
Received 10 May 2024, accepted 17 June 2024, date of publication 21 June 2024, date of current version 28 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3417621

The Landscape of Compressibility Measures for
Two-Dimensional Data
LORENZO CARFAGNA AND GIOVANNI MANZINI
Department of Computer Science, University of Pisa, 56127 Pisa, Italy

Corresponding author: Lorenzo Carfagna (lorenzo.carfagna@phd.unipi.it)

This work was supported in part by the INdAM-GNCS Project CUP under Grant E53C23001670001; in part by the Spoke ‘‘FutureHPC
and BigData’’ of the ICSC—Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing, funded by
European Union NextGeneration EU Program; and in part by MIUR PRIN Project under Grant 2017WR7SHH.

ABSTRACT In this paper we extend to two-dimensional data two recently introduced one-dimensional
compressibility measures: the γ measure defined in terms of the smallest string attractor, and the δ measure
defined in terms of the number of distinct substrings of the input string. Concretely, we introduce the
two-dimensional measures γ2D and δ2D, as natural generalizations of γ and δ, and we initiate the study
of their properties. Among other things, we prove that δ2D is monotone and can be computed in linear time,
and we show that, although it is still true that δ2D ≤ γ2D, the gap between the twomeasures can be�(

√
n) and

therefore asymptotically larger than the gap between γ and δ. To complete the scenario of two-dimensional
compressibility measures, we introduce the measure b2D which generalizes to two dimensions the notion of
optimal parsing. We prove that, somewhat surprisingly, the relationship between b2D and γ2D is significantly
different than in the one-dimensional case. As an application of our results we provide the first analysis of the
space usage of the two-dimensional block tree introduced in [Brisaboa et al., Two-dimensional block trees,
The computer Journal, 2024]. Our analysis shows that the space usage can be bounded in terms of both γ2D
and δ2D. Finally, using insights from our analysis, we design the first linear time and space algorithm for
constructing the two-dimensional block tree for arbitrary matrices.

INDEX TERMS Data compression, repetitiveness measures, two-dimensional block tree, two-dimensional
data.

I. INTRODUCTION
Since the recent introduction of the notion of string
attractor [1] different measures of string repetitiveness have
been proposed or revisited [2], [3]. It has been shown
that such measures are more appropriate than the classical
statistical entropy for measuring the compressibility of highly
repetitive strings and their study has led to some deep
theoretical results. For example they have been used to
devise efficient compressed indices for highly repetitive
string collections [4] an important setting which is hard for
traditional entropy-based compressed indices.

In this paper we generalize the notion of attractor to two
dimensional data, i.e. (square) matrices of symbols, and we
initiate the study of the properties of the measure γ2D(M)

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Barletta.

defined as the size of the smallest attractor for the matrix M
(Definition 4). As in the one-dimensional case, we introduce
also the measure δ2D(M) defined in terms of the number of
distinct square submatrices (Definition 5) and we study the
relationship between γ2D and δ2D. In Section III we prove
that some properties that hold for strings are still valid in
the two-dimensional case: for example computing γ2D is NP
complete while δ2D can be computed in linear time, and for
every matrix M it is δ2D(M) ≤ γ2D(M). However, the gap
between the two measures is larger than in one-dimensional
case since there are families of n × n matrices with δ2D =

O(1) and γ2D = �(
√
n), whereas for strings it is always

γ = O(δ log n
δ
). We also prove that for three dimensional

structures the gap is �(n2/3) and we conjecture that the gap
increases with the number of dimensions.

In Section IV we introduce another measure for two-
dimensional data, called b2D, which generalizes the notion

87268

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0005-9591-057X
https://orcid.org/0000-0002-5047-0196

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

of minimal bidirectional macro scheme defined for strings
in [5]. We prove that, while in one dimension the minimal
attractor is always smaller than the minimal bidirectional
macro scheme, this is not always true in two dimensions:
indeed there are families of n×nmatrices for which the ratio
γ2D/b2D is �(

√
n).

Having introduced the measures γ2D, δ2D, and b2D and
some of their basic properties, we use them for the analysis
of a recently introduced compressed data structure: the two-
dimensional block tree [6]. In Section V we provide the first
analysis of the space usage of such data structure as a function
of the ‘‘information content’’ of the input. In particular we
show that the space used by a two-dimensional block tree
for an n × n matrix M with delta measure δ2D is bounded
by O((δ2D +

√
nδ2D) log(n/

√
δ2D)) and that this space is

optimal within a multiplicative factorO(log n). We also show
how to build a space efficient two-dimensional block tree
given a two-dimensional attractor, and we use this result
to prove a new relationship between the measures γ2D and
b2D. Finally, in Section VI we provide the first optimal
linear time and space algorithm to build the two-dimensional
block tree. We believe that our theoretical results, combined
with the good practical performance reported in [6], show
the attractiveness of the two-dimensional block tree and its
suitability to become a general purpose tool to efficiently
represent compressible two dimensional structures.

A preliminary version of this paper appeared in [7]
containing the definitions and basic properties of the
measures γ2D and δ2D which are reported in Sections III
and III-A. The remaining material in the present contribution
consists of new results. Section III-B on the extension of
our measures to three-dimensional structures and Section IV
introducing the measure b2D and its relationship with γ2D
and δ2D are completely new. Section V on the space analysis
of two-dimensional block trees contains improved results
with respect to those in [7] in that the main theorems (4
and 5) establish slightly better bounds and are valid also for
matrices whose size is not a power of k . Still in Section V,
Lemmas 14 and 15 relating two-dimensional block trees to
macro schemes are new. Finally, Section VI and the two
appendices describe a linear time construction algorithm of
the two-dimensional block tree, which is a completely new
topic.

II. NOTATION AND BACKGROUND
In this paper we consider one-dimensional strings and two-
dimensional matrices over an integer alphabet 6 with |6| =

σ . Given the string S ∈ 6n we denote its symbols with S[i]
for i = 1, . . . , n, and we write S[i..j] to denote the substring
S[i]S[i+ 1] · · · S[j]. Given the matrix M ∈ 6m×n we denote
its symbols with M [i][j] for i = 1, . . . ,m, j = 1, . . . , n.
A submatrix of M with topmost left cell M [i][j] is said to
start at position (i, j) ofM . An a× b submatrix ofM starting
at position (i, j) is written as M [i..i + a − 1][j..j + b − 1],
meaning that it includes any cell with row index in the range
[i, i + a − 1] and column index in [j, j + b − 1]. We assume

that 6 is effective, that is every symbol in 6 appears inM (or
in S). Therefore, when the input is an n × m matrix, we will
assume σ ≤ nm.
For the rest of the paper, the RAM model of computation

is assumed, with word size w = 2(log n) bits. Space is
measured in words so whenO(x) space is indicated, the actual
space occupancy in bits is O(x log n).
We now recall the definition of the γ and δ measures for

strings respectively introduced in [1], [8], and [9].
Definition 1: An attractor 0 for a string S[1..n] is a set of

positions 0 ⊆ {1, . . . , n} such that any substring of S has
an occurrence (i.e. a copy) crossing (i.e. including) a position
p ∈ 0. The measure γ (S) is defined as the cardinality of a
smallest attractor for S.
Definition 2: Given S[1..n], let dk (S) be the number of

distinct k substring of S, then

δ(S) = max{dk (S)/k : k ∈ [1, n]}

It is known [9] that for any string S it is δ(S) ≤ γ (S), and
while computing γ (S) is NP complete, δ(S) can be computed
in linear time. In addition, δ is monotonic in the sense that if
S ′ is a substring of S then it is δ(S ′) ≤ δ(S).
A bidirectional macro scheme [5] consists of a partition of

the input string S[1..n] into a sequence of non overlapping
phrases S[1..i1]S[i1 + 1..i2] · · · S[im + 1..n] such that each
phrase is either an explicit symbol (i.e. it is has length 1) or is
a copy of another substring. The only restriction on the copy
operations is that it must be possible to eventually retrieve
the value of any entry in S. Formally, given a macro scheme
we define a function f : {1, . . . , n} → {0, . . . , n} such that:
f (i) = 0 if S[i] is an explicit symbol, and f (i) = i + j,
if S[i] belongs to a phrase S[u..v] which is copied from
S[u+ j..v+ j] (note that j can be either positive and negative).
Themacro scheme is valid only if for i = 1, . . . , n there exists
k ≥ 1 such that f k (i) = 0, where f k denotes the function f
iterated k times.
Definition 3: For any string S, we write b(S), or simply

b when S is clear from the context, to denote the minimum
number of phrases in a valid bidirectional macro scheme
for S.
The value b(S) is a natural measure of complexity of the

string S. Indeed, the value b(S) is a lower bound to the
number of phrases of many parsing schemes used for data
compression; at the same time b(S) is a reachable measure,
in the sense that one can encode S with O(b(S)) words.
On the negative side we have that b(S) is not monotone,
and determining b(S) given S is NP-hard [10]. Finally, in [1,
Theorem 3.6] it is shown that for any string S it is γ (S) ≤

2 b(S), later improved in [3] to γ (S) ≤ b(S).
The measures γ (S), δ(S) and b(S) have been introduced as

alternative to the statistical k-th order entropy Hk (S) which
measures how well each symbol is predicted by its length-
k context, i.e. the k symbols preceding it in S. This entropy
is also called empirical since it is derived from probabilities
observed on the input string S without assuming that S
is generated by a random source. Although the statistical

VOLUME 12, 2024 87269

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

entropy remains a cornerstone in many fields, including the
study of compressed data structures [11], it has been observed
in [3, Sect. 3.1] that such measure fails to fully capture the
regularities of inputs consisting of a repeated pattern with
small variants, such as collections of genomes of the same
species or software repositories storing all the successive
versions of every file. In [3] and [4] it is given theoretical and
practical evidence that in those settings γ (S), δ(S) and b(S)
provide a better measure of the ‘‘information content’’ of the
input.

In the domain of two-dimensional structures, the interest in
alternative compressibility measures is even greater because
there is not a widely accepted notion of empirical entropy,
mainly due to the absence of a clear definition of the
‘context’ of a symbol. To our knowledge, the only proposal
of a two-dimensional compressibility measure analogous to
the entropy is the measure H∗(I) proposed in [12] for an
infinite matrix I . Informally, H∗(I) is defined partitioning
the N × N upper left corner of I into q × q submatrices,
with q = 2j, and measuring the resulting statistical entropy
H∗
q (IN) defined as follows: If the i-th q × q submatrix

occurs Wi times out of W =
∑

iWi its contribution to
H∗
q (IN) is −(q2 log |6|)−1(Wi/W) log(Wi/W). From H∗

q (IN)
the measure H∗(I) is defined taking the limit for N → ∞

and q → ∞. Although [12] shows that H∗(I) has intriguing
theoretical properties, it is not obvious how such measure can
be used to estimate the compressibility of a finite matrix.
After the publication of the preliminary version of this

paper [7], Romana et al. [13], proposed and analyzed new
2D-measures that generalise and extend those presented
in this paper. We postpone the discussion of Romana et
al.’s results to the Section VII dedicated to the concluding
remarks.

III. ATTRACTORS FOR TWO-DIMENSIONAL STRUCTURES
In this section we generalize the notion of attractor to
matrices, and we introduce two new repetitiveness measures
for square matrices, called γ2D and δ2D, as the generalisations
of the γ and δ measures for strings.
Definition 4: An attractor 02D for a square matrix M ∈

6n×n is a set of positions 02D ⊆ {1, . . . , n}×{1, . . . , n} such
that any square submatrix of M has an occurrence crossing
(i.e. including) a position p = (i, j) ∈ 02D. The measure
γ2D(M) is defined as the cardinality of a smallest attractor
for M .
We say that a position p = (i, j) ∈ 02D(M) covers a submatrix
I ofM if there exists an occurrence of I which crosses p, and
that a set of positions covers I if it includes a position pwhich
covers I ; when clear from the context, the parameter M is
omitted from 02D(M) expression.

