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ABSTRACT Breast cancer (BC) is a multifaceted genetic malignancy that accounts for the majority
of cancer fatalities in women. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is
predominant in evaluating perfusion, extravascular-extracellular volume fraction, and microvascular vessel
wall permeability in breast cancer patients. Precise tumor segmentation using DCE-MRI is a key component
of assessing diagnosis and treatment planning. However, the slice-wise analysis of DCE-MRI fails to
preserve 3D surface continuity and is insufficient for evaluating the invasion depth of the tumor. Hence, this
work proposes an analytical model labeled as Bezier-tuned Energy Functionals optimized via variational
minimax for Volumetric Breast Tumor Segmentation (BEFVBTS). The formulated energy functionals
consist of non-linear convex edge-sensitive data and regularization terms. Also, the variational minimax
technique adopts gradient descent with an exact line search algorithm for obtaining a global minimax
solution. The self-analysis of BEFVBTS on the Duke- Breast-Cancer-MRI dataset registered remarkable
performance in segmenting tumors with different grades (Grade 1,2 & 3). Likewise, the relative analysis on
QIN Breast DCE-MRI and TCGA-BRCA datasets revealed improvements of 8%, 22%, 8.7%, 4%, 0.120%,
and 68.17% in Dice, Jaccard, Precision, Sensitivity, Specificity, and Hausdorff distance (HD) respectively
over the recent competitors. At last, the complexity analysis of the model demonstrated simplicity and
amicability for its extension to real-time clinical applications.

INDEX TERMS BEFVBTS, DCE-MRI, energy functionals, line search, variational minimax optimization.

I. INTRODUCTION
Despite drastic advancements in cancer studies, BC continues
to be an extremely prevalent disease [1]. A study by
the World Health Organization (WHO) has reported that
2.3 million women were diagnosed with BC in 2022, and
the count is expected to increase by 3 million in 2040
[2]. Hence, their early detection would direct the patients
to anti-cancer therapies that aid in recovery with long-
term survival [3]. Few breast imaging modalities such as
mammography [4], ultrasound [5], thermograms [6], [7], and
MRI [8] are reliable for screening, diagnosis, preoperative
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evaluation, and follow-ups in BC patients [9]. Especially,
DCE-MRI has gained interest owing to its high sensitivity in
capturing morpho-functional features that project biological
changes in breast tissues [10]. Also, DCE-MRI capitulates
the tumor’s neo-vasculature occurring before any volumetric
changes in the tumor [11]. In general, slice-wise DCE-MRI
tumor segmentation fails to retain 3D surface continuity
and interslice correlation. Rather, volumetric segmentation
captures the spatial information of the tumor across the axial,
sagittal, and coronal axes by evaluating the tumor’s invasion
depth and its connection to the surrounding tissue. Further,
manually annotating 3D images is time-consuming due to
the large number of slices and complexity of tumor structure.
In contrast, automatic segmentation is fast, time-saving, and
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accurate, thereby, reducing the load on clinicians. Hence,
this work proposes an analytical model that is Bezier-tuned
and optimized via variational minimax for volumetric tumor
segmentation.

The chronological list of automated segmentation models
available in the literature is presented to understand the
novelty of the proposed work. The traditional segmentation
models exploit pixel homogeneity and discontinuity based on
morphological features [12] using thresholding [13], region
growing [14], and watershed [15], [16] techniques. Although
these models registered excellent segmentation results, their
performance declined when dealing with heterogeneous
tumors. Alternately, Active contours (AC) [17], and fuzzy C
means (FCM) [18] have established superiority by overcom-
ing artifacts and ambiguous edge concerns. For instance, the
AC variant named spectral embedding-based active contours
(SEAC) [19] captured the strong gradients across the regional
boundaries offering larger intensity separations between
tumor and non-tumor regions. SEAC accomplishes it by using
the eigenvector-based voxel analysis for better lesion seg-
mentation. However, the bias field correction applied to the
image and non-optimized weight parameters dragged down
the models’ performance. Likewise, the soft computed FCMs
ignored the spatial voxel relationship andwere prone to noise.
To overcome this, the spatial FCM was proposed [20] that
regularizes the data terms by adding a penalty to a unique
objective function. However, this process necessitates manual
modification of FCM parameters and the predetermined ROI
selection involves human intervention [21].

