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ABSTRACT In the process of controlling infectious diseases, the investment of medical resources is
essential. To address the allocation of medical resources between asymptomatically and symptomatically
infected individuals, we propose a network-based SAIRS quench mean-field model. The stability of the
disease-free equilibrium is proved and the condition for the existence and uniqueness of the endemic
equilibrium is given with the help of Gerschgorin theorem. Numerical simulation results reveal that the
fraction of the final infected population at steady state is an increasing function of the transmission rate
and a decreasing function of the amount of medical resources. We also find the existence of threshold
for the amount of medical resources, such that the disease can be well controlled if it is beyond the
threshold. Moreover, the threshold will become larger as the transmission rate increases. Besides, the optimal
resources allocation strategy is studied. When medical resources are less, allocating all to symptomatic
infected individuals will minimize the fraction of the final infected population at steady state. However,
with the amount of medical resources increases, a near-average distribution between asymptomatically and
symptomatically infected individuals will result in the smallest fraction of the final infected population. Our
results could have practical implications for the allocation of medical resources.

INDEX TERMS Quench mean-field model, dynamics, resources allocation strategy.

I. INTRODUCTION
In order to effectively control infectious diseases, it is
essential to invest and allocate medical resources reasonably.
Otherwise it will cause unnecessary waste of resources,
especially during the stage of diseases outbreak, medical
resources tend to be limited. Some infectious diseases
(e.g. dengue fever, [1], [2] norovirus [3], [4], [5], [6] and
COVID-19 [7], [8], [9] etc.) present asymptomatic infected
individuals (who have no symptoms, but also infectious),
which can also threaten people’s health. The results of
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theseworks suggested that asymptomatic infected individuals
should not be ignored. For the purpose of minimizing the
fraction of infection, how to allocate medical resources
between asymptomatic and symptomatic infected individuals
has become a problem that needs to be solved. And this is
exactly the issue will be addressed in this paper.

The amount of medical resources invested plays an
important factor in the spread and control of infectious
diseases. L.Böttcher et al. established a model which the
recovery of sick individuals depends on the availability of
resources generated by the healthy population. It was found
that if the cost of recovery is higher than a critical cost, the
epidemic would get out of control [10]. Chen et al. found
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that if the amount of invested resources is above a critical
value, the disease can be effectively contained [11]. Based
on a SIS model, Chen et al. solved the optimal medical
resources allocation problem to reduce the prevalence of
disease. It was proved that the outbreak of the epidemic
will be maximally suppressed when the curing rate of each
node is proportional to its degree [12]. Li et al. proposed a
two-epidemic spreading model under the control of public
resources. The resource thresholds of the two diseases and
optimal allocation coefficients were obtained. They found
that when the resources are limited, preferentially control the
disease with lower transmission rate is a better strategy [13].
The optimal resources allocation strategy was found under
convex framework to control the spread of epidemic outbreak
in a given network [14], [15], [16].Wang et al. studied optimal
quarantine measures from the perspective of optimal control,
which provides a broader idea for the allocation of medical
resources [17]. Optimal vaccination and treatment strategies
for a novel SIRS model with time delay are investigated
in [18].

In addition, Jiang et al. studied a two-layer network
model which considers a variable recovery rate related to
resource. The results showed that when the amount of
resource beyond a threshold, the disease may be effectively
eradicated and layer-layer connection strength can transform
the type of phase transition [19]. A two-layer network model
with the interaction between individual resource support
and disease transmission was studied in [20]. The recovery
of infected individuals depends on the resources received
from healthy neighbors and the results showed that there
existed hybrid phase transition and hysteresis loop. Sun
et al. proposed a multilayer network model to study the
impact of resource diffusion on disease transmission in
higher-order networks. It was found that increasing the
diffusion of resources on 2-simplexes can contain the spread
and outbreak of the epidemic [21]. Huang et al. proposed
a coupled resource-epidemic model on a time-varying
multiplex network. The results showed that the stronger the
heterogeneity of activity and the greater contact capacity of
individuals in the resource layer can promote the resource
diffusion to a greater extent and effectively inhibit the spread
of the epidemic [22]. Despite many results on the allocation
of medical resources, few people studied how to allocate
medical resources between asymptomatic and symptomatic
infected individuals.

