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ABSTRACT The intelligent reflecting surface (IRS) supports communication systems well, especially in
physical layer security for the cooperative power domain non-orthogonal multiple access (PDNOMA).
In this work, we investigate the secrecy performance of PDNOMA with the assistance of the IRS and a
multiple-relaying network in the presence of an eavesdropper. Three selection strategies are considered at
the relaying network to boost the system’s performance: the first method is based on the best relay selection,
the second on the max-min concept, and the third on harmonious characteristics. Moreover, the phase shift of
IRS element and power allocation for each NOMA user can be controlled to improve the secrecy quality and
reduce the influence of an eavesdropper (E). Besides, applying the technique of transmitting artificial noise
(AN) from the source is also considered in this paper to interfere with the signal at E. Furthermore, in this
paper, we determine two primary metrics to evaluate the secrecy performance of our proposed system: the
worst secrecy capacity and secrecy energy efficiency. The balance of these twometrics needs to be assured to
improve the secrecy performance. Thus, in this paper, we consider the multi-object problem and propose the
genetic algorithm-based approach, a non-dominated sorting genetic algorithmwith three procedures (NSGA-
II), to solve this problem. Then, to highlight the proposed algorithm’s outstanding performance, we compare
it with other algorithms, Reference point based NSGA-II (R-NSGA-II) and the exhaustive search (ES).
Additionally, the impacts of critical system parameters are investigated for both cases as IRS and none-IRS
assistance comprises three relaying selection techniques, the number of IRS elements, the strength of AN
signal, the distances of source-relay link, relay-IRS link, and IRS-Eavesdropper link. Finally, the summaries
of these archived results show the benefits of our proposed model in different cases of the deployment of the
IRS and without the IRS.

INDEX TERMS IRS-assisted PDNOMA, non-dominated sorting genetic algorithm, multi-objective
optimization, worst secrecy capacity, secrecy energy efficiency.

I. INTRODUCTION
With the rapid development of wireless techniques, the
5G (fifth generation) network generation has been widely
launched worldwide. Technology constantly evolves, and
the world’s research community is moving towards the new
generation of networks - the sixth generation (6G). The
core technologies that will be applied in future networks,
such as Beyond-5G (B5G) and 6G, including artificial
intelligence, massive MIMO network technology, THz
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communication, quantum communication, intelligent reflect-
ing surfaces (IRS), non-orthogonal multiple access (NOMA)
technologies, etc have been pointed out. References [1], [2],
and [3] show that NOMA and IRS are potential applications
to B5G and 6G networks for improving the high efficiency in
resource use, serving many users and devices simultaneously,
expanding coverage, and declaring savings in development
costs. However, as the number of users in the IRS/NOMA
application network increases, the threat of security attacks
will also increase [4], [5]. Thus, the problem is how
to maintain the security performance of wireless systems
against the risk of attacks is necessary. The challenging
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question posed is how to simultaneously achieve the security
effectiveness of the system across various performance
metrics of a communication system. The multi-objective
algorithms can solve this problem. Moreover, optimization
problems using conventional mathematical algorithms will
be challenging to apply to complex networks with massive
users, such as NOMA-aided IRS. Therefore, improving the
quality of the NOMA network with the support of the
IRS in general and enhancing the quality of security in
particular has been a hot topic recently. In information and
communication technology, evolutionary computation, such
as Genetic algorithm (GA) or algorithms-based GA, is part
of Artificial Intelligence (AI) that is applied as an optimal
technique to achieve high efficiency and low operating
costs [6], [7]. Low dynamic response calculation time can be
performed in real-time, especially for the algorithms applied
for the multi-objective, which is also a benefit of these
evolutionary algorithms.

A. BACKGROUND
As one of the key technologies that will be widely applied
to future generation B5G and 6G networks, Artificial
Intelligence will help improve and automate the services of
these future network systems. Evolutionary computing is one
of the critical techniques of AI, and research achievements in
evolutionary computing are widely applied in life, science,
and engineering, especially in telecommunication systems.
References [6], [7], and [8] have shown the possibility
of evolutionary computing for improving the quality of
telecommunications networks with different problems. The
most typical representative of evolutionary computing is the
genetic algorithm that simulates the adaptive evolutionary
process of biological populations based on Darwin’s theory.
GA is a random optimal search method that simulates
evolution, inheritance, and the struggle for survival [9]. The
critical difference between GA and other search methods is
that GA maintains and processes a set of solutions called
a population. In [10], [11], and [12], the essential benefits
of GA in improving the performance of wireless sensor
networks and Internet of Things (IoT) wireless networks are
presented. Moreover, numerous factors demand considera-
tion to ensure the efficient operation of wireless communi-
cation systems. Assessing the system’s quality necessitates
a balanced evaluation of performance metrics, particularly
concerning the domain of physical layer security. Hence,
it becomes imperative to encompass the system’s secu-
rity aspects alongside diverse metrics. While mathematical
methodologies are commonly employed for single-objective
optimization concerning convex functions, addressing intri-
cate, non-convex, and multi-objective problems poses signif-
icant challenges. Consequently, meta-heuristic optimization
algorithms, notably evolutionary-based approaches derived
from Genetic Algorithms, emerge as pivotal tools. These
algorithms have demonstrated efficacy in tackling complex
multi-objective problems, particularly within the domain of
telecommunication systems [13], [14], [15].

The IRS technique is considered one of the essential and
breakthrough technological solutions that can be applied to
6G [2], [16]. The application of IRS in wireless systems will
reduce the cost of deployment and still achieve spectrum
efficiency and energy efficiency for future wireless networks
thanks to many elements with low-cost operation [17],
[18]. Specifically, the IRS is a meta-surface consisting of
many configurable passive elements attached to an intelligent
controller that allows dynamic adjustment of signal reflection
for different purposes, such as enhancing signal power and
eliminating interference. Reference [19] have provided a
comprehensive overview of the benefits of IRS technol-
ogy compared to other technological solutions. It presents
empirical evidence showcasing the efficacy of IRS-facilitated
wireless communication within novel contexts, integrating
it with relevant technologies. Notably, within the context of
relay scenarios augmented by the IRS, the plausibility of
enhancing the system’s physical layer security through this
scheme is extensively deliberated upon. Furthermore, [20],
[21], and [22] have recently shown the critical roles of the
IRS in improving the performance of unmanned aerial vehicle
(UAV) communications, vehicle-to-vehicle communication,
cognitive radio networks, smart cities, etc.

Meanwhile, the NOMA technique in the power domain
is considered a potential multiple access candidate for
next-generation mobile networks [23], [24], especially since
the application of NOMA can meet the massive connectivity
requirement of the new 6G networks. An investigation
into advanced multiple access methodologies centering on
NOMA has been presented in [25]. The methodology aims to
mitigate various challenges anticipated in the 6G landscape.
These challenges encompass heterogeneous data traffic,
accommodating extensive connectivity, achieving ultrahigh
bandwidth efficiency, and meeting the stringent demands
for ultra-low latency. Typically, extant NOMA schemes
can be categorized broadly into two classifications: power-
domain NOMA (PDNOMA) and code-domain NOMA [26].
PDNOMA focuses on uneven power distribution among
users, helping to make the most of the communication capac-
ity within the same physical resource. This technique does not
require additional bandwidth to improve spectrum efficiency,
so it does not require significant changes in the infrastructure
aspect [27]. Thus, this technique effectively enhances system
performance and optimizes network resource utilization in
current communication systems. Additionally, it also enables
the system to serve a massive number of users while ensuring
stable and quality communications in environments with
limited radio resources.

