
Received 26 May 2024, accepted 17 June 2024, date of publication 21 June 2024, date of current version 5 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3417377

Vibration Signal Based Abnormal Gait
Detection and Recognition
JUANJUAN CHEN 1, CHENGLIANG WANG2, (Member, IEEE), AND YILUO LIU3
1School of Computer and Information Science, Chongqing Normal University, Chongqing 400023, China
2College of Computer Science, Chongqing University, Chongqing 400023, China
3School of Computer Science, Chongqing University, Chongqing 400023, China

Corresponding author: Juanjuan Chen (20131036@cqnu.edu.cn)

This work was supported by Chongqing Natural Science Foundation Innovation and Development Joint Fund under
Grant CSTB2023NSCQ-LZX0109.

ABSTRACT Experts have been researching different types of gait since the 19-century. The way people walk
can give a myriad of clues as to the health of a person. Abnormal gait detection might help protect senior
people from injury and reveal underlying health problem. In aging societies, the application of recognition
of abnormal gait based on vibration signal is very useful, especially for those people who live by them own.
Unlike other methods in the related research requiring image acquisition equipment and wearable device
to identify relevant feature information, not even mention many are intrusive or too complicated for users.
The proposed systematic prototype firstly uses foot vibration signals as the source for abnormal gait and
fall detection. This paper investigates algorithmic aspects; the particular algorithm’s framework involves
gathering data from several artificial sensors. An altered version of the Dynamic Time Warping (DTW)
algorithm computes the anomaly index after splitting the active portion into active elements and denoising
the active elements. Next, the K-Nearest Neighbor (KNN) algorithm separates the anomaly indices into
distinct groups and generates the projected values representing the user’s gait. Ultimately, the predicted
values are processed by the Hidden Markov Model (HMM), which then determines the user’s gait. In the
meantime, if an abnormality of gait arises for various experimental environments, subjects, and shoe types,
etc., its corresponding index and the value representing the user’s gait will also change in comparison to his
or her normal gait, which will remain unaffected by the environment and the shoe type of the subject. As a
result, the experiments in this paper are flexible. In the experiments, various sensor placements and subjects
can also, to the greatest extent possible, reflect the algorithm’s adaptability to these changes.

INDEX TERMS Abnormal gait, dynamic time warping (DTW), hidden Markov model (HMM), vibration
signal.

I. INTRODUCTION
Internet of Things (IOT) has many potential applications
and can be implemented in fields of smart homes, offering
important features like identification recognition, sleep sen-
sor, and fall protection etc. Moreover, this technology has
tremendous application value in abnormal activity detection
for older generation. China’s seventh national census revealed
that the proportion of the country’s population over 60 years
old rose to 264 million, or 18.7% of the total. By 2027, this
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percentage is anticipated to increase to 20% [1]. The world
is currently seeing an aging trend, not just China. The United
Nations released the World Social Report 2023 on January
12, 2023, which states that by mid-century, there would be
1.6 billion people worldwide who are 65 years of age or older.
The number of individuals who are 80 years of age or older
is predicted to increase much more quickly [2]. The trend
requires spending more social resources in medical care to
maintain the living quality of aging people. However, it is
unrealistic to rely on more human resources under the context
of working force shortage. Scientific aids and technology will
help solve the problem in large scale.
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Recognizing the limitations imposed by societal and
human resources emphasizes how urgent it is to look for sci-
entific solutions to the problems an aging population presents.
Among existing options, one important area of focus is the
recognition of aberrant gait. The recognition of abnormal gait
based on vibration signal is very useful to protect seniors
from injury by revealing underlying health problems and
timely informing caregivers. The way people walk can give
a myriad of clues of health, as abnormal gaits are early
signs of disease. The gait pattern of a hemiplegic patient, for
example, is different from that of people without disabilities
in terms of movement pace, rhythm, symmetry and walking
speed. Hence early disease detection and proper treatment can
improve the quality of life for seniors.

Fall is one of the major issues which can endanger the
lives of older people. According to [3], fall detection sys-
tem helps solitary seniors with immediate medical care and
support once a fall event happens. A well functioned fall
detection system may reduce 80% of death risks and helps
seniors live as long as possible. Numerous research stud-
ies investigate the use of wearable technologies, computer
vision, sonar technology and radio frequency technologies
to detect falls in everyday environment. Although wearable
sensor provides accuracy and sensitivity for fall detection,
it is not convenient as seniors wear sensors or tags every-
where [4]. Vision-based fall detection system operates by
analyzing real-time movement with the fall-event judging
criteria. However, computer vision technologies function
best in confined space with good illumination and less
obstacles. Moreover, vision-based technology violates peo-
ple’s privacy, hence it is not applicable for large scale.
Likewise, there are disadvantages of radio frequency tech-
nology. First, the costs for massive distribution of sensors
outweigh the possible benefits [5]. Second, fall could not
be detected by radio frequency technology before it really
happens. Sound technology can detect fall in despite of back-
ground noises, still the environmental sound level has great
impact on the accuracy of the audio system [6], especially
in places nearby noise pollution source of rail station or
highway.