When complex networks were used to study infectious
diseases, the impact of structural characteristics of indi-
vidual contact networks on diseases transmission began
to be considered. Some scholars improved the heteroge-
neous mean-field method and proposed quench mean-field
method [23], [24], [25]. This method not only considers
the heterogeneity of individuals, but also the topological
structure of the network using adjacency matrix. Here
are some literatures on the analysis of infectious diseases
by establishing quench mean-field models. Yang et al.
constructed a epidemic control synchronization model with

the inhibition of contact behavior and obtained the epidemic
threshold [26]. Liu et al. combined the typical SIS model
with behavioral game to analyze the influence of behavior
on infectious diseases on complex networks [27]. Recently,
Zhang et al. proposed a discrete-time model combining
infectious diseases and the game of non-drug interventions.
The epidemic threshold and the optimal control probability
of infected individuals were obtained [28].

Robinson and Stilianakis [29] analyzed the dynamics
of SAIRS epidemic model with the emergence of drug
resistance in the presence of asymptomatic infections. The
effect of the emergence of resistance after treatment on
the system dynamics was discussed. The global stability of
SAIRS compartmental model with vaccination was studied
in [30]. The expression of the basic reproduction number
R0 was given and it was proved that the disease-free
equilibrium is globally asymptotically stable ifR0 < 1.When
R0 > 1, the endemic equilibrium is globally asymptotically
stable. Similar to these two literatures, the population is
divided into the same four states and asymptomatic infected
individuals are also considered. The difference is that we
consider a recovery rate function which depends on the
amount of medical resources, and discuss the problem of
medical resources allocation. We find that a critical resource
amount is needed to eliminate the disease in this paper.
Besides, there exist different optimal resources allocation
coefficients for different amounts of medical resources. The
main contributions of this paper are as follows:

• A new quench mean-field SAIRS model related to the
amount of medical resources and the coefficient of resource
allocation is proposed;

• Due to the high dimension and complexity of the
model, it is also a breakthrough to prove the stability
of disease-free equilibrium and the existence of endemic
equilibrium theoretically;

• From the perspective of numerical simulations,
it explores how to allocate medical resources between
asymptomatically and symptomatically infected individuals
to minimize the final infected population, which is an
innovation of this paper.

The structure of this paper is as follows. In Section II,
a new network-based SAIRS epidemic model is proposed.
The existence and stability of the disease-free and endemic
equilibrium are studied in Section III. The numerical simu-
lations are performed in Section IV. Lastly, the conclusions
and discussions are presented in Section V.

II. MODEL DESCRIPTION
The striking features of the recent COVID-19 pandemic
is the presence of asymptomatic infected and the repeated
infection of people [30]. Moreover, the propagation law is
related to the network structure (the connection relationship
between people). Based on these characteristics, we propose
a quench mean-field SAIRS model in which both the
asymptomatically infected and symptomatically infected
individuals are infectious in this section. Specifically, this
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FIGURE 1. Flow chart of disease transmission.

model considers a physical contact network consisting of N
nodes, each node represents an individual. The adjacency
matrix of the network is represented by B = (bij)N×N .

If individual i has contact with individual j, then bij = 1,
and if not, then bij = 0. The diagonal elements of
matrix B is bii = 0. Each node is assumed to have one of
four states: susceptible (S), asymptomatically infected (A),
symptomatically infected (I ) or recovered (R).

As shown in Figure 1, some susceptible people become
asymptomatic after being infected, some will show symp-
toms, and part of the asymptomatic infected people will also
show symptoms over time. Infected people will eventually
recover with the help of medical resources. The recovery rate
of an individual is positively related to the amount of medical
resources invested [8], [9]. Inspired mainly by the work of
reference [10], we set the recovery rate of asymptomatic
and symptomatic infected individuals as e−

1
wM and e−

1
(1−w)M

respectively, in which M is the total amount of medical
resources invested andw is the resource allocation coefficient
used to adjust the allocation of total resources between A
and I . Because of the loss of immune function, the recovered
individuals have the possibility of being re-infected, that is,
becoming susceptible again.