The advent of data-driven deep-learning techniques super-
seded these models and is widely utilized in tumor segmenta-
tion despite the demand for the enormous annotations needed
for training. Such recent networks UNet3D, Vnet, UNETR,
nnU-Net, U-Node3D, and Att-U-Node3D have gained
research interest in 3D (volumetric) segmentation [22].
However, their extension to volumetric analysis still requires
deeper exploration. Herein few such DL contributions are
brought forth to understand their impact on volumetric
analysis and their related issues. Just recently, the 3D U-
Net transformer (UNETR) [23] was trained with weak
annotations for isolating the whole breast from the ROI using
bounding boxes. The pre-annotated ground truths showed
satisfactory results while the model relied extremely on
manual annotations. Similarly, the 3D patch-based modified
U-Net [24] merged residual blocks with ROI-restricted
balanced patches to overcome the class imbalance and organ
differentiation issues that had surpassed the state-of-the-art
segmentation methods regardless of dataset complexities.
Alternatively, the attention-guided ODE network (Att-U-
Node3D) [22] used the convolutional block attention module
(CBAM) for capturing the spatial and channel information,
and encoder-decoder compartments for feature extraction
and recovery, and a neural ODE for feature modeling.
Likewise, the three 3D U-Net [25] employed subtraction
and post-contrast images or a combination of them at
the feature level to obtain complementary information and

utilized a visual ensemble selection process to choose the
most optimal segmentation. The multi-label attention-guided
model joint phase net (AJPN) [26] model fused diverse com-
prehensive features with time-signal intensity maps for ROI
localization. Instead, the mask-guided hierarchical learning
(MHL) framework [27] generated a 3D breast mask ROI
for precise and accurate tumor segmentation using a 2-stage
fully convolutional network (FCN). Another convolution
network [28] employed multi-scale context (M2D3D-MC) to
achieve greater transferability and low inference time in 2D.
Also, its prominence in learning contextual information in
3D tumor segmentation even with a bounded number of axial
slices was highly beneficial.

Although the aforementioned DL methods achieved supe-
riority in segmenting breast tumors, their computations
demand sophisticated and specialized hardware resources
for model training [29] and eventually tend to overfit for
untrained data. Additionally, the fairness of these models is
down-laid owing to the over-parametrization in determining
the local minimum and remains NP-hard due to the ubiqui-
tous existence of saddle points. Also, most of the DL involves
non-convex optimization with multiple local minimawhich is
still challenging for obtaining optimal solutions [30]. Rather,
analytical models are interpretive, rapid, and they exhibit
parameter dependencies explicitly.

To address the wider range of issues encountered by
traditional and recent peers, this work introduces varia-
tional minimax optimization with novel energy functionals
consisting of non-linear convex combinations of data and
regularization terms. The data term stimulates the generated
heterogeneous volume to interact with the image volume at
a higher gradient point while the regularization smoothens
the edge points. The variational minimax optimization is
utilized to minimize or maximize the weight parameter
to obtain the optimal heterogeneous volume. Further, the
introduced model aims to reduce the number of optimization
parameters while assuring generalization, robustness, spar-
sity, monotonicity, and decomposability. The manuscript is
systematized as follows: Section I introduces the background
of the formulated BEFVBTS framework and articulates its
significance by chronologically outlining the pros and cons
of the related peers. Section II formulates the BEFVBTS’s
methodology, while Section III rigorously assesses its
performance. The amicability of the BEFVBTS’s extension
to a real-time scenario is studied in terms of its realization
complexities in Section IV. Finally, the model is briefly
summarized with an outline of the future research direction.

II. METHODOLOGY
DCE-MRIs are packed with diverse intensity variations
constituting the breast and chest regions. Hence, it is
crucial to effectively capture these intensity variations in
DCE-MRI for precise ROI localization. To perform this,
three novel edge-sensitive energy functionals are introduced
to project the homogeneous and heterogeneous regions in
the DCE-MRI. The proposed model also adopts a highly
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FIGURE 1. Flow diagram of BEFVBTS.

localized and adaptive data fitting technique named as
parametric Quadratic Bezier Curve due to its application
in medical image segmentation [31]. The Bezier Curve
hyperparameters further weight these functionals to yield the
convex optimization equation [32].

A. FRAMEWORK OVERVIEW
The process diagram of the BEFVBTS framework is shown
in Fig.1. The flow commences with loading the input volume
I (x, y, z), followed by initializing the energy functionals
E1,E2,E3 and hyper-parameter β. The iterative energy
minimization process involves computing E1(H ), E2(H )
and E3(H ) that consists of edge-sensitive terms H (x, y, z)
made to interacts with the input volume I (x, y, z) at high
gradient places. The calculation of the hyper-parameter
(β), the optimum heterogeneous volume H (x, y, z), and the
optimal step size take place at each iteration. Finally, the
heterogeneous volume is updated by the updation rule. Upon
convergence, binarization followed by CCA (Connected
Component analysis) is performed, otherwise, the process
continues until convergence. The convex optimization equa-
tion encompassing three energy functionals is given in Eq.(1),