As a first result we show that, not surprisingly, the problem
of finding the size of a smallest attractor is NP-complete
also in two dimensions. The NP-completeness proof is done
considering the decision problem ‘‘is there an attractor of size
k for the given input?’’.

Lemma 1: Given a string S ∈ 6n, let RS ∈ 6n×n be the
square matrix where each row is equal to the string S. Then
there exists an (1-dim) attractor for S of size k if and only if
there exists a (2-dim) attractor of size k for RS .

Proof: Given S and the corresponding RS , the following
observations hold: 1) any submatrix of RS has an occurrence
starting at the same column but on the first row of RS ; 2) any
two ℓ × ℓ submatrices of RS are equal if and only if the two
respective substrings of S composing their rows are equal,
formally: RS [i..i+ℓ−1][j..j+ℓ−1] = RS [i′..i′+ℓ−1][j′..j′+
ℓ − 1] if and only if S[j..j+ ℓ − 1] = S[j′..j′ + ℓ − 1]. From
1) and 2) the lemma follows: given a string attractor 0(S) for
S of size k , the set 02D = {(1, j) : j ∈ 0(S)} of size k is a two
dimensional attractor for RS and, vice versa, a string attractor
0 for S could be obtained from a matrix attractor 02D(RS)
for RS projecting each couple by column index, formally,
0 = {j : (i, j) ∈ 02D(RS)} is a one dimensional attractor for S.
Note that if 02D(RS) is a smallest attractor it does not include
two positions on the same column, because, any distinct
submatrix crossing one position has an occurrence (starting
in the same column but at a different row) which crosses the
other, hence in this case the projection does not generate any
column index collision and |0| = |02D(RS)| = k , otherwise,
in case of collision, 0 could be completed with any k − |0|

positions not in 0 to reach size k = |02D(RS)|. □
As an immediate consequence of the above lemmawe have

the following result.
Theorem 1: Computing γ2D is NP complete.
It is easy to see that γ2D ≥ σ (the alphabet size) and

γ2D is insensitive to transpositions but, as for strings [14],
γ2D is not monotone. We show this by providing a family of
matrices, built using the counterexample in [14] to disprove
the monotonicity of γ , containing a submatrix with smaller
γ2D.
Lemma 2: γ2D is not monotone.
Proof: Let w be the string abbbanab with n > 0,

having γ (w) = 3 minimal for the subset of positions
0(w) = {2, 4, n + 5} underlined in w. The string w · b =

abbbanabb obtained concatenating the letter b to w has a
smaller compressibility measure γ (w · b) = 2 corresponding
to 0(w · b) = {4, n + 5} [14], as the prefix w[1, 3] = abb
occurring as a suffix of w · b is already covered by position
n + 5 in 0(w · b). Consider Rw·b of size (n + 7) × (n + 7),
from Lemma 1 follows that γ2D(Rw·b) = γ (w ·b) = 2, but the
submatrix Rw·b[1..n + 6][1..n + 6] equal to Rw has a greater
γ2D(Rw) = γ (w) = 3. □

A. THE MEASURE δ2D
The measure δ(S) for a string S, formally defined in [9] and
previously introduced in [8] to approximate the output size of
the Lempel–Ziv parsing, is the maximum over k ∈ [1, |S|] of
the expression dk (S)/k where dk (S) is the number of distinct
substrings of length k in S. We now show how to generalize
this measure to two dimensions, by introducing the measure
δ2D which is defined in a similar way, considering k × k
submatrices instead of length-k substrings.

87270 VOLUME 12, 2024

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

Definition 5: Given M ∈ 6n×n, let dk×k (M) be the
number of distinct k × k submatrices of M , then

δ2D(M) = max{dk×k (M)/k2 : k ∈ [1, n]}

The measure δ2D preserves some good properties of δ: δ2D
is invariant through transpositions and decreases or grows by
at most 1 after a single cell edit since any dk×k of the updated
matrix could differ at most by k2 from the initial one. δ2D
is monotone: to see this observe that given a submatrix M ′

of M having size ℓ × ℓ with ℓ ≤ n any submatrix of M ′

appears somewhere in M , hence dk×k (M ′) ≤ dk×k (M) for
any k ∈ [1, ℓ] ⊆ [1, n].

The next lemma shows that, as in the one-dimensional
setting, δ2D is upper bounded by γ2D.
Lemma 3: δ2D(M) ≤ γ2D(M) for any matrix M ∈ 6n×n

Proof:Let02D be a least size attractor forM i.e. |02D| =

γ2D. For any k ∈ [1, n] an attractor position p ∈ 02D is
included in at most k2 distinct k × k submatrices, then we
need at least dk×k (M)/k2 distinct positions in02D to cover all
k×k submatrices ofM , formally, |02D| ≥ dk×k (M)/k2 holds
for any k ∈ [1, n] in particular for k∗

∈ [1, n] such that
δ2D = dk∗×k∗ (M)/(k∗)2. □

One of the main reasons for introducing δ was that it
can be computed efficiently: [9] describes a linear algorithm
to compute δ(S) with a single visit of the Suffix tree of
S. We now show that an efficient algorithm for computing
δ2D can be derived in a similar way using the Isuffix tree
introduced in [15] which can be built in O(n2) time (see [16,
Theorem 1]), which is linear in the size of the input.
A somewhat simpler algorithm can be obtained using the
Lsuffix tree of [17] but its construction takesO(n2 log n) time.
The Isuffix tree IST (A) of a matrix A ∈ 6n×m generalises

the Suffix Tree to matrices: IST (A) is a compacted trie
representing all square submatrices of A. The Isuffix trees
adopts a linear representation of a square matrix C ∈ 6q×q:
let I6 =

⋃
∞

i=1 6i, each string in I6 is considered as an
atomic Icharacter, the unique Istring associated to matrix C
is IC ∈ I62q−1 where IC [2i + 1] with i ∈ [0, q) is the
(i+ 1)thcolumn− typeIcharacterC[1..i+1][i+1] and IC [2i]
with i ∈ [1, q) is the ithrow− typeIcharacterC[i + 1][1..i].
See Figure 1 for an example. The k th Iprefix of C is defined
as the concatenation of the first kIcharactersIC [1] · IC [2] · . . . ·
IC [k] = IC [1, k] of IC . Note that an Iprefix ending in an odd
position k is the Istring of the ℓ × ℓ square submatrix with
ℓ = ⌈k/2⌉ starting atC’s top-left corner, that is,C[1..ℓ][1..ℓ].
For the example in Figure 1, the 3rd Iprefix of C is a a ba
which corresponds to the submatrix C[1..2][1..2].
Given A ∈ 6n×n, for 1 ≤ i, j ≤ n, the Isuffix IAij of

A is defined as the Istring of the largest square submatrix
Aij of A with upper left corner at position (i, j). From the
above definitions is clear that the Istring of any square
submatrix of A, is an Iprefix (ending in a odd position) of
some Isuffix IAij . To ensure that no Isuffix IAij is Iprefixed
by another Isuffix, A is completed with an additional bottom
row and right column containing 2n+1 distinct new symbols
$1, . . . $2n+1. For simplicity in the following we refer as A the

FIGURE 1. A square matrix C on the left, and its Istring IC on the right
(last two Icharacters are omitted).

FIGURE 2. The submatrix A[2..5][1..4] = A21 with solid black border on
the left and its Istring IA21

on the right. The Istring of the submatrix
A[2..3][1..2] (in red) is the third Iprefix of IA21

.

input matrix already enlarged with $i symbols. See Figure 2
for an example.

The Isuffix tree IST (A) is a compacted trie over the
alphabet I6 representing all the n2 distinct Isuffixes IAij of
A with, among others, the following properties [16]: 1) each
edge is labeled with a non empty Isubstring IAij [ℓ1, ℓ2] of
an Isuffix IAij , that label is represented in constant space as
the quadruple ⟨i, j, ℓ1, ℓ2⟩, the Isubstrings on any two sibling
edges start with different Icharacters; 2) each internal node
has at least two children and there are exactly n2 leaves
representing all the Isuffixes of A: let L(u) be the Istring
obtained concatenating the Isubstrings on the path from the
root to a node u, for any leaf lij, the Istring L(lij) is equal
to the linear representation IAij of the unique suffix Aij; 3)
The Isuffix tree satisfies the common prefix constraint: square
submatrices ofAwith a common Iprefix share the same initial
path in the tree; 4) The Isuffix tree satisfies the completeness
constraint since all square submatrices of A are represented
in IST (A) as an Iprefix of some Isuffix of A.
Theorem 2: δ2D can be calculated in optimal time and

space O(n2)
Proof: Our algorithm is a generalization of the ideas

used in [9] to compute the measure δ in linear time using a
suffix tree. Given A ∈ 6n×n, we build the array d[1..n] which
stores at position k the number of distinct k × k submatrices
of A then we obtain δ2D as maxk d[k]/k2. Initially the Isuffix
Tree IST (A) of A is built in time O(n2) [16], then IST (A) is
visited in depth first order. Let u be a node such that the path
from the root to u contains |L(u)| Icharacters. Let e be an
edge outgoing from u labeled with qe = ⟨i, j, ℓ1, ℓ2⟩ where
ℓ1 = |L(u)| + 1. The Istring of a distinct square submatrix
is obtained whenever appending an Iprefix of IAij [ℓ1, ℓ2] to
L(u) yields an Istring of odd length. Because the traversing of
e may yields new square submatrices, d[·] must be updated

VOLUME 12, 2024 87271

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

accordingly. Let s = ⌈
ℓ1−1
2 ⌉ + 1 and t = ⌈

ℓ2
2 ⌉. Every

d[k] with k ∈ [s, t] should be increased by one: to do this
in constant time we set d[s] = d[s] + 1 and d[t + 1] =

d[t+1]−1 and we assume that each value stored in an entry
d[i] is implicitly propagated to positions i + 1, i + 2, . . . n:
so the +1 is propagated from s up to t and the propagation
is canceled by the −1 added at the position t + 1. At the
end of the Isuffix tree visit, for each k ∈ [1, n − 1] we set
d[k + 1] = d[k + 1]+ d[k] so that d[k] contains the number
of distinct k×k matrices encountered during the visit and we
can compute δ2D as maxk d[k]/k2.

Note that when leaf lij is reached via the edge e with
label qe = ⟨i, j, ℓ1, ℓ2⟩, all the Iprefixes of IAij [ℓ1, ℓ2] that
have an Icharacter which includes some $x symbol should
not be counted. The range of well formed Iprefixes can
be determined in constant time since it suffices to access
one symbol in each of the last two trailing Icharacters of
IAij [ℓ1, ℓ2] to check whether these two contains any $x . Since
the Isuffix Tree can be constructed and visited in O(n2) time
the overall time and space complexity of the above algorithm
is O(n2). □
Having established that δ2D can be computed in linear

time, we now study how large can be the gap between the
two measures γ2D and δ2D, recalling that by Lemma 3 it is
δ2D ≤ γ2D. In [2] Kociumaka et al. establish a separation
result between measures δ and γ by showing a family of
strings with δ = O(1) and γ = �(log n). This bound is
tight since they also prove that γ = O(δ log n

δ
). The next

theorem proves that the gap between the two measures in
two dimensions is much bigger: δ2D can be (asymptotically)
smaller than γ2D up to a

√
n factor.