Denote Si(t),Ai(t), Ii(t),Ri(t) be the probabilities associ-
ated with node i being in the states S,A, I or R at time t
respectively. Then, the network-based SAIRS quench mean-
field model is described as follows and the interpretation of
the other parameters are shown in Table 1.

Ṡi(t) = −Si(t)Pi(t) + δRi(t),

Ȧi(t) = ϵSi(t)Pi(t) − qAi(t) − e−
1
wM Ai(t),

İi(t) = (1 − ϵ)Si(t)Pi(t) + qAi(t) − e−
1

(1−w)M Ii(t),

Ṙi(t) = e−
1
wM Ai(t) + e−

1
(1−w)M Ii(t) − δRi(t),

(1)

where

Pi(t) = 1 −

∏
j

[1 − bij(β1Aj(t) + β2Ij(t))], (2)

is the probability that node i is infected by at least a infected
neighbor. The infected individuals can pass the disease to
their susceptible neighbors until they finally recover.
Remark 1: It is easy to find that Si(t) + Ai(t) + Ii(t) +

Ri(t) = 1, Si(t),Ai(t), Ii(t),Ri(t) ≥ 0, for all i ∈

{1, 2, · · · ,N }.

TABLE 1. Definition of parameters.

III. EXISTENCE AND STABILITY OF EQUILIBRIUM
The existence and stability of equilibrium will be proved in
this section. First, we present a proof of the stability of the
disease-free equilibrium.

A. STABILITY OF THE DISEASE-FREE EQUILIBRIUM
It is easy to calculate the unique disease-free equilibrium
given by E0 = (1, 1, · · · , 1︸ ︷︷ ︸

N

, 0, 0, · · · , 0︸ ︷︷ ︸
3N

) ∈ R4N , when the

right side of system (1) to be equal to zero and Ai(t) =

Ii(t) = 0, that is, the infectious disease will eventually
become extinct. Since Si(t) = 1 − Ai(t) − Ii(t) − Ri(t), so
we can only study the following system:

Ȧi(t) = ϵ(1 − Ai(t) − Ii(t) − Ri(t))Pi(t) − qAi(t)

−e−
1
wM Ai(t),

İi(t) = (1 − ϵ)(1 − Ai(t) − Ii(t) − Ri(t))Pi(t)

+qAi(t) − e−
1

(1−w)M Ii(t),

Ṙi(t) = e−
1
wM Ai(t) + e−

1
(1−w)M Ii(t) − δRi(t).

(3)

Furthermore, the Jacobian matrix of system (3) at E0 is

J=

ϵβ1B−(q+e−
1
wM )E ϵβ2B O

(1−ϵ)β1B+qE (1 − ϵ)β2B− e−
1

(1−w)M E O

e−
1
wM E e−

1
(1−w)M E −δE

,

where E represents the N × N unit matrix and O represents
the N × N zero matrix.
Theorem 1: If ρ(B) < c, the disease-free equilibrium E0

of system (3) is locally asymptotically stable, where ρ(B) is
the spectral radius of the adjacency matrix B and

c =

(
q+ e−

1
wM

)
e−

1
(1−w)M

ϵβ1e
−

1
(1−w)M + β2

(
q+ e−

1
wM − ϵe−

1
wM

) .

