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ABSTRACT The leading contribution of this article is to describe the analysis of the sampling period in
deterministic and stochastic pole-assignment-based digital controllers, by proposing an analysis tool that
considers the Nyquist-Shannon frequency and quantitative performance indices to guide the sampling period
selection, optimizing the trade-off between closed-loop performance and sampling frequency smallness.
In order to do so, the method employs discrete-time equivalent processes based on other five benchmark
continuous-time, system identification of ARX and ARMAX reduced-order models of these processes,
stochastic pole-assignment design based on Generalized Minimum Variance control, which inherits the
loop-shape from a deterministic Reference Signal Tracking control, as well as performance indexes are
obtained and evaluated to assess the most adequate choices for the sampling period among several options
with different trade-off outcomes. The simulation results validate the importance of the developed analysis
tool, showing how sensitive the performance of the controlled processes is to the sampling period, especially
when subjected to stochastic disturbances which normally affect most control systems. Nevertheless, some
papers do not evenmention or empirically elect a value for the sampling period. Therefore, it is concluded that
the developed tool can be extremely useful in predicting optimal outcomes regarding the trade-off between
the sampling period and the closed-loop performance in computer-controlled systems.

INDEX TERMS Digital control systems, generalized minimum variance control, Nyquist-Shannon
frequency, performance assessment, pole-assignment control, predictive control, sampling period analysis,
sampling period assignment, system identification.

I. INTRODUCTION
The importance of digital control systems in control and
automation is a fact because of its numerous advantages
when compared to continuous-time control systems, such
as control software upgrades, real-time prediction and
adaptation, supervision and performance assessment with
automatic tuning, and more, all running along and with the
digital control algorithm, as the technological evolution leads
to it [1] and [2]. In this context, much research has been
carried out looking for the conversion of continuous-time
control systems into discrete-time as shown in [3], [4], [5],
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[6], [7], and [8] while considering that the best discrete-
time equivalent choice would be the best approximation of
continuous-time systems [1], [8], [9], [10]. The sampling
period is one of the parameters to be chosen in this
conversion, considered an important issue [1], [2], [11]
and it has been studied ever since [8], [12], [13], [14],
[15], [16], [17], as it can be confirmed by the number of
publications over the last two decades, depicted in Fig. 1,
related to researches on sampled-data systems or sampling
period analysis.

The sensitivity to the sampling period affects the system
identification procedure (in the experimental modeling sense)
of a discrete-time model of a continuous-time dynamic
process, as studied by [3], which stated that a minimal
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FIGURE 1. ‘‘Sampled-data system’’ and ‘‘sampling period’’ keywords on
researches.

sampling period is not always the best choice and that there
is an optimal one. In fact, an excessively short sampling
period can cause control performance degradation in some
continuous-time processes controlled via computers, as well
as lose the advantages of digital control such as the reduction
of actuator’s state changes and control signal chattering [13].

A comparison among several sampling periods in digital
control techniques has been reported in [4] and [5]. In the
latter reference the sampling period was pointed as a
key tuning parameter for self-tuning control algorithms,
proposing a systematic sampling period selection based on
the data. The approach of using the sampling period as
another tuning parameter was also reported in [12], which
could enhance stability and some of the specifications of the
design problems through sampling period modifications.

How the choice of the sampling period affects the
identification of nonlinear models, including their structure,
estimated parameters, and quality, was investigated by [18],
while [6] studied the effects of enlarging and decreasing the
sampling period and the outcomes of such changes in the
bandwidth of digital control systems from the theoretical and
experimental viewpoints. He observed their influence on the
closed-loop performance and stability, with further results on
the stability analysis reported in his subsequent work [19].
Researchers in [17] also investigated the effects of

increasing the sampling period. Using a water pressure
control system, they observed performance degradation and
potential instability. The significant influence of sampling
period and other parameters on electric power systems have
also been highlighted by [20], proposing a novel stability
criterion based on Lyapunov’s Stability Theory and Linear
Matrix Inequality that incorporates both sampling period
and network time-delay. The impact of increased sampling
period on parameter estimation accuracy in a dual-mass DC
electromechanical system was studied in [16]. They decom-
posed the phenomenological model’s differential equation
via Discrete Wavelet Transform and estimated parameters
using four sampling periods. Their results demonstrated that
the variation of the sampling period significantly influences
models with lower parameter values but has less impact on
those with higher values. Furthermore, reducing the sampling

period improves the estimation method’s accuracy. These
studies emphasize the importance of considering sampling
period in control system design to avoid performance
degradation and instability.

Power system controllers, often designed in continuous-
mode, face performance degradation or instability when
discretized with large sampling periods during implemen-
tation, as noted by [21]. This is particularly challenging
in wind turbine systems, where high penetration reduces
inertia and necessitates faster load frequency control to
handle contingencies such as sudden loss of generation.
To analyze this paradox, [21] studied a discrete-mode load
frequency control scheme considering a large sampling
period. The results demonstrate that this scheme ensures
stable operation and reduces the communication network
burden significantly. Additionally, the controller design,
based on a large exponential decay rate, provides a fast
frequency response to alleviate the impact of reduced system
inertia due to high wind power penetration.