Lemma 4: There exists a family of n × n matrices on a
constant size alphabet with δ2D = O(1) and γ2D = �(

√
n)

Proof:Consider thematrixM of size n×nwhere the first
row is the string S composed by

√
n/2 consecutive blocks of

size 2
√
n each. The ith block Si with i = 1, . . . ,

√
n/2 is the

string 1i0(2
√
n−i), so Si contains (from left to right) i initial

ones and the remaining positions are zeros. The remaining
rows of the matrix are all equals to #n. Note that for any size
k all distinct submatrices start in the first row or are equal
to #(k×k). Let δk be dk×k/k2, so that δ2D can be rewritten
as max{δk | k ∈ [1, n]}. We now show that δk = O(1)
for all k . For k = 1, we have δ1 = |6| = 3. For
k ≥

√
n it is δk = O(1) since k2 ≥ n and there are at most

(n − k + 1) + 1 ≤ n distinct k × k submatrices (there are
only (n− k + 1) possible positions for a submatrix upper left
corner on the first row). Now consider δk with k ∈ [2,

√
n).

All distinct k × k submatrices (excluded the #(k×k) one) are
those having as first row a distinct substring of length k of
S. We claim all those substrings are included in the language
0a1b0c with a ∈ [0, k], b ∈ [0, k − a], c ∈ [0, k − a − b]
such that a + b + c = k . To see this, note that no substring
of length k <

√
n can contains any two non adjacent (and

non empty) groups of ones since there is a group of at least
√
n > k consecutive zeros between each of them in S.

Fixed k , to count the strings in 0a1b0c is enough to count

the possible choices for the starting/ending positions of the
middle 1b block: which are O(k2), then for k ∈ [2,

√
n),

δk =
O(k2)
k2

= O(1). This proves that δ2D = O(1).
To estimate γ2D consider the ith block on the first row:

Si = 1i0(2
√
n−i). Each Si with i = 1, . . . ,

√
n/2 is a unique

occurrence since the sequence 1i occurs only inside blocks Sj
with j ≥ i which begins with at least i ones, but inside Sj with
j > i the sequence 1i is followed by 2

√
n− j < 2

√
n− i zeros,

so the copy of Si will intersect the (j + 1)st block where no
leading zeros are present. As a consequence each submatrix
Mi of size 2

√
n × 2

√
n having Si as first row is a unique

occurrence too. As eachMi do not overlap any otherMj with
j ̸= i at least

√
n/2 positions are needed in 02D to cover them.

This proves that γ2D = �(
√
n). □

Given a set S, the worst-case entropy [2] of S defined
as ⌈log2 |S|⌉ is the minimum number of bits needed to
distinguish (and therefore encode) all the elements in S. In the
following Lemma, we extend the construction of Lemma 4 to
define a family F of matrices with constant δ2D and worst-
case entropy �(

√
n log n).

Lemma 5: There exists a family of square matrices on a
constant size alphabet with δ2D = O(1) and worst-case
entropy �(

√
n log n).

Proof: Consider again the matrix M of Lemma 4. Each
of the (

√
n/2)! matrices obtained permuting the

√
n/2 blocks

Si on the first row of M has still δ2D = O(1). On the other
hand, every encoding algorithm to distinguish among these
matrices needs at least log((

√
n/2)!) = 2(

√
n log n) bits. □

B. A GLIMPSE ON 3D MEASURES
The measures γ and δ have a natural generalization also for
a number of dimensions D greater than 2. The study of this
generalization is beyond the scope of this paper; however
we generalize Lemmas 3, 4 and 5 to the case D = 3:
our results suggest that the gap between γ and δ increases
with the number of dimensions. We introduce the following
generalization of γ and δ to cubic matrices.
Definition 6: An attractor 03D for a cubic matrix C ∈

6n×n×n is a set of positions 03D ⊆ {1, . . . , n}3 such that any
cubic submatrix of C has an occurrence including a position
p ∈ 03D. The measure γ3D(C) is defined as the cardinality of
a smallest attractor for C .
Definition 7: Given C ∈ 6n×n×n, let d3k (C) be the

number of distinct k × k × k submatrices of C , then

δ3D(C) = max{d3k (C)/k3 : k ∈ [1, n]}

Repeating verbatim the proof of Lemma 3 we can easily
prove that also for D = 3 it is δ3D ≤ γ3D:
Lemma 6: δ3D(C) ≤ γ3D(C) for any cubic matrix C ∈

6n×n×n.
Lemma 7: There exists an infinite family of cubic matrices

C ∈ 6n×n×n on a constant size alphabet 6 with δ3D = O(1)
and γ3D = �(n2/3).

Proof: Assume 3
√
n is an even integer. For i =

1, . . . , (3
√
n/2)2, let Si be the binary string of size 2n2/3 such

87272 VOLUME 12, 2024

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

that Si contains i initial ones and 2n2/3−ifinal zeros. Consider
the cubic matrixC ∈ 6n×n×n over the alphabet6 = {1, 0, #}
defined as follows: for any i of the form i = j(2n2/3)+1where
j ∈ {0, 1, . . . , 3

√
n/2 − 1}, C[i][1..n][1] is equal to the string

Sj(3√n/2)+1 · Sj(3√n/2)+2 · · · S(j+1)(3
√
n/2) and all the other cells

ofC are filled with the # symbol. Let δk be d3k/k3, so that δ3D
can be rewritten as max{δk | k ∈ [1, n]}. Note that all distinct
k × k × k submatrices (excluded the #(k×k×k) one) could
differ only by the symbols laying on the face C[1..n][1..n][1]
of C , therefore to count them we count how many distinct
k × k submatrices there are in C[1..n][1..n][1]. We show that
δk = O(1) for all k . For k = 1, we have δ1 = |6| = 3. When
k ≥ n2/3 it is δk = O(1) since k3 ≥ n2 and there at most
(n− k + 1)2 + 1 ≤ n2 possible distinct k × k submatrices
in C[1..n][1..n][1]. Now consider δk with k ∈ [2, . . . , n2/3):
since k < n2/3, any k × k submatrix can contain at most
one row different from #k , therefore these submatrices are
distinguished by which distinct length-k substrings of two
adjacent strings Si · Si+1 they include in one of their k rows.
Since at most each of the O(k2) distinct length-k substrings
(see proof of Lemma III-A) could appear in one of the k
possible rows, d3k is O(k3) and hence δk = O(1) for any k
as claimed. This proves that δ3D = O(1).
To estimate γ3D we note that each Si is a unique occurrence

and therefore each cubic submatrix with edges of size 2n2/3

having an Si on the top edge is a unique occurrence too. Since
the distinct Si are (3

√
n/2)2, such cubic matrices are 2(n2/3)

and do not overlap, thus, at least2(n2/3) positions are needed
in any attractor to cover them and γ3D = �(n2/3). □
Lemma 8: There exists a family of cubic matrices on a

constant size alphabet with δ3D = O(1) and worst-case
entropy �(n2/3 log n)

Proof: Consider the matrix C of Lemma 7; any
permutation of the n2/3

4 strings Si induces a distinct cubic
matrix with common measure δ3D = O(1). By the standard
counting argument, there exists at least one matrix in this
family which requires log((n

2/3

4)!) = �(n2/3 log n) bits to be
represented. □

IV. TWO-DIMENSIONAL BIDIRECTIONAL MACRO
SCHEMES
In this section we consider the generalization to two dimen-
sions of bidirectional macro schemes. Given an n × n input
matrix M , the natural generalization of the one-dimensional
macro scheme as described in Section II is to consider
a partition of M into a set of non-overlapping square
submatrices such that each submatrix is either an explicit
symbol, i.e. a 1 × 1 submatrix, or is a copy of another
submatrix. As in the one-dimensional case, we require that
any symbol in M can be determined through a sequence of
copy operations. Unfortunately, the above definition is too
restrictive, as is proven by the following lemma.
Lemma 9: The number of submatrices in a partition as

described above is at least log n regardless of the content of
the input matrix M.

Proof: The problem of partitioning an n × n matrix
into non-overlapping square submatrices is known as the
‘‘Mrs. Perkins’s quilt problem’’. Conway [18] has shown that,
if the greatest common divisor of all submatrix sizes is 1,
then any partition of an n × n square contains at least log n
submatrices. The lemma follows observing that, regardless of
the content, any macro scheme for the matrix M consists of
non-overlapping submatrices and at least one of them must
be an explicit symbol of size 1 × 1, so the greatest common
divisor of their size is exactly 1. □

The above result shows that considering non-overlapping
square partitions imposes a strong ‘‘geometric’’ constraint
which is independent on the information stored in the input
matrix. A possible route for removing such constraint is
to consider partitions consisting of rectangular submatrices.
However, for uniformity with the measures γ2D and δ2D,
we still consider square submatrices, but we relax the
assumption that they are non-overlapping. To help the reader
in the following we use the term parsing instead of partition
when the submatrices can overlap.

Formally, given an n× n input matrixM , an (overlapping)
bidirectional macro scheme consists of a parsing of M in
square submatrices, called phrases, such that each phrase
p is either a single explicit symbol or there exists another
submatrix, called source, from which p is copied. More
precisely, we say that the ℓ × ℓ submatrix starting at position
(u, v) is copied from position (u+ h1, v+ h2) if

∀i, j :

{
u ≤ i < u+ ℓ

v ≤ j < v+ ℓ
M [i][j] = M [i+ h1][j+ h2]

(1)

(h1 and h2 can be negative). Because of possible phrase
overlaps, the same position (i, j) can be contained in different
phrases and its value M [i][j] can be copied from different
sources. Hence, the whole bidirectional scheme cannot be
summarized by a single function f as in the one-dimensional
case (see Sect. II); instead for each phrase p we define a
function fp whose domain Dp coincides with p. For example,
for the phrase p defined by (1) we have:

Dp = {(i, j) | u ≤ i < u+ ℓ, v ≤ j < v+ ℓ}

fp(i, j) = (i+ h1, j+ h2)

In the special case in which a phrase q consists of an
explicit symbol, i.e. a 1 × 1 submatrix M [i][j], the domain
of fq is the singleton Dq = {(i, j)}, and we define fq(i, j) = ⊥.
As for the one-dimensional case, we say that the macro
scheme is valid if it is possible to retrieve the identity of any
element of the input matrix by successive copy operations
eventually leading to an explicit symbol. Formally, we require
that for any position (i, j) there must be a sequence of phrases
p1, . . . pk such that

fpk (fpk−1 (· · · fp1 (i, j) · · ·)) = ⊥. (2)

VOLUME 12, 2024 87273

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

Example 1: Let An denote the matrix n×n containing only
the symbol a. A valid macro scheme for An consisting of an
1×1 phrase and three (n−1)×(n−1) phrases is the following:

D0 = {(1, 1)}

D1 = {(i, j) | 2 ≤ i ≤ n, 1 ≤ j < n}

D2 = {(i, j) | 1 ≤ i < n, 2 ≤ j ≤ n}

D3 = {(i, j) | 2 ≤ i ≤ n, 2 ≤ j ≤ n}

with the corresponding functions:

f0(1, 1) = ⊥, f1(i, j) = (i− 1, j)

f2(i, j) = (i, j− 1), f3(i, j) = (i− 1, j− 1)

Note that f1 copies the value (i, j) from the position
immediately above, f2 from the position immediately on the
left, and f3 from the position adjacent to its upper left corner.
Combining these copy operations we can retrieve the content
of any entry in An from the explicit symbol in (1, 1). With
reference to the rule (2), we have

f3(4, 2) = (3, 1), f1(3, 1) = (2, 1)

f1(2, 1) = (1, 1), f0(1, 1) = ⊥

One can prove that there cannot be a macro scheme with less
than four phrases observing that no phrase can include more
than one corner of the input matrix.

Note that by Lemma 9 a partition of An into
non-overlapping phrases requires at least log n phrases. Thus,
measuring a matrix complexity considering also overlapping
phrases appears to be a more natural choice. Note however
that the main result of this section (Theorem 3) uses only
non-overlapping phrases so it is valid in both contexts.
Definition 8: For any n × n matrix M , we write b2D(M),

or simply b2D when M is clear from the context, to denote
the minimum number of (possibly overlapping) phrases in a
valid two-dimensional bidirectional macro schemes for M .

