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ABSTRACT The artificial bee colony (ABC) algorithm, inspired by the cooperative foraging behaviors
observed in bees, is a prominent example of a swarm intelligence algorithm that offers significant advantages
in optimization problems. However, the efficacy of the ABC algorithm is limited in high-dimensional
scenarios or when handling multimodal functions, which contain many local optima because of the random
nature of the one-dimensional search process for improving the position in the employed and onlooker bee
phases. As a result, ABChas a limited ability to obtain the optimum result (slow convergence rate). To address
this limitation, this research introduces Grouping and Reflection of the Artificial Bee Colony (GRABC),
a distinctive adaptation of the traditional ABC algorithm meticulously tailored to meet the specific demands
of high-dimensional numerical optimization problems by balancing exploration and exploitation processes.
GRABC strategically incorporates vector reflection and inertial weighting to formulate equations vleft and
vright , which enhance both the employed and onlooker bee phases, substantially improving the convergence
speed and improving the exploitation process. Moreover, the integration of grouping bees facilitates the
exploration of food sources by promoting diversification and improving the exploration process. Addition-
ally, an equation is derived to accurately compute the new positions of scout bees (exploration process),
accounting for the possibility of becoming stuck in local optima and considering the proper limit values. The
effectiveness of GRABC is thoroughly evaluated using 32 numerical benchmark functions, mostly including
CEC 2017, which encompasses 100 dimensions. The empirical findings compellingly demonstrate that the
GRABC algorithm outperforms alternative methodologies in terms of solution quality and convergence
characteristics, as substantiated by comprehensive assessments that include metrics such as the worst, best,
and average results and standard deviations.

INDEX TERMS Optimization problem, swarm intelligence, artificial bee colony, grouping, vector reflection.

I. INTRODUCTION
Attaining optimal solutions in the realm of optimization prob-
lems is often considerably challenging due to their consider-
able growth and intricate nature, which necessitate substantial
computational resources. Nevertheless, the application of
the swarm intelligence (SI) technique presents a promis-
ing avenue for addressing high-dimensional optimization
problems or handling multimodal functions. SI comprises a
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collective of individual agents, each dynamically updating its
position based on the positions of other agents. SI arises from
new behaviors in which these agents interact with one another
to produce a solution [1]. The fundamental ideas of collective
intelligence are inspired by a variety of natural systems, with
an emphasis on ecological perspectives. Notably, various SI
techniques, including the genetic algorithm (GA) [2], differ-
ential evolution (DE) [3], ant colony optimization (ACO) [4],
particle swarm optimization (PSO) [5], cuckoo search (CS)
[6], firefly algorithm (FA) [7], bacterial foraging algorithm
(BFA) [8], biogeography-based optimization (BBO) [9], and

91426

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0008-6456-7512
https://orcid.org/0000-0001-5707-6311


S. Phoemphon: GRABC Algorithm for High-Dimensional Numerical Optimization Problems

artificial bee colony algorithm (ABC) [10], have exhib-
ited impressive efficacy in effectively tackling optimization
challenges.

The genetic process of selection, crossover, and muta-
tion is employed within the GA framework of the search
algorithm known as GA [2]. DE [3] adopts a mutation pro-
cess to generate novel agents by merging the positions of
two preexisting agents from the population. If an agent’s
new position exhibits improvement, it is deemed favorable
and subsequently integrated into the population; conversely,
it is disregarded. ACO [4] embodies an algorithm inspired
by the foraging behavior of ants and demonstrates remark-
able proficiency in locating the shortest path between food
sources and nests. During traversal, ants communicate by
depositing pheromones on the ground, thereby establishing
a chemical signaling system. Consequently, routes with a
higher concentration of pheromones are preferred. PSO [5] is
a search algorithm that hinges upon interactions among parti-
cles. Moreover, the underlying principle entails the exchange
of information about both personal best and global best posi-
tions, thereby optimizing the placement of each individual
particle.

The obligatory brood parasitism observed in specific
species of cuckoo, wherein eggs are deposited in the nests
of host birds of different species, serves as the fundamental
inspiration behind CS [6]. Within this algorithm, each egg
within a nest represents a potential solution, and each cuckoo
egg signifies a new solution. The primary objective entails
harnessing the potential of cuckoos to supplant existing
solutions within nests with novel and superior alternatives.
The firefly algorithm, introduced by Yang [7], is a swarm
algorithm that simulates the communication among fireflies
through the emission of light flashes. Assuming that all fire-
flies are unisex, any firefly can be attracted to another based
on its attractiveness, which is contingent upon brightness,
an attribute governed by the objective function. Fireflies tend
to gravitate toward more visible counterparts. Furthermore,
in adherence to the inverse square law, brightness diminishes
with increasing distance. BFA [8] is a swarm intelligence
algorithm inspired by the foraging behavior of Escherichia
coli, an organism that inhabits the human intestine and is
renowned for its food-seeking and toxin-avoidance strategies.
Additionally, it is able to release chemicals to attract other
bacteria.

The ABC algorithm is an optimization technique that
emulates the foraging behavior of honeybees. Three distinct
groups of bees are included: employed bees, onlookers, and
scouts [10]. The population of employed bees in the colony
corresponds to the number of available food sources, with
each food source assigned a single bee at any given time. The
employed bees venture to their designated food sources, dili-
gently gather nectar, and return to the hive. Upon their return,
they engage in a unique dance, effectively communicating
valuable information regarding the quality of the food source
to their fellow colony members.

The dances performed by the employed bees serve as sig-
nals for the onlooker bees, who decide to follow the employed
bees with high fitness solutions randomly, highlighting the
exploitation characteristic. When an employed bee’s food
source is depleted, it transforms into a scout bee, signifying
the presence of a local optimum and the subsequent need to
seek out a new food source.

Numerous investigational results have shown that ABC
enhancement is superior to or at least on par with other
optimization approaches, such as GA, DE, and PSO [10],
[11], [12]. ABC has also been successfully used to address a
variety of issues, including multiobjective optimization [13],
[14], clustering [15], [16], imaging satellite mission plan-
ning [17], and UAV path planning [18]. The basic ABC
algorithm requires fewer control parameters than other opti-
mization algorithms. In addition, this approach can be easily
implemented in practical applications [10].

Similar to other SI algorithms, ABC updates a bee’s
position by selecting another particle at random to guide
its search for new food sources during the employed bee
phase, as depicted in (2). Consequently, ABC’s random
search strategy offers advantages in terms of exploring new
regions within the search space, promoting diversity in the
exploration process, and aiding in escaping local optima.
Nevertheless, the absence of exploitation can result in a slow
convergence rate due to the completely random search strat-
egy, as previously reported [10], [22], [27], [31], [33], [34].
This limitation is especially pronounced in high-dimensional
spaces, where it affects only a single parameter of the parent
solution, essentially performing a one-dimensional random
search. As a result, several strategies [11], [12], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44] have been suggested to enhance ABC performance
in this regard.