Therefore, combining the PDNOMA technique with IRS
is a potential solution to increase network capacity, optimize
resource allocation, reduce deployment, and save costs [4],
[28], [29]. The energy efficiency of IRS-supported NOMA
for 6G wireless communication has been presented in [30]
by optimizing the active beam-forming and power allocation
factors of users. Moreover, [31] considered a joint optimiza-
tion of the time allocation factor and phase shift matrices in
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the IRS wireless-powered NOMA IoT network. This study
showed the sum throughput enhancement and critical benefits
by IRS compared with no IRS. At the same time, [29]
and [32] have investigated the sum rate optimization of IRS
with NOMA and highlighted the critical advantages of IRS.
In other cases, [33], [34], [35], [36], [37], and [38] have
investigated the NOMA communication with the assistance
of the IRS and demonstrated the outstanding results that the
IRS delivers compared to not applying to the IRS. In there,
[35] has considered both IRS with NOMA system and IRS
with orthogonal multiple access system (OMA) in which a
big IRS surface has divided into sub-surfaces to reduce the
implementation complexity.

In addition, network security concerns are always a hot
topic for future networks, B5G, and 6G [39]. Developing
solutions to enhance secure transmission capabilities in
wireless environments is a complex problem that requires
focused research. Due to how signals are transmitted in
radio communications, the information transmitted from the
transceiver to the receiver may be eavesdropped. One of the
security studies in wireless communications is to exploit jam-
ming signals, including artificial jamming signals, to improve
secrecy performance and protect against dangerous risks
from attackers [40]. However, research results on enhancing
security for B5G and 6Gwith non-orthogonal multiple access
techniques and the assistance of the IRS still need to be
improved. The secrecy performance of the NOMA network
with IRS and no IRS cases and application of the jamming
technique has been studied in [41], [42], [43], and [44]. These
have presented the advantage of jamming technical methods
in improving the system’s security.

B. MOTIVATION AND CONTRIBUTIONS
From the analysis above, we can see that many research
works have studied NOMA with the assistance of the
IRS and have provided different methods to improve the
security quality of these systems. However, these studies still
need to comprehensively analyze an optimal solution using
evolutionary computation, such as genetic algorithm and
variants of GA for both single-objective and multi-objective
problems. Currently, we especially realized that no publi-
cations consider the application of evolutionary algorithms
to enhance the secrecy performance of the NOMA system,
specifically bolstered by the IRS, encompassing various relay
node selection strategies in scenarios involving the presence
of an eavesdropping node. Moreover, the multi-objective
optimization-based GA is the most popular method and can
solve non-convex problems with constraint conditions [45],
[49]. Therefore, in this study, we exploit the advantages of
an evolutionary algorithm, such as NSGA-II, and compare
them with other techniques, like R-NSGA-II and Exhaustive
Search (ES), to address the problem of improving the secrecy
performance in the NOMA cooperative relay network with
the IRS. Our main contributions are listed as follows:

• (1) To our current understanding, this study represents
the inaugural endeavor aimed at scrutinizing and

refining the IRS-assisted relayingNOMAnetwork in the
presence of an Eavesdropper. Additionally, the inves-
tigation evaluates the impact of various relay selection
approaches on the overall secrecy performance.

• (2) We are the first to have designed an NSGA-II
algorithm with three procedures - a fast non-dominated
sorting (FNDS), a fast crowding distance calculator
(CDC), and a simple CCO (Crowded Comparison
operator) tailored to address the multi-objective opti-
mization challenge within our proposed system model.
This algorithm optimizes power allocation coefficients
to enhance the secrecy performance across two key
metrics: the secrecy capacity-worst (SCW) and secrecy
energy efficiency (SEE).

• (3) The assessment involves an evaluation of the security
efficacy exhibited by the pertinent system, considering
scenarios with and without the assistance of the IRS.
Furthermore, it entails a comparative analysis between
the outcomes generated by the proposed NSGA-II
algorithm and alternative algorithms like R-NSGA-II
and the ES algorithm. This comparative study aims to
ascertain the efficacy and comparative performance of
NSGA-II in relation to the aforementioned algorithms.

• (4) Finally, we performed simulation evaluations under
different scenarios to examine the system’s secrecy
performance on both SCW and SEE metrics, pre-
cisely convergence behavior and computation time,
the decision-making alterations, the number of IRS
elements, relaying selection methods, location of IRS
and Eavesdropper, the strength of artificial noise, and
signal-to-noise ratio (SINR) at Eavesdropper.

The rest of this manuscript’s structure is as follows:
Section II encompasses the System model, which is further
subdivided into three distinct subsections labeled A, B,
and C. Section III pertains to Performance analysis and
comprises four subsections denoted A, B, C, and D.
Subsequently, Section IV encompasses seven subsections
dedicated to experiment conduction and result analysis. The
paper culminates with the conclusions drawn in Section V.

II. SYSTEM MODEL
We consider a NOMA cooperative transmission downlink
system with the IRS planar. We assume an eavesdropping
device, E, is used to evaluate the system’s security. In the
model illustrated in Figure 1, the system includes two
wireless propagation phases: the first phase is the S-Relay
cluster wireless connection, and the second phase, which uses
the IRS to improve the transmission environment, is the radio
link from the selected relay to the users. Specifically, the
source node S implements NOMA multi-user superposition
encode [26], while K relays in the same cluster use a cooper-
ative forwarding protocol to forward signals to the users. In a
cooperative transmission network, the amplify-and-forward
protocol (AF) or the decoder-to-forward protocol (DF) is
adopted [27]. In this study, we consider the relaying network
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FIGURE 1. IRS-aid NOMA for EH relaying networks.

that uses the DF approach to forward the relay’s received
signal to destination users.

The number of relay nodes in a cluster includes K nodes.
In particular, relay selection strategies rely on channel state
information (CSI ) to select the most reasonable relay node.
We also investigated several relay node selection strategies
listed by formula (2)(3)(4).

Currently, two popular techniques in physical layer secu-
rity are applied to reduce the influence of eavesdroppers,
which are artificial noise (AN) and jamming [40]. In this
research, we consider the case of exploiting AN,meaning that
the selected relay will transmit additional AN with different
transmitting power levels. In this study, we assume that the
AN technique is applied at the selected relay using pre-coding
technology, and the AN signal is embedded in the transmitted
signal to improve the system’s secrecy performance.

In the second phase, the intelligence reflective surface is
deployed to improve the transmission environment by reflect-
ing the incident signal from the selected relay (Rb) to the IRS
elements. The IRS planar comprisesM separate elements that
are re-configurable passive units. Each element can induce
a change in amplitude and phase for the incident signal.
Adjusting the phase-shift variable and amplitude-reflection
coefficient to each element independently can enhance the
link quality and boost the coverage considerably [47].
In this study, we focus on improving the secrecy perfor-

mance of the NOMA system in total, including the secrecy
data rate sum of both U1 and U2, by applying the proposed
multi-objective optimization approach and controlling the

phase shift of IRS elements. Thus, we don’t consider the
control of phase shift for separate users. As a result, the users’
received signal is the vector sum of the connections, including
the Rb-users connection and the IRS-users reflected signal.
The terminal users include the legal users and one illegal
node. Terminal legal devices use successive interference can-
cellation (SIC) technology to decode their signals, while the
eavesdropper, we consider both cases using SIC and not. The
SIC technique is an effective candidate to decode the super-
posed information at each NOMA receiver. The SIC receiver
first decodes the stronger signal, subtracts it from the com-
bined signal, and isolates the weaker one from the residue.

In the following subsections, we present our proposed
system’s mathematical model, signal transmission model,
and signal-to-noise ratio model.