As in the one-dimensional case, the measure b2D is
reachable in the sense that any matrix M can be rep-
resented in O(b2D(M)) words. Finding the size of the
minimal one-dimensional bidirectional macro scheme is
NP-complete, so we conjecture that computing b2D is
NP-complete as well.

According to Definition 8, for the matrix An of Example 1
it is b2D(An) = 4. It is easy to see that δ2D(An) = γ2D(An) =

1. Thus, it is δ2D(An) ≤ γ2D(An) ≤ b2D(An) which is the
same relationship which holds in the one-dimensional case,
where for any input string S, δ(S) ≤ γ (S) ≤ b(S). However,
for two dimensions these inequalities are not always valid.
Indeed, we now show that b2D can be significantly smaller
than δ2D and γ2D. As a preliminary result we prove that for
non-constant alphabets the gap between the measures can be
�(

√
n) in favor of b2D.

Lemma 10: There exists an infinite family of n×nmatrices
over an alphabet 6 of size 2(

√
n) such that b2D = O(

√
n)

and δ2D = �(n).
Proof: We prove that there exists an infinite family of

matrices over an alphabet 6 of size k + 1 with b2D = O(k)

and δ2D = �(k2). Rewriting k in terms of n we get the result
as stated above.

Consider the n× n matrix M with n = 2k(k − 1) over the
alphabet6 = {1, . . . , k}∪{#} represented in Figure 3a. If we
logically partitionM into 4 quadrants of size k(k−1)×k(k−

1), the lower and the upper quadrants on the right are identical
to the upper and lower quadrants on the left, respectively,
as shown by the dashed arrows. In addition, both S1 and
S2 are periodic strings of length k(k − 1): S1 = (12 · · · k)k−1

and S2 = (2 · · · k)k . The remaining cells of M contain the #
symbol.

We now prove that there exist a valid bidirectional macro
scheme forM of size O(k). Clearly the right half ofM can be
parsed in two phrases with sources in the left half. We only
show a parsing of the upper left quadrant in O(k) phrases,
since the parsing for the lower left quadrant can be obtained in
a similar way. Consider the partition of the upper left quadrant
shown in Figure 3b. The k × k submatrix on the upper left
corner is parsed into 2k phrases: 2k − 1 explicit symbols on
the upper and left border and a single k − 1 × k − 1 phrase
(containing only the symbol #) which is copied by one
position to its left. The k − 2 phrases of size k × k on the top
are copied from the k × k submatrix on the upper left corner.
The k − 2 phrases of size k × k on the right (containing only
the symbol #) are copied by one position above. Finally, the
submatrix of size k(k−2)×k(k−2) on the bottom right corner
is copied by one position to its left. Overall, the above macro
scheme for M has O(k) phrases, hence b2D(M) = O(k).
Notice also that every entry of M is contained in a single
phrase, hence the parsing is non-overlapping.

To show that δ2D = �(k2), consider the border between the
upper right quadrant and the lower right quadrant, where we
have a copy of S2 immediately above a copy of S1. We claim
that there are not two indices i, j, with 1 ≤ i < j ≤ k(k − 1)
such that S2[i] = S2[j] and S1[i] = S1[j]. To see this, observe
that S2 and S1 have periodicity k − 1 and k , respectively,
so the hypothesis would imply that j− i be a multiple of both
k − 1 and k . Since k − 1 and k do not have any common
factor, j − i should be a nonzero multiple of k(k − 1) which
is impossible since j − i < k(k − 1). It follows that the
k(k − 1) − 1 submatrices of M of size 2 × 2 having the
first row in S2 and the second in S1 are all distinct. Hence
d2×2(M) ≥ k(k − 1) − 1 and δ2D(M) = �(k2) as claimed.□
The above result is not completely satisfactory since the

alphabet size is k+1 = 2(
√
n). Next theorem generalizes the

above lemma to constant size alphabet: the idea is to replace
each symbol 1, 2, . . . , k in the matrixM of Lemma 10 with a
different ℓ×ℓ binary matrix. Since there are 2ℓ2 distinct such
matrices, increasing ℓ will have the same effect as increasing
the parameter k without changing the alphabet.
Theorem 3: There exists an infinite family of matrices over

the alphabet 6 = {0, 1, #} such that b2D = O(
√
n log n),

γ2D = �(n/ log n) and δ2D = �(n/ log3/2 n).
Proof: For any integer ℓ > 0 consider the set of k = 2ℓ2

distinct binary matrices of size ℓ×ℓ. LetM ′ denote the matrix
over the alphabet 6 = {0, 1, #} obtained from the matrix M

87274 VOLUME 12, 2024

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

FIGURE 3. The matrix used in the proof of Lemma 10 (a), and a parsing of its upper left quadrant (b).

of Lemma 10 replacing each element with an ℓ × ℓ matrix
as follows: each symbol i for i = 1, . . . , k , is replaced by a
distinct ℓ × ℓ binary matrix, while the symbol # is replaced
by the ℓ × ℓ matrix #ℓ×ℓ. By construction the matrix M ′ has
side n = 2ℓk(k− 1) = 2ℓ2ℓ2 (2ℓ2

− 1). We prove the theorem
by estimating b2D(M ′) vs δ2D(M ′) and γ2D(M ′).

To upper bound b2D(M ′), consider first the submatrix on
the top left corner of Figure 3b, which inM ′ has size ℓk×ℓk .
We parse its first row, consisting of all the k = 2ℓ2 binary ℓ×ℓ

matrices, with ℓ2k explicit symbols. Next, we parse a single
#ℓ×ℓ matrix with ℓ2 explicit symbols, and the remaining k −

2 matrices #ℓ×ℓ as k − 2 phrases. The remaining submatrix
of size ℓ(k − 1) × ℓ(k − 1) containing only the symbol # is
parsed in a single phrase copying its content from one position
to its left. Summing up, we parse the top left submatrix of
Figure 3b in O(ℓ2k) phrases. Reasoning as in the proof of
Lemma 10, the rest of the M ′ matrix can be parsed in O(k)
phrases, hence we have b2D = O(ℓ2k). Since n = 2(ℓk2) =

2(ℓ4ℓ2), we have k = O(
√
n) and ℓ = O(

√
log n) therefore

b2D(M ′) = O(
√
n log n).

To obtain a lower bound on δ2D(M ′) we reason as in
Lemma 10 and we count the number of 2ℓ × 2ℓ binary
matrices of M ′ which are inside the submatrix R consisting
of a copy of S2 immediately above a copy of S1 (in M ′

such submatrix has size 2ℓ × ℓk(k − 1)). Reasoning as
in the proof of Lemma 10 we see that there are at least
k(k−1)−1 = �(k2) distinct 2ℓ×2ℓ binary submatrices in R,
hence δ2D(M ′) = �(k2/ℓ2) = �(n/ℓ3) = �(n/(log n)3/2).

Finally, to lower bound γ2D(M ′) we consider again the
�(k2) distinct binary 2ℓ × 2ℓ matrices inside R. We observe
that these submatrices only occur inside R, as there are no
other 2ℓ×2ℓ binary submatrices outside ofR. Therefore, each
attractor position covering any of these distinct submatrices
must belong to R and is contained in at most 2ℓ of such
submatrices. We conclude that any attractor must have size
�(k2/ℓ) = �(n/ℓ2) = �(n/ log n) , as claimed. □

Note that also in the proof of Theorem 3 the phrases in the
proposed bidirectional macro scheme are non-overlapping.
In Section V, we will use the two-dimensional block tree to
build (not necessarily minimal) macro schemes, and we will

provide general bounds for b2D(M) in terms of δ2D(M) and
γ2D(M).

V. SPACE BOUNDS FOR TWO-DIMENSIONAL BLOCK
TREES
Brisaboa et al. [6] generalized the Block Tree concept [19] to
two dimensional data providing a compressed representation
for discrete repetitive matrices that offers direct access to any
compressed submatrix in logarithmic time. Given a matrix
M ∈ 6n×n and an integer parameter k > 1, assume first
for simplicity that n if a power of k , i.e. n = kα . We build
the Two-dimensional Block Tree (2D-BT from now on) as
follows. The root of the tree at level ℓ = 0 represents
the whole matrix M . In the next level we store k2 nodes,
each node represents a distinct non overlapping n/k × n/k
submatrix of M . In general, to build the level ℓ of the
2D-BT we recursively partition (some of) the submatrices
represented at level ℓ − 1 into k2 submatrices of size n/kℓ

×

n/kℓ and for each of these smaller submatrices we store a
corresponding descending node in the level ℓ of the 2D-
BT. In the following we call a level-ℓ block (or block at
level ℓ), any n/kℓ

× n/kℓ submatrix of M whose upper left
corner is an entry of the form M [1 + i(n/kℓ)][1 + j(n/kℓ)]
with i and j non-negative integers. A node at level ℓ of the
2D-BT represents a level-ℓ block; however not all blocks
are necessarily represented in the tree: the 2D-BT prunes
redundant subtrees, meaning that if a block occurs elsewhere
the corresponding node is pruned and replaced by pointers.
Note that, since not necessarily all nodes in one level are
expanded in the next, the resulting structure is a tree which
can have leaves at different heights. Our pruning strategy
consists in considering as candidate for pruning every node
whose corresponding block B appears in a submatrixOwhich
precedes B in row major order. Formally, we make use of the
concept of first occurrence:
Definition 9: We say that a non-empty submatrix O =

M [a..a+x][b..b+y] is a first occurrence if there is not another
submatrix M [c..c+ x][d ..d + y] with the same content of O
which precedes O in row major order, that is, with c < a or

VOLUME 12, 2024 87275

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

(c = a) ∧ (d < b). Note that if a submatrix V contains O
which is a first occurrence, then also V is a first occurrence.
Whenever a level-ℓ block is a candidate for pruning we

must also ensure that its corresponding first occurrence O
is available in the 2D-BT. To this end, we consider all the
submatrices of size 2n/kℓ

× 2n/kℓ made of 4 adjacent level-
ℓ blocks, and we refer to them as superblocks. We call
block-marker any superblock D which is a first occurrence
according to the above definition.

At any level ℓ of the 2D-BT, the four level-ℓ blocks
included in a block-marker are marked; conversely a block
B is unmarked if none of the (up to 4) level-ℓ superblocks
including B in a corner (they are less than 4 when B touches
one of the matrix borders) is a block-marker. In the following
we call Bv the block represented by node v in the 2D-BT, and
we say that a node v is marked (unmarked) if and only if Bv
is marked (unmarked), therefore, the previous marking rule
for blocks can be applied equivalently to the nodes of the 2D-
BT. All level ℓ marked nodes are expanded at level ℓ + 1,
instead all the other (unmarked) nodes in the level are the
level-ℓ leaves of the 2D-BT and store additional information
that we use to retrieve the content of the corresponding pruned
subtree: an unmarked node u points to the (at most four)
marked nodes in the same level whose corresponding blocks
overlap the first occurrence O of the (unmarked) block Bu.
In addition to the horizontal pointers, u stores the relative
offset ⟨x, y⟩ of O inside the marked block where O starts (see
Figure 4). The splitting process ends when explicitly storing
blocks is more convenient than storing pointers to marked
blocks, i.e. when the block size is 2(logσ n). The resulting

tree-shaped data structure has height h = O(logk (n
√

log σ
log n)).

The correctness of the marking scheme is proven by the
following lemma.
Lemma 11: An unmarked node points to nodes which are

marked and exist at the same level since none of their
ancestors has been pruned in a previous level.