Similarly, ABC exhibits a lower convergence rate in mul-
timodal functions than in unimodal functions due to the pres-
ence of a greater number of local optima, primarily because
ABC has limited exploitation ability (one-dimensional ran-
dom search). Consequently, addressing high-dimensional
and multimodal problems is significantly challenging for
researchers aiming to enhance the performance of ABC.
In summary, ABC has been explored effectively. However,
its lack of exploitation capability leads to slow convergence,
particularly for high-dimensional and multimodal functions.

In addition, during the scout bee phase, new positions are
randomly assigned to bees that are stuck in local optima to
facilitate their escape [10]. However, the new position of the
scout bee particle, as depicted in (1), is random and does
not consider information from other potentially useful bee
particles that could accelerate convergence.

Due to the lack of exploitation of employed bees (one-
dimensional random search) and the randomness of the new
position of the scout bee, in this paper, several significant
contributions are introduced with the aim of enhancing the
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performance of the ABC algorithm in effectively addressing
the abovementioned challenges (slow convergence rate, espe-
cially in high-dimensional or multimodal functions). These
contributions are organized into three distinct sections. First,
we propose a novel grouping strategy for bees and introduce
an equation that utilizes the best position within each group
(xlbest ) to obtain more diverse search positions for individual
bees. Second, during the employed bee and onlooker bee
stages, we employ an equation based on xlbest , the iner-
tial weight, and vector reflection to determine improved
positions, ensuring that new positions surpass the current
positions and leading to rapid exploitation (a fast convergence
rate). Finally, we find a suitable limit value for our improve-
ment algorithm in the employed and onlooker bee phases.
We designed an equation that calculates the locations of scout
bees based on the limit value by averaging the positions of
bees (xt ) with a trialt count of 0, considering xlbest . The key
contributions of this study are succinctly summarized below.

• In this paper, we propose dividing the bees and utilizing
the bee with the best fitness value from each group to
determine the direction for enhancing the position of the
others within the same group for more diverse searching.

• We propose using vector reflection to enhance the search
position of bees in each round, aiming for faster conver-
gence, particularly in scenarios with a high number of
dimensions or when handling multimodal functions.

• We propose a method for determining a bee’s position
when it becomes stuck in a local optimum by averaging
the positions of bees (xt ) with a trial count (trialt ) equal
to 0 and xlbest within the group.

The paper is organized as follows. In Section II,
we explain the fundamental concepts of the ABC algorithm.
In Section III, we present a comprehensive overview of
related works on ABCs, with a specific focus on the evolution
of ABCs. In Section IV, we present a detailed account of
our proposed scheme, encompassing the grouping of bees,
improvements to the employed and onlooker bee phases, and
an enhanced scout bee approach.We present the experimental
results that validate the performance of our proposed method
in Section V. In Section VI, we discuss the study in detail.
Finally, in Section VII, we provide the conclusions drawn
from our research and outline potential avenues for future
work.

II. ARTIFICIAL BEE COLONY
Numerical tasks serve as a means to evaluate the efficacy of
the ABC method, which was originally introduced in 2005
[10]. The fundamental objective of the ABC algorithm is
to address optimization challenges by discerning an opti-
mal or near-optimal solution on a global scale. This feat
is accomplished through the emulation of foraging patterns
observed within bee colonies. The bee populace is divided
into two distinct factions: employed bees and onlooker bees.
Employed bees undertake expeditions to procure nectar from
food sources while simultaneously accumulating pertinent

positional intelligence regarding these sources. Onlooker
bees, in turn, rely upon the information disseminated by
employed bees to conduct their own quest for nourish-
ment. Once a food source has been fully depleted, employed
bees promptly relinquish it and transform into scout bees
to unearth fresh provisions. In accordance with the ABC
algorithm, the quantity of food sources corresponds precisely
to the number of employed bees, while reciprocally, the
number of employed bees mirrors that of the onlookers. The
intricacies of the foraging process in ABC warrant further
exploration.

- The bees are initially positioned using (1).

xi,j = xLj + rand
(
xUj − xLj

)
(1)

where xi,j is the ith employed bee of the ith food source at
the jth dimension; xUj and xLj are the upper and lower bounds
of the jth dimension, respectively; and rand is a random
number between 0 and 1.

Let D be the number of dimensions of the optimization
problem, where j = 1, 2, 3, . . . , D. The number of employed
bees is NF, where i = 1, 2, 3, . . . , NF.

- Then, employed bees search for nearby food sources by
creating candidate food sources (vi,j is the ith candidate
food source of the jth dimension) surrounding xij. vij can
be calculated by another random food source (r th) in the
jth dimension (xr,j) according to (2). Moreover, the value
of vi,j must be in the range [xLj ≤ vi,j ≤ xUj ].

vi,j = xi,j + ϕi,j
(
xi,j − xr,j

)
(2)

where ϕi,j is a random number in [−1,1] and i ̸= r .

- The fitness value for the minimization problem of xi,j is
calculated as shown in (3).

fit i =


1

1 + fi
, fi ≥ 0

1 + |fi|, fi< 0
(3)

where fi is the value of the objective function of the ith food
source.

- The ith food source is replaced with the best position
between xi,j and vi,j by comparing the fitness values.

- Moreover, similar to employed bees, onlookers forage
for food sources, especially food sources with good
fitness values. The probability (pi) is used to determine
the food source an onlooker selects, as stipulated by (4).

pi =
fit i∑NF

m=1 fitm
(4)

If pi is greater than a random number from 0 to 1, onlookers
(xi) search for nearby food sources.

- Finally, as the optimization problem becomesmore chal-
lenging as the number of rounds progresses (commonly
referred to as approaching the limit), employed bees
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are unable to alter their positions. Thus, these steadfast
bees transform into scout bees, signifying their pivotal
role in the subsequent phase. Consequently, the pre-
viously occupied positions of the employed bees are
relinquished, allowing new positions to be determined
using (1) to escape local optima [10].

Algorithm 1 ABC
1. The parameters (trial, maxiter, iter = 0) are assigned, and populations xi are
created, where i = 1, 2, 3, . . . , NF.
2. The fitness of each population is evaluated.
3. Determine limit = NF × ND
4. DO
5. FOR i ∈ NF
6. Update a new candidate food source vi by using (2) for employed bees.
7. Evaluate the fitness value of the candidate vi.
8. Select the better candidate between vi and xi.
9. If solution xi does not improve, triali = triali + 1; otherwise,
triali = 0.
10. END FOR
11. Calculate the probability pi by using (4) for the solutions xi using fitness
values
12. FOR i ∈ NF
13. IF rand(0, 1) < pi
14. Update a new candidate food source vi by using (2) for the
employed bees.
15. Evaluate the fitness value of the candidate vi.
16. Apply a greedy selection process between vi and xi.
17. If solution xi does not improve, triali = triali + 1; otherwise,
triali = 0.
18. END IF
19. END FOR
20. IF max(triali) > limit then
21. Replace xi with a new randomly produced candidate solution via (1).
22. Evaluate the fitness value of the new randomly.
23. END IF
24. iter = iter + 1
25. UNTIL iter ≤ maxiter

Algorithm 1 presents the pseudocode of the ABC
algorithm, which is meticulously designed to facilitate the
pursuit of an optimal value. The algorithm begins with
the diligent foraging conduct exhibited by the employed
bees, who are wholeheartedly dedicated to systematically
exploring potential food sources (Lines 5-10). Subsequently,
onlooker bees gracefully enter the realm, capitalizing on posi-
tions artfully determined by their industrious counterparts.
This enables onlookers to actively and meticulously harvest
nourishing sustenance from discerned food sources (Lines
12-19). In the culminating phase, aptly referred to as the scout
bees step (Lines 20-23), any bees trapped within the con-
finements of local optima undergo a judicious repositioning
process, thus rekindling their continuous exploration while
carefully evading the perilous local optima trap.