Proof: The local stability of E0 depends on the sign of
the real parts of the eigenvalues of the Jacobian matrix J . The
eigenvalues of matrix J are obtained from the characteristic
equation τ1(λ) = det(J − λE) = det[(−δ − λ)E] · det

[(
q+

e−
1
wM + λ

)
(e−

1
(1−w)M + λ)E −

(
ϵβ1(e

−
1

(1−w)M + λ) + (1 −

ϵ)β2
(
q+ e−

1
wM + λ

)
+ qϵβ2

)
B
]

= 0. Since the eigenvalues

do not change if one multiplies the characteristic polynomial
with a constant. Therefore, a more convenient form of
the second part of characteristic polynomial is τ2(λ) =

det
[ (

q+e−
1
wM +λ

)
(e

−
1

(1−w)M +λ)

ϵβ1(e
−

1
(1−w)M +λ)+(1−ϵ)β2

(
q+e−

1
wM +λ

)
+qϵβ2

E − B
]
.
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Let 3 is the eigenvalue of the adjacency matrix B, then(
q+ e−

1
wM +λ

)
(e−

1
(1−w)M + λ)

ϵβ1(e
−

1
(1−w)M +λ)+(1−ϵ)β2

(
q+ e−

1
wM + λ

)
+ qϵβ2

= 3.

By simple calculation, the following equation can be obtained

λ2
+ a1λ + a0 = 0,

where a1 = q + e−
1
wM + e−

1
(1−w)M − ϵβ13 − (1 −

ϵ)β23, a0 = (q + e−
1
wM )e−

1
(1−w)M − ϵβ1e

−
1

(1−w)M 3 −

β23(q+e−
1
wM −ϵe−

1
wM ).According to the theory of quadratic

equations, if the two inequalities a1 > 0, a0 > 0 hold
simultaneously, the eigenvalues of the Jacobian matrix will
be less than 0, and hence the disease-free equilibrium E0 is
locally asymptotically stable. Specifically, we can obtain the
following results by solving the inequalities

3 <
q+ e−

1
wM + e−

1
(1−w)M

ϵβ1 + (1 − ϵ)β2
,

3 <
(q+ e−

1
wM )e−

1
(1−w)M

ϵβ1e
−

1
(1−w)M + β2(q+ e−

1
wM − ϵe−

1
wM )

.

(4)

Since the largest eigenvalue of the adjacency matrix
is the spectral radius, and it is easy to verify that
q+e−

1
wM +e

−
1

(1−w)M

ϵβ1+(1−ϵ)β2
>

(q+e−
1
wM )e

−
1

(1−w)M

ϵβ1e
−

1
(1−w)M +β2(q+e

−
1
wM −ϵe−

1
wM )

. There-

fore, if ρ(B) < c, then E0 is locally asymptotically stable.
Remark 2: In order to control infectious diseases, the

value of c should be increased as much as possible. As shown
in Figure 2, c is a monotonically decreasing function of
β1, β2, ϵ and monotonically increasing function of q,M .

Therefore, we should take some measures to reduce the
transmission rate, such as wearing masks, isolating infected
people, vaccinating and increasing the investment of medical
resources. With the increase of w, c first increases and then
decreases. When the value of w is around 0.5, c reaches the
maximum value, that is, it is most conducive to suppress the
spread of infectious diseases, which is consistent with the
results reflected in Figure 7.
Remark 3: Due to the complexity of c, it is difficult to

obtain the theoretical expression of the critical amount of
medical resources, but it exists, as shown in Figure 5.

B. EXISTENCE OF THE ENDEMIC EQUILIBRIUM
In this subsection, we will give the condition for the existence
and uniqueness of the positive equilibrium. When there exist
endemic equilibrium, it means that the infectious disease will
become endemic, that is, persist for a long time. In controlling
infectious diseases, we should try to eliminate the disease,
and if not possible, we should actively take measures to
reduce the fraction of the infected population as much as
possible.
Lemma 1 (Gerschgorin Theorem, Ref. [31]): Let B =

(bij) ∈ Cn×n and let ri =
∑n

j=1,j ̸=i |bij|, i = 1, 2, · · · , n.
Then, all the eigenvalues of B lie in the union of n closed

discs
⋃n

i=1{z ∈ C : |z − bii| ≤ ri}, where C is the set of
complex numbers and Cn×n represents the complex matrices
set of the order n× n.
Theorem 2: When ρ(B) > c, system (1) admits a unique

endemic equilibrium.
Proof:Let the right side of system (1) to be equal to zero,

we can obtain
−SiPi + δRi = 0,

ϵSiPi − qAi − e−
1
wM Ai = 0,

(1 − ϵ)SiPi + qAi − e−
1

(1−w)M Ii = 0,

e−
1
wM Ai + e−

1
(1−w)M Ii − δRi = 0.