This paper introduces vibration signals to monitor and
detect continuously floor vibrations produced by daily activ-
ities. Compared with the detection technologies mentioned
above, the advantages are: firstly vibration is unaffected by
environmental noise or space obstruction. Secondly there is
no need to deploymassive sensors across place. Lastly people
do not need to wear any devices with them. Encouragingly,
the smart living system based on vibration can be built in IOT
environment [7].

In our prototype, walking vibration and fall pattern are
recorded to compose activity element sequences. Based on
the analysis of sequences, our prototypemay surmise whether
fall event or abnormal gait occur. There are three major issues
to be addressed in our research.
(1) gait diversity: Many diseases affect gait and lead to

walking patterns different from normal ones. In order to

solve the problem of abnormal gait detection, we adopt
DTW-KNN framework. Instead of applying general
gait standard, the framework detects abnormal gait
by comparison with personal normal gait in different
walking patterns.

(2) environmental interference: Unusual activity ele-
ments as a result of environmental interference do
not necessarily mean walking abnormality; thereof this
paper focuses on identifying abnormal gait with cer-
tain interference in various settings. In this prototype,
we adopt HMM algorithm to increase the accurateness
and robustness to identify abnormal or irregular strides,
in particular in settings with interference.

(3) rapid setup: The gait diversities may cause the prob-
lem that fixed training dataset and results are not
adaptable to various situations. Our prototype is aimed
to collect field data at a fast pace and train limited
number of activity elements to realize functionality.

This research discusses vibration based gait identification
as non-wearable fall detection solution in settings with inter-
ference. Specifically, we updated the computing methods
of DTW algorithm by changing the Euclidean distance to
the Centre distance. The method of Segment Comparison is
applied to compare activity elements. Furthermore, to eval-
uate the generality of our approach, we also apply it to the
setting with interference. The proposed methods are carefully
evaluated and the results show promising outcomes. The
structure of this paper is as follows. After related works
in part 2, related problems and the system design of each
module are addressed in part 3. Experimental results are
discussed in part 4 and the conclusion was given in the final
part.

II. RELATED WORKS
There are many researches about gait recognition, in which
computer vision based andwearable devices based gait recog-
nition approaches are mostly common. Researches about
vibration based gait recognition are less studied, mainly
focusing on human identification and very few on abnormal
gait recognition.

By using image technology to process data collected
by 2D or 3D devices, computer vision technique is able
to analyze gait sequence. Yao et al. [8] proposed a novel
model of Skeleton Gait Energy Image (SGEI) based on the
robust skeleton points produced from a two-branch multi-
stage CNN network, which has been presented increased
robustness for gait recognition. Babaee et al. [9] proposed
a gait recognition algorithm from an incomplete gait cycle
information by creating an incomplete Energy Image (GEI)
from a few available silhouettes of a subject and recon-
structing the complete GEI from incomplete GEI using
a deep auto-encoder. Nguyen et al. [10] created a model
based on human joint positions (Kinect skeleton), which
shows that very promising in distinguishing normal and
abnormal gaits. Zhang et al. [11] employed K-means to clus-
ter all gait features obtained from a number of walking
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videos into 6 key gait features, and three Support Vector
Machines (SVMs) are trained for walking pattern detection.
Liao et al. [12] proposed a model of pose-based temporal-
spatial network (PTSN) for gait recognition by using Long
Short Term Memory (LSTM) to analyze time sequence fea-
ture. However, this gait recognition method imposes high
demands on environmental conditions, lighting variations,
shooting angles among others. It relies on camera equipment
for capturing and transmitting image data. Consequently,
recognition is significantly influenced by camera positioning
and angle. Therefore, these methods raise numerous privacy
concerns.

Wearable sensors technology integrates Data Acquisition
Unit into common objects that users carry with them, such
as smart phone or shoe pad. Ronao et al. [13] proposed
a two-stage continuous hidden Markov model (CHMM)
approach for the task of human activity recognition using
accelerometer and gyroscope sensory data gathered from
a smartphone. Segundo et al. [14] analyzed and proposed a
Human Activity Recognition (HAR) system based on Hidden
Markov Model that uses accelerometer signals from differ-
ent smartwatches and smartphones to identify six different
human gaits, walking, running, standing, sitting, walking
upstairs and walking downstairs. Wang et al. [5] presented
gait assessment system based on SVM (support vector
machine) classifier and on gait variability-based features
calculated from the hip and knee joint angle trajectories
recorded using wearable IMUs, to distinguish healthy gait
patterns from the pathological ones. Lin et al. [15] designed
Smart Insole integrated with pressure sensors covering 80%
of plantar to fully measure the pressure, offering precise
acquisition of gait information and providing an unobtrusive
way to perform the gait monitoring. But these works of
gait recognition require the user to wear a specific device
at all times, reducing user comfort and increasing the risk
of older user forgetting to wear it or wearing it incorrectly,
which would render the entire detection system ineffec-
tive because it would not be able to obtain the correct
data.

Using the Method of Characteristics to identify Step Event
and calculating eigenvalue, vibration signal based technique
identifies gait modes by classifying eigenvalue into differ-
ent groups. Dong et al. [16] introduced an indoor person
identification system that utilizes footstep induced structural
vibration. By sensing floor vibration and detects the foot-
step signal, the system extracts features from the signals
that represent characteristics of each person’s gait pattern.
Clemente et al. [17] presented a smarter fall detection sys-
tem that uses floor seismic data produced by footsteps and
introduced a voting system among sensor nodes to improve
accuracy in person identification. The vibration signal solves
the problem caused by abnormal gait recognition based on
computer vision and wearable technology. These methods
requires extensive computing resources, making them diffi-
cult to implement in home settings, particularly for elderly
residents.

