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ABSTRACT The last years have witnessed significant developments in image acquisition systems and in
algorithms for extracting information from them. Nevertheless, in many scenarios, several factors can hinder
the recovery of useful data from images. This is especially true and important in forensic applications, where
images are often accidentally captured by an imaging system not engineered for that specific acquisition
(for example, the surveillance system designed to monitor the entrance of a bank may accidentally capture
the license plate of a vehicle passing outside the bank). Therefore, the acquired images often need to be
processed to facilitate extracting information from them. When facing a combination of several impairment
factors, such as blur and perspective distortion, several image restoration algorithms must be applied. Then,
it is necessary to choose a restoration order, which means the order by which single restoration algorithms
are chained together to obtain the enhanced image. This study aims to understand whether such an order may
impact the final result. Of course, there exists a wide variety of image impairments; in this study, we focus
on the case of an image affected by a combination of optical/motion blur, perspective distortion, and additive
noise, which are all widespread artifacts in forensic image applications. To answer the question about the
importance of choosing one restoration workflow over another, we first model each considered defect and
its restoration operator and then analyze and compare the effects of the composition of such operators on the
restored output. Such a comparison is made from both a mathematical and experimental point of view, using
both images with synthetically generated impairments and pictures with real degradations. The results show
that the restoration order can affect significantly the results, especially when the defects are severe.

INDEX TERMS Image enhancement, image forensics, image restoration, video surveillance.

I. INTRODUCTION
In the last century, technology has evolved dramatically,
changing the world and our life in almost every aspect.

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

Crime and the fight against crime are two fields where
technology brought consistent innovation. Video surveillance
is prominent among the various technologies used to promote
justice and security. Ashby [1] conducted an extensive
analysis covering over 250,000 crimes recorded by the British
Transport Police between 2011 and 2015. He concluded that
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Closed-Circuit Television (CCTV) recordings were available
in 45% of the investigated cases, and it was considered
helpful in 65% of the cases where available. Ashby also
found that, when useful, CCTV recordings increased the rate
of solved crimes by 25% on average. More recently, Jung
and Wheeler [2] analyzed roughly 200,000 crime incidents
in Dallas between 2014 and 2018. They compared crime
clearance rates before and after the installation of CCTV and
concluded that the crime clearance rate raised by a modest
2% after the cameras were installed, with most of the benefits
going to investigations about thefts.

The two mentioned studies, probably because of the
extensive amount of data, do not provide details about why
in some circumstances, CCTV is available but not helpful.
In this direction, Brookman and Jones [3] recently analyzed in
depth 44 homicide cases in the United Kingdom. They found
that, from a quantitative point of view, CCTV was the most
widely used forensic science; however, from a qualitative
point of view, they observed that CCTV is often handled in a
sub-optimal way since the involved personnel lacks training
or fails to adhere to standards and principles for recovering,
storing, enhancing, interpreting, preparing, and presenting
evidence. This result raises the importance of how CCTV
evidence is processed: it may well happen that footage of a
crime is available, but its quality is limited by the presence
of multiple artifacts or distortions, as explained in a recent
work by Seckiner et al. [4]. In such cases, forensic video
enhancement can potentially turn what seemed a useless
exhibit into a critical piece of evidence. However, as pointed
out in [3], the lack of knowledge and tools is a significant
impediment against forensic video enhancement, leading to
useless or even dangerous results being produced and, often,
to frustration in the operator. Moreover, when dealing with
forensic science in general, it is not acceptable to support
a conclusion solely on the basis of common sense, as this
would expose the analyst to criticism for not using a scientific
approach. Therefore, each decision taken during the forensic
restoration of images and videos has to be based on solid
scientific ground. This work aims to contribute to laying the
scientific foundations for choosing the order of various image
processing operators.

A. RELATED WORK
Considerable efforts have been put into establishing guide-
lines and best practices for forensic image and video
enhancement, resulting in the publication of several docu-
ments by the Scientific Working Group on Digital Evidences
(SWGDE),1 or by the Digital Imaging Working Group of the
European Network of Forensic Science Institutes (DIWG-
ENFSI).2 Even though these guidelines provide essential
recommendations, they typically aim to remain sufficiently
general and not replace the standard operating procedures
that each unit should develop internally; therefore, some

1https://www.swgde.org
2https://enfsi.eu

practical questions remain unanswered. Provided an operator
has suitable training and tools, one crucial question that is
currently left open is the following: when dealingwith a video
that presents several artifacts or defects - a detailed list of
intrinsic and extrinsic artifacts and distortions is provided
by Seckiner et al. [4] - which is the correct order in which
they should be compensated for? To cite an example, in the
widespread case of video suffering from optical distortion and
motion blurring, which issue should be compensated first?

In 2015, Ledesma [5] analyzed this question from an
empirical perspective, comparing the results of some compet-
ing restoration chains. The conclusions reached by Ledesma
are substantially in line with the mathematical principle of
inverting defects in reverse order compared to the one they
were introduced. This would indeed reflect the well-known
rule for inverting a composed function. However, such a rule
cannot directly be applied to the case of video enhancement
since no video tool employs the actual inverse operator of any
defect; indeed, video restoration algorithms aim at restoring
the original video by approximating the inverse operator,
and thus they introduce processing artifacts in their output.
Noticeably, Zhang et al. presented a detailed study about the
commutability of blur and affine warp transformations [6];
however, the scenario they considered and the rules they
derived hardly fit the case of CCTV video enhancement,
where the more general perspective transformations have to
be considered.