Then we can get Ai =
ϵSiPi

q+e−
1
wM

, Ii =
qSiPi+(1−ϵ)SiPie

−
1
wM

(q+e−
1
wM )e

−
1

(1−w)M
,

Ri =
SiPi
δ
. Substituting them into equation Si+Ai+ Ii+Ri =

1 yields Si =
δ(q+e−

1
wM )

L1
, where L1 = (Pi + δ)

(
q+ e−

1
wM

)
+

δPi
(
q+ e−

1
wM − ϵe−

1
wM

)
e

1
(1−w)M + ϵδPi. Furthermore, it can

be obtained that Ai =
ϵδPi
L1

, Ii =
δPi(q+e

−
1
wM −ϵe−

1
wM )e

1
(1−w)M

L1
.

Since Pi = 1 −
∏

j[1 − bij(β1Aj + β2Ij)] ≈∑
j bij(β1Aj + β2Ij), then a self-consistency equation can be

obtained as follows: Pi =
∑

j bij
L2Pi
L1

, where L2 = ϵδβ1 +

δ(q+ e−
1
wM − ϵe−

1
wM )β2e

1
(1−w)M . We note the function

F(Pi) =

∑
j

bij
L2Pi
L1

. (5)

It is easy to find that Pi = 0 is always a solution of
equation (5), that is to say model (1) has a disease-free
equilibrium. In addition,

F ′(Pi) =

∑
j

bij
δ
(
q+ e−

1
wM

)
L2

L21
> 0,

F ′′(Pi) =

∑
j

bijδL2
(
q+ e−

1
wM

)−2

L31
< 0.

So,F(Pi) is amonotonically increasing and concave function.
Therefore, a nontrivial solution exists only if

F ′(Pi)|Pi=0 =

∑
j

bij
L2

δ
(
q+ e−

1
wM

) > 1 ⇔ c <
∑
j

bij.

According to Lemma 1, we can conclude that ρ(B) ≤
∑

j bij.
Therefore, to sum up, when ρ(B) > c, system (1) has a unique
endemic equilibrium.

IV. SIMULATIONS
Due to the difficulty of constructing a real infectious disease
transmission network, the numerical simulations section
of this paper is simulated on the BA scale-free network.
BA scale-free network is a kind of complex networks whose
degree distribution obey the power law distribution. First,
we construct a scale-free network with 1000 nodes. The
specific method is as follows: at the beginning, there are
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FIGURE 2. The relationship between c and each parameter. The value of the parameters are
β1 = 0.06, β2 = 0.01, ϵ = q = w = 0.5 and M = 10.

five nodes in the network, then each time a new node is
added and connected to an existing node according to a
preferential connection rule. In other words, the nodes with
greater degree are more likely to be selected and connected,
and the more connected edges are accumulated with the
generation of the network. So the adjacency matrix B is
determined based on the generated network and ρ(B) =

19.9044. We define the fraction of the infected population
as I (t) =

1
1000

∑1000
i=1 (Ai(t) + Ii(t)) and denote I be the

fraction of the final infected population at steady state in our
paper.

A. THE DYNAMIC BEHAVIOR
We select the parameter δ = 0.1 and the values of other
parameters are the same as those in Figure 2. In this case,
Figure 3(a):M = 10, we can calculate c = 32.0804 > ρ(B),
so E0 is locally asymptotically stable from the result of
Theorem 1. Observing the time evolution of the fraction of
the infected population with 10 different initial conditions,
we can see that lim

t→∞
I (t) = 0. This is consistent with the

theoretical result. In Figure 3(b), just decreasing the value
M = 0.8, then c = 6.0689 < ρ(B), and then endemic
equilibrium may be stable. However, due to the difficulty, the
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FIGURE 3. The time evolution of the fraction of the infected population with 10 different initial conditions.