Proof: We show that the proposed marking scheme
guarantees that: 1) if a level-ℓ block B overlaps the first
occurrence O of any a× b submatrix with both a, b ≤ (n/kℓ)
then B is marked, 2) given a level-ℓ unmarked block X the
(up to four) blocks intersecting the first occurrence OX of X
are marked, 3) any level-ℓ marked block B descends from a
marked block at level ℓ − 1.
Property 1) holds because at least one of the superblocks

which include both B and O is a block-marker, otherwise O
would not be a first occurrence. Property 2) follows from 1)
applying it toOX . To seewhy 3) holds, note that ifB is marked
then there exists a block-markerDwhich includes B. SinceD
includes B, D overlaps the parent block parent(B) of B which
has size n/kℓ−1

× n/kℓ−1, therefore by property 1) and by
the fact that 2n/kℓ

≤ n/kℓ−1 we conclude that parent(B) is
marked. Applying the above argument to all levels proves that
none of B’s ancestors is pruned as claimed. □
If n is not a power of k the blocks on the right and

bottom borders can have rectangular shape. Formally, let

n′
= k⌈logk n⌉, aℓ = n′/kℓ and bℓ = n mod aℓ. Then, at level

ℓ blocks still start in positions of the form (1 + iaℓ, 1 + jaℓ)
with i, j integers, but the block including M [n][n] is a square
of side bℓ while the remaining blocks which intersect the last
column/row ofM are rectangles of size respectively (aℓ ×bℓ)
and (bℓ × aℓ). As a consequence, the superblock on the
bottom right corner is a square of side aℓ + bℓ, while the
other superblocks that border the bottom and right edges of
M are rectangles respectively of size (aℓ + bℓ) × 2aℓ and
2aℓ × (aℓ + bℓ). Apart from the shape of such superblocks
the construction does not change, i.e. if a superblock is a first
occurrence then the four blocks it contains are marked and the
corresponding nodes are split and expanded at the next level.
The crucial point is that Lemma 11 still holds since it does
not rely on the shape of the blocks.

Our marking strategy, which directly extends the one
proposed for the one dimensional block tree [19], is slightly
different than the one in [6] in which if a submatrix is pruned
at some level its content is seen as all 0s in the subsequent
levels. This approach removes the issue of possibly pointing
to pruned nodes, but makes it difficult to estimate the number
of marked nodes in terms of the matrix content, which is our
next objective. As a preliminary result we bound the number
of marked nodes at each level.
Lemma 12: The number of marked nodes in any level of a

2D block tree is O(δ2D +
√
nδ2D).

Proof: Assume first for simplicity that n if a power of
k . To ease the proof we number the levels backwards, that is
we say that a node is at level ℓ if its height in the 2D-BT is ℓ,
similarly a block of level ℓ is a kℓ

×kℓ submatrix ofM whose
upper left corner is an entry of the formM [1+λkℓ, 1+µkℓ]
with λ, µ positive integers. We note that the number of
marked nodes at any given level ℓ of the 2D-BT is equal to the
number of marked blocks at the same level. By construction,
a level-ℓ block is marked if and only if it is contained in a
superblock which is a block-marker for the level ℓ. Hence,
if u is the number of 2kℓ

× 2kℓ block-markers, the number
of marked blocks at level ℓ is at most 4u. To bound the
number of block-markers u, we partition them into 3 types:
1) those on a corner ofM i.e. which include one of the entries
M [1], [1],M [1][n],M [n][1] or M [n][n], these are at most
four; 2) those not on a corner but including an entry in the
first/last row/column; 3) those not including any entry in the
first/last row/column. Let ui be the number of block-markers
of type i: clearly u = u1 + u2 + u3 = O(u2 + u3).
Given a block-marker D of the third type, we observe that

D is included into k2ℓ distinct 3kℓ
× 3kℓ submatrices starting

at any position in the kℓ
×kℓ block touching the top left corner

of D (see Figure 4). Summing over all type 3 block-markers,
we have a total of u3k2ℓ submatrices of size 3kℓ

×3kℓ starting
in distinct positions insideM . These submatrices are distinct:
each submatrix contains a block-marker D by construction;
if two of those matrices were equal we would have two
first occurrences of D starting in different positions which
is impossible. Since by definition the number of distinct

87276 VOLUME 12, 2024

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

FIGURE 4. A block X and its first occurrence O in row-major order. If X is
not marked, its node Xv in the 2D-BT will point to the four blocks
overlapping O and will store the offset ⟨x, y⟩ of O with respect to the
block including O’s top left corner. The pointed blocks are marked since D
includes O and therefore is a block-marker. With reference to the proof of
Lemma 12, D is a type 3 block-marker: by considering every entry in the
red block as an upper left corner we obtain k2ℓ distinct 3kℓ × 3kℓ

submatrices containing D. The type 2 block-marker D′ borders the upper
edge; by considering the kℓ entries in the first row marked in red we
obtain kℓ distinct 3kℓ × 3kℓ submatrices containing D′ . We also show a
type 2 block-marker D′′ bordering the right edge; we obtain kℓ distinct
3kℓ × 3kℓ submatrices containing D′′ by considering the 3kℓ × 3kℓ

submatrices with the upper right corner in the portion of the last column
marked in red.

submatrices of size 3kℓ
× 3kℓ is at most (3kℓ)2δ2D we have

u3k2ℓ ≤ 9k2ℓδ2D H⇒ u3 ≤ 9δ2D

Consider now a block-markerD′ of the second type bordering
the upper edge of M (the other 3 cases are treated similarly,
see the block-marker D′′ in Figure 4). Any 3kℓ

× 3kℓ matrix
which starts in the same row as D′, but in any of the kℓ

columns preceding D′ is distinct by the same argument
presented before (see again Figure 4). Reasoning as above
we find u2kℓ distinct 3kℓ

× 3kℓ matrices which implies
u2 ≤ 9kℓδ2D. Since it is also u2 < 4(n/kℓ), we have
u2 ≤ min(9kℓδ2D, 4n/kℓ) = O(

√
nδ2D). We conclude that

the number of marked blocks at any level is O(u) = O(u1 +

u2 + u3) = O(δ2D +
√
nδ2D).

If n is not a power of k the result continues to hold with
only some minor changes. The superblocks intersecting the
last column/row ofM now have rectangular shape since they
contains rectangular blocks (see Fig. 5). However, the number
of such superblocks which are block-markers can still be
bounded with the same argument used for type 2 block-
markers. The only other difference is that for the type 3 block-
markers which are adjacent to a rectangular block, like D
in Fig. 5, we can no longer guarantee that they are included
into k2ℓ distinct 3kℓ

× 3kℓ submatrices. However, since such
block-markers are O(n/kℓ) in total and they are included
into kℓ distinct 3kℓ

× 3kℓ submatrices, their number can be
bounded as for type 2 block-markers, so the overall bound on
the total number of marked nodes at each 2D-BT level does
not change. □
Theorem 4: The 2D-BT built on a matrix M ∈ 6n×n takes

up O((δ2D +
√
nδ2D) log(n

√
log σ

δ2D log n)) space. This space is
worst-case optimal within an O(log n) multiplicative factor.

FIGURE 5. Possible partitioning of a matrix whose size is not a power of
k : we see that along the right and bottom margin there are rectangular
blocks of size aℓ × bℓ or bℓ × aℓ. R and R′ are rectangular superblocks,
if they are a first occurrence the four blocks they contain are marked.
With reference to the proof of Lemma 12, the block-marker D is adjacent
to rectangular blocks, so we cannot guarantee that there are k2ℓ distinct
3kℓ × 3kℓ submatrices containing D. However, we obtain kℓ distinct
3kℓ × 3kℓ submatrices containing D by considering the 3kℓ × 3kℓ

submatrices with the upper right corner in the area marked in red.

Proof: The 2D-BT as described at the beginning of
the section has height O(logk (n

√
log σ
log n)). We reduce such

height by using, at the level immediately below the root,
blocks of size kβ

× kβ where β = ⌊logk (n/
√

δ2D)⌋ is the
largest integer such that kβ

≤ n/
√

δ2D. As a result, the
height of the tree is reduced to O(logk (n

√
log σ

δ2D log n)). Note
that even with the above initial splitting, at any level of the
2D-BT rectangular blocks can only appear on the right and
bottom edges of the input matrix; in addition the number of
blocks at the first level is ⌈n/kβ

⌉
2

= ⌈kn/kβ+1
⌉
2 which is

O(δ2D) since n/
√

δ2D < kβ+1. These two facts show that,
even considering the above initial partitioning, the bound of
Lemma 12 still applies, therefore, summing over all the levels
of the lowered tree we get an overall number of marked nodes
m = O((δ2D+

√
nδ2D) logk (n

√
log σ

δ2D log n)). The first part of the
theorem follows because each marked node produces O(1)
unmarked nodes on the next level since k = O(1).
To prove the worst-case quasi-optimality let Fn denote the

set of matrices introduced in the proof of Lemma 5. For such
matrices δ2D = O(1), and from Lemma 5, for any coder
C : Fn → {0, 1}∗ representing all the matrices in Fn,
there exist a matrix W such that |C(W)| = �(

√
n log n)

bits. The result follows since for any matrix in Fn the 2D-
BT takes O(

√
n log n) words and therefore O(

√
n log2 n) bits

of space. □
In [2] it is shown that the one-dimensional Block Tree is

worst case optimal in terms of themeasure δ, so in this respect
Theorem 4 is not completely satisfactory. Unfortunately, the
following result shows that the bound in Lemma 12 cannot
be substantially improved at least when δ2D = O(1). Since
the proof of Lemma 12 shows that the number of marked
blocks at the interior of the matrix, i.e. deriving from type 3
block-markers, is bounded by O(δ2D), to establish our result
we consider a family of matrices that have a hard to compress
first row.

VOLUME 12, 2024 87277

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

Lemma 13: There exists an infinite family of matrices
M ∈ 6n×n over a constant size alphabet 6 with δ2D(M) =

O(1), such that the 2D-BT forM has�(
√
n) marked nodes on

a single level.
Proof: Let M be the matrix of Lemma 4 with n = k2α

so that n is both a power of k and a perfect square. We have
already proven that δ2D(M) = O(1). Consider the 2D-BT built
on M : note that for block size larger than 4

√
n × 4

√
n each

block on the upper edge ofM includes entirely in its first row
at least one of the strings Si of the form 1i0(2

√
n−i) composing

S. Since each Si is unique, any of those blocks is the first
occurrence of its content and hence marked. In particular, this
applies at the blocks at level ℓ∗

= α − ⌈logk 4⌉ which have
size k2α−ℓ∗

× k2α−ℓ∗

where k2α−ℓ∗

= k⌈logk 4⌉kα
≥ 4

√
n.

The blocks at level ℓ∗ on the upper edge of M are kℓ∗

=

kα−⌈logk 4⌉ = 2(kα) = 2(
√
n); since they are all marked

the corresponding level of the 2D-BT has 2(
√
n) nodes. □

In [20] the authors introduced a variant of the
one-dimensional block tree, called 0-tree, in which, given a
not necessarily minimum string attractor0, the marked nodes
at each level are those close to an attractor position. The 0-
tree is then enriched with additional information that makes
it a compressed full text index using O(γ log(n/γ)) space
where γ = |0| is the size of the string attractor. Following the
ideas from [20], we now show how tomodify the construction
of the 2D-BT assuming we have available a, not necessarily
minimum, 2D-attractor 02D (see Definition 4).
To simplify the explanation, we initially assume that n =

kα for some α > 0. Given a matrix M ∈ 6n×n and an
attractor 02D for M , the splitting process is unchanged but
we change the marking scheme: at level ℓ we mark any node
u whose n/kℓ

× n/kℓ block Bu includes a position p ∈ 02D
and the nodes of the (up to eight) blocks adjacent to Bu;
the remaining nodes are unmarked. An unmarked node u
points to an occurrence O, of its block Bu, which includes an
attractor position: u stores at most four horizontal pointers to
the blocks on the same level which overlapsO and the relative
offset ofOwithin the level-ℓ block which includes its top-left
corner. The claimed occurrence O which crosses a position
p ∈ 02D necessarily exists otherwise02D would not be a valid
attractor forM , furthermore all the level-ℓ blocks intersecting
O are ensured to be marked as they contain p or are adjacent
to a block containing p. It is easy to see that the ancestors of
a marked node are also marked so the above marking scheme
is correct.

