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ABSTRACT The differential tracking for a given signal is a well-known and challenging problem in control
theory and practice. In this note, we introduce a novel method to design the differentiators. The proposed
differentiator, in contrast to existing differentiators that take the form of a dynamical system, is represented
through convolutions. This idea is primarily inspired by the mollifier technique, which is well-known in
the theory of partial differential equations. Both the weighted moving average technique and the mollifier
technique are used in the differentiator’s design. By the proper choice of the kernel function, we can obtain
the derivative of the given signal by integrating rather than differentiating the signal itself directly. As a result,
the proposed tracking differentiators can be robust to the high-frequency signals. Although our approach is
simple, it is very effective, both for the real time signals and the time delayed signals.

INDEX TERMS High-gain, mollifier function, tracking differentiator, weighted moving average.

I. INTRODUCTION
The differential tracking for a given signal is a well-known
and challenging problem in control theory and practice.
The differential tracking for a given signal is a well-known
and challenging problem in control theory and practice.
There are a lot of practical applications of the tracking
differentiator in control problems. For instance, although
Proportional Integral Derivative (PID) controller is the most
popular approach in industrial applications, the derivative
action ‘‘D’’ is seldom used in engineering applications due to
its sensitivity to high frequency noise. One feasible method
is to apply the action ‘‘D’’ by the virtue of the tracking
differentiator [2].

There are various methods for differentiating a signal. For
instance, in [3], a finite-time differentiator was proposed
to estimate the inverse period and its derivative, along
with the period and reactivity of the reactor. In [4],
the problem of accurately differentiating a signal with a
bounded second derivative was addressed. It introduced a
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class of fixed-time convergent differentiators capable of
differentiating any signal with a Lipschitz continuous time
derivative within a predefined finite time. To overcome the
limitations of exact differentiators, [5] presented new implicit
and semi-implicit discretization schemes aimed at mitigating
digital chattering induced by incorrect time discretization
of set-valued functions. Additionally, there are several other
approaches to designing differentiators, such as the linear
differentiator [6], the sliding-mode based differentiators [7]
and the adaptive differentiators [8].

Actually, the numerous researches have been done
on differentiation trackers like the super-twisting second-
order sliding-mode algorithm [9], linear time-derivative
tracker [10], robust exact differentiation [11], [12], nonlinear
differentiator [13], [14], [15], the high-gain differentia-
tor [16], [17], [18], and the recent linear differentiator based
on the extended dynamics approach [19], to name just a few.
However, all the tracking differentiators we cite above were
designed for the given signals without time delay.

On the other hand, time delay is everywhere in real
world systems. In [20], due to the inherent process structure
and different positions of sampling instruments, time-delays
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commonly exist between process variables and quality
variables, whichmay distort the original distribution and rela-
tionship in collected data. Therefore, the authors proposed
a novel data-driven industrial quality predictor to overcome
the problem caused by time-delay. And time-delay occurs in
autonomous underwater vehicles [21], a six-phase induction
motor [22], motion tracking of cell puncture mechanism [23]
and so on. Therefore, it is very necessary to design a tracking
differentiator for the signals with time delay.

In this technical note, we will propose the tracking
differentiators for both the real time signals and the time
delayed signals. Our idea, which is different from the tracking
differentiator we cite above, is inspired by the weighted
moving average technical and the mollifier technical. The
weighted moving average has been extensively used by
smoothing random fluctuations in statistics [24], and the
mollifier technical has been extensively used by smooth
approximation in PDE [25]. What we will do is bring the
two technicals together to design the tracking differentiator.
Although our approach is simple, it is very effective, both for
the real time signals and for the time delayed signals.