Addressing the limitations in prior studies, this paper
introduces a vibration-signal-based method for recognizing
abnormal gaits, characterized by its high accuracy and robust-
ness in detecting both abnormal gait and fall events.

III. SYSTEM DESIGN
A. RESEARCH STRATEGY
As people have different gait modes, the problem of using the
Method of Characteristics to detect abnormal gait is that it is
difficult to find suitable eigenvalue to describe various gait
modes. The signal before denoising in Fig. 1 is represented by
a1 and the signal after denoising by a2. The denoised signal is
much more readable and suitable for additional investigation,
as can be observed. Furthermore, the active element wave-
forms of the two gaits in groups B and C differ significantly
from one another. Group b represents a regular user, and
group c is a simulated hemiplegic user: As for group b,
there are two clear peaks in every activity element, separated
by a purple dashed line in a2 and b3, and the first peak is
highlighted by red square and the second by green. c1 and c3
in group c are similar with group b, and in group c the first
peak is highlighted by purple square and the second by orange
square. However, the orange square in c2 and c4 show a
period of small fluctuations that alternate with smaller peaks.
From figure 1 it may conclude that there are regularity and
similarity of activity elements in one type of gait mode, and
yet there are obvious difference between various gait modes.
Based on the characteristics, this research adopts the DTW
algorithm to compare similarity among active elements. Each
element is compared with two elements before it to calculate
the abnormal index of difference and compose the abnormal
index pair. Next KNN algorithm is applied identify whether
the active element represents abnormal gait or any predicted
value of certain situation.

FIGURE 1. Sketch map of active elements.

Environmental interference issue, such as stepping on
loose floor, might cause active element of normal gait to
be classified to abnormal gait. Hence using the predicted
value of single active element to identify gait mode will
cause recognition error [17], [18]. However, this interfer-
ence only has impact on the present active element and not
on the successive elements. Therefore, integrating neighbor
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active elements as a whole complex is a way to correct the
gait recognition result caused by environmental interference
issue.

In order to solve these problems, this research adopts
HMM as the method to recognize gait mode. DTW-KNN
algorithm produces the sequence of predicted values of active
elements, named predicted sequence. HMM algorithm cal-
culates the predicted complex number to produce the gait
mode with the maximum probability, hence correcting the
gait recognition deviation caused by interfered active element
in most cases.

Besides gait diversity and environmental interference
issues, there are three more issues to be addressed to solve
the problem of abnormal gait recognition based on vibration
signal.

The first question is the noise issue. All collected data
contains certain level of noise, which could be produced
by construction shaking, or electric appliances working.
As background noise effects active elements, so this paper
adopts the Wavelet Transform Denoising Algorithm to elim-
inate background noise.

The second issue is related with active element separation.
In practice, the major part of collected data is background
noise, and only a small part is active elements that need
segmentation and storage. So far, available segmentation
methods can only identify the start of active element, and
can hardly identify the end of it. Moreover, segmenting active
element by defining the threshold value performs not well
because of background noise interference. So in this paper
we design a method based on the Second-Moment Method to
identify and divide active elements.

The last issue is about the active element selection.
When multiple sensors coordinate together, various sensor
data collected might be inconsistent, so it is necessary to
select the optimal active elements. This paper also develops
an optimizing algorithm to solve this problem, explained
later.

B. SYSTEM FRAMEWORK
The prototype contains four modules, including Data Sam-
pling Module, Denoising Module, Predicting Module and
Decision Module. Fig. 2 describes the relationships among
those modules and the components in them. The hardware
part of this system is made up of sensor units, which interact
throughWiFi network. The second moment method serves as
the foundation for the segmentation and optimization tech-
niques employed in the data sampling module. This study
allocates some of the center node’s tasks to the edge nodes
and coordinates the dispersed working sensors to minimize
the load of data transmission and increase the detection range,
in addition to designing the active element segmentation
method to store the data more efficiently. This is due to the
fact that the majority of redundant data is present in the
collected data, and retaining all the data will strain the device
and consume storage capacity. A seismic detector, an ampli-
fier, and a BeagleBone development board make up the

hardware used for data acquisition. The BeagleBone devel-
opment board, which is the most important component of the
system, is a low-cost, low-performance, on-board Linux sys-
tem, programmable embedded development board, around
which the entire system is built. The wavelet thresholding
method is applied in the Denoising Module to eliminate
background noise and enhance the signal to noise ratio. The
Predicting Module is a architecture of DTW-KNN frame-
work. DTW calculates abnormal index of active element, and
then KNN classifies and produces the predicted value of the
active element. The Decision Module uses HMM to analyze
predicted sequence to identify gait mode.

FIGURE 2. System framework.