Finally, we acknowledge that several deep learning-based
methods for image deblurring have recently been pro-
posed [7], [8], [9], [10]. These methods show excellent results
both on synthetically degraded and real images. The use of
deep learning complicates the task of including the inversion
process in a mathematical framework, which is the approach
pursued in this work. Moreover, the suitability of deep
learning-based techniques for forensic image enhancement
is still disputed, mainly due to their lack of explainability,
as recently acknowledged in the European Union Artificial
Intelligence Act [11]. For these reasons, our study employs a
classical regularization-based deblurring technique.

B. CONTRIBUTION OF THIS STUDY
In this work, we address the proposed question in both an
analytical and experimental way. In particular, we focus on
cases where the combination of optical/motion blur, noise,
and perspective distortion is considered. For our case study,
we aim at: (i) providing a mathematical formulation of
the problem; (ii) proposing the image restoration workflow
that should be implemented along with the theoretical
mathematical motivations supporting this choice; (iii) vali-
dating numerically the proposed workflow on some image
restoration test problems; (iv) showing that the proposed
workflow performs best in restoring some real degraded
images.

The work is structured as follows. Section II gives a brief
introduction to the typical image generation model of a
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CCTV system and provides a mathematical formulation for
the case of deblurring and perspective correction, presenting
the proposed general restoration workflow. Section III
presents the experimental tests to assess the proposed
framework and the obtained results. Finally, Section IV draws
some conclusions and lays the basis for future work.

II. PROPOSED WORKFLOW FOR IMAGE RESTORATION
Given the complexity of the image generation model,
surveillance videos are often affected by multiple defects and
artifacts. In Figure 1, we provide a block diagram showing the
usual image generation workflow on the top and a possible
restoration workflow at the bottom.

When multiple defects are observed, it may be necessary
to compensate for some of them, depending on the following:

• the purpose of the examination; for example, lens
distortion could be tolerable when the purpose of the
examination is reading a vehicle’s license plate, while
it must be removed when trying to measure a vehicle’s
speed;

• the intensity of the defect; for example, a slight optical
blur is often tolerable, while a strong one makes
interpretation of the imagery problematic;

• the availability of a reliable restoration algorithm;
indeed, unreliable restoration procedures may introduce
artifacts that make the processed image worse than the
original.

For the above reasons, it is generally not recommended to
compensate for every artifact introduced during the image
generation process. However, it often happens that at least
two, or more, artifacts must be addressed, as they hinder the
interpretation of events [12].When this is the case, what is the
correct order to be followed when compensating for them?

If we had the ideal inverse operator for each step of the
image generation process, the answer would follow trivially
from the basic rules of mathematics. Indeed, if we define the
ideal, distortion-free representation of the original scene as
x, and we model each natural or digital processing step with
a function, e.g., φ1, φ2, . . . , φN , then the final output of the
generation model could be written as

z = φN (φN−1(. . . (φ3(φ2(φ1(x)))))). (1)

Obviously, in equation (1) the innermost function, φ1, models
the first defect encountered in the generation model (e.g.,
perspective), while the outermost function φN , represents the
last defect (e.g., blocking artifacts). Suppose an examiner
is provided with z and the ideal inverse operator of each
function, namely φ−1

1 , φ−1
2 , . . . , φ−1

N . In that case, x can
be easily recovered by applying the rule for inverting a
composed function. Taking into account that z has the form
given in (1), and that for any j, j = 1, . . . ,N , φ−1

j φj is the
identity operator, i.e. φ−1

j (φj(x)) = x, we obtain

φ−1
1 (φ−1

2 (φ−1
3 (. . . ((φ−1

N (z))))) = x. (2)

As equation (2) shows, the original defect-less signal is
obtained by applying the inverse operators in the reverse
order with respect to the one employed in the generation
process.

Going back to the real world, the main issue is that, usually,
we do not have the functions φ that model each step of
the acquisition process and/or their inverse operators. Then,
the approach taken in the restoration numerical procedures
is to employ approximations of such operators and provide
restoration formulas to invert them. To cite an example,
optical blur is commonly modeled with convolution with a
circular PSF, and the restoration operator for that is obtained
with, e.g., Wiener-based deconvolution [13].

It is, therefore, of interest to ask whether the ‘‘invert the
order’’ rule should be maintained even in the real world,
where forensic video analysts can only access approximated
inverse operators. We argue that this is the case, and we aim
to justify it analytically and experimentally in a relevant case
study.

A. CASE STUDY: DEBLURRING AND PERSPECTIVE
CORRECTION
In the following, we will focus on a particular yet insightful
case study, which is obtained by simplifying the whole image
generation model illustrated in Figure 1. More precisely,
we will assume that the original image is (i) distorted by
a disadvantageous perspective due to the angle between
the camera and the object; (ii) blurred due to either the
optics of the acquisition system or the motion of the object;
(iii) corrupted by noise, which the sensor can introduce in
the conversion from analog to digital. In so doing, we neglect
all other possible defects that might occur either in the
scene, camera, transmission, or view phases. We remark
that, even though our mathematical development focuses on
the artifacts mentioned above, the general approach can be
extended to other case studies similarly. In the case where
several degradations must be restored, establishing the best
workflow with our approach would require exploring all
possible operators’ permutations. Nevertheless, to the best of
our knowledge, it is common practice to compensate for no
more than a couple of the most ‘‘visually impacting’’ defects
while minor degradations are kept. Furthermore, we do not
require the existence of an exact inverse operator, since the
approach can be applied by using an approximation of the
inverse operator, such as the pseudo-inverse.