Starting from the viewpoint of the real-time implementa-
tion of digital controllers in embedded systems, [7] explored
the choice of the sampling period and its influence on the
controller’s transfer function from the perspective of the finite
length of the word in digital control systems, considering
both its impact on the controlled system’s stability and
settling time (lower bound) and the limitations of digital
implementation accuracy (higher bound). For a practical
implementation on microprocessor-based systems, [22] has
selected an optimal sampling period for a specific linear
time-invariant regulator. It was proposed a configurable
optimization-based approach for guiding the selection of the
sampling period. This approach allows users to specify the
relative emphasis between achieving high closed-loop fidelity
and ensuring ease of implementation. This configurable
approach has the potential to simplify controller design
for embedded systems while balancing performance and
implementation constraints.

A systematic evaluation approach for choosing the sam-
pling period in sampled-data control systems was proposed
by [23]. Their optimization scheme, simultaneously consider-
ing low-frequency performance, medium-frequency stability
margins, and high-frequency control activity, enabled signif-
icantly shorter sampling period, compared to existing rules
of thumb. This was demonstrated with a pole placement
controller for an integral plant with time-delay and a third-
order system, especially when combined with an anti-aliasing
filter and optimal pole placement. Similarly, [24] also focused
on pole placement control but investigated instead a reference
signal tracking (RST) controller designed specifically within
the context of control/programming co-design, dependent on
the sampling period. While this approach offers improved
robustness to processor load variations and flexibility in
work recovery time, the complexity of the RST synthesis
procedure increases significantly with higher order plants
due to the large number of polynomial parameters involved.
These studies highlight the potential of optimization-based
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approaches for selecting sampling periods while considering
performance and implementation constraints.

In model predictive control, for example, aiming at
time delay compensation the sampling period selection is
directly related to the number of samples to be predicted
(or the output prediction horizon), which can misguide the
designer to a non-optimal sampling period in order to attend
computational burden constraints, such as the selection of
a longer sampling period in order to reduce the prediction
horizon. In [14], the optimal generalized predictive control
(GPC) was applied considering the sampling period selection
as the first stage of the tuning procedure, and after that the
control and prediction horizons were chosen, assuming the
effects of the sampling period in GPC’s optimality in a hybrid
discrete plus continuous control-loop. They demonstrated
that this approach can lead to a more effective control
design. Moreover, the researchers highlight the intuitive
nature and potential universality of this method, suggesting
its applicability to other MPC algorithms beyond GPC. This
study underscores the importance of carefully considering
the sampling period’s influence on control performance and
computational demands in MPC frameworks. By prioritizing
sampling period selection early in the tuning process,
designers can potentially achieve more efficient and robust
control strategies.

Thus, the optimality of digital control systems is strongly
linked to the selection of the sampling period [25]. The
research in [8] evaluated the impact of the sampling period
over the control performance assessment of an optimal
tuning technique based on the integral time absolute error
(ITAE) criterion for continuous and discrete-time PI and PID
controllers, which was also used by [25] to analyze the huge
influence of three different sampling frequencies over the
performance of the digital PID control of a voltage source
inverter. Also, as [8] stated and common sense in the control
systems literature suggests, the enlargement of the sampling
period decreases the closed-loop performance. However, if it
is true for all classes of systems or if it is the optimal approach,
is still an open topic for investigation as depicted in recent
published works shown as follows.

Study [26] analyzed the limits of poles and zeros
in a system’s discrete-time equivalents under zero-order-
hold (ZOH) and generalized sampled-data hold approaches,
investigating the behavior as the sampling period approaches
zero. While this theoretically leads to perfect equivalence
with the continuous-time system, it comes with limitations.
Such approaches, despite recent and thinkable from an
implementation perspective due to the availability of high-
end microprocessors and memory modules, this might face
the requirements of the distributed control systems scenario,
which is strongly dependent on wired and wireless networked
systems subject to variable time delays and packet loss,
such that control system robustness might be more likely
achievable under more flexible sampling period constraints,

for example with possible real-time reconfigurations due to
network capability degradation.

Looking into the problem of maximizing the sampling
period, in [27] the design and implementation methods were
proposed to achieve robust digital controllers applicable to a
class of non-linear system subject to the maximum sampling
period. This approach has a strong potential for emerging
automation technologies and consolidated ones as well, such
as in controller area networks (CAN) applied to electric
drives and motors, which may impose severe time constraints
in order to produce appropriate torques and velocities with
maximum efficiency. For instance, [28] specifically explores
finding the maximum allowable sampling period for control-
ling a complex vehicular plant (MIMO servomechanisms)
using a CAN system. The communication delays inherent
to CAN networks highlight the importance of carefully
assessing the trade-off between sampling period and control
design requirements.

Pushing the boundaries of sampling period selection,
[29] used a very low sampling frequency (maximizing
the sampling period) in a predictive control approach,
demonstrating its feasibility in high-power applications. This
opens doors for using such controllers in scenarios where
power consumption or communication bandwidth are critical.
On the other hand, [10] studied an automatic adaptive
sampling time for an embedded networked control system
in which the sampling time is continuously adapted to a
proper value to maintain the controller performance, both in
wired and wireless networks, producing the output response
with control performance’s criteria. Finally, [30] focused on
PI control for first-order dynamic processes. They derived
a critical sampling period based on PI gains, guaranteeing
zero steady-state error as long as the chosen sampling period
remains below this limit. This finding helps designers avoid
sub-optimal control performance due to incorrect sampling
period selection.