E(H ; β) = (1 − β)2E1(H ) + 2β(1 − β)E2(H ) + β2E3(H )

(1)

E1(H ), E2(H ) are the data terms, and E3(H ) is the regulariza-
tion term. The role of multivariate Hessian matrix (H (x, y, z))
is to capture the surface variations across each dimension and
is essential for approximating quadratic functions. The voxels
are normalized for analyzing higher dimensional images with
large intensity variations. Also, the overall energy of the
volume is assumed to be ‘1’ which comprises both tumor
and non-tumor voxels. The normalized Hessian capturing the

intensity variation is given by,

H (x, y, z) =

∣∣∇2I (x, y, z)
∣∣

max(
∣∣∇2I (x, y, z)

∣∣) (2)

H (x, y, z) in Eq. (2) refine the edge information to achieve
precise and adaptive segmentation. Hessian utilization in
BEFVBTS assures localization of High-Frequency Features
(HFF) and refinement of innate details concerned with object
boundaries. The first energy functional E1(H ) is the energy
from the deviation between two volumes H (x, y, z) and
I (x, y, z).

E1(H ) =
1
3

∫∫∫
[H (x, y, z) − I (x, y, z)]2 dx dy dz (3)

The difference between the two volumes in Eq.(3) retains
the homogeneous regions that almost pack the maximum
energy and neglect the heterogeneous regions. In contrast,
the second energy-functional E2(H ) is the energy that retains
the heterogeneous regions by multiplying H (x, y, z) and
I (x, y, z).

E2(H ) =
1
3

∫∫∫
[H (x, y, z) ∗ I (x, y, z)]2 dx dy dz (4)

Finally, E3(H ) in Eq. (5) is the energy of gradient of the
heterogeneous volume H (x, y, z).

E3(H ) =
1
3

∫∫∫
|∇H (x, y, z)|2 dx dy dz (5)

To achieve optimized segmentation, the cost function
E(H ; β) is minimized. Accordingly, minimizing the data
terms results in the interaction of heterogeneous volume and
image volume at high gradient points, whereas minimizing
the regularization term smoothens the heterogeneous volume
by degrading high-frequency features. The optimum het-
erogeneous volume necessitates a minimax solution for the
function maxHminβE(H ; β). This solution ensures that the
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weight parameter β conciliates inequalities between data and
the regularization term, thereby circumventing spurious and
under-segmentation. Owing to the concave-convex nature of
E(H ; β) the order interchange from min to max or max to
min is possible since the duality gap between the β and H is
zero [33] shown in Eq.(6).

H∗
= argmax

H
min

β
E(H ; β) = argmax

β
min
H

E(H ; β) (6)

The following sections detail the steps in finding the optimum
weighted parameter, heterogeneous volume, and step size.

1) CALCULATION OF β

To obtain β∗, calculate ∂E(H ;β)
∂β

= 0 which yields a
conventional solution that stabilizes the data term present in
the energy functionals.

β∗
=

E1 − E2
E1 − 2E2 + E3

(7)

2) CALCULATION OF OPTIMAL H
The differential heterogeneous volume presented in Eq. (8) is
the Euler-Lagrange differential equation [34] that calculates
the variation of E with respect toH in all three directions. For
a fixed value of β referred to as β∗, the equation Ef is given
in Eq. (9).

∂H (x, y, z)
∂t

= −Ef (8)

Ef =
∂E
∂H

−
∂E
∂Hx

−
∂E
∂Hy

−
∂E
∂Hz

(9)

where Hx =
∂H
∂x , Hy =

∂H
∂y , and Hz =

∂H
∂z . After substituting

the derived parameters in Eqt. (9), the overall Euler-Lagrange
equation is given in Eqt. (10).

Ef =
2
3
(1 − β∗)2(H − I )

+
4
3
(β∗

− β∗
2
)(I .H )

−
1
3
β∗

2
(Hxx + Hyy + Hzz) (10)

where Hxx =
∂2H
∂x2

, Hyy =
∂2H
∂y2

, and Hzz =
∂2H
∂z2

. Similarly the
change in heterogeneous volume in Eqt. (8) is given by,

∂H (x, y, z)
∂t

= −
2
3
(1 − β∗)2(H − I )

−
4
3
(β∗

− β∗
2
)(I .H ) +

1
3
β∗

2
(∇2H ) (11)

B. NUMERICAL IMPLEMENTATION
The discrete form of Eq.(11) is given in Eq.(12).

H t+1
lmn = H t

lmn + τ [−
2
3
(1 − β∗)2(H t

lmn − Ilmn)

−
4
3
(β∗

− β∗
2
)(Ilmn.H t

lmn) +
1
3
β∗

2
(∇2H t

lmn)] (12)

where τ is the step size that changes iteratively and t is
the iteration number. This explicit method for calculating
the solution is simple to implement and also requires less
computation.