FIGURE 4. (a) Dependence of I on β1 for different values of M, where β2 = 0.01; (b) Dependence of I on β2 for different
values of M, where β1 = 0.06. The other parameter values are the same as those in Figure 3.

theoretical proof of the stability of the endemic equilibrium
is not given in this paper. Therefore, the amount of medical
resources affects the dynamics of system (1) and plays an
important role in controlling infectious diseases.

B. A CRITICAL RESOURCES AMOUNT FOR EPIDEMIC
CONTROL
As can be seen from Figure 4(a), I is a monotone increasing
function of β1, which is consistent with the law of the
spread of infectious diseases. When M = 0.8, even if β1
is small, the infectious disease will persist. When enough
medical resources are invested, there exists a critical value
of β1, that is, the system will undergo a transition from
no disease to endemic disease. Therefore, in the process of
controlling infectious disease, adequate medical resources
must be invested even if the transmission rate is low.

The results reflected in Figure 4(b) are roughly similar to
those in Figure 4(a), hence the difference is only explained
here. When M = 0.8, I rapidly increases to a larger value
as β2 gradually increases. So, enough medical resources
should be invested as early as possible to hinder the spread
of infectious diseases, while β2 is still small, otherwise the
epidemic will soon break out.

In order to further study the impact of medical resources on
diseases transmission, we present the graphs of the fraction of
the final infected population at steady state as a function of
M by numerical iteration. As can be seen from Figure 5(a),
there exists a critical value ofM in the system, denoted asMc.

When M < Mc, the disease will persist, and I decreases as
M increases. If M > Mc, the disease can be well contained.
Moreover, Mc will be bigger with the larger β1. This means
that when the transmission rate of asymptomatically infected
individuals increases, more medical resources need to be
invested in order to better control infectious diseases.

Similar results can be found in Figure 5(b), I is also
decreasing with the increase of M . Besides, if β2 increases,
it also requires more medical resources to mitigate the
spread of the diseases. Therefore, the transmission rate of
asymptomatically and symptomatically infected individuals
should be reduced as much as possible, such as wearing
masks, self-isolation, vaccination and so on. In this way,
it facilitates the control of infectious diseases.

The joint influence of β1 and M on the fraction of
the final infected population at steady state are reflected
in Figure 6(a). It is easy to find that when β1 increases,
I also increases, while I decreases as M increases. This
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FIGURE 5. Influence of medical resources amount on the fraction of the final infected population at steady state:
(a) dependence of I on M for different values of β1, where β2 = 0.01; (b) dependence of I on M for different values of β2,

where β1 = 0.06. The other parameter values are the same as those in Figure 3.

FIGURE 6. (a) The joint influence of β1 and M on the fraction of the final infected population at steady state, where
β2 = 0.03; (b) The joint influence of β2 and M on the fraction of the final infected population at steady state, where
β1 = 0.06. The other parameter values are the same as those in Figure 3.

result is consistent with those reflected in Figure 4 and
Figure 5. We also observe that M has a greater influence
on I , that is, when β1 is fixed, the variation of I is
larger as M changes. Therefore, when infectious diseases
occur, the investment of medical resources is essential. The
result reflected in Figure 6(b) is basically similar to that in
Figure 6(a), except that when β2 is small enough, as long
as M increases slightly, I will reach a lower value quickly,
which is favorable for the control of infectious diseases. This
also gives us an inspiration: we should take measures to
reduce the transmission rate as much as possible, such as:
extensive media coverage, minimizing gathering behavior,
strengthening physical exercise to improve immunity, etc.
In this way, through the investment of medical resources,
infectious diseases are relatively easy to be controlled,
and the possibility of large-scale outbreak will be greatly
reduced.