As aforementioned, the sampling period selection is often
related to the optimization techniques. They are very common
in control systems with bio-inspired algorithms, LMIs,
artificial neural networks, fuzzy logic, MPC, GPC, LQG and
LQR. In an optimization context [31] leverages a fuzzymodel
with a hybrid search and rescue (SAR) and adaptive neuro-
fuzzy interface system (ANFIS) approach (SAR-ANFIS) to
optimize charging scenarios for electric vehicles (EVs). This
optimization minimizes costs while providing policymakers
with tools for budgeting future EV loads. The proposed
method allows for coordinating diverse charging scenarios
and offers autonomy for EV owners, enabling cost-effective
charging regardless of their situation. Similarly, [32] proposes
an optimal strategy for industrial energy management based
on evolutionary computing. This strategy characterizes
different charging situations - stochastic, off-peak, peak, and
electric power research institute - to achieve optimal vehicle-
to-grid integration considering cost and demand. Simulations
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demonstrate that the methodology can systematically charge
and discharge PEVs while significantly reducing operational
costs, emissions, as well as improving grid efficiency and
security. Similar to the works discussed previously, [33]
also employ optimization techniques for a control system
application. They present a methodology for optimizing the
combined capacity of a hybrid renewable power generation
system and energy storage in a grid-connected microgrid.
This approach maximizes the benefits of both renewable
energy sources and diverse energy storage options. The
proposed strategy focuses on four key objectives for micro-
grid operation: minimizing costs, reducing blackhouse gas
(GHG) emissions, achieving a higher emission reduction
benefit cost (ERBC), and enhancing reliability. To address
the computational complexity of a combined optimization
problem, they formulate and solve it in a piece-wise manner.
Real-world data is used to validate the proposedmethodology
and the resulting optimal solution demonstrates economic
benefit, improved reliability, and reduced GHG emissions
compared to other potential configurations.

Both [34] and [35] propose optimization-based approaches
to selecting sampling periods in control systems, offering
flexibility in balancing performance and implementation
constraints. Studies in [34] propose an optimization-based
approach to selecting the sampling periods for classes of
linear time-invariant (LTI) regulators in a cascaded multi-
rate control structure, to account for practical implementation
on numeric systems. Starting from the Shannon-Nyquist
sampling theorem, in order to ensure asymptotic stability of
the closed-loop system from the control theory viewpoint,
a configurable optimization-based approach is solved with
the mixed-integer artificial bee colony (MI-ABC) algorithm,
for selecting the sampling periods by specifying the emphasis
between closed-loop fidelity and ease of implementation. The
solution was illustrated in two case studies: the construction
of the proposed functionals and their practical implications.
The method permits assessing percentage improvements for
a set of desired metrics, which can be rounded up to an order
of magnitude compared to classical recommended sampling
rate values, while still maintaining acceptable performances
in an industrial context.

Studies in [35] gathered a set of analyses and design tools
to determine the sampling rate of 1DOF and 2DOF control
structures using an optimization-based approach, along with
an approach of deducing a WCET (worst-case execution
time) for linear and time-invariant-based regulators through a
formal language model which can be implemented in a rapid
control prototyping (RCP) software tool. For the sampling
rate selection, the classical Shannon-sampling theorem is
replaced by an optimization problem that encompasses the
trade-off between the fidelity of the controllers representation
along with the fidelity of the resulting closed-loop systems,
and the implementation difficulty of the controllers. The
end-to-end DC motor case study emphasized the design
of the controllers for the widely used benchmark system,
by focusing also on the proposed framework.

Overall, these studies showcase the potential of
optimization-based approaches for selecting sampling
periods, balancing performance, implementation, and com-
putational demands in various control system designs.

In [15] it was investigated the problem of sampling
period assignment in the design of digital state feedback
controllers for systems subject to time-varying sampling
periods and uncertain delays. The system was controlled
through a communication network, using the gain-scheduled
linear quadratic controller designed through linear matrix
inequalities, where the sampling period and the network-
induced delay were bounded within a known interval.
Numerical experiments illustrate the efficiency and the
validity of such an approach.

The importance of considering the discrete-time nature
of embedded controllers applied to dynamic continuous-
time plants was investigated in [36]. From new conditions
based on linear matrix inequalities (LMI) obtained from
the Lyapunov-Krasovskii Functionals approach, a design
technique was applied to linear sampled-data controllers,
designed to stabilizing linear systems. The results were
validated through simulations and experiments applied to
a didactic plant, contrasting discrete (long sampling period
of 4500 ms) and hypothetically-continuous (due to short
sampling period of 2 ms) controllers, these being PID
and LQR based. Such results confirmed the superiority
of the sampled-data control over the continuous-time one,
especially for large sampling periods.

Beyond the well-established system theory for peri-
odic/equidistant/fixed sampling period, there are several
other techniques to choose the sampling period, e.g.,
stochastic sampling period, non-periodic/aperiodic/non-
uniform/asynchronous sampling period, multi-rate sampling
period, and event-based sampling period. In the event-based
alternative, the system is sampled when the output has
changed by a specific amount rather than with the passing of
time, resulting in many conceptual advantages as the control
not being executed unless it is required [37], [38]. So, this
approach is an important means for reducing the load of the
digital communication networks that are used to implement
feedback control, adapting the usage of all elements in
controlling the loop to the current needs (resource-aware
design) [39]. Looking at this, [40] used a simulation example
to demonstrate the effectiveness of addressing the dynamic
event triggered distributed state and unknown parameter
estimation problem for discrete-time nonlinear systems that
have known linear dynamics and unknown nonlinearities and
are subject to deception attacks.