A. CHANNEL MODEL
Consider every part of the system to be in the same cell. There
are two wireless propagation stages in the system. First, the
link between the BS and the relay cluster, with the distance
denoted by d0. Assume there are obstructions and no line of
sight (LoS) links in the transmission space connecting the
BS to the relay. The channel is a Rayleigh block fading that
is identical and independent. Let’s denote hk as the channel
coefficient of the link between the BS and the kth relay in the
K-Relays cluster hk ∼ CN (0, δ2Rk ), with k = 1, 2, . . . ,K .
CN (0, δ2Rk ) is the complex Gaussian distribution and δRk =

d−ν/2
0 where ν is the path loss exponent
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The second radio propagation stage is between the selected
Relay (Rb) and the users. Here, we investigate the cases of
systems with IRS (including M > 0 elements in the IRS
planar) and systems without IRS. In the case of a system
without IRS, it is considered a specific case of using IRS
with the number of elements M = 0. Signals transmitted
from Rb to users via two wireless connections, including the
transmission channel from the relay selected to the users,
denoted by Rb-Users, is described as the Rayleigh fading
distribution.

Denote hbj ∼ CN (0, δ2j ) with j = {1, 2,E} as the channel
coefficient from Rb to users U1, U2, and E in the absence
of IRS support in the proposed system, respectively. Where
δj = d−ν/2

j and ν are the path loss, dj is the distance between
Rb to U1, U2, and E, respectively.
When an IRS-using system is present, the Rb-IRS-Users

and Rb-Users connection signals are added to form the
received signal at the users. The Rb-IRS-Users link consists
of incident signals from Rb to IRS elements (Rb-IRS)
and reflected signals from IRS elements to users (IRS-
Users). Both Rb-IRS and IRS-Users connections have LoS
components and Rice fading distribution as

g = δmi

(√
Kg

Kg + 1
gLoS +

√
1

Kg + 1
gNLoS

)
.

Here g ∈ G =
{
gkm, gmj

}
, j = { 1,2, E} , m = {1, 2, ..,M}

and δmj = d−ν/2
mj , where ν stands for large-scale fading

brought on by path loss, and dmj is the distance between
the IRS and the users. The Rb-IRS channel coefficient,
with distance dkm, is denoted by gkm. Kg, gLoS , and gNLoS

are the Rician factor, LoS, and Non-LoS components of
channel g, respectively. The gLoS and gNLoS components are
i.i.d. complex Gaussian distributed with zero mean and unit
variance. Let ηm represent the reflection amplitude coefficient
and θm stand for the phase shift of themth IRS element, where
0 ⩽ ηm ⩽ 1 and θm ∈ (−π, π].

In this model, we assume that U1 is farther away than
U2 from the source S and that users do not have any direct
links. The location of unlawful user E could be near the relay
cluster, between users, or close to the IRS. Another factor
we’ll look at to determine the ideal IRS placement is where
E is located. The constraints on the channel coefficients are
as follows, presuming the locations of authorized users are as

stated above:

∥∥∥∥ M∑
m=1

gkmηmeiθmgm1

∥∥∥∥2 ≤

∥∥∥∥ M∑
m=1

gkmηmeiθmgm2

∥∥∥∥2
and ∥hk1∥2 ≤ ∥hk2∥2, where hkj with j = {1, 2, E} are
channel coefficient of k th-relay and Uj links.

B. SIGNAL TRANSMISSION
Equation (1) states that the superimposed signal of two
users, with the NOMA power allocation factors α1 and
α2, is broadcast in space to the relay nodes from source
node S. In conventional PD-NOMA, power allocation (PA)
is inversely proportional to the CSI value. Therefore, the
higher fraction of the transmitted power S will be allocated

to the farther user U1. In contrast, the smaller portion of the
transmitted power will be fed to the closer user U2.

xS =

√
α1Px1 +

√
α2Px2, (1)

where xj, j = 1, 2, is the signal ofUj, αj is the power allocated
to xj satisfying α1 + α2 ≤ 1 and α1 ≥ α2 with P is the
transmitted power of S.

At the relay nodes, use relay node selection strategies in
the cooperative network such as best relay strategy, max-min
strategy, and harmonic mean function as the formulas below.
Here, we denote Rb as the selected relay.

- The best relay selection strategy:

{Rb} = k th argmax
1≤k≤K

∥hk∥2. (2)

- Max-min relay rule:

{Rb} = max
1≤k≤K

{
min

(
∥hk∥2, ∥hk1∥2, ∥hk2∥2

)}
. (3)

- Harmonic mean function:

hi =

 3
1

∥hk∥2
+

1
∥hk1∥2

+
1

∥hk2∥2

 , i = 1, 2 . . . ,K

hb = max{hi}, i = 1, 2 . . . ,K , (4)

where ∥·∥
2 is the Euclidean norm for a complex number hi

and hb is the channel coefficients in the ith relay and the
selected relay (Rb).
The following equation gives the superposition signal xS at

Rb:

yRb =

√
Pα1x1hb +

√
Pα2x2hb + n[a]Rb , (5)

where P is transmitted power from BS, hb is the channel
coefficient of the BS - Rb link, and n[a]Rb ∼ CN

(
0, σ 2

aR

)
is

additive white Gaussian noise (AWGN).
We apply a decode-and-forward approach in this proposed

systemmodel at relaying nodes. This indicates that the chosen
relay will interpret the received signal and carry out the signal
relay. Because of the DF protocol, the Rb can transmit the
superimposed signal to destination users with the same power
allocation ratio in the next propagation stage. In this stage,
we assume that the power allocation coefficients for each user
from the selected relay are the same values in the first stage.
Pr is the transmitting power level of the selected relay Rb, and
we have the signal broadcast from the chosen relay as

xRb =

2∑
j=1

√
Prαjxj. (6)

Moreover, to increase the security performance in PLS,
we employ the AN technique at Rb. As a result, the signal
transmitted by the Rb antenna includes the superimposed
signal following the DF process and the artificial noise signal
with the transmit power PAN , which can be expressed as
follows:

xaRb =

2∑
j=1

√
Prαjxj +

√
PAN xAN + naRb , (7)

VOLUME 12, 2024 87365



T. Kieu-Xuan et al.: Multi-Objective Optimization-Based GA in PLS

where naRb is AWGN of the relay antenna, xAN is AN signal
with the power level PAN .

The chosen relay transmits the superposed signals to
destination users via two paths: IRS reflection links and direct
links. As a result, the signal received at Uj with j = 1, 2,E
is made up of a signal reflected by the IRS and directed to
the Rb-Uj link. The scenario of no IRS is distinguished by the
number of IRS elements M = 0. Let denote 2 = diag(θ ) ∈

CM×M with θ = [θ1,θ2, · · · ,θM ]T .
The received signals at the legal destination users are given

as

yU1
=

(
gHkm2gm1 + hk1

)
xRb + nU1

=

(
gHkm2gm1 + hk1

) L∑
j=1

√
Prαjxj + nU1 , (8)

and

yU2
=

(
gHkm2gm2 + hk2

)
xRb + nU2

=

(
gHkm2gm2 + hk2

) L∑
j=1

√
Prαjxj + nU2 . (9)

Additionally, the Eavesdropper node overhears the transmit-
ted signal from the designated relay. The received signal at
location E can be formally expressed as follows:

yE =

(
gHkm2gmE + hkE

)
xRb + nE

=

(
gHkm2gmE + hkE

) L∑
j=1

√
Prαjxj + nE . (10)

C. FORMULATIONS OF SINR
This subsection delineates the methodology for formulating
the Signal Interference Noise Rate (SINR) of the designated
relay (Rb) and the user entities encompassing the legal
destination users and the eavesdropper node.

To begin with, at the intermediate node selected Rb, the
users’ SINR having signals x1 and x2 respectively as the
following

γ
x1
Rb =

Pα1∥hb∥2

P
L∑
j=2
αj∥hb∥2 + N0

, (11)

γ
x2
Rb =

Pα2∥hb∥2

N0
. (12)

where, γ x1Rb and γ
x2
Rb is the SINR of the signals x1 and x2 of the

destination equipment U1 and U2, respectively.αj is a rate of
power allocation for signal xj, with j = 1, 2. hb is the channel
coefficient of the BS − Rb link, and N0 is the AWGNs at Rb.
As Rb applied the DF protocol, before forwarding the

signals in the next phase, Rb had to decode its received signal
successfully, and the SINRs must be greater than a given
threshold.