1) CALCULATION OF STEP SIZE (τ )
The step size τ determines the accuracy of the solution
obtained and is crucial in optimization. To determine the
optimum step size, the segmentation model utilizes the exact
line search algorithm [35], [36] via the steepest descent.
For instance, E(H (k)

+ τ (k)δH (k)) be the cost function to
be minimized at k th iteration, the total energy function is
distributed as in Eq. (13). Details are in Appendix B.

E(H (k)
+ τ (k)δH (k)) = E1 + E2 + E3 (13)

where

E1 =
1
3
(1 − β(k))

2 ∑
(H (k)

+ τ (k)δH (k)
− I )

2
(14)

E2 =
2
3
β(k)(1 − β(k))

∑
(I ∗ (H (k)

+ τ (k)δH (k)))2 (15)

E3 =
1
3
(β(k))

2∑ ∥∥∥∇(H (k)
+ τ (k)δH (k))

∥∥∥2 (16)

Eq. (13) is rearranged as shown in Eq. (14),

E(H (k)
+ τ (k)δH (k)) = e1 + τ (k)e2 + (τ (k))

2
e3 (17)

where

e1 =
1
3
(1 − β(k))

2 ∑
(H (k)

− I )
2

+
2
3
β(k)(1 − β(k))

∑
(I ∗ H (k))2

+
1
3
(β(k))

2 ∑ ∥∥∥∇H (k)
∥∥∥2 (18)

e2 =
2
3
(1 − β(k))

2 ∑
(H (k)

− I )δH (k)

+
4
3
β(k)(1 − β(k))

∑
(I2 ∗ H (k)δH (k))

+
2
3
(β(k))

2 ∑
∇H (k).∇(δH (k)) (19)

e3 =
1
3
(1 − β(k))

2 ∑
(δH (k))2

+
2
3
β(k)(1 − β(k))

∑
(I ∗ δH (k))2

+
1
3
(β(k))

2∑ ∥∥∥∇δH (k)
∥∥∥2 (20)

The optimal τ (k) is measured by differentiating Eq. (13) to
τ (k) and equating to zero.

τ (k) = −
e2
2e3

(21)

Finally, iterative steps in the BEFVBTS framework are,
Step 1: Initialize H
Step 2: While ( for convergence not reached)
a. Compute E1(H ),E2(H ) and E3(H )
b. Compute β

c. Determine the search direction δH (k)

d. Compute the optimum value of τ

e. Arrange H (k+1)
= H (k)

+ τ (k)δH (k)

End while
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FIGURE 2. The role of CCA in the BEFVBTS framework.

C. BINARIZATION USING THE UPDATED HESSIAN
The updated heterogeneous volume H∗(x, y, z) is compared
with the input I (x, y, z) using Eq. (22) to yield the binary
equivalent [37].

IBinarized =

{
1 for I (x, y, z) ≥ H∗(x, y, z)
0 elsewhere

(22)

D. RESIDUAL REMOVAL
Although BEFVBTS performs satisfactory segmentation, the
binarization process also picks the voxels that are residual
besides the VOI. Therefore, there is a need to isolate
these residual voxels based on their connectivity strength
for acute localization. Further, the voxels corresponding
to the tumor voxels in DCE-MRIs are packed with high
connectivity,therefore it is easy to remove binarized residual
non-tumor voxels based on their connectivity strength.
Accordingly, Connected Component Analysis (CCA) [38],
[39] is engaged as a post-binarization process to refine the
ROI with voxels having higher affinity. CCA incorporation
is verified qualitatively in Fig. 2. Fig. 2 demonstrates the
importance of CCA in the framework. Fig. 2 (a) is the original
input volume and Fig. 2 (b) shows the segmentation process
without CCA where the presence of fibro-glandular tissues
around the tumor is not completely evaded. However, CCA’s
significance is visualized in Fig. 2 (c) wherein the residual
non-tumor voxels are evaded from the VOI.

III. PERFORMANCE ANALYSIS
The proposed model’s efficiency is analyzed by conducting
ROC investigations on popular benchmark datasets discussed
below.

A. DATASET DESCRIPTION
The following datasets are involved in the performance
analysis of BEFVBTS.

1) DUKE- BREAST-CANCER-MRI
The DCE-MRIs of 922 individuals with BC were obtained
from The Cancer Imaging Archive (TCIA), which makes up
this publicly available dataset [40]. These axial DCE-MRIs
were obtained utilizing 1.5T or 3T scanners (GE Healthcare
and Siemens) in the prone position. The MRI sequences,
which include a fat-saturated gradient echo T1-weighted pre-
contrast sequence, four post-contrast T1-weighted sequences,
and a non-fat-saturated sequence, are acquired using the
following parameters: 3.54-7.39 ms for the repetition time
(TR), 1.25-2.76 ms for the echo time (TE), 320 × 320 for the
acquisition matrix, 448× 448 for the array size, 250-480 mm
for the FOV (Field of View), and 7-12 degrees for the flip
angle.