Also studying event-based control, [41] find the optimal
event-triggered control strategy for a given performance
index function, so that the system can track the ideal signal
while minimizing the cost function. The adaptive dynamic
programming (ADP) method and dynamic event-based
mechanism are used to solve the optimal tracking problem
of continuous-time boiler turbine systems. Simulation results
effectively demonstrate the feasibility of the developed
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method in this industrial-oriented system, leading to benefits
such as lower energy consumption and faster response
time through reducing the number of controller updates.
While event-based control offers advantages, it presents
additional computational challenges during implementation
compared to sampled-data control and should therefore be
used strategically.

The aforementioned studies reinforce the importance of
assessing the selection of the sampling period in control
system design. The general rules for selecting the periodic
sampling period may depend on the parameters of the control
problem (dominant time constant, transport time delay, inertia
constants or loop-quality indicators such as settling time or
rise time), the objective or reference model [8], [42], as well
as the dependence on the continuous-time process or desired
closed-loop bandwidth [43], [44]. However, several studies in
the context of digital control systems do not even mention the
value of this important parameter [45], [46], or when they do,
they lack justification for the selected sampling period (e.g.,
in [47], [48], [49], [50], [51], [52], [53]).
Moreover, the general rules for periodic sampling period

selection have been established under the assumption of
deterministic classes of systems. When it turns to systems
corrupted by process and measurement noises, the more
the sampling period reduces, the more these noises may
compromise the digital control loop sensitivity to high
frequency disturbances. However, if the sampling period is
increased, then the samples corrupted by the noise may
be assumed as the true value of the discrete signal under
consideration, increasing the regulation error that generates
a counter-action by the controller that could lead to further
increase of error due to the corrupted sample. Thus, such
a problem is indeed reflected in both the controlled output
signal and the control signal, since the feedback loop brings
the stochastic uncertainties into the control-loop.

When Karl J. Åström introduced the stochastic approach
to control techniques by means of the self-tuning minimum
variance regulator [54], the gap between the deterministic and
stochastic control methods and their practical implementation
was reduced [55] since, theoretically, it was possible to
design the optimal deadbeat regulator to a particular discrete-
time system corrupted by stochastic uncertainties. Even if the
sampling period was increased up to a certain theoretically-
accepted value, a maximum-likelihood-based predictor was
used to obtain the predicted mean value of the corrupted
(by noise) controlled output variable. However, such control
technique does not explicitly takes into account the sampling
period in order to verify other possible optimal outcomes.
So, the importance of the sampling period selection becomes
even more crucial when stochastic disturbances join the
digital control system closed-loop analysis [11], [56].
In this present work the main contribution is focused

on the development of a sampling period analysis tool,
henceforth addressed as the SPA tool. The aim is to
assist the control system designers in selecting the optimal

sampling period to achieve a suitable trade-off between
control system efficiency and the smallness of the sampling
period, which is well known to significantly influence
digital controller’s performance and system identification by
recursive parametric estimation techniques.

To evaluate the sampling period selection in the context
of deterministic and stochastic digital control, the RST
control and the Generalized Minimum Variance (GMV)
control are employed, respectively. It is emphasized that
the tuning of the GMV controller (GMVC) can be derived
from a deterministic one adding the solution of the Dio-
phantine equation related to the stochastic process model,
completing the GMVC design. So the GMVC can inherit
the desired closed-loop behavior (loop-shape) from any RST
controller designed by the pole-assignment procedure, which
leads to the generalization to the Stochastic Augmentation
in [55] and [57], also known as the GMV recursive pole-
assignment [58], [59], [60]. Such a procedure allows the
compatible performance assessment of how the deterministic
and the stochastic controls are affected by the changes
in the sampling period with each closed-loop simula-
tion, since a similar desired closed-loop specification is
maintained.

This controller design approach offers several novelties.
The sampling period becomes a tuning parameter for
both deterministic and stochastic pole-placement controllers,
applicable to linear process models of any order. It also
considers energy/computational resources and design speci-
fications. Furthermore, in the stochastic case (augmentation),
it allows tuning of GMVC’s pseudo-output filters even
with non-minimal order specifications, unlike [50]. However,
there are limitations. The design struggles with systems
containing multiple discrete-time delays and might not
converge for very large order process models due to potential
numerical issues with Sylvester matrix inversion, required
for both controller design. Hence, another difficulty is the
desired controller representation in RST format (structure),
which must result in a valid Sylvester matrix. If this is not
possible, then there will be no solution for the controllers’
design, derailing this synthesis for some controllers, like PID
structures and some process models.

Therefore, this paper aims at proposing an analysis tool, the
SPA, to assist in the selection of the sampling period bymeans
of the performance assessment of deterministic and stochastic
controllers via numerical simulations. The baseline relates to
the indexes derived to analyze and guide the sampling period
selection in terms of the most appropriate choice among
several others employed and evaluated using the proposed
methodological analysis.

Beyond this introductory section, this paper is structured
as an overview of the key theories contained in each
required procedure used by the analysis tool (discretization,
system identification, RST and GMV control design, and
performance criteria), simulation setups, qualitative and
quantitative simulation results, and conclusions.
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FIGURE 2. Sampling process in the control systems.

II. A REVIEW OF THEORIES EMPLOYED IN THE
SAMPLING PERIOD ANALYSIS TOOL
This section aims at clarifying the primary theories employed
in developing the proposed analysis tool, facilitating under-
standing of how to determine the most appropriate sampling
period for controlling a discrete-time equivalent model of a
linear continuous-time process.