III. ABC LITERATURE REVIEW
The ABC algorithm was initially introduced in 2005 [10].
In 2007, Karaboga and Basturk [11] thoroughly evalu-
ated its performance using numerical benchmark functions.
Subsequently, in 2009, Karaboga and Basturk [12] performed
a comprehensive comparative analysis of the ABC, GA and
PSO algorithms. These findings unequivocally demonstrated

that ABC performed better than the other competing
algorithms.

Since the ABC algorithm was introduced, significant
research efforts have been dedicated to enhancing the
algorithm to improve the optimal solutions and expedite
convergence. For instance, in 2010, Alatas [19] employed
chaotic maps to adapt parameters and mitigate the issue
of becoming ensnared in local optima encountered in the
original ABC algorithm. In 2012, AKay and Karaboga [20]
updated the ABC algorithm and applied this updated version
to real-parameter optimization. They introduced two novel
control parameters: the modification rate (MR) for acceler-
ating the convergence of ABC and the scaling factor (ϕ) for
regulating the magnitude of ABC perturbations. The scaling
factor was appropriately adjusted from the range of [−1,
1] to [−ϕ, ϕ], as exemplified in (2). Similarly, Gao and
Liu [21] proposed an equation for facilitating the foraging
of nearby food sources by utilizing the best solutions within
the current population, denoted as the ABC/best/1 algorithm
for the employed bee step. Moreover, they presented an
equation for enhancing the foraging capabilities of onlooker
bees in the onlooker bee step, as depicted in (5). In addi-
tion, they conducted comprehensive experiments employing
numerical benchmark functions to meticulously evaluate the
performances of their proposed methodologies.

vi,j = xpbest,j + ϕi,j
(
xi,j − xk,j

)
(5)

In 2015, Kiran and Findik [22] presented a direct foraging
food source because the search process for ABCs is undi-
rected (ϕ in the range [−1, 1]). They used (6) to improve the
position of vi,j using direction information for each dimension
of each food source position (di,j).

vi,j =


xi,j + ϕi,j

(
xi,j − xr,j

)
, di,j== 0

xi,j + ri,j
∣∣xi,j − xr,j

∣∣ , di,j== 1
xi,j − ri,j

∣∣xi,j − xr,j
∣∣ , di,j== −1

(6)

In 2015, Maeda and Tsuda [23] attempted to remove bees
until they reached the decision criteria. The bee removed in
each iteration was the bee with the worst fitness value.

In 2015, Li et al. [24] presented a novel hybrid method-
ology that synergistically combined the local search phase
derived from the PSO algorithm, specifically tailored for the
exploitation process (commonly known as the PSO phase),
with a refined search approach integrated into the onlooker
bee phase. This integration exploited (7), enabling the effi-
cient identification and acquisition of new food sources.
Additionally, the researchers proposed an innovative adap-
tation to the scout bee phase, incorporating (8), which
was notably conducive to the exploration process. In each
iterative cycle, all individual bees experienced either an
exploitation process or an exploration process, engendering
a comprehensive exploration–exploitation dynamic.

vi,j = xi,j + ϕi,j
(
xi,j − xpbest,j

)
(7)

xi,j = xi,j + ϕi,j
(
xpbestk1,j − xpbestk2,j

)
(8)
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In 2015, Yan et al. [25] applied a crossover operator from
a GA to select the parent and create eight children from
them (four from one-point crossover and four from arithmetic
crossover).

vi,j =

NF(
xGi,j + xbest,j

2
,

∣∣∣xGi,j − xbest,j
∣∣∣), rand j< CR

xi,j, otherwise

(9)

where xbest is the global best solution of the current popu-
lation and CR is a control parameter.

In 2016, Zhou et al. [26] created a new food source using
Gaussian bare bones and used the global best solution accord-
ing to (9). They also proposed a generalized opposition-based
learning (GOBL) strategy to create new food sources in the
scout bee step.[daj, dbj] is the dynamic boundary constraint
for the jth dimensional variable, which is defined as follows.

xi,j = ϕi,j
(
daj − dbj

)
− xi,j (10)

In the same year, Gao et al. [27] applied the population
initialization technique based on chaotic opposition to the
initial position of each bee particle. In the employed bee
phase, they used the global best value to improve the exploita-
tion process (GABC). Consequently, this method has poor
exploration ability. Thus, they used a probabilistic value,
which is computed from the number of successful candidate
solutions in the next generation and the number of discarded
candidate solutions in the next generation, to choose between
employing the DE or GABC algorithm.

Cui et al. [28] attempted to improve the performance of
the ABC exploitation process via depth-first search (DFS)
because DFS emphasizes exploitation. A random particle
is used to update the location. Then, the new position is
computed and compared to the current position. If the new
position is better than the current position, the current position
is updated. Afterward, the next position is computed in the
same manner until the new position is no better than the
current position according to the DFS.

In 2017, Song et al. [29] improved the equation for finding
a new food source in the employed bee phase. The authors
proposed the midpoint of two ABCs (M2ABCs) by two ran-
dom food sources (xr1 and xr2 ) and the global best solution
(xbest ). In addition, the fitness of the two selected global best
solutions was used to increase the exploitation process shown
in (11).

vi,j =
(xr1,j + xr2,j)

2
+ ϕi,j(xr1,j − xr2,j)

(
f
(
xr2

)
−f (xr1 )

)(
f
(
xr1

)
+f (xr2 )

)
+ ϕi,j(xbest,j + xr1,j) (11)

where r1, r2, and r3 are random numbers between 1 and
NF.

In the onlooker bee phase, they adopted a trigonometric
mutation operation and ABC/best (TMABC) to search for

food sources in the exploration process shown in (12).

vi,j =

(
xr1,j + xr2,j + xr3,j

)
3

+ (p2 − p1)
(
xr1,j − xr2,j

)
+ (p3 − p2)

(
xr2,j − xr3,j

)
+ (p1 − p3)

(
xr3,j − xr1,j

)
(12)

where pi =
∣∣f (xri )∣∣ /P and P =

∑3
i

∣∣f (xri )∣∣
In 2017, Jadon et al. [30] used the best solution of the

current swarm to search for food sources in the employed
bee phase according to (13). In addition, a differential evo-
lution operation (mutation and crossover) was applied in the
onlooker bee phase instead of in (2).

vi,j = xi,j + ϕi,j
(
xi,j − xk,j

)
+ ϕi,j

(
yd − xi,j

)
(13)

where yd is the d th dimension of the best solution of the
current swarm and is a random number between (0, C) and C
is a positive constant defined by the user.