2) QIN BREAST DCE-MRI
This dataset includes DCE-MRIs obtained from TCIA on
10 patients at 20-time points [40]. These axial DCE-MRIs
were obtained using the Siemens 3T TIM Trio system’s
TWIST (Time-resolvedAngiographyWith Stochastic Trajec-
tories) mode. The scanned 3D data is made up of 32-34 image
volume sets with 112-120 slices acquired with the following
settings: 1.4 mm slice thickness, 2.9 ms for repetition time,
6.2 ms for echo time, 320 × 320 acquisition matrix, 2 for
acceleration, 30-34 cm field of view, and a 10-degree flip
angle.

3) TCGA-BRCA
This freely available dataset includes DCE-MRIs obtained
from 46 breast cancer patients from TCIA [40]. All of
the examples involve biopsies that reveal at least one
primary lesion. DCE-MRIs from the University of Pittsburgh
Medical Centre (1999-2004) were recorded before treatment
utilizing a 1.5T GE whole-body MRI scanner (GE Medical
Systems, Milwaukee, Wisconsin, USA). The dataset contains
one pre-contrast and 4-6 post-contrast DCE-MRI volumes
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FIGURE 3. Sample DCE-MRI showing multifaceted tumor segmented using BEFVBTS framework.

obtained using a T1-weighted 3D spoiled gradient echo
sequence. The acquired slices are spaced at 2-3 mm with a
resolution of 0.53-0.86 mm and have a dimension of 512 ×

512 with the slices piled to 85112.

B. ROC METRICS
The scheme adopts conventional Receiver operating charac-
teristic (ROC) metrics engaged by traditional and trending
schemes for both self and relative analysis. The choice of
ROC parameters for segmentation analysis is owed to their
ability to quantify how well the model has segmented the
tumor same as the ground truth. Hence, higher ROC values
signify the closeness of the segmented tumor with the ground
truth volume. These parameters are evaluated using True
Negative (TN), False Negative (FN), True Positive (TP), and
False Positive (FP) factors. Let X segmented output and Y be
the Ground Truth volume, the terms TP, TN, FP, and FN are
designated as X ∩ Y , X ∩ Y , X ∩ Y , and X ∩ Y respectively.
Based on these definitions the various ROC metrics namely
Dice, Jaccard index, Precision, Sensitivity, Specificity, and
HD95 (Hausdorff Distance) [22] modeled in Equations (23)

- (28) are evaluated to validate the model’s performance.

Dice =
2TP

2TP+ FP+ FN
(23)

Jaccard index =
TP

TP+ FP+ FN
(24)

Pr ecision =
TP

TP+ FP
(25)

Sensitivity =
TP

TP+ FN
(26)

Specificity =
TN

TN + FP
(27)

For segmented and ground truth volume, the Hausdorff
distance is described in Eq. (28).

H (X ,Y ) = max(h(X ,Y ), h(Y ,X )) (28)

h(X ,Y ) = max
x∈X

min
y∈Y

∥x − y∥ where x and y are the

edge points belonging to X and Y respectively and ∥.∥ is
Euclidean norm. Generally, the Hausdorff distance between
the segmented output and ground truth volume is evaluated
as the minimum value since large distances depict more
dissimilarities.
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FIGURE 4. 3D Visuals of DCE-MRI segmentation on all three Grades using the BEFVBTS framework. (VI) Grade 1 segmentation with Dice =

0.85 and HD95 = 3.38. (VI) Grade 2 segmentation with Dice = 0.90 and HD95 = 3.02. (C) Grade 3 segmentation with Dice = 0.81 and
HD95 = 5.20. Column 1 (Input Volume), Column 2 (Ground Truth), Column 3(Segmented Output).

C. IMPLEMENTATION AND RELATIVE ANALYSIS
The proposed framework is realized in MATLAB (R2021a)
executed by 2.40 GHz Intel(R) Core(TM) running on a 64-bit
Windows 11 operating system. To understand the scalability,
reliability, and efficacy a detailed self-analysis was done on
the DCE-MRIs from the Duke- Breast-Cancer-MRI with
patients segregated based on Grades (1,2, and 3) and tumor

location (unilateral). Further, the DCE-MRI volumes are
converted into NIFTI format and cropped to 64 × 64 × 64.
The 3D output volumes are viewed using Matlab(R2021a).
The QIN Breast DCE-MRI dataset has been tested on the
popular DL segmentation models such as U-Node3D, Att- U-
Node3D, UNETR, UNet3D, nnU-Net, and VNet [22] where
the same has been utilized to generalize the proposed model.
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TABLE 1. Quantitative Analysis of BEFVBTS on Duke- Breast-Cancer-MRI.