Subsequently, the NOMA receiver of each user applied the
SIC technique so SINRs of Uj with j = 1, 2 for information
signal of x1 and x2 can be expressed respectively as

- At U1:

γ
x1
U1

=
α1Pr

(∣∣(gHkm2gm1 + hk1
)∣∣)2

α2Pr
(∣∣(gHkm2gm1 + hk1

)∣∣)2 + N0

, (13)

γ
x2
U1

=
α1Pr

(∣∣(gHkm2gm1 + hk1
)∣∣)2

α2Pr
(∣∣(gHkm2gm2 + hk2

)∣∣)2 + N0

. (14)

- At U2:

γ
x1
U2

=
α1Pr

(∣∣(gHkm2gm2 + hk2
)∣∣)2

α2Pr
(∣∣(gHkm2gm2 + hk2

)∣∣)2 + N0

, (15)

γ
x2
U2

=
α2Pr

(∣∣(gHkm2gm2 + hk2
)∣∣)2

N0
, (16)

where h(k)j, j ∈ {1, 2}, is the channel coefficient of theRb−Uj
link, and nUj is the AWGNs at Uj. Since SIC is employed
at NOMA receivers, U2 needs to successfully decode the
information x1 of U1, and following this, U2 abstract the
detected signal x1 and has its own signal x2 while U1 just
decode self-signal.

Finally, we suppose that Eve has a multi-user detection
capability. In particular, parallel interference cancellation
(PIC) is employed at eavesdropping equipment to decode the
superposed signal of legal users. Because Eve doesn’t know
information about AN, the received SINRs at Eve to detect
Uj’s message can be written as follows

γ
x1
E =

α1Pr
(∣∣(gHkm2gmE + hHkE

)∣∣)2
(α2Pr + PAN )

(∣∣(gHkm2gmE + hHkE
)∣∣)2 + N0

, (17)

γ
x2
E =

α2Pr
(∣∣(gHkm2gmE + hHkE

)∣∣)2
PAN

(∣∣(gHkm2gmE + hHkE
)∣∣)2 + N0

. (18)

Based on the assumption that the DF protocol would be
applied at the selected relay node, thus the achievable
information capacity of users can be expressed as:

CU1
=

1
2
log

{
1 + min

(
γ
x1
R , γ

x1
U1

)}
, (19)

and

CU2
=

1
2
log

{
1 + min

(
γ
x2
R , γ

x2
U2

)}
, (20)

and

Cx1
E =

1
2
log

(
1 + γ

x1
E

)
, (21)

and

Cx2
E =

1
2
log

(
1 + γ

x2
E

)
. (22)
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III. PERFORMANCE ANALYSIS
In this subsection, we perform the performance analysis
of the proposed system. Here, the parameters to evaluate
the system performance are the security capacity-worst and
the secrecy energy efficiency. SCW means that we based
on the secrecy capacity parameter estimated at each legal
user and optimized the smallest value of this parameter.
For a system like the proposed PD-NOMA that requires
secrecy, setting up system parameters such as user power
allocation, IRS deployment location, and AN interference
power allocation to ensure a given SCW threshold will have
practical significance. Moreover, we also investigate the SEE
performance parameter to assess how energy efficient the
system is to ensure minimum secrecy SCW performance.
To determine the trade-off, we have built a program based
on the NSGA-II algorithm.

To begin with, we present the formula for calculating the
secrecy capacity of legal destination users. Afterward, based
on those users’ formulas, we offer the problem of maximizing
both SCW and SEE functions with some constraints. Finally,
the basic NSGA-II algorithm and the program based on
NSGA-II are figured out to solve the multi-objective function
optimization problem with the same constraints.

A. THE SECRECY CAPACITY/RATE OF THE LEGITIMATES
Firstly, based on the assumption that the DF protocol would
be applied at the selected relay node, the achievable capacity
of xj at each user can be expressed as

CU1
=

1
2
log

{
1 + min

(
γ
x1
R , γ

x1
U1

)}
, (23)

and

CU2
=

1
2
log

{
1 + min

(
γ
x2
R , γ

x2
U2

)}
, (24)

and

Cx1
E =

1
2
log

(
1 + γ

x1
E

)
, (25)

and

Cx2
E =

1
2
log

(
1 + γ

x2
E

)
. (26)

where CUj , C
xj
E are symbols of the information capacity of Uj

and E, respectively.
Next, considering the presence of an eavesdropper, the

PD-NOMA proposed system, which includes the legitimate
link capacity, is the capacity between the legitimate transmit-
ter and the legal user. In contrast, the capacity of the illegal
link is the capacity between the confident transmitter and
the eavesdropper. In addition, [25] showed that the definition
of secrecy capacity (SC) presents the capacious difference
between the legal and eavesdropping links. The secrecy
capacity of LUs denoted by SCUj is given as the following
formulas

SCU1
=
[
CU1

− Cx1
E

]+
, (27)

and

SCU2
=
[
CU2

− Cx2
E

]+
. (28)

where [x]+ = max {x, 0} means that if CUj ≤ C
xj
E then

SCUj = 0 .
The physical meaning of secrecy capacity is that the upper

bound of the transmission rate that satisfies the criteria of
reliability and secrecy may be determined.

B. THE WORST SECRECY CAPACITY OF THE SYSTEM
First, we will find the worst secrecy rate, which means the
minimum secrecy capacities at the destination users.

SCW = min
{
SCU1 , SCU2

}
= min

{[
CU1 − Cx1

E

]+
,
[
CU2 − Cx2

E

]+}
=

1
2
min
∣∣∣log {1 + min

(
γ
x1
R , γ

x1
U1

)}
− log

(
1 + γ

x1
E

)∣∣∣ ,∣∣∣log {1 + min
(
γ
x2
R , γ

x2
U2

)}
− log

(
1 + γ

x2
E

)∣∣∣


=
1
2
min



∣∣∣∣∣log
{

1+min
(
γ
x1
R ,γ

x1
U1

)
1+γ

x1
E

}∣∣∣∣∣ ,∣∣∣∣∣log
{

1+min
(
γ
x2
R ,γ

x2
U2

)
1+γ

x2
E

}∣∣∣∣∣

 . (29)

Afterward, using equation (29), we have the maximization
problem of SCW under multiple constraints for both cases
without IRS and IRS-aided transmission, which can be
formulated as below. Here Q denotes to the none-IRS and
IRS-aided cases.

Maximization SCW︸ ︷︷ ︸
α1,α2
θm∈(−π,π ]

= Max
{
min

{
SCQ

U1
, SCQ

U2

}
}︸ ︷︷ ︸

α1,α2
θm∈(−π,π ]

,

(30a)

subject to : (30b)

min
(
γ
x1
R , γ

x1
U1

)
≥ γ01

′

min
(
γ
x2
R , γ

x2
U2

)
≥ γ02, (30c)

α1 + α2 ≤ 1, (30d)

α1 > α2. (30e)

Here, γ0j is the threshold at which signal information can be
decoded successfully. And then, we figure out the boundaries
of the variables αj, j = 1,2 based on the constraint (30b
and 30c) of the problem (30a). Considering multi-constraint
conditions (30b)-(30c) in which the first constraint (30b) is
non-convex. The two both case of α1 and α2 are presented by
Lemma 1 and Lemma 2 as follows:
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Lemma 1. The boundaries of the α1, α2 in the without IRS
case can be expressed as follows:

γ02γ01

min
(

1
ψ1
,

∥hk2∥2
ψ2

) + γ01max
{
ψ1,

ψ2

∥hk1∥2

}
≤ α1 < 1,

and
γ02

min
(

1
ψ1
,

∥hk2∥2
ψ2

) ≤ α2 < 1, (31)

here ψ1 =

(
P∥hk∗∥2
N0

)−1
and ψ2 =

N0
Pr
.