In 2017, Liang et al. [31] applied a differential operator
(mutation and crossover) in the employed bee phase to search
for food sources. Equation (14) represents the selection of two
food sources (xr1 and xr2 ) for creating the new food source
(vi,j).

vi,j = xr1,j + ϕi,j
(
xr1,j − xr2,j

)
(14)

They also designed a new probability equation. Then, three
random food sources (xr1 , xr2 , and xr3 ) were used in the
onlooker bee phase according to (15).

vi,j = xr1,j + ϕi,j
(
xr2,j − xr3,j

)
(15)

In the same year, Li et al. [32] applied gene recombination
(crossover operator) after three phases of ABC to generate the
new position of the bee particle (vi) as a candidate solution of
the current position (xi).

In 2018, Yu et al. [33] proposed a novel probability
equation that calculates the ratio between the best fitness and
the worst fitness of particles, presenting it as a compelling
alternative to the conventional method (4). In the onlooker
bee phase, greedy methodology was employed to carefully
select the best t optimal fitness values, thus diverging from
the stochastic nature outlined in (16).

vi,j = x tbest,j + ϕi,j

(
x tbest,j − xk,j

)
(16)

Afterward, the food source was adjusted. If the onlooker
bee outperformed the employed bee, the number of t
decreased, or vice versa, as shown in (17).

t (i+ 1) =


t (i) +1t, Ue>Uo
t (i) −1t, Ue<Uo
t (i) , Ue = Uo

(17)

where 1t is the adjustment step, which is an integer within
the range [1,NF], andUe andUo denote the recorded numbers
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of successful position updates for the employed bees and
onlooker bees, respectively.

In 2018, Lin et al. [34] incorporated a local search com-
ponent within the employed bee phase. They introduced a
visual scope, as defined by (18), to facilitate the selection of
the optimal food source by the employed bee. Furthermore,
during the onlooker bee phase, which is depicted by (19),
a global search strategy was employed.

vi,j = xpbest,j + ϕi,j
(
xi,j − xk,j

)
(18)

vi,j = xbest,j + ϕi,j
(
xpbest,j − xi,j

)
(19)

where xpbest,j is a randomly selected high-quality food
source position that differs from xi; xk , which is distinct
from xpbest,j and xi, is randomly selected from the entire
population; xbest,j is the best food source position among the
current population; and j is a randomly selected dimension.

In 2019, Xiao et al. [37] improved the use of forage food
sources in the employed bee phase using an elite set (E) that
stores the best ρ × N solutions in the current population,
as shown in (20).

vi,j =
1
2

(
El,j + Gbest j

)
+ ϕ1

i,j
(
xi,j − El,j

)
+ ϕ2

i,j
(
xi,j − Gbest j

)
, (20)

where ρ ∈ (0, 1), El denotes a solution randomly chosen
from the Elite set E , ϕ1

i,j is a random value between −0.5 and
0.5, and ϕ2

i,j is a random value between 0 and 1.

They created a search function for the onlooker bee to
address the exploitation process shown in (21).

vi,j =
1
2

(
Em,j + Gbest j

)
+ ϕi,j

(
xi,j − El,j

)
+ ϕi,j

(
xi,j − Gbest j

)
(21)

where m = 1, 2, . . . , M , and M is the elite set size.

In the same year, Xiang et al. [38] presented a search
equation by considering the switch between a random vector
and the global best vector for the employed bee phase. For
the onlooker bee phase, they used an MR value such as [14]
as a condition for adjusting the onlooker bee phase equation.

Similarly, Gao et al. [39] presented three new equations
to find a new food source in the employed bee phase (vi_1,
vi_2, and vi_3). Then, the best position (vi) was selected from
among the three candidate positions, with the highest density
as a criterion. The density was computed by the Parzen win-
dow method. xi was replaced with vi if vi had a better fitness
value than xi.
In 2021, Zhou et al. [40] conducted a research study

with artificial bees as the subject of investigation. The bees
were systematically divided into two equally sized groups,
designated Group A and Group B. The group assignments
were based on the bees’ respective fitness values, with those
demonstrating higher fitness values being allocated to Group

A, while those with comparatively lower fitness values were
assigned to Group B. To further differentiate the members
within Group A, the researchers established two distinct sub-
groups: A1 and A2. Notably, A1 exhibited superior fitness
values to those of A2.

To facilitate efficient exploration and optimization,
researchers have developed specific search equations for
the employed bee and onlooker bee phases within each
group. Group A1 employed the Gaussian bare-bones search
equation [26], while Group A2 implemented the best
neighbor-guided search strategy [41]. Conversely, Group B
employed the search strategy detailed in [42] and [43]. More-
over, in the pursuit of accurate positioning for scout bees,
opposition-based learning techniques or global neighborhood
searches [43] were embraced in the methodology.

In 2022, an Eigen coordinate system was constructed
through the assimilation of information derived from the
cumulative population distribution by Jiang et al. [44]. The
process of adaptively acquiring the encoding of search equa-
tions involved learning from both the Eigen coordinate sys-
tem and the original coordinate system. Moreover, a dynamic
amalgamation occurred, where the search equations were
effectively merged with a multivariable perturbation strategy
while carefully considering their respective success rates.
This intricate integration safeguards bees against perilous
entrapment within local optima during the scout bee phase.

In 2022, Wang et al. [45] presented a novel Bayesian
estimator with the explicit objective of enhancing the prob-
ability equation related to (4). Central to their approach was
a directional guidance mechanism specifically designed to
augment the search capabilities of bees during the onlooker
bee and scout bee phases. By doing so, they aimed to achieve
an optimal equilibrium between exploration and exploitation
abilities. Moreover, the researchers devised a mathematical
equation to enable the value of the control parameter MR to
be dynamically adapted.

In 2023, Li et al. [46] proposed a neighborhood search
strategy with MR to create a search equation for employed
and onlooker bee phases. In addition, the scout bee utilized
theMR and global best bee position to determine the new bee
position.

Recently, Ye et al. [47] improved two-archive ABC for
many objective optimization problems. The convergence
archive and diversity archive [48] were presented to improve
the exploitation and exploration processes in the employed
and onlooker bee phases, respectively. Moreover, a conver-
gence archive was used to update the scout bee phase.

