics control principle of the designed

MNAZND, a kinetic equation can be obtained as:

W(4(t))4̇(t) = ϒ̇(t) − σJ(ϒ(t) −4(t)),

where W(4(t)) = ∂ϒ(4(t))/∂4 ∈ Rk×(l+2). The feasibility
of the designed method will be verified by controlling the
end effector of a mobile manipulator to track a prescribed
route. In this simulation, four leaf clover trajectory is be
tracked, In order to contrast the reliability, the classic ZND
(CZND) is introduced, and the parameters in the dynamics
control system are set as: σ = 2, τ1 = τ2 = τ3 =

k = 1/2, 4(0) = [0, 0, π/12, π/4, π/6, π/6, π/8, π/3], the
corresponding results are demonstrated in Figure 6. Figure 6
shows the mobile manipulators’ tracking consequence con-
trolled by the CZND model and MNAZND model in a noise
environment (9(t) = 0.2sin2t ). The entire space trajectories
of themobile manipulator controlled by the CZNDmodel and
MNAZND model are respectively depicted in Fig. 6(a) and
Fig. 6(b), and the end effector trajectories synthesized by the
CZNDmodel andMNAZNDmodel are respectively depicted
in Fig. 6(c) and Fig. 6(d). Obviously, the mobile manipulator
controlled by MNAZND can satisfactorily complete the four
leaf clover trajectory tracking task in noise disturbed state.

V. CONCLUSION
A MNAZND model with NV-AF is proposed to solve the
noise disturbed CDMI. Unlike the existing ZND model,
the NL-AF consists of three terms. The function of each
term endows the MNAZND model can simultaneously
achieve fixed time convergence and robustness. The stability,
fixed-time convergence and robustness of the MNAZND
model with NV-AF are proven theoretically. Furthermore,
the fixed time convergence upper bound is obtained, which
is independent of the initial value and keeps same in
free noise and bounded dynamic noise. The illustrative
examples and the application on robotic manipulator ver-
ified that the MNAZND model with NV-AF has a more

remarkable performance. Compared with the real-valued
and complex-valued ZND models, the quaternion-valued
ZND model has competitive advantage in storage capacity.
Therefore, the research of applying the MNAZND model in
quaternion field is a worthy direction.
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