C. HARDWARE SENSORS
The hardware for collecting vibration data includes: sensor
unit as edge node and personal computer as center node.
As indicated from fig.3, every edge node is composed by
three major parts, i.e. seismometer, amplifier and Beagle
Bone development board. The seismometer detects vibration
signal with 200Hz sampling frequency, while the amplifier
amplifies the original sample signal by enhancing the ratio of
signal to noise. The Beagle Bone development board is the
single chip computer embedded with Linux system, which
operates various processing programs. BeagleBone is a pow-
erful, low-cost, open-source Linux computing platform with
processor speeds of up to 2 billion instructions per second,
providing users with ample computing power for a variety
of complex tasks. Compared to other similar products, the
cost of the BeagleBone is lower, usually between $45∼$55,
which makes it ideal for prototyping and product develop-
ment. It provides standard interfaces for many electronic
devices for easy connection to other hardware components,
modules, andUSB devices. At the same time, the BeagleBone
has low power consumption, with a power consumption of
only about 1 watt (when idle) and a maximum peak power
consumption of only 2.3 watts, which helps to save energy
and extend battery life. By using daughter boards and USB
devices, users can easily expand the functions and interfaces
of the BeagleBone to meet the needs of different application
scenarios. In addition, BeagleBone has a large number of
innovator and enthusiast forums where users can share expe-
riences, exchange questions, and get technical support and
guidance. As open-source hardware, BeagleBone supports
open-source software tools and applications, providing users
with greater flexibility and freedom. When equipping edge
node, seismometer is fixed by wax oil to the floor to better
collect the high frequency vibration signal [19].
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FIGURE 3. Edge node composition.

D. DATA ACQUISITION MODULE
1) ACTIVE ELEMENT SEPARATION
Sn = {x1, x2, x3, · · · , xn−1, xn} indicates the sample sequ-
ence, xi(1 ≤ i ≤ n) refers to the sample value at time i. Here
the range of sample value is set as 0 ≤ xi ≤ 1.8.

The active element is the valid part in a sample sequence,
i.e. the sub-sequence contains user’s activity data. This
research adopts the second-moment method to calculate sep-
aration point p, which satisfies the following conditions:

m2 =
1
N

∑p+N

i=p
(xi − µ)2 ≥ δ (1)

N indicates the size of time window, µ =
1
N

∑p+N
i=p xi.

This paper chooses 100 millisecond as the window size,
which contains 20 sample values (N = 20), to calculate
separation point of active element. In this paper, considering
the computing power of the BeagleBone edge device and
the gait characteristics of the elderly in the room, 100ms is
selected as the window size, which mainly captures the effec-
tive vibration signal in the complete footsteps of the elderly,
rather than capturing the whole process. When m2 > δ (δ is
the threshold), then this point is determined as a separa-
tion point. Here the threshold is set as three times of the
standard deviation of background noise, i.e. for a sam-
pling sequence of background noise without active element,
Sm = {y1, y2, y3, · · · , ym−1, ym}, the threshold value δ is
given as:

δ = ε

√∑m
i=1 (yi − ȳ)2

m− 1
(2)

ȳ is the sample mean, and ε refers to threshold factor,
here ε = 3. The louder is the accidental noise in back-
ground, the greater value of ε will be. After calculation, this
paper has a sequence of separation points, given as Ps =

{p1, p2, p3, · · · , ps−1, ps}. pj(1 ≤j ≤ s) indicates the value
of the jth separation point, shown in Fig.1(a1). Here only
p1 and p5 are necessary in the sequence p1∼p5 for sepa-
rating active element. So these two are effective points and
p2∼p4 are redundant points. An effective point pj satisfied

the follows:

pj+1 − pj ≥ γN , 2 ≤ j < j+ 1 ≤ s− 1

γ is the separation factor, and here γ = 3. Moreover, the
first point p1 and the final ps are always effective. Then this
paper has Pt as sequence composed by effective points, and
every two points may separate an active element Ai, defined
as follows:

Ai = Sp2i−1,p2i

=
{
xp2i−1 , xp2i−1+1, xp2i−1+2, · · · ,xp2i−1, xp2i

}
,

p ∈ Pt , 1 ≤i ≤
t
2

Moreover, one active element is inadequate to test which edge
node produce the best element, hence the amount of signal
energy is considered to make decision. This research adopts
Fast Fourier Transform (FFT) to calculate amount of energy
by converting active element from time domain to frequency
domain. As amount of energy reflects in general the intensity
of a signal, so the energy level Ei of element Ai is given as:

Ei =

∑
|xl |2, xl ∈ COFFT (Ai) (3)

COFFT (Ai) indicates the coefficient of of Ai in FFT calcu-
lation. The edge nodes will upload a two-tuple AE i = (Ai,Ei)
to center node, where the active element selection will be
processed next.

2) ACTIVE ELEMENT SELECTION
The algorithm in this research is developed on Network
Time Protocol (NTP), and all edge node synchronizes with
the central node through NTP. A data storage is created for
every edge node in the central node. When active element
is separated in the edge node, data consisting of the element
and its energy is sent to the central node. Then by comparing
the energy of different active elements sent by all edge nodes
at this time, the element with the maximal energy will be
selected and saved. The process is shown in Algorithm 1.