IV. GROUP REFLECTION ABC (GRABC)
ABC has undergone notable advancements through diverse
methodologies, as highlighted by the aforementioned body of
related research. These advancements include the optimiza-
tion of control parameters [20], [26], the application of GA or
DE operators [24], [25], [31], and augmentations to the forage
food equation during both the employed and onlooker bee
phases [21], [22], [29], [30], [33], [34]. These enhancements
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FIGURE 1. Preview of ABC’s new food source search.

substantially contribute to the attainment of improved global
optimum positions. Furthermore, the search equation uti-
lized for employed and onlooker bees has been meticulously
optimized to improve the efficiency of the exploration and
exploitation process [37], [38], [39], [40], [41], [42], [43],
[44].

In the ABC algorithm, the search for the food source is per-
formed stochastically, with the direction of movement along
the selected dimension (whether ascending or descending
in the jth dimension) determined randomly. Consequently,
the positional coordinates pertaining to the other dimensions
remain unchanged. This variable, denoted as ϕ and defined
in (2), represents a uniformly distributed random number
ranging between −1 and 1. The search pattern for the food
source is graphically depicted in Fig. 1. N2, operating at
dimension x2, successfully identifies a new food source by
leveraging the information obtained from N1. Consequently,
when the value of ϕi,j is less than zero, N2’s position under-
goes a displacement that brings it closer to the optimal
location. In contrast, a positive value of ϕi,j results in a
more substantial deviation from the optimal position, thereby
increasing the distance betweenN2 and the optimum position.
The search methodology employed in the x1 dimension mir-
rors that of x2 for identifying new food sources. Importantly,
the search process for each individual bee involves itera-
tive refinement within a single dimension, as simultaneously
exploring multiple dimensions would slow convergence.

As mentioned previously, ABC has a low convergence
rate due to a one-dimensional random search (as shown in
Fig. 1) in the employed and onlooker bee phases. In this paper,
a novel algorithm is proposed to address this problem. This
algorithm consists of 3 steps, as shown in Fig. 2 below.

• Grouping bees: In this step, bee particles are sepa-
rated into groups that enhance the exploration process
(enabling a more diverse search), with the best bee parti-
cle of each group (xlbest ) representing the employed and
onlooker bee phases (as shown in section IV-A).

• Improving employed and onlooker bees using vector
reflection: In this step, the equation for employed and
onlooker bees is created by considering xlbest from
the previous step, inertial weights, and vector reflec-
tion to obtain a better position from each iteration,

FIGURE 2. Overview of our proposed method.

which strengthens the exploitation process (as shown in
section IV-B). If the new position does not improve (bee
particles are trapped in local optima), the trail value of
that particle is increased for consideration in the scout
bee phase.

• Improving the scout bee: In this step, the bee particle
selects the best new position based on vector reflection
(two new possible positions), obtaining a new position
that is better than the current position. Thus, the limit
value should be recalculated to be more compatible with
our algorithm. In addition, the positions of bees (xt ) with
a trialt count of 0 and xlbest are used to determine the
new position of the scout bee (as shown in section IV-C)
instead of determining the new position randomly.

As mentioned earlier, ABCs have poor exploration ability.
Thus, this paper aims to enhance this problem by grouping
bees, where the bee particles are separated into distinct groups
to promote search diversity. The employed bees are improved
using vector reflection so that they can locate better food
sources. Subsequently, onlooker bees are refined to expedite
convergence to the optimal value through vector reflection,
collecting food from the locations indicated by the employed
bees. Finally, the new position of the scout bee is determined
using either the global best position or a randomly generated
new position. This approach aims to balance the exploitation
and exploration processes, as illustrated in Fig. 2.
The proposed method (GRABC) possesses a better

exploitation ability, achieved by applying the vector reflec-
tion algorithm to onlooker bees. Additionally, the processes
of grouping and employing bees aim to improve the perfor-
mance of the exploration process. Thus, themethodmaintains
a better balance of exploitation and exploration than does the
original ABC algorithm.
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FIGURE 3. The direction of searching for the new food source.

A. GROUPING BEES
To enhance the exploration of food sources, a systematic
approach involving partitioning bees into distinct groups
is proposed in this paper. This division enables individ-
ual bees to augment their searching and food harvesting
processes during the employed and onlooker bee phases.
This augmentation is achieved by leveraging the bee’s own
position, characterized by the optimal fitness value (xlbestg,j),
and the positions of other bees assigned to the same group.
The practical implementation of this concept is presented and
explained in (22). This concept increases the diversity of the
search for the next step for employed and onlooker bees.

vig,j = xig,j + ϕi,j
(
xk,j − xig,j

)
+r

(
xlbestg,j − xig,j

)
(22)

where r denotes a random number between [0, 1]; xlbestg,j
is the bee’s position with the best fitness value of the gth

group; and xig,j is another bee’s position in group g in the
jth dimension.

B. IMPROVED EMPLOYED AND ONLOOKER BEES USING
VECTOR REFLECTION
In this section, the equation employed for identifying and
procuring novel food sources through the implementation
of vector reflection is refined. As a preliminary measure,
bees are segregated into distinct groups. Vector reflection
is utilized to expedite convergence, thereby bolstering the
overall efficiency of the search process.

Fig. 3 illustrates that N3 exhibits the highest fitness value
within the bee population. Conversely, N2 needs its food
source position to be adjusted, while N1 represents an alter-
native position for a bee. When the x2 dimension is selected
to locate the new food source, Equation (2) generates a new
position in the directions depicted in Fig. 3(a) or 3(b). Conse-
quently, the convergence rate to the optimal solution is low
due to the random search of the original ABC algorithm.
To surmount this obstacle, vector reflection is utilized to
determine the direction of bee movement. If the fitness value
of the new position fails to surpass that of the old position,
the new position is established in the opposite direction.
Fig. 3(c) visually shows the potential positions of N2 in
two directions: above N2 and below N2 (according to x2) or
to the left of N2 and to the right of N2 (according to x1).
The ultimate movement direction of N2 is contingent upon

the superior fitness value between the two plausible posi-
tions. Consequently, with each iteration, the new food source
progressively improves, exploiting the optimal position and
accelerating the convergence time.

Vector reflection is employed to augment the conver-
gence time by systematically investigating two prospective
locations for a novel food source. The existing position is
then superseded by the superior alternative among the two
options. To facilitate the generation of these potential posi-
tions, we introduce (23) and (24), denoted as vleft and vright,
respectively. These positions assume pivotal roles within the
employed bee and onlooker bee phases, contributing signifi-
cantly to the overall efficacy of the system.

vleft ig,j = xig,j − ϕi,j
(
xk,j − xig,j

)
w(t)

+ r
(
xlbestg,j − xig,j

)
(23)

where vleft ig,j and vright ig,j are the new possible posi-
tions of bee (xi) in the jth dimension of the gth group
and ϕ is a random value between ranges −1 and 1, which
is also applied for (24) (constraint values for both (23)
and (24)). Thus, the positions of vlefti and vrighti will be
the left and right positions of the current bee position xi,
respectively.

vright ig,j = xig,j + ϕi,j
(
xk,j − xig,j

)
w(t)

+ r
(
xlbestg,j − xig,j

)
(24)