We assume that our simplified image generation model can
be described the following linear system

y = HWx + e, (3)

where x = (x1, . . . , xn)T ∈ Rn is the unknown image
or ground truth, H ∈ Rn×n is the n × n blurring matrix,
whose structure is determined by imposing some specific
assumptions on the image outside the field of view, i.e.,
outside the image boundary [14], W ∈ Rn×n is an
interpolation matrix modelling the perspective distortion,
y = (y1, . . . , yn)T denotes the digital noisy image, and
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FIGURE 1. A block diagram representation of the typical image generation workflow (top) and a possible image restoration
workflow (bottom), which corrects defects in the reverse order.

e = (e1, . . . , en)T ∈ Rn represents the additive noise
contribution.

Based on the simplified model (3), our goal is to
recover the original image x from the distorted, blurred,
and noisy image y. The difficulty of this task lies in the
fact that the linear system (3) can be rarely solved by
inverting the matrix HW , either because the inverse does
not exist or has a high condition number that may lead to
numerical instabilities. Hence, problem (3) is usually solved
by employing regularization techniques.

B. PROPOSED WORKFLOW: DEBLUR-UNDISTORT
We now propose our image restoration workflow for
solving (3). The proposed workflow, called deblur-undistort,
is based on the decomposition of problem (3) into the
following two sub-problems

y = Hz+ e (4)

z = Wx, (5)

where z denotes the distorted unblurred image, so that first we
correct the blurring defects due to the system optics or motion
of the subject/camera, then we correct the distortion due to
perspective. In the following, we explain how we perform
these two tasks in detail.
Deblurring First, we solve sub problem (4) by following
the Maximum a Posteriori (MAP) approach, which has

become increasingly popular in the community of image
processing in recent years [15], [16]. The MAP approach is
based on a statistical formulation of the image restoration
problem of interest, where the noise vector e and the
image z are assumed to be realizations of two multivariate
random variables E and Z , respectively. Regarding the noise,
we assume, in our simplified model, that each component ei
of the noise vector e is a realization of a random variable
Ei with Gaussian distribution of zero mean and standard
deviation σ > 0. Then the vector e is a realization of the
multivariate random variable E , whose probability density is
[17, Chapter 7]

pE (e) =
1

(2πσ 2)n/2
exp

(
−

1
2σ 2 ∥e∥22

)
,

where ∥·∥2 denotes the usual Euclidean norm onRn. Because
of (4), each pixel yi of the acquired image is also a realization
of a random variable Yi. By setting Y = (Y1, . . . ,Yn)T ,
the modeling of the system is then related to the probability
density of the multivariate random variable Y . This density
depends on the object z and therefore, we denote it as
pY (y; z). In conclusion, the statistical model for the detected
image is

pY (y; z) =
1

(2πσ 2)n/2
exp

(
−

1
2σ 2 ∥y− Hz∥22

)
. (6)

88306 VOLUME 12, 2024



F. Argenti et al.: Proposed Workflow for the Restoration of Image Artifacts in Forensic Applications

TABLE 1. Parameters of the PSFs used to distort images in the case of
mild and strong perspective degradation, respectively.

Regarding the image z, the probability density pZ (z) of the
random variable Z is called prior and incorporates some
a priori information on the image to be recovered, such as
smoothness, sparsity, or presence of edges. For our workflow,
we assume that Z has a Tikhonov prior [18], which has
the form

pZ (z) = exp
(
−

α

2σ 2 ∥z∥22
)

,

where α > 0 is the so-called regularization parameter.
Introducing also the marginal probability pY (y), we can
compute, by means of the Bayes theorem, the conditional
probability of Z with respect to the given value y of Y :

pZ (z|y) =
pY (y|z)pZ (z)

pY (y)
.

Then, the MAP estimate of z under Tikhonov regularization
is the point zTik(y) that maximizes the a posteriori probability
pZ (z|y), namely

zTik(y) = argmax
z∈Rn

pZ (z|y).

By taking the negative logarithm of pZ (z|y), we can
reformulate the abovemaximization problem as the following
minimization problem

zTik(y) = argmin
z∈Rn

− ln pZ (z|y)

= argmin
z∈Rn

− ln(pY (y|z)) − ln(pZ (z)) + ln(pY (y))

= argmin
z∈Rn

∥Hz− y∥22 + α∥z∥22.

The function ϕ(z) = ∥Hz− y∥22 + α∥z∥22 attains its minimum
value at any point such that the gradient ∇ϕ(z) is null. Since
the gradient can be written as ∇ϕ(z) = 2HT (Hz− y) + 2αz,
it is easy to see that zTik(y) is the unique solution of the
following linear system

(HTH + αIn)zTik(y) = HT y, (7)

where In ∈ Rn×n denotes the n × n identity matrix.
By inverting the symmetric positive definite matrix HTH +

αIn, we can finally write the deblurred image zTik(y) as
follows

zTik(y) = (HTH + αIn)−1HT y. (8)

Perspective correction As a second step, we correct the
distorted (yet deblurred) image zTik(y). Assuming that the
matrix W is invertible, we simply compute the unique
solution of the linear systemWx = zTik(y) by a linear system
solver. Then, the vector xrec(y) takes the form:

xrec(y) = W−1zTik(y) = W−1(HTH + αIn)−1HT y. (9)

FIGURE 2. License plate image (ground truth, size 1309 × 1109).