In the general case in which n is not a power of k , at each
level there can be rectangular blocks along the right and
bottom border of M (see Figure 5). We still use the same
marking rule, but we notice that a rectangular unmarked block
is not guaranteed to have an occurrence which contains a
position p ∈ 02D.We solve this problem considering, for each
rectangular unmarked block R, a square submatrix S of size
n/kℓ

× n/kℓ which includes R. The square submatrix S has
by definition another occurrence S ′ which includes a position
p ∈ 02D. Therefore, there exists an occurrence R′ of R which

is included in S ′. We note that R′ overlaps only blocks that
are marked hence we can safely set up to 4 pointers from the
node u representing R to the level-ℓ blocks which overlaps R′,
and store the offset of R′ with respect to the block where R′

starts.
Theorem 5: Given a matrix M ∈ 6n×n and a

two-dimensional attractor 02D for M of size λ, the 2D-BT
built using 02D takes O(λ log(n

√
log σ

λ log n)) space.
Proof: Each position p ∈ 02D marks at most 9 distinct

blocks per level: the block B including p and the (up to)
eight blocks adjacent to B, hence, the number of marked
blocks per level is at most 9λ. As in the proof of Theorem 4,
we initially divide M into blocks of size kβ

× kβ with
β = ⌊logk (n/

√
λ)⌋ so that the root has O(λ) children. As a

result, we get a shallower tree of height O(logk (n
√

log σ

λ log n)).
Therefore the overall number of marked nodes in the 2D-BT
is O(λ logk (n

√
log σ

λ log n)) and since any marked node produces

at most k2 nodes on the next level, being k = O(1) the 2D-BT
takes O(λ log(n

√
log σ

λ log n)) space. □
Using the 2D-BT the following two lemmas bound the

measure b2D(M) in terms of γ2D(M) and δ2D(M).
Lemma 14: For any matrix M ∈ 6n×n it is b2D =

O(γ2D log n
√

γ2D
).

Proof: We prove the lemma by showing that the
attractor-based 2D-BT of Theorem 5, built using an optimal
two-dimensional attractor of size γ2D, induces a valid
bidirectional macro scheme with the claimed number of
phrases. To see why, assume for simplicity that n is a power
of k and consider the 2D-BT of height logk n in which
the root has k2 children and the deepest leaves have size
1×1. We obtain a valid non-overlapping bidirectional macro
scheme by taking the 1 × 1 submatrices corresponding to
the deepest leaves as explicit symbols. The other phrases are
the submatrices represented by the remaining leaves, which
are copied from the positions reached by their associated
horizontal pointers. Since the submatrices corresponding to
the leaves of the tree are a partition ofM , each position inM
belongs to exactly one phrase. This observation, together with
the fact that we can access any symbol of the input matrix
using the 2D-BT, shows that the resulting macro scheme is
non-overlapping and valid. The number of phrases equals the
number of leaves in the 2D-BT constructedwithout any height
optimization, which is O(γ2D log n) (see Theorem 5).
Suppose now n is not necessarily a power of k , and

consider the 2D-BT of Theorem 5 with M partitioned into
O(γ2D) submatrices at the top level, but with the bottom level
leaves of size 1 × 1 (the height therefore is log n

√
γ2D

). Since
in a bidirectional scheme phrases must be square and we
now have rectangular blocks, we need to adjust the above
construction. Reasoning as in the description immediately
before Theorem 5, for every rectangular unmarked block R
we introduce a phrase pR by selecting the minimum size
square submatrix S that contains R. The source of pR is the
occurrence S ′ of S that we considered during the initialisation

87278 VOLUME 12, 2024

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

of the horizontal pointers of R. It is easy to see that the
resulting macro scheme is valid and that it can contain
overlapping phrases. By Theorem 5 the number of phrases
is O(γ2D log n

√
γ2D

) as claimed. □

Lemma 15: For every matrix M ∈ 6n×n it is b2D =

O((δ2D +
√
nδ2D) log n).

Proof: We preliminary observe that we can restrict our
attention to the case in which the matrix size is a power of
k . Indeed, if n is not a power of k we can cover M with
k2 square submatrices Mi of size kβ

× kβ with β = ⌊logk n⌋
(admitting overlapping among them) and we get a valid
macro scheme forM by taking the union of k2 macro schemes
for the matrices Mi. For each Mi we consider the 2D-BT of
Theorem 4 but without optimizations, that is, we consider a
treewhose blocks have size n/kℓ

×n/kℓ independently of δ2D,
and whose leaves at the deepest level have size 1×1.We build
a two-dimensional block tree Ti for each submatrixMi andwe
construct a bidirectional macro scheme from each Ti as we do
in Lemma 5: we take as explicit symbols all the 1× 1 leaves
of Ti, and the submatrices corresponding to the remaining
unmarked leaves are copied phrases. Each bidirectional
scheme obtained in this way is a valid non-overlapping
scheme for the corresponding Mi because the number of
rows/columns in each matrix is a power of k . According
to Theorem 4, each induced bidirectional macro scheme
has size O((δ2D(Mi) +

√
nδ2D(Mi)) log n), which can be

upper bounded by O((δ2D(M) +
√
nδ2D(M)) log n) by the

monotonicity of δ2D. The union of all these non overlapping
schemes for the Mi’s constitutes a valid overlapping scheme
for M of O(k2(δ2D(M) +

√
nδ2D(M)) log n) phrases. The

lemma follows since k = O(1). □

VI. TWO-DIMENSIONAL BLOCK TREES CONSTRUCTION
In [6, Sect. 4] the authors present a construction algorithm
for their 2D-BT based on Karp-Rabin fingerprints extended
to two dimensions following the ideas of Bird [21] and
Baker [22]. The cost of this solution is2(n3+pn4) where p is
the probability of two fingerprints matching (either because
of equality of submatrices or because of a collision). For
binary matrices, the authors also show how to take advantage
of the sparsity of the matrix and compute the 2D-BT in
O(mn log n+ pm2 logk2 (n

2/m)) time, where m is the number
of nonzero elements.

In this section we present a deterministic O(n2) algorithm
for the construction of the 2D-BT described in Section V
which works for arbitrary matrices. The main difficulties of
the construction are: 1) determining which blocks are marked
and 2) for each non marked block determining the position of
its first occurrence in M . We solve both problems using the
Isuffix tree data structure IST (M) reviewed in Section III-A.
To simplify the notation, in the following we assume that n
is a power of k: the general case is analogous and discussed
in Appendix B. Also to simplify the notation, we stop the
construction only when the blocks have size 1 × 1, so the
2D-BT has height ℓmax = logk n. In addition, we number

tree levels backwards, that is, we call level ℓ the one whose
blocks have size kℓ

× kℓ. We say that a position (i, j) inM is
ℓ-aligned if it is a starting position for a level-ℓ block, that is,
if both i − 1 and j − 1 are integer multiples of kℓ. Note that
if a position is ℓ-aligned then it is ℓ′-aligned for any ℓ′ with
0 ≤ ℓ′

≤ ℓ.
Given an n × n matrix M , the Isuffix tree IST (M) has

n2 leaves: leaf lij represents the largest square submatrix
of M with upper left corner at position (i, j). Leaves are
ordered left to right according to the lexicographic order of
the associated IString (see Fig. 2) and we assume we have
an array X [1..n2] such that X [p] stores a pointer to the p-th
leaf. To construct the 2D-BT we enrich IST (M) with some
additional information. First, we build an array R[1..n2], and
its inverse R−1[1..n2], such that R[p] stores the rank in row
major order of the pth leaf. Hence, if lij is the p-th leaf then
R[p] = n(i− 1)+ j and R−1[n(i− 1)+ j] = p. Clearly R and
R−1 can be initialized in linear time with a visit of IST (M).
During the same visit we also store in each internal node v
the range [sv, ev] of leaves indices descending from v. After
constructing R we equip it with a data structure supporting
constant time RMQ queries on it. Such data structure can be
built in linear time and uses 4n2 + O(

√
n2 log n) = 2(n2)

bits of space [23]. The array R−1 instead is used to find the
leaf lij = X [R−1[n(i− 1) + j]] corresponding to an arbitrary
matrix position (i, j), an operation that in the following we
tacitly assume we can do in O(1) time.
Finally, we augment IST (M) with some additional point-

ers. If position (i, j) is ℓ-aligned, that is, there exists a level-ℓ
block B starting at (i, j), we store a backward pointer from
the leaf lij to its ancestor v such that the leaves in the subtree
rooted at v coincide with the submatrices which have B in
their upper left corner. As we have already observed, if (i, j)
is ℓ-aligned, it is also ℓ′ aligned for any ℓ′

≤ ℓ, so the same
leaf can have more than one backward pointer (indexed by
the level number). Since the number of ℓ-aligned positions is
(n/kℓ)2, the total number of backward pointers is

ℓmax∑
i=0

(n/k i)2 = n2 ·

ℓmax∑
i=0

k−2i
= O(n2). (3)

In Appendix A we show that we can compute all backward
pointers in O(n2) space and time. The reason for introducing
the backward pointers in IST (M) is to compute the horizontal
pointers in the 2D-BT. Given a level-ℓ unmarked block Bwith
top left corner at position (i, j), we initialise its horizontal
pointers in O(1) time as follows: 1) we traverse the level-
ℓ backward pointer stored in the leaf lij so we reach the
ancestor v defined above; 2) we get the range [sv, ev] of leaves
descending from v and we find the first occurrence O of B in
row major order by performing a RMQ query on R[sv..ev]; 3)
from the coordinates of the upper left corner of O we retrieve
the (at most) four level-ℓ blocks B1, . . . ,B4 overlapping O.
The nodes representing B1, . . . ,B4 in the 2D-BT are the
targets of B’s horizontal pointers.

We can now state the main result of this section.

VOLUME 12, 2024 87279

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

Theorem 6: Given a matrix M ∈ 6n×n, the 2D-BT on M
can be built in O(n2) time and space.