While other algorithms update the trial values (triali) by
considering one direction with a random search, in accor-
dance with ϕ (either vlefti or vrighti), a stochastic selection
procedure is employed between vlefti and vrighti to optimize
the positioning of the food source in this study. When vlefti is
chosen, it replaces xi, and the value of triali is subsequently
reset to 0 due to the superior fitness value of vlefti to xi.
Similarly, if vrighti is selected, xi is substituted with vrighti,
and triali is updated to 0 due to the superior fitness value
of vrighti to xi. Consequently, in each iteration, the foraging
bees converge more quickly in their search for novel food
sources. If the fitness value of xi exceeds that of both vlefti
and vrighti, triali is incremented by 1 (as shown in (25))
because the bee particle is stuck in a local optimum for the
considered dimension (described in Algorithm 2 from lines
18-28 and 38-48 for the employed and onlooker bee phases,
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Algorithm 2 GRABC
1. The parameters (trial, wmin, wmax , maxiter, iter = 0, g = 1, n_gp) are assigned, and populations xi, i = 1, 2, 3, . . . , NF, are created.
2. The fitness value of each population is evaluated.
3. Determine limit =

√
NF × ND

4. FOR i ∈ NF
5. IF Fitness(xi) < xlbestg
6. xlbestg = Fitness(xi)
7. xlg = xg
8. END IF
9. IF mod(i, n_gp) is equal to 0.
10. g = g+1
11. END IF
12. END FOR
13. DO
14. Set g = 1
15. FOR i ∈ NF
16. Update a new candidate food source vlefti and vrighti of vi by using (23) and (24).
17. Evaluate the fitness values of the candidates vlefti and vrighti.
18. IF Fitness(vlefti) < xlbestg
19. xlbestg = Fitness(vlefti)
20. xlg = vlefti
21. triali = 0
22. ELSE IF Fitness(vrighti) < xlbestg
23. xlbestg = Fitness(vrighti)
24. xlg = vrighti
25. triali= 0
26. ELSE
27. triali = triali+1
28. END IF
29. IF mod(i, n_gp) == 0
30. g = g+1
31. END IF
32. END FOR
33. Calculate the probability pi by using (4) for the solutions xi using fitness values.
34. FOR i ∈ NF
35. IF rand(0, 1) < pi
36. Update a new candidate food source vlefti and vrighti of vi by using (23) and (24).
37. Evaluate the fitness values of the candidates vlefti and vrighti.
38. IF Fitness(vlefti) < xlbestg
39. xlbestg = Fitness(vlefti)
40. xlg = vlefti
41. triali= 0
42. ELSE IF Fitness(vrighti) < xlbestg
43. xlbestg = Fitness(vrighti)
44. xlg = vrighti
45. triali= 0
46. ELSE
47. triali= triali+1
48. END IF
49. IF mod(i, n_gp) == 0
50. g = g+1
51. END IF
52. END IF
53. END FOR
54. IF max(triali) > limit then
55. Replace xi with a new randomly produced candidate solution via (27).
56. Evaluate the fitness value of the new xi.
57. END IF
58. iter = iter + 1
59. UNTIL iter ≤ maxiter

respectively), thereby serving as a criterion for considering
the scout bee phase. Thus, GRABC can indicate which bee is
stuck in a local optimum in the considered dimension more
quickly than other algorithms due to vector reflection.

Equation (25) explicitly illustrates the interrelationship
among the fitness values of vlefti, vrighti, and xi, which

dictates the updating of triali.

trial i =


0, fitness of vleft ig,j< fitness of xig,j
0, fitness of vright ig,j<fitness of x ig,j
trial i + 1, otherwise

(25)
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TABLE 1. Unimodal and multimodal benchmark problems.
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TABLE 1. (Continued.) Unimodal and multimodal benchmark problems.

TABLE 2. Algorithm parameters for the functions in Table 1 for unimodal and multimodal functions.

The inertial weight (w) is a fundamental parameter linked
to bee particles. It substantially controls the impact of the
recent running speed of (23) and (24) for vleft and vright ,
respectively. To circumvent the entrapment of bee parti-
cles within a local minimum, w must be assigned an initial
value of significant magnitude. Inadequately initializing w
may substantially decelerate the convergence process. Con-
sequently, a strategy of initially assigning w a considerably
elevated value and gradually decreasing its value in subse-
quent iterations is recommended. This systematic reduction
in w manifests in a linear manner alongside the progressive
increase in iteration count, as clearly exemplified by (26).

w(t)
= wmax −

wmax − wmin
itermax

×t, (26)

where wmax is the initial inertial weight (1.0), wmin is the
termination inertial weight wmax /maxiter, and maxiter is the
maximum number of iterations.

The fitness value of each individual bee particle (xi) is
determined by utilizing (3), which is similar to the con-
ventional ABC approach. We employ (4) to calculate the
probability (pi) of selecting employed bees during the forag-
ing of food sources in the onlooker bee phase.

C. IMPROVED SCOUT BEE
Despite the inherent capacities of employed and onlooker
bees to explore and identify improved food sources, a bee
becomes immovable when it encounters a local optimum,
when neither vlefti nor vrighti demonstrate superior fitness
values compared to xi. For ABC, a limit value is assigned.
This is a high value and does not fit our improvement process
(previous step). Thus, the limit value should be recalculated
(as shown in section V).

In addition, in this study, we propose adopting a specific
equation, labeled (27), to ascertain the position of the scout

bee. This equation effectively calculates the average between
the bee’s position with a trial value equal to zero (xt ) and xlbest
within the gth group. An intriguing aspect of this equation is
its utilization of a trialt value of zero. The following equation
can successfully improve the exploitation ability and better
balance the exploration and exploitation abilities of bees by
sharing information among i, t , and lbest.

xig =

 xig , trial i≤ limit
xt + xlestg

2
, trial i> limit

(27)

where xt is the random position of the bee when trialt = 0
and the limit is equal to 3

√
NF × ND (see section V).

Algorithm 2 presents a comprehensive overview of the
GRABC procedure. Initially, we diligently calculate the local
best (xlbestg ) for each distinct group (Lines 4-12). We then
employed targeted strategies to augment the efficiency of
our search for viable food sources during the deployed bee
phase (Lines 15-32). Furthermore, we meticulously updated
the position of xlbestg for each individual group by comparing
vleft, vright, and xlbestg (lines 18-31). Our diligent bees are
then directed toward skillfully harvesting food sources in the
subsequent onlooker bee phase (lines 34-53). Furthermore,
we ensure that the position of xlbestg for each group is con-
tinually refined (lines 38-51). Ultimately, we apply (27) to
precisely ascertain the position of any bee ensnared within
a local optimum, thereby enabling us to accurately calculate
the fitness value of the resulting position (Lines 54-57).

V. EXPERIMENTAL RESULTS
In this section, the efficiency of GRABC is evaluated, and
a comparative analysis is conducted with other pertinent
works by employing 32 widely acknowledged benchmark
functions [49], [50], [51], [52], mostly including CEC 2017.
The evaluation test bed is a standard configuration for
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TABLE 3. Comparison of limit values.