Proof. See in Appendix A
Lemma 2: The boundaries of the α1, α2 in the IRS-aided

case can be calculated as
γ02γ01

min

(
1
ψ1
,
(|(gHkm2gm2+hHk2)|)

2

ψ2

)+

γ01max
{
ψ1,

ψ2(∣∣(gHkm2gm1+hHk1)∣∣)2
}
 ≤ α1 < 1,

and
γ02

min
(

1
ψ1
,

(∣∣(gHkm2gm2+hHk2)∣∣)2
ψ2

) ≤ α2 < 1, (32)

here ψ1 =

(
P∥hk∗∥2
N0

)−1
and ψ2 =

N0
Pr
.

Proof. See in Appendix B

C. THE SECRECY ENERGY EFFICIENCY OF THE SYSTEM
The SEE is defined as the ratio between the achievable
secrecy sum rate to the total consumed power of the NOMA
system [44], and it can be expressed as

SEE = SSR/Ptotal (33)

Here, SSR is the sum secrecy rate, and Ptotal is the total power
consumption. Sum secrecy rate of U1 and U2 as

SSRQ = SCQ
1 + SCQ

2 (34)

hereQ={none-IRS, IRS-aided}. Next, we consider the power
assumption of the proposed system model in two cases,
including without IRS and IRS-supported cases.

In the case without IRS, the consumption of power is
calculated as

P
[
IRS

]
total =

(
P1 + P2 + PcU1 + PcU2

)
+ PcBS + (PcR + Pr )

=
(
α1P+ α2P+ PcU1 + PcU2

)
+ PcBS + (PcR + Pr )

(35)

Pcx with x = [U1,U2,BS,R] as circuit power at each node
In the case of IRS-supported transmission, the consumption
of power is formulated as

P[IRS]total =

[ (
P1 + P2 + PcU1 + PcU2

)
+

PcBS + (PcR + PR)+M × PcIRS

]
=

[ (
α1P+ α2P+ PcU1 + PcU2

)
+PcBS + (PcR + PR)+M × PcIRS

]
. (36)

Then, the secrecy energy efficiency of the proposed system
can be expressed as

SEE =
SSR[Q]

P[Q]total

, (37)

Maximization SEE︸︷︷︸
α1,α2
θm∈(−π,π ]

= Max
SSR[Q]

P[Q]total

, (38a)

subject to :

min
(
γ
x1
R , γ

x1,q
U1

)
≥ γ01,

min
(
γ
x2
R , γ

x2,q
U2

)
≥ γ02,

(38b)

α1 + α2 ≤ 1, (38c)

α1 > α2. (38d)

These constraint conditions (38b)-(38d) are similar in maxi-
mizing the secrecy data rate.

D. NSGA-II BASED PROGRAM FOR ALLOCATION POWER
POLICY IN THE PDNOMA-IRS DOWNLINK SYSTEM WITH
AN EAVESDROPPER
1) NSGA-II STANDARD
Multi-objective optimization problems (MOPs) in the domain
of science and engineering [45] are the approaches to handle
multiple objectives simultaneously, where the objectives are
usually inharmonious, resulting to an intractable task in
obtaining a well-balanced agreement for each objective.

NSGA-II is one of the well-known effective techniques
for handling MOPs. Its non-dominated solutions are said to
be Pareto optimal solutions. Figure 2 illustrates the basic
flowchart of that algorithm.

The main idea behind the Pareto NSGA-II is to find the
Pareto front, also called the Pareto set or non-dominated
solutions, that corresponds to a set of optimal solutions.
All objectives are appropriately balanced while remaining
unaffected by a non-dominated solution. In other words,
Pareto dominance compares each answer x with all the other
solutions in the population until one of them takes the lead.
If no solution dominates x, the NSGA-II designates x as
non-dominated and selects it as one of the Pareto fronts.

Assume that we maximize a set of objectives fi, i =

1, . . . ,m a solution x dominates xi if ∀ i fi(xi) ≤ fi(x) and
∃ j|fj(xi) < fj(x).
The first step in NSGA-II is randomly creating the

initial population P0 of individuals encoded using a specific
representation. Then, genetic operations such as crossover
and mutation form a child population Q0 from the parent
population P0. Both populations are merged to form the next
generation, and a subset of individuals is chosen based on the
dominance principle. This process will be repeated until the
last iteration meets the stop criterion.

For each solution, a crowding distance is also computed by
determining the distance to the nearest solutions along each
objective function. The crowding distance is then utilized to
modify each solution’s fitness.
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FIGURE 2. The flow chart of NSGA -II algorithm.

2) NSGA-II BASED PROGRAM FOR ALLOCATION POWER
POLICY IN THE PDNOMA-IRS DOWNLINK SYSTEM
We designed a dynamic power allocation program for
our proposed model, employing the NSGA-II standard
algorithm [46]. The objective is to maximize both the
secrecy energy efficiency and the secrecy capacity of legal
users within the PDNOMA-IRS downlink system. In this
context, the eavesdropper simulates infiltration, utilizing a
jammer to transmit a jamming signal. Our assumptions
include constant circuit usage for the system’s components,
as well as a constant power dissipation for each IRS element.
Consequently, power consumption is directly proportional to
the number of IRS elements in our system, contrasting with
the scenario lacking IRS. Algorithm 1 describes the program
in further depth.

Overall, the program includes steps based on the steps of
the NSGA-II algorithm to find solutions so that both the SEE

Algorithm 1 The Program of SCW and SEE Maximization
Based on NSGA-II (SCENSGA-II)
Input: SCW , SEE , pop− size, iter
Output: PF
Initialize: population P0 including α1 and α2 according to
the constraint formula (30b)-(30d) or (38b)-(38d), and in
the range [0, 1]. The phase shift θm of each IRS element is
assumed to follow a linear algorithm [43] and in the range of
[−π, π].
Call FNDS
Create offspring populations by GA
While (t < iter)
t = t + 1
Combine parent and offspring populations
Call FNDS
Call CDC
Updating P(t)
Storing PF
CCO follows formula (40)
Create offspring populations by GA

End While
Return PF

and SCW objective functions reach the maximum value with
several given constraints according to problems (30a)-(30d)
and (38a)-(38b), respectively.

In the initialization step, the proposed system’s parameters
are assigned and the population is randomly initialized.
In particular, system parameters are set for macro-cell
indoor/outdoor systems, and the population is randomly
generated in the range of variable power allocations for each
legal user.

Following this, to sort the FNDS, it is necessary to
calculate objective functions SCW and SEE based on formula
functions (30a) and (38a) and the procedure FNDS is called.
In Algorithm 2 presents FNDS inmore detail. Next, selection,
crossover, and mutation are performed to create an offspring
population.