Algorithm 1 Active Element Selection
Input: sensor socket list sl
Output: NULL(put the best signal bss into a queue oq)
1: for c in sl:
2: create queue sqi = NULL; //create active element storage
queue
3: while not END:
4: wait until get a new signal nsi;
5: ifsqi is NULL:
6: sqi.put(nsi); //
7: else:
8: bss = NULL;
9: for each sqi:
10: if sqi is not empyt:
11: jsi = sqi.get();
12: bss = maxEnergy(bss, jsi); //choose larger value
from bss and jsi
13: oq.put(bss);
14: sqi.put(nsi)
15: return NULL
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In this algorithm, the input is connected sensor socket
list sl, and every element in the list is a socket object from
which data will be obtained from sensors. Filtered signal is
then written to a queue, waiting to be called at the next step.
The 1st and 2nd line refer to the data storage queue for every
element from the linked list. The 3rd line refers to program
ends once receiving ending signal. The 4th line indicates
waiting until getting a new signal sent by edge node. The
5th and 6th line refer to store data when the data queue that
matching an active element is empty, which may happen just
after the former active element is processed. Line 8th to 14th
indicate the steps to process active element. From all data
queues which are not empty, the element with the maximal
energy is selected and stored in the signal queue, and then this
active element received is stored in the corresponding sensor
queue.

E. DENOISING MODULE
Since the correlation and modal maxima denoising algo-
rithms are best suited for denoising signals with high and low
signal-to-noise ratios, respectively, they require a lot of com-
putational power and high arithmetic complexity when used
on embedded platforms with low performance. For this rea-
son, this paper uses the most popular algorithm, the wavelet
threshold denoising algorithm, to automatically remove back-
ground noise.

Choosing the threshold or threshold function and how to
handle the wavelet coefficients are crucial steps in the wavelet
threshold denoising process that control the denoising impact.
Hard and soft threshold functions are the most widely used
types of threshold functions. Nevertheless, there may be
disadvantages to any of the approaches. The soft threshold
function will always be different from the existence of the
difference when the conditions are met, which will result in
the reconstruction of the signal and the real signal devia-
tion between the signal. The hard threshold is discontinuous
throughout the entire wavelet domain and has breakpoints in
the position, so the original signal after hard threshold denois-
ing may appear obvious oscillations after reconstruction.

In this work, the improved threshold function and
Equation 4 are used to solve the shortcomings of the soft and
hard threshold functions:

W ′
j,k =


Wj,k −

2λ

1 + exp
(
λ −Wj,k

)Wj,k ≥ λ

0
∣∣Wj,k

∣∣ < λ

Wj,k +
2λ

1 + exp
(
λ +Wj,k

)Wj,k ≤ −λ

(4)

Compared to the soft threshold function, the improved func-
tion exhibits a steadily decreasing deviation as it moves
towards infinity. The function can also meet the similar trend
of maintaining the signal coefficients across the wavelet
domain while weakening the noise coefficients. The function
continues to be continuous as the wavelet coefficients con-
verge to zero.

As seen in Fig. 1 (b2), the signal noise is decreased follow-
ing the denoising process.

F. PREDICTING MODULE
The Predicting Module is built with DTW-KNN framework.
Here this paper improves DTW algorithm from two aspects to
adapt active element comparison. Firstly this paper changes
Euclidean Distance to Center distance; secondly it adopts
Segment comparison. The distance function in DTW is
defined the Centre distance, given as f (xi, yi) = ||xi| − |yi||◦

When performing comparison, the active element is
adjusted to X axis, and the absolute values of xi and yi
indicate the distance of sampling element to X axis. Some
part of active element might be symmetrical to X axis, such
as parts shown in the green box in Fig. 1 (b2). In essence,
those parts are same kind of vibrations. The greater abnormal
index produced by Euclidean distance will affect the infer-
ence value, so it is more reliable to use the Center distance
instead.

As stretching and squeezing of active element in DTW
calculation will cause its feature hardly being reflected in
frequency domain, hence the index difference between active
element and abnormal element will be not significant enough.
According to literature [20], Gait mode describes the way
of walking and four limbs movement characteristics. A gait
starts from one heel touches the ground and ends when the
toe leaves the ground. During the whole process, a series
of muscles stretch and contract. First the ankle dorsiflexion
stretches, then the gastrocnemius and soleus muscle stretch,
finally the gastrocnemius and soleus muscle contract. This
process indicates multiple smaller stages can be divided in
one active element. According to the analysis, the active ele-
ment could be divided into several smaller parts to calculate
separately with DTWalgorithm, and then added together. The
active element division is indicated in Fig. 1 (a2) and (b3).
(b3) is a normal active element and (a2) is abnormal. Both
elements are divided by pink dot line and compare both left
and right side to improve the classification accuracy.

Abnormal index generated by DTW calculation is input
into KNN classifier, producing the predicted value of active
element. As the predicted value relates to user’s gait only and
indicates the gait variation, so predicted sequence composed
by those values can be used in HMM Decision Module to
recognize gait.

G. DECISION MODULE
λ = (N ,M , π,A,B) is the HMM with five elements,
or λ = (π,A,B) in short. N is the infinite set of states
and M is the infinite set of observations. π is the probabil-
ity distribution of initial state, and A is the state transition
matrix. B is the observation probability distribution matrix,
i.e. the confusion matrix. The parameter set λ = (π,A,B)
is trained with Baum–Welch algorithm. According to the
observed sequence, Viterbi algorithm is applied then to find
out the best hidden state sequence whichmost likely produces
the observed sequence. The HMM is defined as follows.