The restored image xrec(y) represents the output of our
proposed workflow.

In case W is not invertible we can compute xrec(y) as
the least-squares minimum norm solution to Wx = zTik(y).
For the sake of simplicity, we assume W invertible, however
the following analysis still holds by replacing W−1 with the
pseudo inverseW †.

The good performance of the workflow depends on the
choice of the regularization parameter α in the deblurring
phase, which needs to be tuned through a trial-and-error
procedure. In the following, we show with simple arguments
coming from the theory of regularization [14] that it is
possible to select α in such a way that the reconstruction error
∥x − xrec(y)∥2 is sufficiently small.
Let H = U6V T be the singular value decomposition

(SVD) of the matrix H , where U ,V ∈ Rn are orthonormal
matrices, i.e. UTU = V TV = In, and 6 is the following
diagonal matrix:

6 =


σ1 . . . . . . 0

0
. . . 0

...
. . .

...

0 . . . . . . σn

 ,

where the positive scalars σ1, . . . , σn are the so-called
singular values of the matrix. By assuming that the values
{σi} are in decreasing order, and letting r ≤ n be the rank of
H , i.e., the maximum number of linearly independent rows
(or columns) ofH , it holds σ1 ≥ σ2 · · · ≥ σr > 0 and σi = 0,
i = r + 1, . . . , n.
We recall that the deblurred image zTik(y) prior to the

perspective correction is defined as

zTik(y) = (HTH + αIn)−1HT y. (10)
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TABLE 2. Best RRE provided by the three methods deblur-undistort (left), undistort-deblur (center) and undistort-deconvblind (right) for the three
different blurs and distortion levels considered. Lower values indicate higher reconstruction quality.

TABLE 3. Best PSNR provided by the three methods deblur-undistort (left), undistort-deblur (center) and undistort-deconvblind (right) for the three
different blurs and perspective distortion levels considered. Larger values indicate higher reconstruction quality.

TABLE 4. Best SSIM provided by the three methods deblur-undistort (left), undistort-deblur (center) and undistort-deconvblind (right) for the three
different blurs and distortion levels considered. Larger values indicate higher reconstruction quality.

By employing the SVD decomposition H = U6V T in (10),
we get

zTik(y) = (V6 UTU︸ ︷︷ ︸
=In

6V T
+ αIn)−1V6UT y

= (V62V T
+ αIn)−1V6UT y

=
(
V (62

+ αIn)V T )−1V6UT y

= V (62
+ αIn)−1 V TV︸ ︷︷ ︸

=In

6UT y.

Then, zTik(y) can be expressed in terms of the SVD
decomposition of H as

zTik(y) = V (62
+ αIn)−16UT y. (11)

In the following Proposition, we derive an upper bound for
the error ∥x − xrec(y)∥2, which measures the quality of the
restored image xrec(y) with respect to the ground truth x.

Proposition 1. Let 81 ∈ Rr×r be the diagonal matrix

81 =


σ1

σ 2
1 +α

. . . 0

...
. . .

...

0 . . . σr
σ 2
r +α

 , (12)

6r ∈ Rr×r the diagonal matrix whose diagonal entries are
the nonzero singular values σ1, . . . , σr , Ur ∈ Rn×r and Vr ∈

Rn×r the matrices containing respectively the first r columns
of U and V . Then

∥x − xrec(y)∥2 ≤ α∥W−1Vr816
−2
r UT

r
)
ȳ∥2︸ ︷︷ ︸

Regularization error

+ ∥W−1Vr81UT
r e∥2︸ ︷︷ ︸

Perturbation error

.

Proof: See the Appendix. □
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FIGURE 3. (a) Image degraded with mild perspective degradation and Gaussian PSF. Reconstructions provided by: (b) deblur-undistort with α∗

DU;
(c) undistort-deblur with α∗

UD; and (d) undistort-deconvblind workflows. Curves of: (e) PSNR versus α, (f) SSIM versus α and (g) relative
regularization error versus α.

Therefore, we see that ∥x − xrec(y)∥2 is upper bounded
by the sum of two errors, the former related to the use of
regularization in our restored image (regularization error),
and the latter due to the presence of noise in the observed
image (perturbation error). Both errors are controlled by the
regularization parameterα. The regularization error Er (α) can
be made arbitrarily small as α tends to zero as

Er (α) = α∥W−1Vr816
−2
r UT

r
)
ȳ∥2 (13)

≤
α

(σ 2
r + α)σr

∥W−1
∥2∥ȳ∥2, (14)

as the matrices Ur and Vr are orthonormal and

816
−2
r =


1

(σ 2
1 +α)σ1

. . . 0

...
. . .

...

0 . . . 1
(σ 2
r +α)σr

 .

Then, Er (α) = O
(

α

(σ 2
r +α)σr

)
.

On the other hand, the perturbation error decreases as
α increases since 81 tends to the null matrix as O( 1

α
).

Consequently, the regularization parameter α has to be
chosen in order to properly balance the two errors.