In the subsequent stage, the loop whose termination
condition is the given iterations to find solutions, including
SEE and SCW. If the termination is not satisfied, the
process of finding SEE and SCW is repeated based on
the NSGA-II algorithm, including combining parent and
offspring populations, FNDS procedure and CDC procedure,
implementing CCO, and using genetic techniques to create
the next generation.While FNDS is presented in Algorithm 2,
we also present about CDC in Algorithm 3 and CCO in
formula (40). Regarding to CDC, this procedure is intended
to determine the sum of Euclidean distances from each
individual to two neighboring solutions in each front to
assess the density of solutions surrounding the solution under
consideration in the following manner:

CDPi =

∑
9∈{SCW ,SEE}

9(Pi+1) −9(Pi−1)
9max −9min

, (39)
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Algorithm 2 Fast Non-Dominated Sorting Procedure
(FNDS)
Input: P(x)
Output: f (k)

for p ∈ P(x):
Init Dp = ∅ is the set containing all the individuals that

are dominated by p
Init np = 0 is the number of individuals that dominated

p
for q ∈ P(x):
if p dominates q:
Dp =Dp ∪ qAdd q to the set of solutions dominated

by p
else
np=np + 1 Increment the domination counter of p

end
if np == 0: p belongs to the first front
f (1) = f (1) ∪ p
prank = 1

end
k = 1 Initialize the front counter
while f (k) ̸= ∅

H = ∅

for p ∈ f (k)
for q ∈ Dp
nq = nq − 1
if nq = 0: q belongs to the next front
qrank = k + 1
H = H ∪ q

k = k + 1
f (k) = H

Return f (k)

where CDPi is the crowding distance of individual Pi,
9max and 9min are the maximum and minimum of the
fitness values, respectively, when using the objective function
9, 9 ∈ {SCW , SEE}. CDC is shown in further detail in
Algorithm 3. With CCO, this is an operator that is applied in
the selection process of the algorithm to obtain a uniformly
spread-out Pareto optimal front. The CCO is defined in a
partial order as follows:

p dominates q if qrank < prank
or((prank == qrank )

and(CDp > CDq)), (40)

where every individual p in the population has two attributes,
those are non-domination rank prank and crowding distance
(CDp). In the context of differing non-domination ranks
between two solutions, a preference is accorded to the
solution possessing the lower (superior) rank. Alternatively,
when both solutions pertain to the same front, preference is
given to the solution in a less crowded region.

Finally, when the termination condition is met, the output,
including the two Pareto-optimal fronts of the SEE and SCW
functions, is printed.

Algorithm 3 Crowding Distance Calculator Procedure
(CDC)
Input: f (k)
Output: CDPi

Assign j is the number of individuals in f (k)
for i in range (j):
Init CDPi = 0
Init CDP1 = CDPj = ∞

Caculate CDPi using (39)
end
Return CDPi

Upon securing a collection of non-dominated solutions,
an inquiry arises regarding how a decision-maker can
refine the set to encompass only a limited number or
a singular solution. This deliberative process pertaining
to multi-objective problems is commonly recognized as
Multi-Criteria Decision Making (MCDM). In the present
investigation, we have utilized the decomposition technique
denominated Augmented Scalarization Function (ASF),
as introduced in the scholarly work referenced as [48]. ASF
is widely recognized within the multi-objective optimization
domain. Its application necessitates the specification of
weights, serving as indicators of the user’s preferences.
These weights are represented by a vector comprising solely
positive floating-point values, whose summation equals one,
and the vector’s length corresponds to the number of
objectives under consideration.

We conduct an assessment of the computational complex-
ity associated with SCENSGA-II. Specifically, our focus lies
on the examination of one iteration within the entirety of the
algorithm [45]. In this regard, we delineate the fundamental
operations, elucidating their respective worst-case complexi-
ties as follows:

• FNDS procedure is g1 = O(nf (2np)2)
• CD procedure is g2 = O(nf (2np)log(2np))
• sorting on CCO is g3 = O(2nplog(2np))

where nf is the number of objective functions, np is the size
of population. The overall complexity of the algorithm is
niter ∗ (g1 + g2 + g3) with niter denotes the iteration of the
algorithm.

The convergence of SCENSGA-II is assessed through a
hypothesis-testing approach. Statistical tests are employed to
scrutinize the presence of a significant difference between
consecutive iterations. Should the observed difference prove
non-significant, the algorithm is deemed to have achieved
convergence. The results obtained from our simulations
provide compelling evidence to assert the convergence of
SCENSGA-II.
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IV. EXPERIMENT AND RESULT ANALYSIS
In this section, we conduct simulations to scrutinize the
attained outcomes by tackling the aforementioned optimiza-
tion challenges concerning the performance metrics of our
proposed system. The primary constituents of this section
encompass the configuration of environmental parameters,
simulation methodologies, analytical scenarios, and an expo-
sition of the experimental findings.

A. DEPLOYMENT OF ENVIRONMENTAL SETTINGS AND
EXPERIMENTAL SCENARIOS
In this manuscript, the simulation outcomes are conducted
using the Matlab and Pycharm software environments,
leveraging a computer configuration boasting 16GB of
RAM and a CPU processing speed of 2.8GHz. To assess
the system’s security robustness, the algorithmic analysis
outlined earlier encompasses two pivotal facets: the system’s
security strength evaluated through its security capacity and
energy efficiency. Specifically, when appraising the security
capacity, the focus lies on the SCW, aimed at enhancing
the system’s security even under the most adverse operating
conditions. To comprehensively scrutinize the proposed
system’s quality, this section delineates various scenarios
outlined in the tabulated format below, alongside the system’s
constants and unchanging parameters.

B. ANALYSIS OF CONVERGENCE, TIME COMPUTATION
In this subsection, we scrutinize the convergence patterns and
computational prowess inherent in our proposed NSGA-II
methodology and alternative approaches, aiming to determine
the most suitable technique for our specific problem domain.
In Figure 3, we analyze the convergence traits of our proposed
NSGA-II algorithm alongside R-NSGA-II. Fundamentally,
R-NSGA-II is derived from NSGA-II; however, its conver-
gence rate demonstrates a slower trajectory than NSGA-II
within our problem domain. Specifically, concerning the
simulation results pertaining to worst-case security capacity,
NSGA-II attains a convergence goal of approximately
100 iterations across three particle size (PAS) variations
(30, 40, 50), while R-NSGA-II achieves a convergence point
of around 200 iterations. Similarly, in the context of the
experimental results for energy efficiency SEE analysis,
NSGA-II exhibits a swifter convergence in contrast to
R-NSGA-II.

Additionally, Table 2 elucidates the computational time
aspects, highlighting NSGA-II as the most efficient,
followed by R-NSGA-II, while exhaustive search (ES)
exhibits the lengthiest computational duration. Specifically,
Table 2 showcases convergence times: R-NSGA-II at
3.0929 seconds reaching convergence by iteration 200,
NSGA-II at 0.24957 seconds achieving convergence by iter-
ation 80, and ES at 40000 seconds. Computational efficiency
is paramount in wireless communication paradigms, partic-
ularly in real-time communication scenarios. Consequently,
to satisfy the stringent transmission time requisites, NSGA-II

emerges as the most fitting solution for our proposed system
dealing with multi-objective optimization challenges.

Furthermore, insights from Figure 3 reveal that NSGA-II
exhibits superior convergence outcomes across both metrics,
namely SCW and SEE, compared to R-NSGA-II. In Figure 3,
NSGA-II attains convergence values of approximately 1.5 for
SCW and 0.95 for SEE, whereas R-NSGA-II reaches
1.3 for SCW and 0.92 for SEE. This comparative analysis
underscores NSGA-II’s superior performance across both
SCW and SEE metrics, indicating its efficacy in delivering
enhanced results in these performance criteria.

In conclusion, based on the foregoing analysis, our
proposed NGSA-II algorithm for addressing the SCW and
SEE challenges within the NOMA/IRS model exhibits
significantly improved computational efficiency compared
to both R-NSGA-II and ES algorithms while concurrently
upholding the system’s security integrity. Consequently,
in the ensuing experimental scenarios, our primary focus
lies in meticulously examining the security integrity of
our proposed system. These examinations will specifically
investigate the impact of critical system parameters by
employing the NGSA-II algorithm.

From the above analysis, we realize that NSGA-II is
a potential candidate for addressing the multi-optimization
problem for our proposed system model compared to
RNSGA and ES methods. Thus, in the following experimen-
tal scenarios, we focus on results that apply NSGA-II.

C. THE PARETO FRONT OF SEE VERSUS SCW
This section explores the variability in confidentiality per-
formance concerning decision-making alterations for two
fundamental functions within our proposed model, SCW and
SEE. Employing NSGA-II, a multi-objective optimization
algorithm, we aim to derive solutions for both functions
concurrently, denoted as SCW and SEE , respectively. In the
realm of multi-objective optimization problems, there exists
no assurance that a singular solution will optimize each
objective simultaneously, leading to what is termed as
conflicting objective functions. Various terms, such as non-
dominated, Pareto optimal, and Pareto efficient, characterize
solutions wherein none of the objective functions can
be enhanced without compromising the values of other
objectives.