TABLE 2. Quantitative analysis of BEFVBTS on QIN Breast DCE-MRI.

TABLE 3. Quantitative analysis of BEFVBTS on TCGA-BRCA.

These models were trained by augmenting the dataset with
images flipped horizontally, vertically, and randomly upon
corrupting with Gaussian noise.

IV. RESULTS AND DISCUSSION
A. SEGMENTATION ON DUKE- BREAST-CANCER-MRI
This dataset is utilized in testing the BEFVBTS’s qualitative
and quantitative nature under different contexts. The required
ground truth for the analysis was outlined by the expert from
the Department of Radiology, Cincinnati Children’s Hospital
Medical Center, Cincinnati, United States. At the onset,
the qualitative analysis of BEFVBTS is visualized in Fig.3
wherein its VOI localization and refining ability was well
acknowledged. Accordingly, a sample unilateral DCE-MRI
breast cancer patient with heterogeneous tumor shape and
size is chosen and their segmentation result is depicted in
Fig. 3.

The efficiency in segmenting tumors is due to the nonlinear
function consisting of the edge-sensitive components to
segregate tumor and non-tumor volume. Further, a grade-
wise analysis is performed to reveal the consistency of the
proposed framework. Accordingly, a total of 60 breast cancer
patients with single and multifocal tumors were chosen and
their ground truth are delineated by the expert. Generally, the
tumors are categorized as high (Grade 3) due to their large
size and shape with high intensity and low (Grade 1 &
2) that are smaller in mass with moderate intensity. The
volume rendering of this qualitative analysis including all
three grades segmented using BEFVBTS is shown in Fig. 4
(A, B, C).

In Fig. 4, the 1st column is the input DCE-MRI volume,
and the 2nd, and 3rd columns represent ground truth and
segmented output respectively. Upon observing Fig.4, it is

evidenced that the segmentation model is highly adapt-
able and consistent in segmenting small and asymmetrical
volumes. Further, to visualize the retainment of inter-slice
correlation in segmentation the 2D visuals are shown in Fig.5.

For 2D visuals, a sample of two cases (1 and 2) where
case 1 has a larger size and more irregularly shaped tumor
and case 2 has a small mass with an oval-shaped tumor is
considered.

Accordingly, Fig. 5 shows the 2D visuals of segmented
output in all three planes namely Axial, Coronal, and Sagittal
taken at the same position. The 1st column is the inputs
whereas the 2nd, and 3rd column shows the segmented
output and contours overlaid on the input images which are
highlighted in red color. The outcomes in columns 2 and
3 represent the exactness of BEFVBTS in capturing the tumor
boundaries owing to the adopted Bezier that captures the
acute shape variations bounding the tumor. Further, to record
the robustness of the framework, the quantitative analysis on
Duke- Breast-Cancer-MRI was performed and the results are
tabulated in Table 1.
In Table 1, the upper arrow (↑) denotes that themetrics with

higher values are better, and the lower arrow (↓) denotes that
the metrics with lower values are better for the model. All
the grades demonstrated consistent results as the framework
is capable of offering a fine distinction between the voxels
occupying the VOI and non-VOI. The key quality of the
energy-tuned functionals based on multivariate Hessian is the
major modeling benefit offered by BEFVBTS.

B. SEGMENTATION ON QIN BREAST DCE-MRI
A sample DCE-MRI with a multifocal tumor segmented
using BEFVBTS is shown in Fig. 6. The figure depicts
the 3D visuals of the segmented output. Upon observing
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FIGURE 5. Visuals of 2D DCE-MRI depicting segmentation on three planes (Axial, Coronal, Sagittal) using the BEFVBTS framework (Case #1 and
Case #2). Column 1 (Original Input), Column 2 (segmented Output), Column 3(Contour overlaid on Input).

Fig. 6 it is evident that the BEFVBTS is reliable in seg-
menting heterogeneous tumors at ease without any additional
computations. For analysis, the post-contrast images were
chosen and the ROC metrics were compared with Deep
Learning models presented in [22]. Table 2 demonstrates the
relative analysis of the proposed framework with its peers.
Table 2 outlines the potency of BEFVBTS in the accurate
segmentation and the result shows percentage improvement
of 8, 22, 8.7, 4, 0.120, and 68.17 in Dice, Jaccard, Precision,
Sensitivity, Specificity, and HD respectively. Despite the
complex nature of DCE-MRI images consisting of multiple
lesions, the framework delivers more consistently than the
black-box peers. In addition, the framework has eliminated

interpretability by incorporating regularization in convex
terms.