Proof: Initially we determine which blocks are marked
andwe store this information in a three-dimensional matrix of
bits N such that is N [i][j][ℓ] = 1 if and only if position (i, j)
is ℓ-aligned and its corresponding level-ℓ block is marked.
Note that since there are 2(log n) levels the matrix N takes
O(n2) words and can be initialized to 0 in O(n2) time. Once
all marked blocks have been identified, we construct a tree
T which is identical to the target 2D-BT but without the
horizontal pointers. Finally, by adding to T the horizontal
pointers we get the target 2D-BT. Recall that a level-ℓ block is
marked if it is contained in a level-ℓ superblockwhich is a first
occurrence. Hence, to determine the marked blocks we only
need to find all superblocks which are first occurrences. With
our notation a level-ℓ superblock is a 2kℓ

× 2 kℓ submatrix
which starts in a ℓ-aligned position. We can find the desired
superblocks with a visit of IST (M) in which every time we
traverse a tree arc v′ → v we proceed as follows. Let [sv, ev]
denote the range of leaves in the subtree rooted at v, and let
lij = X [minR[sv..ev]] denote the leaf in v’s subtree appearing
first in rowmajor order. For every value ℓ such that: 1) the size
of the matrix associated to the parent node v′ has size strictly
smaller than 2kℓ

× 2 kℓ, 2) the size of the matrix associated
to v is at least 2kℓ

× 2 kℓ, and 3) position (i, j) is ℓ-aligned,
we have that the 2kℓ

× 2 kℓ superblock D starting at (i, j) is
a first occurrence, hence the four level-ℓ blocks contained in
D are marked by setting the corresponding bit in matrix N .
It is easy to see that the values ℓ that satisfies conditions 1–3
above are a range of consecutive values ℓ′, ℓ′

+1, . . . , ℓ′
+h,

so as soon as a value ℓ fails one of the above conditions we
can stop considering lij and resume the visit using that value
ℓ as a first candidate for v’s children. Because of the above
properties, the overall cost of finding the marked blocks and
initializing N is bounded by the number of superblocks plus
the number of nodes in IST (M) which are both O(n2).
Oncewe have initializedN we can build the 2D-BT starting

from the root and proceeding level by level, initially without
storing the horizontal pointers. After this initial construction,
we traverse the resulting tree structure and every time we
find an unmarked leaf we initialise its horizontal pointers
using the procedure outlined above. We only need to take
care of a minor detail: the procedure outlined above gives
us the upper left corners of the target blocks, while in
the 2D-BT we need the pointers the nodes which represent
those blocks. A simple solution to this problem without
introducing additional storage is the following: every time a
node representing a marked level-ℓ block starting in (i, j) is
added to the 2D-BT, we store a pointer to that node in the leaf
lij overwriting the level-ℓ backward pointer. Such backward
pointer exists by construction and we can overwrite it since
we use backward pointers only to find the first occurrence of
unmarked blocks. □

We now show that we can build in linear time and
space also the attractor-based 2D-BT starting from a
two-dimensional attractor 02D. The procedure we propose

differs from that of Theorem 6 in two crucial points: 1) how
we find the marked blocks, 2) how we identify the target
nodes of the horizontal pointers, i.e. given a unmarked block
B how we find one of its occurrences which crosses an
attractor position. For the construction we augment IST (M)
with the extra information used for the 2D-BT construction
of Theorem 6 with exception of R. In addition, we store a
matrix L such that L[i][j] is the minimum side length of a
square submatrix of M with top-left corner at position (i, j)
which includes at least one attractor position, or +∞ if such
a submatrix does not exist. In addition, we store the array
1[1..n2] such that 1[p] is the value L[i][j] of the p-th leaf lij
in lexicographic order and we equip 1 with a data structure
supporting constant time RMQ queries [23].
Theorem 7: which includes at least one attractor position

Given a matrix M ∈ 6n×n and an attractor 02D for M , the
attractor based 2D-BT on M can be built in O(n2) time and
space.

Proof: As in Theorem 6 we determine which blocks are
marked and store this information in a three-dimensional bit
matrix N . Note that this task is now considerably simpler
since the positions of marked blocks are determined by
the attractor positions and therefore they can be determined
without using the Isuffix Tree. Indeed, we mark the positions
inN with the following two stage procedure: first wemark the
entries corresponding to the blocks which include an attractor
position, then we mark the entries corresponding to the (up
to eight) blocks adjacent to a block marked in the first stage.
Suppose T is the target attractor-based block tree. During the
first stage, for any position p in the attractor we should mark
in N the leaf corresponding to p in T and all its ancestors,
because they correspond to all the blocks (of different levels)
containing p. However, if during this ‘‘virtual’’ ascent in T
we reach a node which is already marked, we can avoid
going any further up in the tree because also its ancestors
will have been certainly already marked (by the processing
of another attractor position). Formally, during the first stage,
for each attractor position p we scan the levels ℓ starting
from ℓ = 0 and we compute the level-ℓ block B including
p in O(1) time. If B has not been previously marked in N
we mark it by setting the corresponding bit and we proceed
with the next level. Otherwise, if B has been already marked,
we proceed with the next attractor position restarting with
ℓ = 0. In the second stage we simply scan the blocks which
has been marked in the previous phase and we mark their
neighbours. To bound the running time observe that in the
first stage we mark a different block at each step, with the
exception of the last step of each attractor positions. Given
that |02D| ≤ n2 the first stage takes O(n2) time. Since during
the second stage wemarkO(1) adjacent blocks for each block
marked in the preceding phase, filling the matrix N takes
O(n2) overall time.
After having initialized N we proceed to build the 2D-

BT as in Theorem 6. We change the algorithm only in the
very final phase when we have to determine the target nodes
of the horizontal pointers. Given a level-ℓ unmarked block

87280 VOLUME 12, 2024

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

B, we follow a backward pointer to find its ancestor v such
that [sv, ev] consists of the range of leaves whose kℓ

× kℓ

submatrix in the upper left corner has the same content as
B. By computing min(1[sv..ev]) we find the occurrence O of
B closer to an attractor position; since 02D is an attractor it
must be min(1[sv..ev]) ≤ kℓ. From the starting position of
O we compute the positions of the (up to four) level-ℓ blocks
overlapping O and we use them to set the horizontal pointers
for B.

To complete the proof we only need to show that we can
compute L in O(n2) time. This can be done via dynamic
programming filling L bottom-up and right to left by using the
following recurrence: L[i][j] = 1 if (i, j) ∈ 02D, otherwise it
is

d = 1 + min(L[i+ 1][j],L[i][j+ 1],L[i+ 1][j+ 1])

and

L[i][j] =

{
+∞ if max(i+ d, j+ d) > n+ 1
d otherwise;

where we assume L[i][j] = +∞ when (i > n)∨ (j > n). The
case max(i + d, j + d) > n + 1 in the above formula covers
the possibility in which there exists p ∈ 02D at distance d
from (i, j), but the d × d square starting at (i, j) is not entirely
contained within M . □

For a general n which is not a power of k , we can easily
adapt this construction algorithm to handle the rectangular
blocks in the last row/column of M (see Figure 5). In this
scenario, as outlined in Section V, we only need to modify
the horizontal pointers computation for rectangular blocks as
follows. Given a rectangular unmarked block R, we consider
the smallest square submatrix S including R, and we compute
R’s horizontal pointers and offset by searching for an
occurrence S ′ of S such that S ′ contains an attractor position.
We can find S ′ in O(1) time as described above for the case
n power of k , by just storing the backward pointer for the
square submatrix S instead of the one for the rectangular
block R. This can be done with the procedure described in
Appendix A by simply considering S’s starting position as an
aligned position for the corresponding level.

VII. CONCLUDING REMARKS
We have introduced three compressibility measures for
two-dimensional data that generalize somemeasures recently
introduced for strings: namely the measure δ based on
substring complexity, the measure γ based on the notion of
string attractor, and the measure b based on the notion of
phrase copying. We have proven some relationship between
our newly introduced two-dimensional measures and found
that, somewhat surprisingly, there are properties that hold for
strings that do not generalize in two dimensions. For example,
for any string S it is always δ(S) ≤ γ (S) ≤ b(S), while
in two dimensions the measure b2D can be strictly smaller
than both δ2D and γ2D. We also studied the largest possible
asymptotic gap between such measures and even glimpsed
at their behavior in three dimensions: we have shown that

the gap between γ and δ asymptotically increases with the
number of dimensions, at least up to the dimension three and
we proved that there could be a significant asymptotic gap
between b2D on one side and both δ2D and γ2D on the other.

In the second part of the paper we established a strong
connection between our measures and two variants of the
recently introduced two-dimensional block tree. In particular,
we provided the first bound on the space usage of this
data structure in terms of compressibility measures. Having
established a solid theoretical justification for the use of
this data structure, we provided the first linear time and
linear space algorithm for its construction. Our construction
algorithm relies on the Isuffix Tree data structure, and we
have shown that the same data structure can be used for
computing the δ2D measure in linear time.

The measures introduced in this paper are based on
combinatorial properties of the square submatrices of the
input. After the publication of the preliminary version of
our paper [7], Romana et al. [13] proposed and analyzed
2D-measures analogous to ours but considering rectangular
submatrices of any size; in the same paper they also
introduced two grammar-based 2D-measures. It turns out
that most of the relationship we have established for
our measures are valid even in the more general context
of rectangular submatrices. Although measures based on
rectangular submatrices certainly have a theoretical appeal,
from the algorithmic point of view square submatrices appear
to be more manageable, as witnessed by the two-dimensional
block tree and the Isuffix Tree data structures which are both
based on square submatrices.

Our results on two dimensional measures lead to some
interesting open questions, both of theoretical and practical
flavour. For example:

• The measure b2D defined in terms of the smallest
two-dimensional bi-directional macro scheme can be
asymptotically smaller than γ2D and δ2D (Theorem 3)
yet it is reachable, in the sense that we can represent
any matrix M in O(b2D(M)) words. In one dimension
computing the minimal bi-directional parsing is NP-
complete but the Lempel-Ziv parsing is a practical
alternative since it can be computed in linear time
and its size differs from the optimal by a logarithmic
factor [3, Section 3]. It would be very interesting to find a
two-dimensional analogous of the Lempel-Ziv parsing:
that is, a two dimensional parsing that can be computed
efficiently and whose size is provably not too far from
b2D.

• We have proven that there is a gap of �(
√
n) between

δ2D and γ2D for matrices with δ2D = O(1) and that this
gap becomes larger if we consider three-dimensional
(cubic) structures. It would be interesting to investigate
the relationship between δ2D and γ2D for matrices with
any measure δ2D as it has been done for strings in [2].

• We have proven that there is a logarithmic gap in the
measure b2D if we consider the optimal parsing with

VOLUME 12, 2024 87281

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

or without overlapping. Bidirectional macro schemes
for strings do not allow overlapping: we conjecture that
there is no need to introduce it since overlapping does
not help in one-dimension, but could not prove this
result.

Our results on the construction of the two dimensional
block-tree and on its size are an incentive to better study this
data structure.We point out that we have considered relatively
simple, and sometime redundant, marking strategies since in
this paper wewere only interested in bounding the asymptotic
number of marked blocks. Indeed, at every level we have a
certain degree of freedom in choosing the marked blocks and
such freedom could be used to reduce the overall number of
marked blocks and therefore the overall size of the structure.
In addition, to make the construction more practical, it would
be interesting to investigate the trade-offs we can obtain
replacing the Isuffix Tree with the two-dimensional suffix
array [24], or some other simpler data structure, since in our
construction we do not use the full power of the Isuffix Tree.

APPENDIX A
BACKWARD POINTERS COMPUTATION
In this section we show how to compute the backward
pointers in O(n2) time and space. Recall that a position (i, j)
is ℓ-aligned if i − 1 and j − 1 are both multiple of kℓ. This
means that there is a value λij such that (i, j) is ℓ-aligned for
ℓ = 0, 1, . . . λij. For simplicity in the following if (i, j) is
ℓ-aligned we also say that leaf lij in IST (M) is ℓ-aligned.
The backward pointers for leaf lij are stored into an array
BPij[0..λij] such that BPij[ℓ] points to the ancestor v of lij
such that the leaves in the subtree rooted at v coincide with
the set of leaves which share with lij the kℓ

× kℓ submatrix
in the upper left corner. As shown by (3) the total number of
backward pointers is O(n2).
To compute the arrays BPij[0..λij] we make use of a

set of auxiliary integer arrays of the same size LNij[0..λij]
defined as follows (LN stands for Lexicographically Next).
By construction, LNij[ℓ] only exists if the leaf lij is ℓ-aligned;
LNij[ℓ] stores the lexicographic rank of the first ℓ-aligned
leaf following lij in lexicographic order. The arrays LNij’s can
be initialized in O(n2) time with a left to right scan of the
leaves. During the scan we maintain an auxiliary array A such
that A[ℓ] stores the last processed leaf whose position is ℓ-
aligned. When we encounter a new leaf lij with lexicographic
rank rij, for ℓ = 0, . . . ,λij we store rij in the LN of leaf
A[ℓ] and we set A[ℓ] = lij. During the initialization phase
we also initialize an array H such that H [ℓ] is the rank of
the lexicographically first ℓ-aligned leaf. Hence, if we start
with H [ℓ] and follows the LNij[ℓ] values we traverse all the
ℓ-aligned leaves in lexicographic order.