In this section, we present graphical representations
delineating solution sets encompassing the SCW and SEE
functions, forming what is known as the Pareto front,
in scenarios involving IRS (with a quantity of IRS elements
M = 10) and without IRS (M = 0) and in both the cases
PAN = Pr , as depicted in Figures 4a and 4b, respectively.
To begin with, we can see that the two figures have the
same trend, wherein SCW attains its maximum value while
SEE reaches its minimum and vice versa. To get more
clarity, we only analyze Figure 4a, and Figure 4b is similar.
We consider three solutions S1, S2, and S3 in Pareto front
(PF), taken in the feasible solution space. At solution S1,
SEE grows to around 7.328, then SCW will decrease and
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FIGURE 3. Convergence behavior of NSGA-II and R-NSGA-II on SCW and SEE.

TABLE 1. Time computation (in seconds).

reach a limit with a value of around 3.455 and can not be
declined further. Meanwhile, when the SEE value reduces to
6.834, the SCW value will increase to around 3.613 solution
S3. The results depict that if the design option favors SEE
optimization then solution S1 should be chosen. Conversely,
if the option priors to SCW optimality, the appropriate
candidate should be the S3 solution, or if the balance is
between SEE and SCW, solution S2 (3.535 and 7.083)
is the best candidate. Generally speaking, this delineation
encapsulates the trade-off between the security cost per user
and the system’s energy efficiency.

Furthermore, using IRS yields superior SCW and SEE
values, figure 4b, for the system compared to scenarios where

IRS is not employed, Figure 4b. The SEE and SCW values
in the IRS-aided cases get around 8.224 and 3.824, while the
values in the no IRSmodel are, in turn, about 7.328 and 3.455.

D. IMPACTS OF THE NUMBER OF IRS ELEMENTS ON SCW
AND SEE WITH RELAYING SELECTION METHODS
In this subsection, we explore the impact of varying the
quantity of IRS elements on the performance metrics—
specifically SCW and SEE—within our proposed system
in considering different relay selection methods. These
experimental investigations involve configuring key system
parameters, as outlined in Table 1, including the distance of
the Relay-Eavesdropper link set at dRE = 20 meters. Before
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FIGURE 4. The Pareto front of SEE vs SCW with non-IRS (a) and IRS-aided (b) models.

considering the effects of the number of IRS elements on
SCW and SEE, we investigate the system model’s efficiency
with the IRS’s assistance. This experiment result is presented
in Figures 5a and 5b. It can be seen from Figure 5 three
kinds of models are examined: the first model includes
the assistance of the IRS in the presence of a direct link
of Relay-Users; the second model includes the IRS in the
absence of a direct link of Relay-Users because of obstacles;
the final model with the direct link of Relay-users without
the assistance of IRS. Figure 5 shows that the first model

offers the best performance in SCW and SEE compared
to other models, and the third model provides the worst
secrecy performance. Clearly, our proposed algorithm for the
multi-objective optimization problem for the system model
with IRS can improve the secrecy performance on both SCW
and SEE. Thus, our proposed system model in Figure 1
gets better secrecy performance and energy efficiency when
deployed.

Figure 6 shows the effects of the number of IRS
elements on our proposed system’s SCW (a) and SEE (b).
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FIGURE 5. The effects of kinds of system models on SCW (a) and SEE (b) versus the
threshold of bit rate.

From Figure 6, selecting the number of IRS elements
for deployment within a network emerges as a pivotal
consideration, exerting significant influence on system per-
formance. Notably, low and high quantities of IRS elements
significantly affect the SEE metric of the proposed system.
Optimal SEE is achieved with a judicious number of IRS
elements. Figure 5a illustrates that within a range of 10 to
90 IRS elements, both SEE and SCW metrics demonstrate
higher values. However, with the number of IRS elements
beyond approximately 100, SEE experiences a decline toward
smaller values. Hence, identifying an appropriate quantity

of IRS elements becomes imperative to enhance system
performance and mitigate deployment expenses. Moreover,
selecting the IRS element quantity for system deployment
warrants careful evaluation, considering both implementation
costs and the resultant system quality. In the context of
our proposed security system, it becomes evident that
maintaining a specific range of IRS elements leads to
heightened security quality.

Moreover, Figure 6 illustrates the efficacy of the imple-
mented transition node selection methodologies within our
proposed model. Under the system parameters delineated in
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FIGURE 6. Effects of IRS elements’ number and the strategies of relay selection on SCW
(a) and SEE (b).

Table 1, it becomes apparent that the best relay node selection
and the harmonic mean function techniques yield superior
results. Notably, instances where the relay node experiences
the worst transmission channel result in diminished security
quality across SEE and SCW metrics. These findings allow
for assessing security quality thresholds on both indicators
within this system, highlighting the average lowest and
highest thresholds within the range of 0.3 to 1.5.

E. IMPACTS OF LOCATIONS OF EAVESDROPPER AND IRS
ON SCW AND SEE
Figures 8 and 9 illustrate the impact of the eavesdropper
node’s positioning and the placement of the IRS within our
proposed system. The foundational parameters governing
the system configuration are detailed in Table 1 within
Section IV-A. Analysis of the figure reveals that the proximity
of the eavesdropping node to the relay network directly
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FIGURE 7. The number of IRS elements and three relay selecting strategies affect SCW
(a) and SEE (b).

influences the security efficacy of the system, leading to
reduced measurements in both SCW and SEE. This outcome
is attributed to the eavesdropping node’s closer proximity
to the relay network, resulting in heightened signal strength
interception. Conversely, as the eavesdropping node moves
farther away, there is an observable increase in both SCW
and SEE values. Because of the NSGA-II application, when

the E is positioned at a specified farthest distance, SCW and
SEE reach a threshold value.

Regarding the position of the IRS concerning the relaying
network, it is observed that when the IRS is distant from
the relaying network, both SCW and SEE values decrease.
However, the system’s quality improves within 10-15 meters
of IRS-Relay distance. These results, achieved through the
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FIGURE 8. The location of the Eavesdropper and the IRS on SCW (a) and SEE (b).

application of NSGA-II, optimize the security quality of
the system in terms of both SCW and SEE. In practical
system deployment, carefully considering the IRS placement
is crucial to attaining optimal security quality.

Both Figures 8 and 9 consistently demonstrate, given the
established channel values detailed in Table 1 of Section IV-A

and varying distances, that the method of selecting relay
nodes achieves varying degrees of effectiveness. Specifically,
the best relay selection method proves most efficient,
followed by the max-min and harmonic approaches, and
finally, the lowest secrecy performance in selecting the
worst relay method. The descriptions provided in Figures 4
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FIGURE 9. The location of the Eavesdropper and the IRS on SCW (a) and SEE (b).

and 5 afford insight into the operational thresholds of the
system based on two security quality indices: SCW and SEE.
Concretely, for SCW, the average threshold in this experiment
ranges from 0.5 to 3.75, while for SEE, it falls within the
range of (1.2 to 4.2).

F. EFFECTS OF THE STRENGTH OF ARTIFICIAL NOISE ON
SCW AND SEE
In this section, we analyze the impact of artificial noise AN
on both metrics of secrecy performance as SCW and SEE
in scenarios with and without the IRS’s assistance. Three
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FIGURE 10. Effects of the strength of artificial noise on SCW (a) and SEE (b).

power levels of artificial noise are investigated: the absence
of artificial noise (PAN = 0), PAN = 0.5 Pr , and PAN = Pr .
Figures 7a and 7b show that the system employing an IRS
exhibits significantly higher SCW and SEE than the system
without IRS support. The solid lines represent the IRS-aided
scenario, while the dashed lines depict the non-IRS scenario.