A. SAMPLED-DATA CONTROL SYSTEMS
A sampled-data control system performs discrete control
every time the analog-to-digital (A/D) converter (ADC)
obtains a new sample from the controlled system output, and
it calculates a single control value to update the digital-to-
analog (D/A) converter (DAC), holding this value until the
next control calculation occurs after a new output sample
is fed back to the controller. The time interval between
each sample is called sampling period, Ts, and it has the
following relation to the sampling frequency or sampling rate,
fs = 1

Ts [1]. While a continuous-time system has infinite
values for time and amplitude, a discrete-time system works
only at predetermined instants. A digital system has finite
values for both time and amplitude, with the ZOH transform
representing an ideal DAC that holds the data from a digital
system between Ts instants [2]. This process is illustrated in
the simplified diagram shown in Fig. 2.

B. NYQUIST-SHANNON FREQUENCY
In sampled-data control, the time interval at which the
controller periodically reads from and writes on the A/D and
D/A converters must be chosen. This choice can be short
or long, and the Nyquist-Shannon Sampling Theorem – the
minimum sampling frequency (f ′s ) for perfect reconstruction
of a continuous-time signal is twice the desired maximum
frequency (fB) – defines a minimum sampling rate (f ′s ≥ 2fB),
or a maximum sampling period (T ′s ≤

TB
2 ) to be used

by discrete-time systems [11], [42]. However, it does not
determine the minimum Ts or a more suitable one [3], [7],
[8], [14], [23], [36], [61].

In this present work, a solution based on Algorithm 1 is
proposed and utilized to obtain the so-called fundamental
Nyquist-Shannon frequency (f ′NS ) for five continuous-time
benchmark processes. This frequency is identical to their
cutoff frequency (fB) and is defined as follows:

fNS ≜
fs
2

∴ fs = f ′s = 2fB H⇒ fNS = f ′NS = fB, (1)

where fNS is the Nyquist frequency for each fs.

Algorithm 1 Example for Nyquist-Shannon Frequency
Calculation

M⃗ag← process frequency response gains;
ne← elements in M⃗ag;
for kd ← ne to 1 do

if M⃗ag(kd) ≤
(
M⃗ag(1)− 3

)
then

kb← kd ;
break the repeat loop ‘‘for’’;

end if
end for
ωB ← ω(kb); # Cutoff frequency [rad/s] at -3dB
fB ← ωB(kb)/(2π ); # Cutoff frequency [Hz] at -3dB
f ′NS ← fB; # Fundamental Nyquist-Shannon frequency

T ′NS ← (f ′NS )
−1; # Fundamental Nyquist-Shannon period

TABLE 1. Continuous-time benchmark processes analysed on SPA.

The Algorithm 1 computes the f ′NS values based on the
process frequency response, when its gain decay 3 dB from
its DC frequency value, i.e. the cutoff frequency. The f ′NS
is the foundation of the proposed SPA tool which in turn is
based on the Nyquist criterion, employing multiples of f ′NS
(MSNF), so-named Nyquist-Shannon sampling harmonics,
i.e. fs = mf ′s or Ts = (mf ′s )

−1,m ∈ Z∗+.

C. SOME CONTINUOUS-TIME BENCHMARK PROCESSES
Whereas the SPA tool requires deterministic and stochastic
models for each Ts, it was decided to use high-order
continuous-time benchmark processes. This decision was
made in order to identify reduced-order discrete-time
approximations to simulate the plant-model-mismatch and
to consider unmodeled dynamics as stochastic uncertainties,
which were obtained based on the residuals of the system
identification procedure. Thus, five models proposed by
[62], [63] were employed to evaluate PID controllers.
These models are widespread for evaluating other control
techniques. Details of these processes are provided in Table 1,
and their identified versions are presented in Section II-D.

D. BENCHMARK CONTINUOUS-TIME SYSTEMS
DISCRETIZATION AND IDENTIFICATION
The system identification is the term that has been used
mainly for the procedure of measuring signals at the input
and output of a dynamic system and building a model to
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represent it for control system design [64]. In the present
paper the ARX (AutoRegressive with eXogenous input) and
ARMAX (AutoRegressive Moving Average with eXogenous
input) second-order models are obtained via Recursive Least
Squares (RLS) and Extended RLS (ERLS) [42], [64], [65],
respectively, by processing cause and effect data from the
unity step response experiment applied to the ZOH discrete-
time equivalents of the continuous-time benchmark processes
shown in Table 1.

Since all benchmark processes used were of order greater
than two, then both ARX and ARMAX models derived will
eventually have unmodeled dynamics in order to assess plant-
model-mismatch problems within a controlled simulation
environment. Thus, the modeled process noise of the ARX
and ARMAX models were obtained based on this plant-
model-mismatch using the ARX and ARMAX models
validation data, i.e., the error signal between the benchmark
process output and the estimated output.

Each sampling period value used in the identification
procedure, within the interval of one to forty times the
fundamental Nyquist-Shannon frequency, i.e., (40f ′NS )

−1
≤

Ts ≤ (f ′NS )
−1, originates a deterministic and a stochastic

model (cf. Fig. 3, where a0 = c0 = 1 for all of them).
This wide interval was chosen to cope with the various
range-values suggested by the scientific community [1],
[2], [4], [11], [42], [43], [44]. Also, concerning the use of
the step response to excite the processes, this is justified
since it is a commonly adopted test signal to observe the
transient response for system identification [62], in which
many industrial processes can be analyzed from [11] and
[42]. Added, the multiple correlation coefficient (R2) was
employed to quantify the quality of the models [65]:

R2 = 1−

∑N
k=1[y(k)− ŷ(k)]

2∑N
k=1

[
y(k)− µy

]2 , (2)

where N is the number of registered samples of y(k) with
mean µy, used to obtain the model’s estimated output ŷ(k).
Many practical applications in system identification for
control system design consider a sufficient R2 index in the
range of 0.8 ≤ R2 ≤ 1, with the best value being R2 = 1,
which would depict an exact match between the output and
its estimate [65].