89850 VOLUME 12, 2024



J. Chen et al.: Vibration Signal Based Abnormal Gait Detection and Recognition

1) STATE SET
The hidden state is not directly observed in HMM decoding
process, hence it is a finite set to be solved. In our research
domain, the hidden state indicates user’s gait mode, i.e. nor-
mal, abnormal and fall, which cannot be obtained from the
predicted sequence. The three states are all status in the state
set in our research.

2) OBSERVATION SET
Observation set is an important known condition to solve the
hidden state, in which every hidden state has a certain prob-
ability to produce possible observation value. In our research
the observation set is the output of the surmise module.

3) PARAMETER TRAINING AND ACTIVITY RECOGNITION
As mention above, the parameter set λ = (π,A,B) of HMM
module, is trained by Baum-Welch algorithm, which is a spe-
cial case of the Expectation-Maximization algorithm (EM).
It is an unsupervised algorithm running on the observation
sequence input. The hidden states sequence which produces
the observation sequence is unknown, so there is no need to
input it. Initial HMM parameter estimation is given at very
beginning, then the value of parameter is re-estimated by
given data in order to reduce the error it may cause. In our
context, this paper trains the model by adjusting and testing
different floor situation to simulate real environment. The
training process is given in equation 2.
Algorithm 2’s input is collected data list rae, i.e. raw activ-

ity element. Every element in rae is the data of a complete
walking. There are n hidden states; here n = 3, indicating
three HMM parameters of λ. The 1st to 3rd line indicate
creating and initializing algorithm data; the 4th line indicates
denoising of raw data; the 5th to 9th indicate the DTW-KNN
calculation and storage of result and data length; the 10th
line indicates algorithm training using DTW-KNN data set
and data length to generate the hidden states; the 11th line
indicates the output of λ.

Algorithm 2 HMM Parameter Training
Input: Raw activity element list for training rae, Number of hidden
states n
Output: parameters λ = (π,A,B)
1: whole_data = [];
2: lengths = [];
3: data_size = len(rae);
4: wae = wavelet(rae); // denoise the raw data
5: for wi in wae:
6: fwi = DTW_KNN(wi);
7: li = len(fwi);
8: whole_data.append(fwi);
9: lengths.append(li);
10: λ = Baum-Welch(whole_data, lengths, n); //Baum-Welch
has two parameters: training data set an data length
11: return λ;

After parameter training, then the HMM decision mod-
ule is constructed. Viterbi algorithm is applied to recognize
user gait. Using dynamic programming to find out the

hidden state sequence of maximum probability, it is also
called a Viterbi path. The recognition process is given
in algorithm 3.

In the algorithm, the input is aq (raw activity queue) and
ws (window size), and the output is the user status list tl. The
first line declares a storage list, storing the inference value
for a single recognition. The 2nd to 6th lines withdraw active
elements cyclically from raw data and denoise them, then
operate DTW-KNN algorithm and write in the storage list till
recognition list satisfies the defined window size. The 7th to
8th data line identify the data in recognition list with Viterbi
algorithm and return result.

Algorithm 3 Gait Recognition
Input: Raw activity element queue aq, Window size ws
Output: True status list tl
1: cogList = []
2: while len(cogList)< ws: // add data in cogList to satisfy
window size
3: rs = aq.get();
4: wrs = wavelet(rs);
5: cog = DTW-KNN(wrs);
6: cogList.append(cog);
7: tl = Viterbi(cogList);
8: return tl

H. SYSTEM TIME COMPLEXITY ANALYSIS
A complete gait recognition is composed by different steps,
including active element separation, selection, denoising,
surmise and decision module. The average length of active
element is given as n, and the complexity of each module is
as follows.

Active element separation: from equation 1 and 3, the time
complexity is

O
(
1
N
n · O (1)

)
+ O (n log n) + O (n) = O (n log n) (5)

Active element selection: as the sensors are small in number
and fixed, so from algorithm 1 the time complexity is O(1).

Denoising is based on wavelet transform and its com-
plexity equals to the wavelet transform time complexity
of O(n log n).

Predicting module: time complexity of DTW is O(n2), and
that of KNN is based on one-sample dimension k and sample
size m. Here O (k logm) = O (2 logm) = O(logm), and the
total time complexity is O

(
n2

)
+ O (logm).

Decision module: as HMM adopts Viterbi algorithm
for recognition, if the hidden state number is Q and the
recognition window size is P, then the time complexity
is O(PQ2). In summary, the whole system time complexity
is O (n log n) + O (1) + O (n log n) + O

(
n2

)
+ O (logm) +

O
(
PQ2

)
= O

(
n2

)
+ O

(
PQ2

)
+ O (logm). Yet in practice,

Q and P are far less than n, and O
(
PQ2

)
≪ O

(
n2

)
. Here

the value of m is fixed, so system time complexity is con-
sidered as O

(
n2

)
, which meets the real time performance

constraints.
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IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETTINGS
Figure 4 depicts the experimental setup used in this inves-
tigation. The floor is made up of several 70∗70 mm planks
that have been joined together. As seen in Fig. 4-right, the
backs of the planks are joined by metal dumpling chains.
Each plank has five supporting feet: four at the corners and
one in the middle. Not every adjacent board has a metal
chain connecting it. A group of planks is made up of multiple
planks, and Fig. 4’s test floor is made up of various plank
groups. Rather than connecting every adjacent plank to every
other plank, dumpling chains are used to join a group of
planks. One of the planks’ supporting feet is elevated slightly
to cause the planks to become unbalanced and mimic a loose
floor.