Furthermore, both SCW and SEE demonstrate higher
values when employing artificial noise AN with increased
levels. Particularly, when the system operates without arti-
ficial noise, despite utilizing an IRS, the system’s security
quality is lower than the scenario without an IRS but
with the transmission of artificial noise. This implies that
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FIGURE 11. Impacts of SNR at Eavesdropper on SCW (a) and SEE (b).

a combination of IRS and artificial noise is necessary to
enhance the system’s security capacity.

G. EFFECTS OF SNR AT EAVESDROPPER ON SCW AND SEE
Figures 9a and 9b investigate the influence of SINR at the
eavesdropping node on SCW and SEE. This examination
scrutinizes the impact of this parameter on scenarios with and

without IRS support, distinguished by clear, direct lines, and
clean lines on the graph, respectively.

In a broader context, the system applying the IRS
consistently demonstrates improved SCW and SEE metrics.
Specifically, focusing on SCW values, an increase in SNR at
node Eave leads to a decrement in SCW. Notably, in instances
without transmitting AN (PAN = 0), SCW experiences a
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sharp decline, reaching values lower than when the system
operates without IRS.

Conversely, SEE at low SNR values at node E (less
than 50 dB) diminishes as PAN power escalates. As the
SNR at E exceeds 50 dB, SEE exhibits variable values
with different PAN settings. However, in scenarios without
AN, there is a notable reduction in SEE, dipping below
the values observed when the system operates without IRS.
Given the distinct trends observed in SCW and SEE, ensuring
reasonable security capacity for each user requires a trade-off:
diminishing the system’s SEE. The system’s amalgamation of
IRS and AN enhances overall security while balancing these
metrics.

V. CONCLUSION
In this paper, we have investigated and analyzed the secrecy
performance of the proposed system in the presence of
eavesdroppers through two metrics: secrecy capacity and
energy utilization. Specifically, the system’s architecture
included a cooperative NOMA framework in a multi-relaying
network coupled with the IRS support implementation. The
application of the IRS enhances the strength of the received
signal for the destination users and mitigates the impact of
eavesdropping nodes. To improve security quality across both
evaluated metrics of the proposed system, we proposed the
NSGA-II and R-NSGA-II algorithms to effectively address
the multi-objective problem: optimizing the system’s security
quality while ensuring security capacity and enhancing the
system’s energy efficiency. Moreover, this paper investi-
gated the impact of four relaying selection approaches to
find the most suitable method for the proposed system.
Furthermore, the effectiveness of the proposed algorithms
and the influence of crucial system parameters have been
examined in experimental scenarios. The findings underscore
the computational efficiency and confidentiality efficacy of
NSGA-II in comparison with R-NSGA-II and the ESmethod,
both in scenarios involving IRS assistance and those without
IRS. Finally, simulated outcomes ascertain the superior
performance of the NOMA-relaying network integrated with
IRS compared to IRS-absent system configurations.

APPENDIX A
PROOF OF LEMMA 1
Find the boundaries of α1 and α2 in the case of non-IRS
system

This appendix provides the detailed proof for Lemma 1.
To simply the presentation, we denote

X = ∥hk∥2,Y =

∥∥hkj∥∥2,
(∥∥∥∥∥

M∑
m=1

gkmηmeiθmgmj + hkj

∥∥∥∥∥
)2
.

By substituting equations (16)-(20) SINR in con-
straint (29.1) as min

(
γ
x1
R , γ

x1,noIRS
U1

)
≥ γ01 and

min
(
γ
x2
R , γ

x2,noIRS
U2

)
≥ γ02.

We will consider the first constraint as

min

(
Pα1∥hk∗∥2

Pα2∥hk∗∥2 + N0
,

Prα1∥hk1∥2

Prα2∥hk1∥2 + N0

)
≥ γ01,

⇔


Pα1∥hk∗∥2

Pα2∥hk∗∥2 + N0
≥ γ01

Prα1∥hk1∥2

Prα2∥hk1∥2 + N0
≥ γ01

⇔



Pα1
N0

∥hk∗∥2

Pα2
N0

∥hk∗∥2 + 1
≥ γ01

Prα1
N0

∥hk1∥2

Prα2
N0

∥hk1∥2 + 1
≥ γ01

⇔


Pα1
N0

∥hk∗∥2 ≥ γ01
Pα2
N0

∥hk∗∥2 + γ01

Prα1
N0

∥hk1∥2 ≥ γ01
Prα2
N0

∥hk1∥2 + γ01

⇔


α1 ≥ γ01α2 + γ01

N0

P∥hk∗∥2

α1 ≥ γ01α2 + γ01
N0

Pr∥hk1∥2

⇔


α1 ≥ γ01α2 + γ01max

{
N0∥hk∗∥2

P
,
N0∥hk1∥2

Pr

}
α2 ≤

α1

γ01
− max

{
N0

P∥hk∗∥2
,

N0

Pr∥hk1∥2

}
.

For the second constraint, we have:

min

(
Pα2∥hk∗∥2

N0
,
Prα2∥hk2∥2

N0

)
≥ γ02

⇔ α2min

(
P∥hk∗∥2

N0
,
Pr∥hk2∥2

N0

)
≥ γ02

⇔ α2 ≥
γ02

min
(
P∥hk∗∥2
N0

,
Pr∥hk2∥2

N0

)
γ02γ01

min
(
P∥hk∗∥2
N0

,
Pr∥hk2∥2

N0

)
+ γ01max

{
N0

P∥hk∗∥2
,

N0

Pr∥hk1∥2

}
≤ α1.

And then,

α1 ∈

 γ02γ01

min
(
P∥hk∗∥2
N0

,
Pr∥hk2∥2

N0

)
+γ01max

{
N0

P∥hk∗∥2
,

N0

Pr∥hk1∥2

}
, 1
)

α2 ∈

 γ02

min
(
P∥hk∗∥2
N0

,
Pr∥hk2∥2

N0

) , 1
 . (41)

From Eq.41, we can get the boundaries of α1 and α2 in the
case of a non-IRS-aided system, as in Lemma 1.
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APPENDIX B
PROOF OF LEMMA 2
Find the boundaries of α1 and α2 in the case of IRS-aided
system

min

(
Pα1∥hk∗∥2

Pα2∥hk∗∥2 + N0
,

α1Pr
(∣∣(gHkm2gm1 + hHk1

)∣∣)2
α2Pr

(∣∣(gHkm2gm1 + hHk1
)∣∣)2 + N0

)

≥ γ01α1 ∈

 γ02γ01

min
(
P∥hk∗∥2
N0

,
Pr
(∣∣(gHkm2gm2+hHk2)∣∣)2

N0

)
+γ01max

{
N0

P∥hk∗∥2
,

N0

Pr
(∣∣(gHkm2gm1 + hHk1

)∣∣)2
}
, 1

)
And,

min

(
Pα2∥hk∗∥2

N0
,
α2Pr

(∣∣(gHkm2gm2 + hHk2
)∣∣)2

N0

)
≥ γ02

We have the boundaries of α1 and α2:

α1 ∈

 γ02γ01

min
(
P∥hk∗∥2
N0

,
Pr
(∣∣(gHkm2gm2+hHk2)∣∣)2

N0

)
+γ01max

{
N0

P∥hk∗∥2
,

N0

Pr
(∣∣(gHkm2gm1 + hHk1

)∣∣)2
}
, 1

)
,

(42)

and

α2 ∈

 γ02

min
(
P∥hk∗∥2
N0

,
Pr
(∣∣(gHkm2gm2+hHk2)∣∣)2

N0

) , 1
 . (43)

Finally, from Eq.42-43, we can get the boundaries of α1 and
α2 in the case of an IRS-aided system, as in Lemma .
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