Throughout this note, v(i)(t) represents the i-th order
derivative of v(t) at time t . Let R and Z be the set of real
numbers and the set of integer numbers, respectively.We note

R+
:= {s ∈ R | s ≥ 0}, (1.1)

Z+ := {s ∈ Z | s > 0} (1.2)

and

∥f (t)∥∞ := sup
t∈[0,∞)

|f (t)|. (1.3)

Sλ[f (t)] represents the dilation scaling of the function f (t),
which is defined by

Sλ[f (t)] := λf (λt), ∀λ > 0. (1.4)

The convolution used in this paper is given by

f1(t) ∗ f2(t) :=

∫ t

0
f1(s)f2(t − s)ds. (1.5)

The remainder of this article is structured as follows.
In section II and section III, we will discuss the tracking
differentiators for the real time signals and the time
delayed signals, respectively. The proposed differentiator,
in contrast to existing differentiators that take the form of a
dynamical system, is represented through convolutions. Both
the weighted moving average technique and the mollifier
technique are used in the differentiator’s design. In section
IV, numerical simulations are presented to illustrate our
theoretical results. Some concluding remarks are given in
Section V.

II. TRACKING DIFFERENTIATOR FOR THE REAL TIME
SIGNALS
Motivated by [25], our tracking differentiator considered in
this note is based on a special weight function, which is given

by

J (t) =

C0 exp
[

1
t(t − 1)

]
, t ∈ (0, 1),

0, else,
(2.1)

where C0 is a positive constant such that∫
∞

0
J (t)dt = 1. (2.2)

It is easy to verify that suppJ (t) ⊂ (0, 1) and

d i

dt i
J (t)

∣∣∣
t=0

=
d i

dt i
J (t)

∣∣∣
t=1

= 0, i = 1, 2, · · · . (2.3)

Before giving our main results, we first have a lemma, which
is very important to the design of the tracking differentiator.
Lemma 2.1: For any i ∈ Z+, suppose that the input v(t) ∈

C i(R+) and ∥v(i)(t)∥∞ < ∞. Then, for any t ∈ [1/λ, ∞),
it follows that∣∣∣∣ d i−1

dt i−1 {Sλ[J (t)]} ∗ v(t) − v(i−1)(t)

∣∣∣∣ ≤
∥v(i)(t)∥∞

λ
. (2.4)

Proof: See Appendix A.

A. THE DESIGN OF THE REAL TIME TRACKING
DIFFERENTIATOR
Our tracking differentiator takes on the following form:

z1λ(t) = Sλ[J (t)] ∗ v(t),

z2λ(t) =
d
dt

{Sλ[J (t)]} ∗ z1λ(t),

z3λ(t) =
d
dt

{Sλ[J (t)]} ∗ z2λ(t),
...

znλ(t) =
d
dt

{Sλ[J (t)]} ∗ z(n−1)λ(t),

(2.5)

where v(t) is the input and ziλ(t) (i = 1, 2, · · · , n) is the
output. The main idea of tracking differentiator (2.5) is that,
the output ziλ(t) can be, through regulating λ, considered as
the approximations of the corresponding v(i−1)(t).
Theorem 2.1: For any i ∈ Z+, suppose that v(t) ∈ C i(R+)

and ∥v(i)(t)∥∞ < ∞. Then, for any t > i/λ, we have∣∣∣ziλ(t) − v(i−1)(t)
∣∣∣ ≤

i∥v(i)(t)∥∞

λ
. (2.6)

Hence, for any given a > 0, we have

ziλ(t) → v(i−1)(t) as λ → +∞ uniformly in [a, ∞). (2.7)

Proof: Applying Lemma 2.1 we have

|z1λ(t)−v(t)| ≤
∥v̇(t)∥∞

λ
, ∀t > 1/λ. (2.8)

A straightforward computation shows that, for t > i/λ,

ziλ(t) =
d
dt

{Sλ[J (t)]} ∗ z(i−1)λ(t)
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=

∫ 1/λ

0
· · ·

∫ 1/λ

0︸ ︷︷ ︸
i

i∏
j=1

Sλ[J (sj)]

v(i−1)

(
t −

i∑
k=1

sk

)
ds1 · · · dsi. (2.9)