• When α is ‘‘too small’’, the regularization error is small,
however, the perturbation error becomes large as it is
controlled by the following norm

∥81∥2 =

√
max

i=1,...,r

σi

σ 2
i + α

(15)

and if α = 0, the maximum in (15) is attained at 1/σr ,
which can be large if σr is small.

• When α is ‘‘too large’’, the perturbation error is small,
but the regularization error is inevitably large as, given
the form of zTik(y) in (11), the workflow output xrec(y) =

W−1zTik(y) is close to the null matrix.
An optimal choice of the regularization parameter α must
aim at balancing the two sources of errors. By assuming
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FIGURE 4. (a) Image degraded with severe perspective degradation and Gaussian PSF. Reconstructions provided by: (b) deblur-undistort with α∗

DU;
(c) undistort-deblur with α∗

UD; and (d) undistort-deconvblind workflows. Curves of: (e) PSNR versus α, (f) SSIM versus α and (g) relative regularization
error versus α.

that ∥W−1
∥2 is moderate, the regularization parameter

α can be properly chosen so that both the perturbation
and the regularization error remain small, according to
parameter choice methods such as the L-curve criterion or
the Generalized Cross Validation (see, e.g., [14, Section 6.4]
for further details).

C. ALTERNATIVE WORKFLOWS
It is worth noting that one could invert the order with
which deblurring and perspective correction is performed
and consider an alternative approach, according to which the
blurred distorted image is first undistorted, then deblurred.
The resulting workflow, named undistort-deblur, provides
the following restored image

x̃rec(y) = xTik(W−1y)

= (HTH + αIn)−1HTW−1y.

By proceeding as in the previous section, we can derive
the following upper bound on the reconstruction error
∥x̃rec(y) − x∥2.

Proposition 2. We have

∥x̃rec(y) − x∥ ≤ ∥(Vr81UT
r W

−1
−W−1Vr6−1

r UT
r )ȳ∥2︸ ︷︷ ︸

Regularization error

+ ∥Vr81UT
r W

−1e∥2︸ ︷︷ ︸
Perturbation error

.

Proof: See the Appendix. □
Again the error can be decomposed in the sum of

regularization and perturbation error. However with this
approach the regularization error

Ẽr (α) = ∥(Vr81UT
r W

−1
−W−1Vr6−1

r UT
r )ȳ∥
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FIGURE 5. (a) Image degraded with mild perspective degradation and out-of-focus PSF. Reconstructions provided by: (b) deblur-undistort with α∗

DU;
(c) undistort-deblur with α∗

UD; and (d) undistort-deconvblind workflows. Curves of: (e) PSNR versus α, (f) SSIM versus α and (g) relative regularization
error versus α.

takes for α = 0 the following strictly positive value that
potentially can be large

Ẽr (0) = ∥(Vr6−1
r UT

r W
−1

−W−1Vr6−1
r UT

r )ȳ∥.

Since both Er and Ẽr continuously depend on α we can
conclude that there exists ᾱ such that Er (α) ≤ Ẽr (α) for
α ∈ [0, ᾱ], while the behaviour of Er and Ẽr is similar for
large values of α as both xrec(y) and x̃rec(y) are close to the
null matrix. We finally note that the perturbation error in both
cases depends on ∥81∥2 (see (15)).
As a third alternative, one could consider an approach

similar to undistort-deblur, where the deblurring step via
Tikhonov regularization is replaced by a blind deconvolution
algorithm. We denote this additional workflow by undistort-
deconvblind. We recall that blind deconvolution is the

problem of recovering both the unknown image and the
PSF from the observed image. Indeed, when perspective is
corrected first, wemust take into account that the blur’s PSF is
also distorted in an unknownway. Therefore, even if the blur’s
PSF is known, it makes sense to estimate it in this scenario.
On the other hand, when compensating for optical blur first,
there is no need to estimate the shape of the PSF assuming it
is known (for this reason, we do not consider a deconvblind-
undistort workflow).

Blind deconvolution is typically reformulated as a
non-convex minimization problem through the MAP
approach and then solved using alternating minimization
algorithms to numerically estimate both the image and the
PSF [19], [20]. Therefore, we define an additional work-
flow, called undistort-deconvblind, where the perspective
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FIGURE 6. (a) Image degraded with severe perspective degradation and out-of-focus PSF. Reconstructions provided by: (b) deblur-undistort with α∗

DU;
(c) undistort-deblur with α∗

UD; and (d) undistort-deconvblind workflows. Curves of: (e) PSNR versus α, (f) SSIM versus α and (g) relative regularization
error versus α.

correction step is followed by a fixed number of iterations
of a blind deconvolution algorithm, which is performed in
practice by calling the deconvblind MATLAB built-in
function (see the next Section for more implementation
details) [21], [22], [23]. With this additional method,
we investigate whether an automatically estimated PSFmight
improve the performance of the workflow compared to those
obtained with undistort-deblur.

III. EXPERIMENTAL RESULTS
In this section, we present some experimental results to eval-
uate the performance of the different restoration workflows
in the inversion of problem (3). The experiments refer to
the case study identified in the previous section, which is
an image affected by perspective and blur distortion. The
aim of these tests is to evaluate which restoration workflow,

among deblur–undistort, undistort–deblur, and undistort–
deconvblind, yields the best results.