E. DETERMINISTIC AND STOCHASTIC CONTROL DESIGN
This subsection approaches the deterministic and stochastic
controllers design and explains how they were used in the
SPA tool.

1) RST POLE ASSIGNMENT CONTROLLER
A single degree-of-freedom (DOF) controller, like the PID
controller, can fail when more complex dynamic processes
need to be controlled [66]. Thus, a more sophisticated
2DOF controller, like the RST (Reference Signal Tracking),
could be used in order to ensure stability, disturbance

FIGURE 3. ARMAX and ARX models regarding MSNF values under
analysis.

FIGURE 4. Canonical RST topology with measurement noise – η(k) – and
disturbances – v (k) and p(k).

rejection, optimization within safety limits, as well as
robustness [53], [66].

The canonical polynomial structure of the RST controller
(cf. Fig. 4) can be designed using a technique that involves
the imposition of different dynamics on the plant by pole
placement of the closed-loop poles of a continuous or
discrete-time system, allowing it to fulfill the requirements
of regulatory and tracking control, independently [67]. For
that, two polynomials must be calibrated to satisfy a desired
closed-loop performance. In addition, a third one filters the
reference signal and can be calculated in a way to ensure
performance in steady state [42].
In this context, a 2DOF pole assignment controller, like

the RST, continues to be widely applied by the scientific
community, e.g. in the process industry [51], [52], [67],
[68], in robotics [51], in unmanned aerial vehicles (UAV)
[53], [69], [70], in medicine [71], in optimal control
algorithms [52], [67], [72] and hybrid systems [67], [70],
in power systems [47], [48], [55], [73], in robust control [51],
[52], [67], [68], [69], [70], [72], among others.

In Fig. 4 it is shown the block diagram of the canonical
RST topology.

Whereas p(k) = C[z−1]ξ (k) with C[z−1] = 1 in the
control-loop at Fig. 4, an ARX model is defined by [64],

A[z−1]y(k) = z−dB[z−1]u(k)+ ξ (k), (3)

where A[z−1], B[z−1] and C[z−1] are polynomials in z−1,
the backward shift operator domain, such that a function
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TABLE 2. Polynomials’ degree of incremental and positional RST
controller.

X [z−1] = x0 + x1z−1 + x2z−2 + · · · + xnx z
−nx with

nx = degX [z−1] and satisfying z−my(k) ≜ y(k − m) [42].
The process transport time delay plus the A/D and D/A
converters hold delay are accounted together into d , which
is an integer value multiple of Ts; lastly, y(k) is the process
variable (output), u(k) is the control signal and ξ (k) is a zero
mean Gaussian disturbance in the discrete-time domain, i.e.,
k ∈ Z+.

Henceforth, polynomials such as X [z−1] will also be
addressed as X z when a compact notation is required. So, Az,
Bz, Rz, Sz, T zR, P

z, Qz, T zG, H
z, H z

N , E
z, Cz and F z are all

polynomials defined in z−1 domain.
Observing the block diagram in Fig. 4, assuming p(k) =

ν(k) = η(k) = 0, the RST control law is as follows:

Rzu(k) = Szy(k)− T zRyr (k). (4)

Substituting (4) into (3) originates the complementary
sensitivity transfer function Syr (z−1),

Hcl(z−1) =
H z
N

H z =
z−dBzT zR

AzRz + z−dBzSz
=

y(k)
yr (k)

, (5)

where yr (k) is the discrete-time reference signal.
Therefore, by choosing the roots of H [z−1] it is possible

to determine R[z−1] and S[z−1] polynomial parameters. It is
possible to assign a closed-loop desired dynamic for (5) [43]
by finding a solution to the Diophantine equation,

H z
= AzRz + z−dBzSz. (6)

Assuming the plant’s open-loop transfer function does not
have common factors (zero and pole equality), then the
polynomials in (6) are coprime (AzRz + z−dBzSz ̸= 0) [11]
and the Diophantine equation order must obey the relations
shown in Table 2. Thus, there is a strictly causal system and
it implies that (6) has a unique solution [11].

In order to conclude the synthesis of Hcl(z−1), one way
to compute T zR is assuming T zR = tr0 = H [1]/B[1] (for
positional RST) and T zR = tr0 = S[1] (for incremental RST)
[66]. Considering the incremental form, (4) and (6) change
to,

Rz1u(k) = Szy(k)− T zRyr (k), (7)

H z
= 1AzRz + z−dBzSz, (8)

respectively, where 1 = 1 − z−1 (discrete-time difference
operator), creating an ARIX model with 1Az = 1+ ā1z−1+
ā2z−2 + · · · + ānāz

−nā .

In this paper it is employed both the Sylvester matrix [11],
[66] and pole assignment into H [z−1] to compute the RST
polynomials design for generalized discrete-time processes,
i.e., for any na and nb with d = 1, described in Section II-E3.
Note that it is possible to change the dynamics of (6)

or (8) to a desired closed-loop one [43]. Here the poles were
assigned as [42] and [66],

H z
= 1+ h1z−1 + h2z−2, (9)

where h1 = −2e−ζωnTscos(ωnTs
√
1− ζ 2) and h2 =

e−2ζωnTs . The parameters ωn (undamped frequency) and ζ

(damping factor) can be calculated aiming the desired control
quality (settling time, maximum overshoot, rise time, peak
time and so on). In addition, high-order pole assignment is
also possible since it obeys the conditions shown in Table 2.