According to (2.2), we have∫ 1/λ

0
· · ·

∫ 1/λ

0︸ ︷︷ ︸
i

i∏
j=1

Sλ[J (sj)]ds1 · · · dsi = 1. (2.10)

It then follows from Lagrange’s mean value theorem that∣∣∣ziλ(t) − v(i−1)(t)
∣∣∣

=

∣∣∣ ∫ 1/λ

0
· · ·

∫ 1/λ

0︸ ︷︷ ︸
i

i∏
j=1

Sλ[J (sj)]

[
v(i−1)

(
t −

i∑
k=1

sk

)
− v(i−1)(t)

]
ds1 · · · dsi

∣∣∣
≤

∫ 1/λ

0
· · ·

∫ 1/λ

0︸ ︷︷ ︸
i

i∏
j=1

Sλ[J (sj)]

∣∣∣∣∣v(i−1)

(
t −

i∑
k=1

sk

)
− v(i−1)(t)

∣∣∣∣∣ ds1 · · · dsi

≤
i∥v(i)(t)∥∞

λ

∫ 1/λ

0
· · ·

∫ 1/λ

0︸ ︷︷ ︸
i

i∏
j=1

Sλ[J (sj)]ds1 · · · dsi,

which, together with (2.10) and (2.8), leads to (2.6). So the
proof is complete. □
Remark 2.1: Using (2.9), we have

ziλ(t) =
d
dt
Sλ[J (t)] ∗ · · · ∗

d
dt
Sλ[J (t)]︸ ︷︷ ︸

i−1

∗Sλ[J (t)] ∗ v(t).

So we can get the outputs ziλ(t) by i-times straightforward
convolution. Hence, we can choose the starting time of
the derivative tracking at i/λ instead of zero. Therefore,
(2.6) means that the proposed tracking differentiator is a
non-peaking tracking differentiator and the differentiation
error only depends on one tuning parameter λ.
Remark 2.2: Since (2.2), it is easy to obtain that∫ 1/λ

0
Sλ[J (s)]ds = 1 for ∀ λ > 0. (2.11)

Hence, Sλ[J (t)] can be regarded as a weight function. For
any function f (t), the convolution Sλ[J (t)]∗ f (t) is actually a
weighted moving average of f (t) over the interval [t−1/λ, t].
On the other hand, it follows from (2.9) that

ziλ(t) = Sλ[J (t)] ∗ · · · ∗ Sλ[J (t)]︸ ︷︷ ︸
i

∗v(i−1)(t). (2.12)

Therefore, the tracking output ziλ(t) is the i-times weighted
moving average of v(i−1)(t).
Remark 2.3: From the another point of view, J (t) can be

regarded as a mollifier function, which is used to approximate
the functions in Lploc(R

+), 1 ≤ p < ∞. In PDE, for each
function f ∈ Lploc(R

+), Sλ[J (t)] ∗ f (t) is usually used to
approximate f (t), provided λ is large enough (Theorem 6,
[25], p. 630). Consequently, ziλ(t) also can be regarded as
the i-times mollification of v(i−1)(t) by the mollifier function
J (t).

B. ROBUSTNESS OF THE REAL TIME TRACKING
DIFFERENTIATOR
Just as the statement in Remark 2.2, the outputs ziλ(t)
are actually several special exponentially weighted moving
averages, which has been extensively used by smoothing
random fluctuations. Hence, tracking differentiator (2.5) is
still robust to the high-frequency noise because the high-
frequency noise can be ‘‘average out’’ by several integral
loops. In this subsection, we will study the robustness of
the tracking differentiator (2.5) strictly. For this purpose,
we choose sinusoid signal v(t) = A sin(ωt + φ). Define∫ 1

0
|J (i)(t)|dt := βi, i = 1, 2, · · · . (2.13)

A straightforward computation shows that∫ 1/λ

0

∣∣∣∣ d idt iSλ[J (t)]

∣∣∣∣ dt = λiβi. (2.14)

Using the properties of convolution and (2.5), we deduce, for
t > i/λ,

ziλ(t)