FIGURE 4. Experimental settings.

The center node is represented by the blue box in the
upper left corner of Fig. 4, the router is represented by the
yellow box, and the edge node is represented by the red box
(see Fig. 3 for details). The edge nodes are dispersed through-
out the four corners of the test area and the center region.
There is at least one edge node for data collection associated
with each group of planks. The center node manages the
edge nodes via the SSH protocol to receive and store the
activity components that are gathered, while the edge nodes
communicate with each other via the WiFi network. Data
can be safely transferred over unprotected networks using the
encrypted network protocol SSH (Secure Shell). It offers a
safe method for controlling and accessing computer systems
from a distance. In the example, SSH protocol is used by the
center node to control and interact with the edge nodes. Data
is encrypted during transmission via SSH, preventing unau-
thorized users from accessing or altering the data’s security
and integrity. In order to ensure the safe operation of the entire
system, the Secure Shell protocol enables the center node to
securely receive, store, and manage the activity data acquired
from the edge nodes. Considering that most indoor scenes
are basically similar, compared to the experimental scenes
in this article, although there are some external interference
vibrations in the actual indoor scenes, they are different from
human gait vibration signals and can be removed by sim-
ple denoising. Therefore, this article excludes these external

interference vibrations to achieve the purpose of simplifying
the experiment.

Two gait modes are designed in our experiment, one is
NOR mode and the other is CRI mode. NOR simulates an
average user who has no disease affecting his walk. CRImode
simulates a user with hemiplegia at the right leg. Each gait
mode contains normal mode, abnormal mode and fall mode.
The simulation method of the abnormal gait is that as one leg
walks unsteadily with relaxing muscles while the other leg
keeps the original walking pattern as possible. Meanwhile,
due to the relatively singular gait of the elderly, this article
only designed the two types of gaits mentioned above.

B. ACTIVE ELEMENTS CLASSIFICATION EXPERIMENT
To test the validity of our DTW-KNN framework, multiple
indicators are compared with those in the Method of Charac-
teristics [16], [20], which are chosen from time domain and
frequency domain separately. Standard Deviation, entropy,
peak value and partial signals before and after peak are chosen
in the time domain; spectral centroid, peak position, peak
amplitude, and power spectral density are selected in the
frequency domain [15].

TABLE 1. DTW computation time and abnormal index variation rate in
different segmentation.

Table 1 shows the average time, change rate of abnormal
index and spatial variation in related with segment sizes in
one DTW calculation. In the experiment, there are 400 NOR
mode normal active elements. The segment size refers to the
number of samples for comparison each time. In a given
segment size, the average computation time is the mean time
spent to finish active element comparison in multiple tests.
The change rate of abnormal index refers to the growth rate of
DTW computation result compared to the direct calculation
in a given segment size. Spatial variation rate is the growth
rate of the space consumed in DTW compared with that
in the direct calculation. As a single active element lasts
less than 2 seconds, so the segment size 400 represents the
situation of direct calculation.

From table 1, the average computation time is reduced
as the segment size reducing, and the calculation speed is
increased with a decreasing improving rate. Eventually, the
ultimate recognition speed is 10 times faster than that in
direct calculation. Moreover the abnormal index gradually
increases, and dramatically increases when segment size is
300, 200 and 50, while change rate approaches to 20%.
Also, the space consumed keeps decreasing constantly before
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slightly increases when segment size is 50. Less than 50 (not
listed in Table 1), computation speed demonstrates a modest
increase while abnormal index has substantial increase, and
the space consumed rises modestly too. Therefore, this paper
chooses 50 as the segment size.

While the average computation time of the Method of
Characteristics is 0.065 seconds, which is almost the same
with DTW method; yet the space consumed is threefold to
fourfold as much as the that of DTW. Therefore, the DTW
computation is outperforming the Method of Characteristics.

Table 2 lists the related indicators when DTW and the
Method of Characteristics are applied in SVM classifier and
KNN classifier in both NOR and CRI gait mode. 70% of data
are provided for training and 30% for testing, and the k value
is 9. The results are analyzed in below.

TABLE 2. Training time comparison of two frameworks in CRI and NOR
gait mode.

Here 200 normal active elements and 200 abnormal ones
are used in the NOR mode. As to DTW, every indicator
of KNN, except for the average classifying time, which is
0.07 seconds more than that of SVM, outperforms each
indicator of SVM. As for the Method of Characteristics,
however, every indicator of SVM outperforms that of KNN,
except that SVM spends more training time than KNN. The
SVM indicators using the Method of Characteristics perform
20% lower than the KNN indicators using DTW, caused
by the result of wrongly classifying 40% to 50% abnormal
active elements to normal. Yet such error would not possibly
occurs in DTW-KNN. So it shows the absolute advantage
of DTW-KNN compared with SVM using the Method of
Characteristics.