2) GMV CONTROL
The theory of stochastic control came to fill up the gap
in control problems where uncertainties and disturbances
are more likely represented in probabilistic terms [55]. The
importance of such theory has been evidenced on researches
about new control techniques and real applications, e.g., [45],
[46], [48], [49], [55], [56], [57], [59], [74], [75], and [76].

The GMVC was first introduced by Clarke and Gawthrop
in 1975 [77] and it is one of the simplest model predictive
control (MPC) methods [47]. It is based on the Minimum
Variance (MV) regulator [78] and its major difference in
relation to deterministic controllers is that it employs an
ARMAX model,

A[z−1]y(k) = z−dB[z−1]u(k)+ C[z−1]ξ (k), (10)

i.e., it includes both deterministic and stochastic parts in its
description, as it can be seen by comparing (3) and (10).
Notice, now C[z−1] ̸= 1 and it filters ξ (k) which is a
disturbance modeled as a stochastic process with zero mean
(µξ = 0) and variance σ 2

ξ [54]. Thus, a GMVC has the skills
to distinguish between noise and disturbances – η(k), v(k) and
p(k) = C[z−1]ξ (k), depicted in Fig. 4 – from deterministic
cause-and-effect dynamics [55].

The GMVC has a generalized (pseudo) output [49], [50],

φ(k + d) = Pzy(k + d)− T zGyr (k + d)+ Q
zu(k), (11)

which should be minimized according to the performance
index [49], [55],

J = E[φ2(k + d)], (12)

where E[·] is the mathematical expectation, since J counts on
the prediction (d-steps in the future) in order to be minimized
by solving ∂J/∂u(k) = 0.
While yr (k + d) may be known a priori, y(k + d) and

ξ (k + d) are future information (non-mensurable) in (11).
Thus, y(k + d) will become known via estimation of (10) d-
steps ahead by using the minimum variance predictor (MVP)
[48], [49], [50], [55], [77] as,

ŷ(k + d |k) =
BzEz

Cz u(k)+
F z

Cz y(k). (13)
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They accrue from the solution of a Diophantine equation [50],

PzCz
= AzEz + z−dF z, (14)

which arises from splitting ξ (k + d) in present and future
portions used for the MPV calculation. There is a single
solution for (14) taking ne = d − 1 and nf = max[(np +
nc), (na + ne)]− d , according to [50], [77].
By substituting (13) into (11) and rearranging it in order

to optimize (12), the GMV control law is given by [48]
and [50]:

u(k) =
CzT zGy(k + d)− F

zy(k)

BzEz + CzQz
, (15)

which ensures the minimum variance for φ(k + d) in steady-
state [50]. Therefore, by substituting (15) into (10) with
ν(k) = η(k) = 0, it is obtained the complementary sensitivity
Syr (z−1) and the sensitivity Syp(z−1) transfer functions [79],

y(k) = Syr (z−1)yr (k)+ Syp(z−1)p(k), (16)

y(k) =
BzT zG

AzQz + BzPz
yr (k)+

BzEz + CzQz

AzQz + BzPz
p(k). (17)

In addition, by considering p(k) = 0, the closed-loop transfer
function in the ARX model case can be described as

y(k)
yr (k)

=
B[z−1]TG[z−1]

A[z−1]Q[z−1]+ B[z−1]P[z−1]
. (18)

Note that both (17) and (18) are not influenced by the time
delay d as it occurs in the deterministic case shown in (5).
Just like the RST controller, the GMVC will use the

incremental form by considering an ARIMAXmodel instead
of the ARMAX shown in (10) [48]. Thus, the main design
equations are rewritten to the incremental control form:

1Azy(k) = z−dBz1u(k)+ Czξ (k), (19)

φ(k + d) = Pzy(k + d)− T zGyr (k + d)+ Q
z1u(k), (20)

PzCz
= 1AzEz + z−dF z, (21)

nf = max[(np + nc), (nā + ne)]− d, (22)

1u(k) =
CzT zGy(k + d)− F

zy(k)

BzEz + CzQz
, (23)

u(k) = u(k − 1)+1u(k), (24)

y(k) =
(BzT zG)yr (k)+ (BzEz + CzQz)p(k)

1AzQz + BzPz
. (25)

3) GENERALIZED POLE ASSIGNMENT FOR GMV (GPAGMV)
The Stochastic Augmentation is a control design technique
already employed in the recursive form, so-called GMVPAC
(GMV with Pole Assignment Controller) and GMVDPAC
(GMV with Dynamic PAC) [58], [59], [60], and non-
recursive one [55].
It will be explained below the design of the so-called

GPAGMV control. It generalizes the solution of GMV’s
Diophantine equation by employing the Bezout Identity
generalized solution [11], [42] as well as an improvement for
the Aryabhatta’s equation solution [11], [54], allocating the
RST’s pole assignment into the GMV control design.