We provide two different experimental setups. In the
first one, we start from a ground truth image, synthetically
degrade such image, and then restore the degraded version
and compute its similarity against the ground truth. This setup
allows us to objectively assess and compare the performance
of the various restoration workflows. In the second setup,
we instead work with real images that are affected by a
combination of blur and perspective. In this setup, the ground
truth image is not available, so the comparison between the
performance of different methods is left to visual inspection.

A. EVALUATION ON SYNTHETICALLY DEGRADED IMAGES
All the numerical experiments hereby presented have been
performed in MATLAB on a PC equipped with an Intel
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FIGURE 7. (a) Image degraded with mild perspective degradation and motion PSF. Reconstructions provided by: (b) deblur-undistort with α∗

DU;
(c) undistort-deblur with α∗

UD; and (d) undistort-deconvblind workflows. Curves of: (e) PSNR versus α, (f) SSIM versus α and (g) relative regularization
error versus α.

Core i7-6500 CPU@2.5GHz, with 16GB RAM, running
Windows 10 Pro.

1) EXPERIMENTAL SETUP
We used a grayscale test image of 1309 × 1109 pixels,
representing a frontal view of a car with its license plate
(see Figure 2), referred to as license plate in the
remainder of the paper. The original undistorted image has
been synthetically degraded according to the acquisition
model in (3), that is by using the following three-steps
procedure:

1) the original license plate image has been dis-
torted by using the MATLAB built-in functions
fitgeotrans (to define a projective transforma-
tion through some hand-picked control points) and

imwarp (to apply such a transformation to the ground
truth);

2) a blurring kernel is created by using the MATLAB
function fspecial and then applied to the previously
distorted image; the convolution is performed assuming
periodic boundary conditions, which enables us to use
Fast Fourier Transform (FFT) processing;

3) a white Gaussian noise vector, with zero mean and
variance σ 2

= 0.05, is created with the MATLAB
function randn and added to the blurred image.

By using the aforementioned procedure and varying the pro-
jective transformation and the blur parameters, we generate
six different distorted images, in order to simulate light to
severe degradations. In particular, we consider two different
projective transformations, inducing a mild and a strong
perspective distortion, respectively, in order to simulate (in
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FIGURE 8. (a) Image degraded with severe perspective degradation and motion PSF. Reconstructions provided by: (b) deblur-undistort with α∗

DU;
(c) undistort-deblur with α∗

UD; and (d) undistort-deconvblind workflows. Curves of: (e) PSNR versus α, (f) SSIM versus α and (g) relative regularization
error versus α.

the latter case) also very hard recognition problems. As for
the blurring, we consider three different types of kernels:
Gaussian blur (with zero mean and standard deviation σ );
out-of-focus blur (uniform PSF equal to 1 within a radius r ,
and 0 elsewhere); motion blur (of length l and angle θ

with respect to the horizontal axis). The parameters of the
PSFs used to create the six degraded images are reported
in Table 1.

Each distorted image is restored according to the three dif-
ferent workflows presented in Section II, using the MATLAB
implementation of the Tikhonov deblurringmethod described
in [14, Section 6.2]. Each restored image is then compared
against the ground truth; we limit the comparison to the
license plate region only, simulating a real user scenario of
license plate recognition.

To evaluate the quality of the reconstructed images, we use
both qualitative criteria (visual inspection) and the following
image quality metrics:

• Relative Reconstruction Error (RRE), defined as:

RRE(x, xrec) =
∥x − xrec∥2

∥x∥2
;

• Peak Signal-to-Noise Ratio (PSNR), defined as:

PSNR(x, xrec) = 10 log10

 2552

1
n
∥x − xrec∥2

 ,

where 255 is the maximum possible value of the image,
whereas the denominator is the mean squared error with
n the number of pixels of x;

• Structural Similarity Index Measure (SSIM) [24],
defined as

SSIM(x, xrec) =
(2µxµxrec + c1)(2σxxrec + c2)

(µ2
x + µ2

xrec + c1)(σ 2
x + σ 2

x + c2)
,
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FIGURE 9. Thumbnails of real images considered for restoration. First row: images acquired with a Nikon D50 camera, affected by a combination
of optical blur and perspective distortion (first two images) and by motion blur and perspective distortion (third image). Second row, left: image
acquired with a Sony Xperia XA1 affected by a combination of optical blur and strong perspective distortion. Second row, right: image acquired
with an Apple iPhone XS, affected by a combination of optical blur and mild perspective distortion.

FIGURE 10. Comparison of the three considered restoration workflows on a real image of a book
affected by a combination of optical blur and mild perspective distortion. Top-left: original image;
top-right: proposed workflow (deblur followed by perspective correction); bottom-left: perspective
correction followed by deblur; bottom right: perspective correction followed by blind deconvolution.

where µx , µxrec are the pixel sample means, σx , σxrec
the standard deviations, σxxrec the covariance, and

c1, c2 two variables to stabilize the division with weak
denominator. In practice, all the mentioned statistics are
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FIGURE 11. Comparison of the three considered restoration workflows on a real image of a book affected by a
combination of optical blur and strong perspective distortion. Top-left: original image; top-right: proposed workflow
(deblur followed by perspective correction); bottom-left: perspective correction followed by deblur; bottom right:
perspective correction followed by blind deconvolution.

computed on windows centered around each pixel, and
the global SSIM value is obtained by averaging the local
SSIM ones.