Again, 200 normal active elements and 200 abnormal
ones are used in the CRI mode. Table 2 explains that the
DTW-KNN indicators perform mostly the same as those in
NOR, while the indicators of SVM using the Method of
Characteristics have dramatic decline in CRI than in NOR.
So it indicates that DTW-KNN is able to adapt to different
gait modes, yet SVM using the Method of Characteristics
is not so.

As for the fall recognition, multiple fall active elements
may be added in the KNN training data. The chance of
misclassifying fall event is very low as the fall active element
is distinctly different from other kind of element, so fall

recognition is easy in the DTW-KNN model. Table 3 shows
the testing results of NOR mode with fall active elements.
Misclassification may happen as either normal elements are
recognized as abnormal or vice versa; however none is rec-
ognized as fall element. Fall active elements are all correctly
recognized.

TABLE 3. Confusion matrix with fall element.

To summarize, the DTW-KNN framework is able to accu-
rately classify various active elements of normal, abnormal
and fall in different gait modes. However, this paper also
uses HMM to identify gait mode when dealing with possible
interference in actual environment.

C. GAIN RECOGNITION EXPERIMENT
In this experiment, there are two kinds of gaits, i.e. normal
and abnormal. Normal gait indicates that user walks with set
pattern, and abnormal gait indicates abnormal pattern.

TABLE 4. Comparison DTW-KNN indicators under steady/unsteady
conditions.

The HMM identification accuracy rate varies with the
change of the window size, as shown in table 4. The experi-
mental data is the predicted sequence mixed with both NOR
and CIR gait modes in the condition of stable experiment
environment, i.e. the floor with no loose board. 70% of
inference value in the predicted sequence is used for training
and 30% for testing. Window size means the number of infer-
ence values of HMM recognition at one time. The accuracy
rate is only 32% when the window size is 1, which is much
lower than others; and when window size is 2, 4, 6 and 8, the
accuracy rates are all above 93%, higher than that of surmise
module. The peak value, which is 96%, appears when the
window size is 4. After that, the accuracy rate shows slightly
decrease as window size increases. Considering the issue of
identification latency grows as window size increases, this
paper sets the size as 4.

TABLE 5. HMM accuracy in different window size under steady condition.
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Table 5 shows the comparison of indicators in the surmise
module when two gait modes appear in different experiment
environments, stable and unstable. In unstable environment,
there are 15% of loose floorboards, distributed as equally as
possible. Under this condition, table 5 shows that the indica-
tor’s performance of NOR mode have declined by about 5%
and those of CRI mode have declined by 8%. In summary,
it show a pattern of regularity that if a certain active element
is influenced by loose floorboards, then the inference values
of successive three elements, including the previous one, will
be affected. Considering this pattern, HMM is able to improve
the identification accuracy rate.

In figure 5 this paper compares the accuracy rates in the
surmise module and HMM in the four combinations of gait
modes and environments. From this figure, the accuracy rate
increased by 5% to 12% when using HMM. Moreover, most
inference errors happen in the CRI-Unstable combination,
and the accuracy rate of HMM in this situation is still as
much as 94%. Correction rates in different combination are
also given in this figure. This is a new indicator defined as
the HMM correction inference value divided by the error
inference value. This indicator measures the ability of HMM
correcting the interfered active elements, and the higher the
correction rate, the more robust and adaptive the HMM could
be. In all combinations, HMM shows good correction per-
formance at an average level of 88.75%. HMM is helpful in
increasing the overall performance of systematic identifica-
tion rate, and hence improving the systematic robustness.

FIGURE 5. Accuracy comparison of DTW-KNN vs. HMM.

V. CONCLUSION
This paper studies the detection of abnormal gait identifica-
tion based on vibration signals, which has been little studied.
Vibration signals are acquired, and we calculate inference
value of active element by the improved DTW-KNN frame-
work. This method shows better adaptivity for different gait
modes, hence solving the problem that theMethod of Charac-
teristics has difficulty to identify correct feature of different
gait modes. The predicted sequence is further analyzed by
HMM to correct the inference value effected by uncontrolled
interferences. The experimental results show that the method
can effectively identify abnormal gait and the recognition

accuracy rate reaches 95.25%, and the correction perfor-
mance is as good as 88.75%. Through experiments, it can be
seen that the specific contribution of this paper is to cope with
the recognition difficulty caused by the diversity of gaits by
comparing various gaits; HMM algorithm is used to reduce
the impact of environmental interference. Adapt to changes
by quickly collecting data for training.

Future studies will optimize this method by addressing the
following aspects:
(1) For users who are using crutches or other walking

assistance, we currently analyze their gait pattern by
only considering walking with legs. To accommodate
there users better, more adaptable techniques should be
developed. For example, creating a detection system
that identifies the number of actives in a cycle during
training would be beneficial.

(2) The distributed architecture of the vibration signal sys-
tem is not fully utilized. To address this, a dialogue
mechanism enabling nodes to communicate, indepen-
dently selecting the center and activity element for load
balancing should be incorporated into the system.

APPENDIX

Abbreviation Whole Phrase
DTW Dynamic Time Warping
KNN K-Nearest Neighbor
HMM Hidden Markov Model
IOT Internet of Things
FFT Fast Fourier Transform
NTP Network Time Protocol
SVM Support Vector Machine
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