=
d
dt
Sλ[J (t)] ∗ · · · ∗

d
dt
Sλ[J (t)]︸ ︷︷ ︸

i−1

∗Sλ[J (t)] ∗ v(t)

= −
A
ω

∫ 1/λ

0
· · ·

∫ 1/λ

0︸ ︷︷ ︸
i

i∏
j=1

d
dt
Sλ[J (sj)]

cos

[
ω

(
t −

i∑
k=1

sk

)
+ φ

]
ds1 · · · dsi. (2.15)

Consequently, from (2.14) we have

|ziλ(t)|

≤
A
ω

∫ 1/λ

0
· · ·

∫ 1/λ

0︸ ︷︷ ︸
i

i∏
j=1

∣∣∣∣ ddt Sλ[J (sj)]

∣∣∣∣ · ds1 · · · dsi

=
A
ω

i∏
j=1

∫ 1/λ

0

∣∣∣∣ ddt Sλ[J (sj)]

∣∣∣∣ dsj
=
A
ω

λiβ i1 → 0 as ω → ∞, (2.16)
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which means that the tracking differentiator (2.5) is robust to
the high-frequency signals.
Remark 2.4: From (2.6) and (2.16) we see that the tuning

parameter λ in differentiator (2.5) plays a significant role in
convergence and noise tolerance: the larger the λ is, the more
accurate the tracking effect would be, but the more sensitive
the noise would be. This suggests that the choice of parameter
λ in (2.5) is a tradeoff between tracking accuracy and noise
tolerance in practice.
Example 2.1: We choose v(t) = cos t + ξ (t), where ξ (t)

is also the noise of the standard normal distribution with
intension 0.05%. The tracking result by differentiator (2.5)
is plotted in Figure 1, where the parameter is chosen by
λ = 25. It is seen that the high-frequency noise is suppressed
effectively.

III. TRACKING DIFFERENTIATOR FOR THE SIGNALS WITH
TIME DELAY
In this section, we will introduce a tracking differentiator for
the time delayed signals by a directly method. Lemma 2.1 and
the Taylor expansion technical will be used in the proposed
tracking differentiator.

A. DESIGN OF THE TIME DELAYED TRACKING
DIFFERENTIATOR
For any n ∈ Z+ and i = 1, 2, · · · , n− 1, we define

ẑinατ (t)

:=

n−i∑
k=1

1
(k − 1)!

{
dk−1+i

dtk−1+iSαn[J (t)] ∗ v(t − τ )
}

τ k−1,

(3.1)

where τ > 0 is the time delay, and α > 0 is a gain constant.
The main idea of our tracking differentiator is that, with the
time delayed input v(t−τ ), the output ẑinατ (t) can be, through
regulating α and n, considered as the approximations of the
corresponding v(i)(t).
Theorem 3.1: For any given τ > 0. Assume that v(t) ∈

Cn(R+) and

Mn := sup
{
∥v(j)(t)∥∞ j = 0, 1, · · · , n

}
< +∞. (3.2)

Then, for any t ∈ [1/αn+ τ, +∞), it follows that∣∣∣ẑinατ (t) − v(i)(t)
∣∣∣ ≤

Mn

nα
· eτ +

∥v(n)(t)∥∞

(n− i)!
τ n−i. (3.3)

Proof: A straightforward computation shows that, for
t > 1/αn+ τ ,∣∣∣ẑinατ (t) − v(i)(t)

∣∣∣
=

∣∣∣ n−i∑
k=1

1
(k − 1)!

{
dk−1

dtk−1

(
Sαn[J (t)]

)
∗ v(i)(t − τ )

}
τ k−1

− v(i)(t)
∣∣∣

≤

∣∣∣ n−i∑
k=1

1
(k − 1)!