We remark that SSIM aims to measure the perceptual
difference between images, taking into account the local
brightness and texture of images; on the other hand, the
RRE and the PSNR calculate an arithmetical similarity of
images that, often, is not descriptive of perceptive image
quality. Moreover, while RRE lower values indicate a higher
reconstruction quality, the opposite holds for both PSNR and
SSIM.

2) RESULTS ON SYNTHETICALLY DEGRADED IMAGES
For each distorted image, we run both the deblur-undistort
and undistort-deblur workflows for 100 logarithmically
distributed values ofα in the interval [10−6, 1]. Then, for each
of the two workflows, we select the value of α that maximizes
one of the quality metrics and consider the corresponding
restored image as the ‘‘best reconstruction’’.

Tables 2, 3, and 4 report the best RRE, PSNR, and SSIM
values, respectively, provided by the two workflows deblur-
undistort and undistort-deblur, together with the correspond-
ing values given by the undistort-deconvblind workflow.
Figure 3 shows the degraded image obtained with mild

perspective distortion and Gaussian blur, the reconstructed
images obtained with the three different workflows, the plots
of the PSNR and SSIM metrics versus the α parameter, and
the plot of the quantity Er (α)/∥x∥2 versus the α parameter,
being Er (α) the regularization error defined in (14). The
reconstructed images were obtained with the value of α

that maximizes the PSNR metric, denoted as α∗

DU for the
deblur-undistort case, and α∗

UD for the undistort-deblur case.
Analogously, Figures from 4 to 8 show the same data for the
other degraded images.

By considering the objective metrics presented in
Tables 2-4, we observe that the deblur-undistort workflow
outperforms the others in all degradation scenarios and
according to every similarity metric. This result confirms
our claim, based on intuition and analytically explained in
Section II-B and II-C, that reversing the order of defects
provides the best results.

The same conclusion can also be reached by visually
inspecting the reconstructed images reported in Figures 3-8.
From the PSNR and SSIM curves shown in the same
figures, we can observe that deblur-undistort yields the best
PSNR/SSIM values. Moreover, it is also more robust to
little variations of α, whereas the undistort-deblur workflow
performance rapidly decreases when moving away from
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FIGURE 12. Comparison of the three considered restoration workflows on a real image of a book affected by a
combination of motion blur and perspective distortion. Top-left: original image; top-right: proposed workflow (deblur
followed by perspective correction); bottom-left: perspective correction followed by deblur; bottom right: perspective
correction followed by blind deconvolution.

the optimal value. The greater robustness of our proposed
workflow is confirmed by the plots of the regularization
error, which remains small for a wide range of values of α

in deblur-undistort while rapidly increasing as α decreases
in undistort-deblur. This is in agreement with the analysis
carried out in Section II-B and II-C, according to which the
regularization error vanishes as α tends to zero for deblur-
undistort but not for undistort-deblur. On the other hand,
the reconstructions provided by undistort-deconvblind are

unacceptable in almost all cases, as some serious ringing
artifacts prevent any reading of the license plate. This
confirms that correcting the defects in the same order as they
were introduced in the model does not work, even when an
automatically estimated PSF is employed.

B. EVALUATION ON REAL IMAGES
In this section, we aim to compare the performance of
the various workflows on real images that are originally
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FIGURE 13. Comparison of the three considered restoration workflows on a real image of a boarding pass affected by a
combination of optical blur and strong perspective distortion. Top-left: original image; top-right: proposed workflow (deblur
followed by perspective correction); bottom-left: perspective correction followed by deblur; bottom right: perspective
correction followed by blind deconvolution.

affected by perspective distortion and blur. A thumbnail
of the considered images is visible in Figure 9, and their
full-resolution versions are available for download.3 Images
have been obtained from various source devices: a Nikon
D50 reflex camera was used to create images of a book
with different viewpoints in the top row, a Sony Xperia
XA1 was used to capture the boarding pass image, and
the license plate image was obtained with an Apple iPhone
XS. We acknowledge that the selected images do not
closely match the typical imagery encountered by forensic
video analysts; on the other hand, this approach allowed
us to control the strength of the distortion introduced in
the image and facilitates the comparison between different
workflows.

1) EXPERIMENTAL SETUP
To maximize the realisticness of the evaluation, the
experiments presented below have been carried out using
Amped FIVE,4 version 29850, a commercial forensic image
enhancement software used by law enforcement agencies
worldwide. Specifically, the following filters were used to
carry out the processing:

• Correct Perspective to correct the perspective distortion.
The filter lets the user click on the four vertices of the
element of interest (which must be planar) and then
drawing the output rectangle.

• Optical Deblurring to correct the out-of-focus blur.
The user manually sets the radius of the circular PSF,

3https://www.dropbox.com/scl/fi/rl1rh6ukwfmpw8z4pyaun/DigInv_
RestorationWorkflow_RealImagesData.zip?rlkey=nwztqg9a6v02wc2
kwcj1bjic1&dl=0

4https://ampedsoftware.com/five

and a slider is provided to estimate the noise-to-signal
power ratio: lower values lead to a sharper but noisier
image, while larger values lead to a smoother but cleaner
image.

• Motion Deblurring to correct the motion blur. The filter
lets the user manually define the PSF associated with
the motion in terms of length and angle. The same
noise-to-signal power ratio slider discussed above is
presented.

• Blind Deconvolution to correct both kinds of blur by
automatically determining the shape of the PSF, starting
from a radius size provided by the user. The same
noise-to-signal power ratio slider discussed above is
presented.