Windows 11 operating systems (64 bits): 2.5 GHz Intel(R)
Core (TM) i5 CPU, 8 GB RAM, and 512 GB Disk. To ensure
a methodologically sound comparison, the simulation was
conducted using MATLAB® 2016a, utilizing its standard
library. To account for the inherent variability, each experi-
ment was iterated 50 times with distinct random seeds. The
outcomes presented encompass the best, worst, and mean
results, the standard deviations, and the Wilcoxon rank-sum
test, thereby enabling comprehensive comparisons.

A. BENCHMARK FUNCTIONS
Table 1 presents a comprehensive overview of the bench-
mark functions from [49], [50], [51], [52], which encapsulate

multiple essential elements. These elements include the func-
tion range, ND, f ∗

min, C , and formulae that precisely delineate
the lower and upper bounds of the search spaces of each
dimension, number of dimensions, global minimum values,
characteristics, and functions. The table serves as a valu-
able reference for understanding and analyzing the intricate
aspects of these benchmark functions.

Each function employed in this experiment exhibited
unique properties. Functions that manifest multiple local
optima are classified as multimodal functions (M), including
f16-f32. Conversely, functions with a solitary and distinctive
local optimum are categorized as unimodal functions (U),
such as f1-f15.

The dimensionality of the search space is crucial in algo-
rithmic problem solving [10], [22], [29], [31], [33], [34], [46].
In our experimental study, we specifically focused on inves-
tigating and comparing the performances of the methods on
numerical functions [49], [50], [51], [52] characterized by a
dimensionality of 100 except for f14(for a dimensionality of 5)
[49]. In addition, we attempt to set the number of dimensions
to a higher value, such as 100; however, MATLAB does not
respond to all the algorithms. To comprehensively overview
the experimental setup, Table 2 presents the key parameters
employed in the evaluation of the optimization problem of
each algorithm.

These parameters encompass essential aspects such as
the number of bee particles utilized during the employed
bee and scout bee phases (NF), the ND, the management
of scout bees through utilizing a threshold value (limit),
the maximum iteration count employed as the termination
condition for the methods (maxiter), and the number of
groups (n_gp). In addition, the values of NF, ND, and
maxiter are set to 20, 100, and 5000, respectively, for all
algorithms. The limit value is set to NF × ND for all
algorithms, except for the proposed algorithm, which is set
to 3

√
NF×ND based on experimental studies, as shown in

Table 2.
Setting the limit value to NF × ND, as in traditional ABC

with a high value, ensures that no bee particle surpasses the
limit in terms of its trail value. This is due to the continu-
ous improvement in bee particle positions in each iteration
during the employed and onlooker bee phases, where the
bees select new food source positions to the vleft or vright.
As a result, the trail value of bee particles remains consis-
tently low. Thus, the primary objective of this study was to
evaluate and determine the optimal value of the limit. The
obtained results are presented in Table 3, including the opti-
mum values for 32 functions (f1-f32) as the limit value varies
from NF × ND to 4

√
NF × ND. Table 3 illustrates that each

function typically performs better at achieving the average
optimum result when the limit value is set to 3

√
NF×ND

than when the limit is set to NF×ND,
√
NF × ND,

or 4
√
NF × ND because the exploration and exploitation pro-

cesses are better balanced. Thus, our proposed method uses
3
√
NF×ND as the limit value for each of the benchmark

functions.
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TABLE 4. Unimodal functions.
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TABLE 4. (Continued.) Unimodal functions.

B. COMPARISONS
Comparative analyses of the traditional ABC [10],
DABC [22], MTABC [29], ABCADE [31], AABC [33],
ABCLGII [34], and EMABC-NS [46] algorithms for uni-
modal and multimodal functions are presented in Tables 4
and 5, respectively. A comprehensive evaluation of the
methods’ performances reveals that the GRABC algorithm
surpasses alternative approaches in terms of solution quality
and robustness (except for f13, f19, f20, and f25, as shown in
Tables 4 and 5). This superiority is evident through metic-
ulous consideration of fundamental metrics, including the
best, worst, mean results, standard deviations, and w/t/l (the
number of win, tie, and lose between two algorithms on
all the functions according to the Wilcoxon rank-sum test)
[51], [52] given 100 dimensions. Table 6 shows the results
of the Wilcoxon rank-sum test at a significance level of =

0.05. The symbols +, −, and ∼ indicate that the proposed
algorithm is significantly better, significantly worse, and
nonsignificant, respectively, than the compared algorithms on
one function [51], [52].
Table 4 lists the worst values, best values, average values,

and standard deviations (stds) derived from 50 random seed
runs for unimodal functions (f1-f15) of the ABC, DABC,
ABCADE, MTABC, ABCLGII, AABC, EMABC-NS and
GRABC algorithms. For f1, f2, f3, f4, f5, f7, f8, f9, f10, f11, f12,
f14, and f15, GRABC outperforms the comparison methods.
In addition, GRABC performs better than the other methods
except for ABCADE and AABC (equally) for f6. However,
for f13, AABC outperforms the other methods, including
GRABC.

Table 5 lists the values of the worst values, best values,
average values, and standard deviations (stds) derived from
50 random seed runs for multimodal functions (f16-f32). For
f16-f18, f21, f22, f24, and f26-f32, GRABC outperforms the com-
parison methods. In addition, GRABC performs better than
all the other methods except for ABC, DABC, and AABC
(equally) for f23. However, for f25, ABC outperforms the other
methods, including GRABC.

Convergence graphs depicting the performance of the tech-
niques (as illustrated in Figs. 4 and 5) are generated with
100 dimensions except for f14, where ND is set to 5. The
analysis reveals that the convergence rate of the GRABC
algorithm is notably superior to that of the other methods,
as the number of iterations reaches or surpasses the specific
thresholds for each function except for f13 and f25, for which
AABC and ABC, respectively, outperform GRABC.

For unimodal functions, as shown in Fig. 4, the conver-
gence rate of GRABC is better than that of the comparison
methods for f1-f12. Specifically, the iteration thresholds are

500, 100, 100, 100, 500, 500, 400, 500, 600, 500, 700, 200,
100, and 400 for f1-f12 and f14-f15, respectively. According to
Table 4, GRABC converges to the result of 1.12E-83, which
is faster than the other algorithms for f13, at iteration 100.
However, it is stuck in a local optimum. As a result, AABC
outperforms the comparison algorithms, including GRABC,
with 1.53E-102 as the average result.

For multimodal functions, as shown in Fig. 5, the con-
vergence rate of GRABC is better for f16-f18, f21-f24, and
f26−f32 than that of the comparison methods. Specifically, the
iteration thresholds are 1400, 800, 1700, 100, 300, 400, 100,
300, 100, 2100, 500, 600, 2000, and 100 for f16-f24 and f26-
f32, respectively.