{
dk−1

dtk−1

(
Sαn[J (t)]

)
∗ v(i)(t − τ )

}
τ k−1

−

(
n−i∑
k=1

1
(k − 1)!

v(k−1+i)(t − τ )τ k−1

) ∣∣∣
+

∣∣∣ ( n−i∑
k=1

1
(k − 1)!

v(k−1+i)(t − τ )τ k−1

)
− v(i)(t)

∣∣∣
≤: I1 + I2. (3.4)

From Lemma 2.1 we obtain that, for t > 1/αn+ τ ,∣∣∣∣ dk−1

dtk−1 {Sαn[J (t)]} ∗ v(i)(t − τ ) − v(k−1+i)(t − τ )

∣∣∣∣
<

∥v(k+i)(t)∥∞

nα
; (3.5)

Then,

I1 =

∣∣∣ n−i∑
k=1

1
(k − 1)!

{
dk−1

dtk−1

(
Sαn[J (t)]

)
∗ v(i)(t − τ )

−v(k−1+i)(t − τ )
}

τ k−1
∣∣∣

<

∣∣∣∣∣
n−i∑
k=1

1
(k − 1)!

∥v(k+i)(t)∥∞

nα
τ k−1

∣∣∣∣∣
≤
Mn

nα

n−i∑
k=1

1
(k − 1)!

τ k−1 <
Mn

nα
· eτ . (3.6)

On the other hand, it follows from Taylor expansion that

I2 =

∣∣∣∣∣
[
n−i∑
k=1

1
(k − 1)!

v(k−1+i)(t − τ )τ k−1

]
− v(i)(t)

∣∣∣∣∣
≤

∥v(n)(t)∥∞

(n− i)!
τ n−i, (3.7)

which, together with (3.4) and (3.6), leads easily to (3.3).
So the proof is complete. □

From Theorem 3.1, we are able to obtain the following
Corollary immediately.
Corollary 3.1: For any given τ > 0 and a > τ . Assume

that v(t) ∈ C∞(R+) and

M := sup
{
∥v(j)(t)∥∞ j ∈ Z+

}
< +∞. (3.8)

Then, for each given positive constant α, it has

lim
n→∞

∣∣∣ẑinατ (t) − v(i)(t)
∣∣∣ = 0 uniformly in [a, +∞). (3.9)

B. ROBUSTNESS FOR TIME DELAYED TRACKING
DIFFERENTIATOR
In this subsection, we will study the robustness of the tracking
differentiator (3.1). For this purpose, we choose sinusoid
signal v(t) = A sin(ωt + φ) again. Using the properties of
convolution, we deduce from (2.14) that

d i−1

dt i−1 {Sαn[J (t)]} ∗ v(t − τ )
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=
d i

dt i
{Sαn[J (t)]} ∗

∫ t

0
v(a− τ )da

=
d i

dt i
{Sαn[J (t)]} ∗

A
ω
[cos(φ − ωτ ) − cos(ωt + φ − ωτ )]

=
d i

dt i
{Sαn[J (t)]} ∗

[
−
A
ω
cos(ωt + φ − ωτ )

]
≤
A
ω

∫ t

0

∣∣∣∣ d idt i {Sαn[J (s)]} cos(ω(t − s) + φ − ωτ )

∣∣∣∣ ds
≤
A
ω

∫ 1/αn

0

∣∣∣∣ d idt i {Sαn[J (s)]}
∣∣∣∣ ds

=
A
ω

αiniβi.

That is, for t > 1/αn+ τ , we have

d i−1

dt i−1 {Sαn[J (t)]} ∗ v(t − τ ) ≤
A
ω

αiniβi. (3.10)

On the other hand, it follows from (3.1) and (3.10) that, for
t > τ + 1/αn,∣∣ẑinατ (t)

∣∣
≤
A
ω

n−i∑
k=1

1
(k − 1)!

(nα)k+iβk+iτ k−1

≤
A
ω
(nα)i+1β∗

n−i∑
k=1

1
(k − 1)!

(nα)k−1τ k−1

≤
A
ω
(nα)i+1β∗enατ

→ 0 as ω → ∞, (3.11)

where

β∗ := max {βk k = 1, 2, · · · , n} .