We employed the following experimental protocol: each
image was loaded into Amped FIVE and possibly rotated
by multiples of 90 degrees and cropped when needed.
We then applied the filters mentioned above in different
orders to implement the three proposed workflows. Each
time, we manually optimized each filter’s parameters in
such a way as to obtain the best visual result. We then
used the Multiview filter to create a grid with four
composite images (Figures 10-14): in each of them, the
original image is at the top-left, the image enhanced
with the proposed deblur-perspective correction workflow
is presented at the top-right, the image enhanced with the
perspective correction-deblur is shown at the bottom-left,
and the image enhanced with perspective correction followed
by blind deconvolution is shown at the bottom right. For
each processed image, the detailed settings applied for each
filter are provided in a PDF report generated by Amped
FIVE, which is available in the same archive containing the
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FIGURE 14. Comparison of the three considered restoration workflows on a real image of a license plate
affected by a combination of optical blur and mild perspective distortion. Top-left: original image; top-right:
proposed workflow (deblur followed by perspective correction); bottom-left: perspective correction
followed by deblur; bottom right: perspective correction followed by blind deconvolution.

original images; the web address to access it is provided in
Section III-B.

2) RESULTS ON REAL DEGRADED IMAGES
Since there is no objective and reliable way to obtain a
ground truth reference for real degraded images, we leave
the interpretation of results presented in Figures 10-14 to
the reader. It is our opinion that, for all the considered
examples, the top-right image (corresponding to the proposed
deblur-undistort workflow) yields the best result, followed by
the undistort-deblur (bottom left), while the image restored
with blind deconvolution (bottom right) is visually less
appealing. Not surprisingly, the advantage of using the
deblur-undistort workflow is more evident for images where
a strong perspective distortion is observed (specifically,
Figures 11 and 13).

Noticeably, these results are in total agreement with what
we observed in the experiments on synthetically degraded
images.

IV. CONCLUSION
While the scientific literature is rich in image enhancement
and restoration techniques, researchers gave little attention
to investigating the order by which one should apply these
tools. This work deals with such a question, providing
several contributions. We argued that the video enhancement

workflow should compensate for defects in the reverse
order, which means that the last introduced defect should
be compensated first, and so on. We then provided an
analytical model of a case study that considers three
widespread defects (optical and motion blur, perspective
distortion, and additive noise). Using that model, we showed
mathematically and experimentally that the best restoration
order is the reverse order, as initially argued. Even though
the examined case study contains three specific degradations
operators, it adheres to many practical scenarios (blur,
perspective, and noise are among the most common defects in
surveillance videos). The presented methodological approach
can be applied to other chains of operators, provided that a
restoration model can be formulated for them. Instead, for
the case of lossy degradations, for which no inverse operator
is defined, a broader generalization of the framework is
required. These points are left to future work.

APPENDIX
Proof of Proposition 1: Letting ȳ = y− e and denoting by

ui and vi the i-th column of the matricesU and V respectively,
we can write zTik(y) given in (11) as

zTik(y) =

r∑
i=1

σi

σ 2
i + α

uTi (ȳ+ e)vi.
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By (4) it holds

z =

r∑
i=1

1
σi
uTi ȳvi + z̄, (16)

where z̄ is an arbitrary vector of the null space ofH and z̄ = 0
if z is the minimum norm solution to Hz = ȳ.

Therefore, assuming that z is the minimum norm solution,
we get

zTik(y) − z =

r∑
i=1

(
σi

σ 2
i + α

−
1
σi

)
uTi ȳvi

+

r∑
i=1

σi

σ 2
i + α

uTi evi

= −

r∑
i=1

α

σ 2
i + α

uTi ȳ

σi
vi +

r∑
i=1

σi

σ 2
i + α

uTi evi.

Then, using the matrix 81 given in (12) and the matrices
6r , Ur and Vr , we can rewrite zTik(y) − z as follows:

zTik(y) − z = −αVr816
−2
r UT

r ȳ+ Vr81UT
r e. (17)

By using (17), (5) and (9), we conclude that

∥x − xrec(y)∥2 ≤ α∥W−1Vr816
−2
r UT

r ȳ∥2
+ ∥W−1Vr81UT

r e∥2.

Proof of Proposition 2: By using the SVD decompo-
sition of H , we reformulate the output of the workflow
undistort-deblur as follows

x̃rec(y) = xTik(W−1y)

= (HTH + αIn)−1HTW−1y

=

r∑
i=1

σi

σ 2
i + α

uTi (W
−1ȳ+W−1e)vi

Assuming that z is the minimum-norm solution to Hz = ȳ,
by (16) we get z =

∑r
i=1

1
σi
uTi ȳvi and

x =

r∑
i=1

1
σi
uTi ȳW

−1vi.

Then, proceeding as in Proposition 1, we write the difference
between the ground truth and workflow output as

x̃rec(y) − x =

r∑
i=1

(
σi

σ 2
i + α

uTi W
−1ȳvi −

1
σi
uTi ȳW

−1vi

)

+

r∑
i=1

σi

σ 2
i + α

uTi W
−1evi

and by taking the norm of both side we obtain

∥x̃rec(y) − x∥ ≤ ∥(Vr81UT
r W

−1
−W−1Vr6−1

r UT
r )ȳ∥2

+ ∥Vr81UT
r W

−1e∥2.

□
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