C. OPTIMAL RESOURCES ALLOCATION STRATEGY
To investigate the joint effect of w and M on the fraction
of the final infected population at steady state, Figure 7(a)

is given. We can observe that the larger M is, I will be
smaller regardless of the value of w. When M is fixed, the
change of I is complex with the increase of w. As shown
in Figure 7(b), when M = 3, I first increases, then
decreases and then increases, and reaches the minimumwhen
w = 0.4. Obviously, we can see that when the amount of
medical resources is small, I will reach the minimum if all
resources are allocated to symptomatic infected individuals
(i.e., w = 0). This can be explained that most infected people
with symptoms will seek medical help (such as medicine,
masks, hospitalization, etc.) in order to recover as soon as
possible. Asymptomatic infected individuals do not know
they have the virus and do not feel sick, so they will not take
any medical help.

However, as M increases gradually, the horizontal posi-
tion of the red dots will shift to the right, gradually
approach 0.5. This indicates that if there are sufficient
medical resources available, allocating them nearly equally
between asymptomatically and symptomatically infected
individuals will minimize I . This is because asymptomatic
infected individuals are also infectious, with a probability q of
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FIGURE 7. The parameter values are β1 = 0.06, β2 = 0.03 and the other parameter values are the same as those in
Figure 3. (a) The joint influence of w and M on the fraction of the final infected population at steady state, where the red
dots represents the value of w that makes I to be the minimum value for fixed M; (b) The influence of w on the fraction of
the final infected population at steady state for M = 3.

transitioning from A to I . Therefore, when medical resources
are adequate, a portion of these resources should be allocated
to asymptomatic infected individuals.

V. CONCLUSION AND DISCUSSIONS
A quench mean-field SAIRS model with recovery rate
dependent on medical resources is established in this paper.
We analyzed its dynamic properties and studied the influence
of both transmission rate and the amount of medical resources
on the fraction of the final infected population at steady
state. The numerical simulation results showed that I is an
increasing function of β1 (or β2) and a decreasing function of
M .We found that there is a critical value of medical resources
in the system. When enough medical resources are invested,
infectious diseases will be timely controlled.

In addition, the joint impact of the amount of medical
resources and resources allocation coefficient on I was
researched. As M increases gradually, a distribution that
is roughly equal between asymptomatic and symptomatic
infected individuals will yield the smallest fraction of
the final infected population. The results suggested that
the asymptomatic infected individuals should also be paid
attention in the process of controlling infectious diseases.

The SAIRS model is applicable for some diseases which
appear asymptomatic infected individuals and the recovered
individuals may be infected again, such as norovirus and
COVID-19. The medical resources allocation strategy dis-
cussed in this paper is suitable for these diseases and has
certain reference value for other diseases. When infectious
diseases occur, it is necessary to invest certain amount
of medical resources. If the amount of resources invested
exceeds a critical value, the epidemic can be completely
controlled. When there is a shortage of medical resources,
more people will become infected, and giving priority
to symptomatically infected will minimize the fraction of
the final infected population. As the amount of resources
increases, nearly equal allocation between asymptomatically

and symptomatically infected individuals will minimize the
fraction of the final infected population. In this way, the
probability of large-scale outbreak of infectious diseases is
reduced. Of course, in addition to the investment of medical
resources, some measures can also be taken actively, such as:
the use of media to educate people to wear masks, take the
initiative to self-isolate, vaccination and so on, these are also
conducive to the control of infectious diseases.

In a more realistic case, due to the evolution of infectious
diseases, economic, region and other factors, the amount of
medical resources invested tends to be dynamically adjusted
and changed. However, the treatment of medical resources in
system (1) is undoubtedly a simplification. In the real world,
the spread of one pathogenmay be affected by the presence of
other pathogens, that is, two infectious diseases may spread
at the same time [32]. So, how to rationally allocate medical
resources so that both infectious diseases can be effectively
controlled will be a topic worth studying. In addition, we did
not consider specific infectious disease, and should use real
data to analyze the impact of medical resources on disease
transmission. For example, the impact of two major events
on the transmission trend of COVID-19 was discussed in the
reference [33]. We will consider these issues in the future.
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