(3.11) means that the tracking differentiator (3.1) is robust to
the small high-frequency signals.
Remark 3.1: Here we emphasize that the larger n is, the

weaker the robustness of (3.1) wound be. In fact, with the
increasing of n, β∗ grows rapidly (For example, by a simple
computation we get β0 = 1, β1 ≈ 5.2, β2 ≈ 44.1, β3 ≈

502.9, β4 ≈ 8.4×103). Therefore, it follows from (3.11) that
the robustness would become quite small provided n is large.
Remark 3.2: From (3.3) we see that the error of approxi-

mation depends only on Mn
nα · eτ and ∥v(n)(t)∥∞

(n−i)! τ n−i. When the

time delay τ is small, ∥v(n)(t)∥∞

(n−i)! τ n−i may become much more
smaller even if n is not very large. For example, if τ = 0.01,
i = 0 and n = 3, ∥v(n)(t)∥∞

(n−i)! τ n−i = 10−6
· ∥v(3)(t)∥∞ ·

1
6 .

On the other hand, Mn
nα · eτ can be absorbed by choosing α

sufficiently large. Consequently, the tracking differentiator is,
at least, effective to the signal with small time lag.
Example 3.1:We choose v(t) = cos t + ξ (t) again, where

ξ (t) is also the noise of the standard normal distribution with
intension 0.05%. The tracking result by differentiator (3.1)
is plotted in Figure 2, where the parameters are chosen by
τ = 0.05 and α = 10. It is seen that the larger n is, the
weaker the robustness is. Although the high-frequency noise
is also suppressed effectively while n = 1, the robustness of
tracking differentiator (3.1) is weaker than (2.5).

FIGURE 1. Red, Ideal derivative signal; Green, Directly differentiate by
Matlab; Blue, Tracking by (2.5).

TABLE 1. Comparisons between Real-Time and High-gain.

IV. NUMERICAL SIMULATION
In this section, we make some numerical simulations for the
proposed differentiators to illustrate the theoretical results.
The numerical code is programmed by Matlab. The step of
time is chosen as dt = 10−4. We compare the proposed
differentiators (2.5) (denoted by Real-Time) and (3.1)
(denoted by Time-Delay with a linear high-gain tracking
differentiator (denoted by High-gain), which is given by

ż1ε(t) = z2ε(t),
ż2ε(t) = z3ε(t),

ż3ε(t) =
6
ε3

[v(t) − z1ε(t)] −
6
ε2
z2ε(t) −

3
ε
z1ε(t),

z1ε(0) = z2ε(0) = z3ε(0) = 0.

(4.1)

In the simulation, the input signal is chosen as v(t) = sin t +

cos 5t .
The derivative tracking results by differentiatorReal-Time

and High-gain are plotted in Figure 3 and Figure 4, respec-
tively. The performance comparisons between the real-time
differentiator and the high-gain tracking differentiator are
given in the following table.

From Figures 3, 4 and the table 1, we see that our tracking
differentiator is much better than the high-gain differentiator.
More concretely, there is no peaking phenomenon takes place
in Figure 3, while, in Figure 4, a serious peaking phenomenon
takes place. In fact, under the premise of ensuring accuracy,
the peak phenomenon of High-gain is inevitable, no matter
how we choose the parameter ε.
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FIGURE 2. Red, Ideal derivative signal; Green, Directly differentiate by
Matlab; Blue, Tracking by (3.1).

FIGURE 3. First and second derivatives tracking by Real-Time: Yellow,
Ideal derivative signal; Black,Tracking by (2.5).

FIGURE 4. First and second derivatives tracking by High-gain: Yellow,
Ideal derivative signal; Red,Tracking by (4.1).

In Figure 5 and Figure 6, v(t) and v̇(t) is tracked by Time-
Delay respectively. The parameters are taken by α = 125,
τ = 0.1 and n = 2.