C. SEGMENTATION ON TCGA-BRCA
The TCGA-BRCA investigations aim to evaluate only
the primary lesions under histopathology conditions using
radiomics where the secondary lesions are not involved.
These incomplete annotations drag the dice values upon
segmentation, affecting overall precision. Therefore, the
author [24] complements the annotations as multicentric or
multifocal by the expert radiologist including all secondary
lesions along with primary. In addition, the registration
process is optional since there are no significant differences
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FIGURE 6. 3D Visualization of the tumor volume segmented on a sample QIN breast DCE-MRI dataset with Dice = 0.90 and HD95 =

3.70.

FIGURE 7. 3D Visualization of the tumor (primary) volume segmented on a sample TCGA-BRCA dataset with Dice = 0.92 and HD95 =

3.53 (patient ID -A28Q).

FIGURE 8. 3D Visualization of the tumor (along with secondary) volume segmented on a sample TCGA-BRCA dataset with
Dice = 0.87 and HD95 = 3.509 (patient ID -A0DG).

between pre-and post-contrast images. Accordingly, a sample
DCE-MRI showing complex structured volume is shown in
Fig 7.

Fig 7 & 8 are the 3D visuals of patients A28Q and A0DG
depicting multicentric irregularly shaped lesions segmented

using BEFVBTS. In general, this dataset seems to be intricate
and challenging hence used for BEFVBTS generalization.
In addition, a quantitative analysis was performed with the
ROC metric including both primary and secondary lesions,
and depicted in Table 3.
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The dice values reported in Table 3 show that the model
is adaptive in segmenting both the primary and secondary
lesions with less computation. Also, the overall result depicts
that the introduced model efficiently performs volumetric
segmentation irrespective of the complexities encountered
across the different datasets.

V. COMPUTATIONAL COMPLEXITY
The implementation of the presented segmentation model
is studied along the time and space complexities wherein
time complexity refers to the total number of elementary
operations involved in accomplishing the desired segmen-
tation whilst the space complexity is concerned with the
space incurred. To begin with, the overall time complexity
in processing the volume size of m× n× o is outlined in Eq.
(29).

Total Time=
N∑
i=1

Ti ≈ Tmax (29)

where Ti is the time complexity of ith module, N is the
total number of modules, and Tmax is the maximum time
taken by the module. The segmentation model initially
decomposes the image into three energy constituents by
operating on the image volume of dimensions m × n×
o. Herein m × n corresponds to the image dimensions
with o representing the slice number in the 3D stack.
Therefore, the complexity involved in attaining the three
diverse energy components is O(3tmno), with t representing
the incurred iterations. Likewise, the optimization process
initially invokes L2 regularization that demandsO(log(tmno))
operations. Later, the hessian of the thresholding matrix is
determined to freeze the gradient variations and requires
O((tmno)2) followed by the identification of optimal step size
which requires O((tmno)) to update the optimized Hessian
demanding O((tmno)) operations yielding the optimization
threshold. The ensuing threshold is then processed by CCA
followed by binarization that individually requires O((mno))
processing times. The total time complexity of these modules
is given in Eq. (30).

Total Time = O((3tmno)) + O(log(tmno))

+ O((tmno)2) + O((tmno)) + O((tmno))

+ O((mno)) + O((mno))

≈ O((tmno)2) (30)

The third module has the highest complexity when compared
to other modules, hence, the total time complexity is approx-
imate O((tmno)2). Similarly, space complexity is defined as
the amount of memory space utilized by considering the
properties of the inputs to solve computational problems.
Therefore, the space complexity of the BEFVBTS is O(mno)
which considers the input volume size.

VI. CONCLUSION
This work presents an automatic volumetric breast tumor seg-
mentation model engaging variational minimax optimization.

The major contribution of this work is the formulation of
three energy functionals representing data and regularization
terms. The energy minimization process involves finding the
optimum heterogeneous volume to interact with the input
volume at a high gradient point and updating at each iter-
ation. The updated heterogeneous volume is then binarized
and subjected to CCA for residual removal. Further, the
adoption Quadratic Bezier curve equation aids in obtaining a
non-linear convex combination of the edge-sensitive energy
functionals. The self-analysis on the Duke- Breast-Cancer-
MRI dataset was conducted to investigate the reliability and
consistency of the proposed model. The relative analysis
of QIN breast DCE-MRI and TCGA-BRCA datasets shows
percentage improvement of 8, 22, 8.7, 4, 0.120, and
68.17 in Dice, Jaccard, Precision, Sensitivity, Specificity,
and HD respectively over recent competitors. Also, the
complexity analysis reveals the simplicity of the BEFVBTS
wherein its counterpart requires more training resources for
volumetric segmentation. Hence, the proposed framework for
segmenting 3D tumors would assist clinicians in diagnosis
and treatment planning. However, the highly energy-centric
nature of the introduced segmentation model neglects subtle
intensity variations thereby demanding acute optimization
along with localization and requires extensive investigation.
This limits its extension to other imagemodalities. Also, local
refinement of intensity variations with global characteristics
is another setback that requires detailed study when dealing
with other modalities and remains an addressable concern.