According to Table 5, GRABC converges to 0.005448,
1.39E-05, and 3096.7 faster than the other algorithms do at
iterations 600, 1700, and 600 for f19, f20, and f25, respectively.
However, it remains in a local optimum.As a result, EMABC-
NS, EMABC-NS, and ABC outperform the comparison
algorithms, including GRABC, with 2.09E-15, 2.15E-12, and
3912.4 as the average results for f19, f20, and f25, respectively.

C. COMPUTATIONAL TIME COMPLEXITY
For a problem f , assume that O(f ) is the computational
time complexity of evaluating its function value. NF is the
population size. The time complexity of traditional ABC is
(ONF×f+ NF×f ) = O(NF×f ) [53]. For GRABC, it will
replace vright or vleft for x, soO(1.5×f ) is the computational
time complexity of evaluating its function value. Therefore,
the complexity is O(NF×1.5×f+ NF×1.5×f ) on average.
Therefore, the total computational complexity of GRABC is
O(1.5×NF×f ) at each iteration. In addition, Table 7 shows
the average computational time of all algorithms on 32 func-
tions with 100 dimensions. The results show that the average
time complexity (in seconds) of GRABC is greater than that
of ABC in the range fromABC to 2×ABC. However, the pro-
posed algorithm converges quickly to the optimum value (at
approximately the 3000th iteration), as shown in Figs. 4 and 5.

VI. DISCUSSION
Swarm intelligence-based optimization techniques initiate
the solution space traversal process by generating randomized
initial solutions. These techniques effectively harness the
intricate interactions among the particles within the popula-
tion to obtain an optimal or near-optimal solution. However,
as the dimensionality of the problem increases, the proba-
bility of encountering a local optimum increases for each
algorithm. This predicament significantly impacts the attain-
ment of the overall optimum value.
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FIGURE 4. The convergence graph of the methods with ND = 100 for f1-f15 (unimodal functions).
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TABLE 5. Multimodal functions.
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TABLE 5. (Continued.) Multimodal functions.

TABLE 6. Statistical test (Wilcoxon rank-sum test).

Dancing behavior is a pivotal function within the ABC
algorithm, serving as a catalyst for the exchange of positional
information about food sources. Although the basic ABC
algorithm inherently lacks directionality, incorporating direc-
tional information has emerged as a critical requirement for
achieving a successful solution during this stage. Notably,
the artificial ABC hive does not participate in the dis-
semination of this knowledge. Consequently, the local
search capability of the fundamental ABC algorithm notably
decreases, impeding the convergence rate and leading to a

protracted process of convergence resulting from this specific
predicament.

To enhance the performance of the ABC algorithm,
the MTABC strives to intricately balance exploration and
exploitation, aiming to optimize the desired optimum value
search. However, despite these earnest endeavors, the con-
vergence rate remains disappointingly low. In stark contrast,
ABCLGII exhibits a conspicuously superior convergence rate
by exclusively deploying bees within the visual scope, which
diligently scour the environment to locate and forage food
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FIGURE 5. The convergence graph of the methods with ND = 100 for f16-f32 (multimodal).
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FIGURE 5. (Continued.) The convergence graph of the methods with ND = 100 for f16-f32 (multimodal).

TABLE 7. Average computational time (seconds).

sources. Conversely, the DABC adopts a targeted approach
by employing a meticulously tailored direct search equation,
facilitating swift localization and acquisition of food sources,
thereby resulting in accelerated convergence.

Moreover, to broaden the exploration horizons and uncover
a diverse spectrum of new food sources, ABCADE incorpo-
rates the DE operator. This integration enables purposefully
crafted equations to discover novel food sources to be gen-
erated. Similarly, the AABC employs a discerning strategy
of selecting bees with high fitness values to pinpoint food

sources throughout both the employed and onlooker bee
phases. This strategic selection process effectively nurtures
diversity during the exploration of food sources.

In the case of EMABC-NS, the neighborhood technique
is used to increase the performance of finding and foraging
for food sources in the employed and onlooker bee phases,
respectively. This method aims to improve the exploration
process.

All of the comparison methods discussed above are dedi-
cated to improving the equation utilized for the identification
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and acquisition of food sources in both the employed
and onlooker bee phases. Nevertheless, conventional ABC
and their variants function as single-dimensional undirected
search algorithms. As a consequence, they do not encom-
pass bidirectional search algorithms, such as vleft and vright,
within the chosen dimension. Consequently, these algorithms
encounter difficulties in efficiently exploring and exploiting
the optimal value and thus predisposing individuals toward
becoming ensnared in local optima.

In this paper, GRABC, a novel approach that employs vec-
tor reflection to develop equations for the efficient discovery
and foraging of food sources in both the vleft and vright
directions within the selected dimension, is introduced. The
developed equations are applicable to both the employed and
onlooker bee phases. Furthermore, we propose the incorpo-
ration of an inertial weight value, strategically determined to
enhance the influence of the convergence rate. This weight is
initialized with a large value and progressively decreases over
subsequent iterations. Additionally, we present an equation
that establishes a limit value, aiding in the identification of
bees trapped in local optima during the scout bee phase.
According to our strategies, vector reflection is highly effec-
tive in helping bee particles find and forage food sources
with a high convergence rate, as illustrated in (23) and (24).
However, this strategy could become trapped in a local opti-
mum. Therefore, an improved scout bee phase will be utilized
to address this situation. Through extensive experimenta-
tion, this method showed superior performance to alternative
techniques.

VII. CONCLUSION
In this paper, GRABC, a novel variant of the standard
ABC algorithm, is presented. Its efficacy is assessed using
32 numerical benchmark functions featuring unimodal and
multimodal features. GRABC incorporates vector reflec-
tion and inertial weighting to formulate equations (vleft and
vright) for both the employed and onlooker bee phases,
notably accelerating the convergence rate. Furthermore, the
integration of grouping bees fosters enhanced diversity dur-
ing the exploration of food sources. Additionally, an equation
is devised to compute the new positions of scout bees consid-
ering the proper limit value. Empirical findings compellingly
demonstrate that the GRABC algorithm outperforms other
algorithms in terms of solution quality and convergence
characteristics, as shown by metrics such as the worst,
best, average results, and standard deviation. A thorough
comparative analysis established the evident superiority of
GRABC over the fundamental ABC, MTABC, ABCLGII,
ABCADE, DABC, AABC, and EMABC-NS algorithms.
To apply GRABC (i.e., vector reflection) with another SI,
equations (vleft and vright) in the employed and onlooker bee
phases can be adapted to enhance the exploitation process.
Moreover, grouping bees can also be applied to another SI
for more diverse searching.

Employing this method for complex real-world continuous
optimization problems is advantageous for further enhancing

the applicability of GRABC. Notable applications include
clustering, data mining, and the design and optimization
of communication networks. Moving forward, our ongoing
endeavors revolve around the seamless integration of our
techniques with complementary operators, such as the DE
operator or GA operator, to accelerate convergence toward
the optimal value.
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