FIGURE 5. Signal tracking by Time-Delay: Green, Ideal signal; Black,
Time-Delay; Red, error of Time-Delay.

FIGURE 6. First derivative tracking by Time-Delay: Green, Ideal
differential signal; Black, Tracking by Time-Delay; Red, error of
Time-Delay.

It is seen that there is still no peaking phenomenon take
place. Although there is a time delay τ = 0.1, the tracking
performance is satisfactory.

V. CONCLUDING REMARKS
In this paper, two tracking differentiators are proposed by
combining the weighted moving average technical and the
mollifier technical. The first one is a real time tracking
differentiator, and the second one is designed for the signals
with time delay. Both of them are non-peaking tracking
differentiators, and they are robust to the high-frequency
signals. Differentiators are primarily utilized for filtering
and differentiating signals, with myriad applications in
physics. They play pivotal roles in systems like electric
motor control systems, as well as in control systems for
automobiles, aircraft, radar, and GPS positioning systems.
However, the robustness becomes quite small when it is
used to track higher derivatives. What’s more, the tracking
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accuracy can be improved by adjusting the parameters
of the tracking differentiators. Although it is simple, the
tracking performance is very effective for the tracking of first
derivative.

Throughout the entire note, the weight function J (t) plays
a crucial role in all our findings. The effectiveness of
the method depends on the proper selection of the kernel
function, which may be a challenging task. We have deferred
this task to our future work.

APPENDIX
Proof of Lemma 2.1: It follows from (1.4), (2.1) and (2.3) that
suppSλ[J (t)] ⊂ (0, 1/λ) and

d i

dt i
Sλ[J (t)]

∣∣∣
t=0,1/λ

= 0, i = 1, 2, · · · . (5.1)

It then follows that

d i−1

dt i−1 {Sλ[J (t)]} ∗ v(t)

=
d i−1

dt i−1 {Sλ[J (t)] ∗ v(t)}

=
d i−2

dt i−2

{
v(0)Sλ[J (t)] + Sλ[J (t)] ∗ v̇(t)

}
=

i−1∑
k=1

v(k−1)(0) ·
d i−1−k

dt i−1−k {Sλ[J (t)]}

+ Sλ[J (t)] ∗ v(i−1)(t). (5.2)

Therefore, for t > 1/λ, (5.2) becomes

d i−1

dt i−1 {Sλ[J (t)]} ∗ v(t) = Sλ[J (t)] ∗ v(i−1)(t). (5.3)

Taking (2.2) into account, we obtain that, for t > 1/λ,∫ t

0
Sλ[J (s)]ds =

∫ 1/λ

0
Sλ[J (s)]ds = 1, (5.4)

where the variable substitution λs = α is used.
Combining (5.3) and (5.4), we have∣∣∣∣ d i−1

dt i−1 {Sλ[J (t)]} ∗ v(t) − v(i−1)(t)

∣∣∣∣
=

∣∣∣Sλ[J (s)] ∗ v(i−1)(t) − v(i−1)(t)
∣∣∣

=

∣∣∣∣∫ t

0
Sλ[J (s)]v

(i−1)(t − s)ds−

∫ t

0
Sλ[J (s)]v

(i−1)(t)ds

∣∣∣∣
≤

∫ 1/λ

0
Sλ[J (s)]

∣∣∣v(i−1)(t − s) − v(i−1)(t)
∣∣∣ ds. (5.5)

Let λs = α again. From Lagrange’s mean value theorem,
we have∫ 1/λ

0
Sλ[J (s)]

∣∣∣v(i−1)(t − s) − v(i−1)(t)
∣∣∣ ds

=

∫ 1

0
J (α)

∣∣∣v(i−1)
(
t −

α

λ

)
− v(i−1)(t)

∣∣∣ dα

≤
∥v(i)(t)∥∞

λ

∫ 1

0
αJ (α) dα

≤
∥v(i)(t)∥∞

λ
. (5.6)

Combining (5.5) and (5.6), we complete the proof. □
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