APPENDIX A
The formulated energy functionals for fixed β, referred to as
β∗ are shown in Eq. (A.1).

E(H ; β) =
(1 − β)2

3

∫∫∫
(H (x, y, z) − I (x, y, z))2dxdydz

+
2β(1 − β)

3

∫∫∫ (
H (x, y, z)∗I (x, y, z)

)2 dxdydz
+

β2

3

∫∫∫
|∇H (x, y, z)|2dxdydz (A.1)

The Euler’s Equation is given by,

Ef = EH − EHx − EHy − EHz (A.2)

where,

EHx =
∂E
∂Hx

=
1
3
(β∗)2Hxx

EHr =
∂E
∂Hy

=
1
3

(
β∗

)2Hyy
EHz =

∂E
∂Hz

=
1
3

(
β∗

)2 Hzz
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and

EH =
∂E
∂H

=
2
3

(
1 − β∗

)2 (H − I )

+
4
3

(
β∗

−
(
β∗

)2) (
I∗H

)
Ef =

2
3

(
1 − β∗

)2 (H − I )

+
4
3

(
β∗

−
(
β∗

)2) (
I∗H

)
−

1
3

(
β∗

)2 [
Hxx + Hyy + Hz

]
Gradient descent algorithm

∂H (x, y, z)
∂t

= −Ef = −
2
3

(
1 − β∗

)2 (H − I )

−
4
3

(
β∗

−
(
β∗

)2) (
I∗H

)
+

1
3

(
β∗

)2 (
∇

2H
)

(A.3)

APPENDIX B

E
(
H (k)

+ τ (k)δH (k)
)

= E1 + E2 + E3(B.1)

E1 =
1
3

(
1 − β(k)

)2 ∑ (
H (k)

+ τ (k)δH (k)
− I

)2
=

1
3

(
1 − β(k)

)2 ∑ (
H (k)

− I
)2

+

(
τ (k)

)2
3

(
1 − β(k)

)2 ∑ (
δH (k)

)2
+

2τ (k)

3

(
1 − β(k)

)2 ∑ (
H (k)

− I
)

δH (k)

E2 =
2
3
[β(k)

− (β(k))
2
]
∑ [

I .(H (k)
+ τ (k)δH (k))

]2
=

2
3
[α(k)

− (β(k))
2
]
∑

(I ∗ H (k))2

+
2(τ (k))

2

3
[β(k)

− (β(k))
2
]
∑

(I ∗ δH (k))2

+
4(τ (k))

3
[β(k)

− (β(k))
2
]
∑

(I2 ∗ H (k)δH (k))

E3 =
1
3
(β(k))

2∑ ∥∥∥∇(H (k)
+ τ (k)δH (k))

∥∥∥2
=

1
3
(β(k))

2 ∑ ∥∥∥∇H (k)
∥∥∥2

+
(τ (k))

2

3
(β(k))

2∑ ∥∥∥∇δH (k)
∥∥∥2

+
2τ (k)

3
(β(k))

2 ∑
∇H (k).∇(δH (k)) (B.1)

Also

E(H (k)
+ τ (k)δH (k)) = e1 + τ (k)e2 + (τ (k))

2
e3

where

e1 =
1
3
(1 − β(k))

2 ∑
(H (k)

− I )
2

+
2
3
β(k)(1 − β(k))

∑
(I ∗ H (k))2

+
1
3
(β(k))

2 ∑ ∥∥∥∇H (k)
∥∥∥2

e2 =
2
3
(1 − β(k))

2 ∑
(H (k)

− I )δH (k)

+
4
3
β(k)(1 − β(k))

∑
(I2 ∗ H (k)δH (k))

+
2
3
(β(k))

2 ∑
∇H (k).∇(δH (k))

e3 =
1
3
(1 − β(k))

2 ∑
(δH (k))2

+
2
3
β(k)(1 − β(k))

∑
(I ∗ δH (k))2

+
1
3
(β(k))

2∑ ∥∥∥∇δH (k)
∥∥∥2

The optimal step size is given by,

τ (k) = −
e2
2e3

(B.2)
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