To compute the backward pointers we perform a visit of
IST (M) and every time we traverse a tree arc v′ → v we
proceed as follows. Let [sv, ev] denote the range of leaves in
the subtree rooted at v. For every value ℓ such that: 1) the size
of the matrix associated to the parent node v′ has size strictly

smaller than kℓ
× kℓ, 2) the size of the matrix associated to v

is at least kℓ
× kℓ we must set the backward pointers BPij[ℓ]

to v for all ℓ-aligned leaves lij whose lexicographic rank is
between sv and ev (if any, it is possible that the range [sv, ev]
contains no ℓ-aligned leaves). The crucial observation is that,
if we consider a single level ℓ, during the tree visit the ℓ-
aligned leaves are visited in lexicographic order therefore we
can process them in constant time per ℓ-aligned leaf using
H [ℓ] and the arrays LNij[ℓ] to generate the ranks of ℓ-aligned
leaves as outlined above. During the visit we process all
levels simultaneously, but the overall running time is still
bounded by the total number of backward pointers, which is
O(n2), plus the overhead of processing the tree nodes. The
cost of processing node v is O(nv) where nv is the number of
levels processed while visiting v. We assume that wemaintain
the last level processed by v’s ancestors, so we terminate
processing v as soon as we find a level ℓ for which there are no
ℓ-aligned leaves in [sv, ev] (because this implies there cannot
be ℓ′-aligned leave in [sv, ev] even for ℓ′ > ℓ). Hence, among
the nv processed levels, nv − 1 of them caused at least one
backward pointer to be written so the cost of that levels is
amortized by the backward pointer writing; only for the last
level no backward pointer is written, but this is a constant
overhead per node and the whole computation takes O(n2)
time as claimed.

APPENDIX B
CONSTRUCTION OF THE 2D BLOCK TREE FOR ARBITRARY
MATRIX SIZE
In this appendix we show how to adapt the 2D-BT construc-
tion algorithm of Theorem 6 for an n × n matrix when n is
not a power of k . As we already observed (see Figure 5) in
this case at each level there can be rectangular blocks along
the right and bottom border of M .

Our construction algorithm uses the Isuffix Tree IST (M)
to 1) determine which blocks are marked at each level and 2)
find the first occurrences of the unmarked blocks. Since the
Isuffix Tree enables efficient patternmatching only for square
submatrices, to handle the general case we slightly adjust the
marking scheme outlined in SectionV in order to operate only
with square submatrices even in the presence of rectangular
blocks. Notice that the adjustments involve only the blocks
and superblocks on the bottom or right edge of M which are
the only ones that can have a rectangular shape. Consider any
rectangular superblock R. Since we cannot efficiently check
whether R is a block-marker, we consider instead the smallest
square submatrix S containing R; for example, in Figure 5
S is the square submatrix highlighted in gray. We use the
Isuffix Tree to check if S is a first occurrence and we mark
the blocks in R if this is the case. It’s important to note that
this approach may result in a few extra blocks being marked
compared to the strategy outlined in Section V, as S could
be a first occurrence even if R is not (but not vice versa!).
To bound the number of additional marked blocks we observe
that the number of this special kind of block-markers (i.e.
those containing a rectangular superblock) can be bounded as

87282 VOLUME 12, 2024

L. Carfagna, G. Manzini: Landscape of Compressibility Measures for Two-Dimensional Data

the type 2 block-markers in the proof of Lemma 12. Hence,
the results of Theorem 4 still hold.

In order to implement the above idea, the construction
algorithm in Theorem 6 only need to be modified as follows.
During the traversal of the Isuffix Tree to determine which
blocks are marked, we have also to consider the square
submatrices S including a rectangular superblock R (e.g.
the gray submatrix in Figure 5). To this end, when we
traverse an arc, we also consider the values ℓ which satisfy
the conditions 1) and 2) of Theorem 6 and the following
additional constraint: 3) the position (i, j) of the descending
leaf lij appearing first in row major order is a possible starting
position of a level-ℓ square S, because in such case we
have to mark the 4 blocks included in the corresponding
rectangular superblock R. Since a level-ℓ square submatrix
S defined as above could start only at positions of the form
(1 + λkℓ, n − 2kℓ

+ 1), or (n − 2kℓ
+ 1, 1 + λkℓ) or

(n − 2kℓ
+ 1, n − 2kℓ

+ 1), this last requirement holds if
and only if position (i, j) matches one of these three forms.
We note that, since for each traversed arc there is at most one
value ℓ∗ that meets all the conditions 1–3 above and we can
compute it in O(1) time, the traversal still takes O(n2) overall
time.

Finally, to compute the horizontal pointers of a rectangular
unmarked block R, we consider the smallest square submatrix
S containing R and we use the Isuffix tree to find the first
occurrence S ′ of S. By construction S ′ contains a submatrix
R′ equal to R and the blocks overlapping S ′ (and thus
R′) are marked. Hence R′ can be used as target for the
horizontal pointers of the unmarked node corresponding to R.
To implement the above strategy we modify the construction
so that instead of storing the backward pointers for the
rectangular blocks, we store those for the smallest square
submatrices containing them. These backward pointers can
be computed using the procedure described in Appendix A,
by taking as ℓ-aligned positions the starting positions of the
above square submatrices instead of those of the rectangular
blocks they contain.

REFERENCES
[1] D. Kempa and N. Prezza, ‘‘At the roots of dictionary compression: String

attractors,’’ in Proc. 50th Annu. ACM SIGACT Symp. Theory Comput.,
Jun. 2018, pp. 827–840.

[2] T. Kociumaka, G. Navarro, and N. Prezza, ‘‘Toward a definitive compress-
ibility measure for repetitive sequences,’’ IEEE Trans. Inf. Theory, vol. 69,
no. 4, pp. 2074–2092, Apr. 2023.

[3] G. Navarro, ‘‘Indexing highly repetitive string collections, Part I:
Repetitiveness measures,’’ ACM Comput. Surv., vol. 54, no. 2, pp. 1–31,
Mar. 2022.

[4] G. Navarro, ‘‘Indexing highly repetitive string collections, Part II:
Compressed indexes,’’ ACM Comput. Surv., vol. 54, no. 2, pp. 1–32,
Mar. 2022.

[5] J. A. Storer and T. G. Szymanski, ‘‘Data compression via textual
substitution,’’ J. ACM, vol. 29, no. 4, pp. 928–951, Oct. 1982.

[6] N. R. Brisaboa, T. Gagie, A. Gómez-Brandón, and G. Navarro, ‘‘Two-
dimensional block trees,’’ Comput. J., vol. 67, no. 1, pp. 391–406,
Jan. 2024.

[7] L. Carfagna and G. Manzini, ‘‘Compressibility measures for two-
dimensional data,’’ in Proc. 30th Int. Symp. String Process. Inf. Retr.,
vol. 14240, 2023, pp. 102–113.

[8] S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. Smith, ‘‘Sublinear
algorithms for approximating string compressibility,’’ Algorithmica,
vol. 65, no. 3, pp. 685–709, Mar. 2013.

[9] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro, and
N. Prezza, ‘‘Optimal-time dictionary-compressed indexes,’’ ACM Trans.
Algorithms, vol. 17, no. 1, pp. 1–39, Jan. 2021.

[10] J. K. Gallant, ‘‘String compress. Algorithms,’’ Ph.D. thesis, Dept. Elect.
Eng. Comput. Sci., Princeton Univ., Princeton, NJ, USA, 1982.

[11] G. Navarro, Compact Data Structures: A Practical Approach, 1st ed.
Cambridge, U.K.: Cambridge Univ. Press, 2016.

[12] A. Lempel and J. Ziv, ‘‘Compression of two-dimensional data,’’ IEEE
Trans. Inf. Theory, vols. IT-32, no. 1, pp. 2–8, Jan. 1986.

[13] G. Romana, M. Sciortino, and C. Urbina, ‘‘Exploring repetitiveness
measures for two-dimensional strings,’’ 2024, arXiv:2404.07030.

[14] S. Mantaci, A. Restivo, G. Romana, G. Rosone, and M. Sciortino, ‘‘A
combinatorial view on string attractors,’’ Theor. Comput. Sci., vol. 850,
pp. 236–248, Jan. 2021.

[15] D. K. Kim and K. Park, ‘‘Linear-time construction of two-dimensional
suffix trees,’’ in Proc. 26th Int. Colloq. Automata, Lang. Program., 1999,
pp. 463–472.

[16] D. K. Kim, J. C. Na, J. S. Sim, and K. Park, ‘‘Linear-time construction of
two-dimensional suffix trees,’’ Algorithmica, vol. 59, no. 2, pp. 269–297,
Feb. 2011.

[17] R. Giancarlo, ‘‘A generalization of the suffix tree to square matrices, with
applications,’’ SIAM J. Comput., vol. 24, no. 3, pp. 520–562, Jun. 1995.

[18] J. H. Conway, ‘‘Mrs Perkins’s quilt,’’ Math. Proc. Cambridge Phil. Soc.,
vol. 60, no. 3, pp. 363–368, 1964.

[19] D. Belazzougui, M. Cáceres, T. Gagie, P. Gawrychowski, J. Kärkkäinen,
G. Navarro, A. O. Pereira, S. J. Puglisi, and Y. Tabei, ‘‘Block trees,’’
J. Comput. Syst. Sci., vol. 117, pp. 1–22, 2021.

[20] G. Navarro and N. Prezza, ‘‘Universal compressed text indexing,’’ Theor.
Comput. Sci., vol. 762, pp. 41–50, Mar. 2019.

[21] R. S. Bird, ‘‘Two dimensional pattern matching,’’ Inf. Process. Lett., vol. 6,
no. 5, pp. 168–170, 1977.

[22] T. P. Baker, ‘‘A technique for extending rapid exact-match string matching
to arrays of more than one dimension,’’ SIAM J. Comput., vol. 7, no. 4,
pp. 533–541, Nov. 1978.

[23] J. Fischer and V. Heun, ‘‘Theoretical and practical improvements on the
RMQ-problem, with applications to LCA and LCE,’’ in Combinatorial
Pattern Matching. Cham, Switzerland: Springer, 2006, pp. 36–48.

[24] D. K. Kim, Y. A. Kim, and K. Park, ‘‘Generalizations of suffix
arrays to multi-dimensional matrices,’’ in Theoretical Computer Science.
Amsterdam, The Netherlands: Elsevier Science, 2003.

LORENZO CARFAGNA received the B.S. and M.S. degrees in computer
science from the University of Pisa, where he is currently pursuing the Ph.D.
degree. His research interests include data compression and compressed data
structures.

GIOVANNI MANZINI received the Ph.D. degree in mathematics from
Scuola Normale Superiore of Pisa, in 1995. He has been a Visiting Scientist
with Massachusetts Institute of Technology and a Visiting Professor with
Johns Hopkins University and The University of Melbourne. He is currently
a Professor of computer science with the University of Pisa and a Research
Associate with the Institute of Informatics and Telematics of the National
Research Council. Previously, he was a Professor of computer science with
the University of Eastern Piedmont. His current research interests include the
design of algorithms and data structures for solving theoretical and applied
problems in the fields of data compression and indexing data structures for
massive data sets.

Open Access funding provided by ‘Università di Pisa’ within the CRUI CARE Agreement

VOLUME 12, 2024 87283