As previously seen, both GMV and RST control laws are
respectively described by

R[z−1]u(k) = TR[z−1]yr (k)− S[z−1]y(k), (26)

Q[z−1]u(k) = TG[z−1]yr (k)− P[z−1]y(k), (27)

considering that GMV’s generalized output is not in its
predicted form and that there is a control signal that stabilizes
the system (i.e., φ(∞) −→ 0). Comparing (26) with (27) it is
possible to tune the GMV’s weighting polynomials with the
RST loop-shape in the same manner as [55] presented for the
PID controller, thus leading to

Qz = Rz, Pz = Sz, T zG = T zR. (28)

According to (26)-(28), the GMV control can absorb the pole
assignment from RST, but it is still necessary to solve (14)
[48], [49], [50], which in turn will be able to minimize σ 2

φ ,
completing its optimal stochastic tuning.
In this paper, the generalized Diophantine from the RST

control design is solved building the generalized Sylvester
matrix shown in (30) [11] and choosing the desired pole
assignment, ρ⃗T = [h1, . . . , h(nr+ns+1)], from (9), obeying
Table 2 with x⃗T = [r1, . . . , rnr , s0, . . . , sns ] and α⃗T =

[ā1, . . . , ānā ]. Thus, one way to represent such a generalized
solution is [11],

x⃗ =M−1(ρ⃗ − α⃗). (29)

M =



nr︷ ︸︸ ︷ ns+1︷ ︸︸ ︷
1 0 . . . 0 b0 0 . . . 0

ā1 1
. . .

... b1 b0
. . .

...

ā2 ā1
. . . 1 b2 b1

. . . b0
... ā2

. . . ā1
... b2

. . . b1

ānā
...

. . . ā2 bnb
...

. . . b2

0 ānā
. . .

... 0 bnb
. . .

...
... 0 . . . ānā 0 0 . . . bnb


(30)

In addition, the generalized pole assignment for GMV
(GPAGMV) has to satisfy (28) jointly with the generalized
solution for (21), according to Algorithm 2, based on
Aryabhatta’s equation full solution, in which nc ̸= 0.

So, in the generalized design both RST controller and
GPAGMV were obtained in order to analyze the influence
of the sampling period for both deterministic and stochastic
controllers, respectively. The selection of these methods
was mainly because the desired dynamics for the controlled
processes resemble themselves even when the sampling
period would changes.

F. THE SAMPLING PERIOD ANALYSIS TOOL
The developed SPA employs the steps at Algorithm 3. Notice
that it applies the previous theories in order to get a dataset to
be analyzed and achieve the most adequate sampling period,
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Algorithm 2 Generalized Pole Assignment for GMV
(GPAGMV)
Require: 1⃗A, C⃗ ;
1: ne ← d − 1; np ← ns; nf ← max[(np + nc), (nā + ne)]− d;
2: A⃗s(1 : ne + 1+ nf + 1, 1)← 0⃗;

3: A⃗s(2 : 2+ nā + 1, 1)← 1⃗A
T
(2 : nā + 1, 1);

4: As(:, 1)← A⃗s;
5: for k ← 2 to (ne + 1) do
6: As(:, 1 : k)←

[
As, permute A⃗s one element ahead

]
;

7: end for
8: C⃗s(1 : ne + 1+ nf + 1, 1)← 0⃗;
9: C⃗s(1 : nc + 1, 1)← C⃗T ;

10: Cs(:, 1)← C⃗s;
11: for k ← 2 to (ns + 1) do
12: Cs(:, 1 : k)←

[
Cs, permute C⃗s one element ahead

]
;

13: end for
14: E⃗(1)← s0;
15: for k ← 2 to (ne + 1+ nf + 1) do
16: if (k ≤ (ne + 1)) then
17: E⃗(k)← C⃗s(k, :) · S⃗T − A⃗s(k, 1 : length of E⃗) · E⃗T ;
18: else
19: F⃗(k − (ne + 1))← C⃗s(k, :) · S⃗T − A⃗s(k, 1 : length of E⃗) · E⃗T ;
20: end if

21: end for

or similarly, sampling frequency, for discrete-time control
loops. Thus, by using this tool it is possible to optimize the
control design regarding both the desired performance index
and the sampling period, as it can be seen later in III.

Algorithm 3 SPA Algorithm’s
1. Definition of a continuous-time process (LTI - Linear Time-Invariant

System);
2. Define a Ts value, a multiple of the fundamental Nyquist-Shannon

sampling period (T ′NS ) determined for the process in the step ‘‘1’’;
3. Discretization of the continuous-time process for prior Ts;
4. Compute the step response for the process in step ‘‘3’’ and use its cause-

effect data to identify reduced-order ARX and ARMAX models (they
are independent of the noisy scenario);

5. Design the digital controllers for the identified models;
6. Simulations with both controllers subject to stochastic disturbance on

the process variable;
7. Performance indexes calculation for both controllers with the current

Ts and save results;
8. Elect a new Ts, a multiple of the f ′NS (MSNF) too, and less than the

previous Ts used;
9. Perform steps ‘‘3’’ through ‘‘8’’ for the next Ts to be analyzed; and

10. Examine the numerical results in order to achieve the optimal trade-off

between sampling period and control system performance.

G. INDEXES FOR PERFORMANCE EVALUATION
In control system applications it is important to satisfy certain
desired performance specifications. Thus, it is necessary to
quantify them like in [8], [47], [50], [56], [75], [80], and [81].

A performance index is a number that indicates the quality
of the control system performance, which is considered opti-
mal when that number is either minimized ormaximized [82].
There are several indices used for this purpose, mainly to
assess reference tracking, disturbance rejection and control
signal energy, and the most widespread in the literature are
ISE, IAE, ITAE and ITSE [66], [75], [80], [82], [83].

FIGURE 5. Mean and variance for five noise sequences regards each
MSNF value. Such sequences was generated employing µξ = 0 and
σ2
ξ

= 10−4.

Here, the discrete-time indexes (sum) forms [50], [66] from
the common performance integral indexes forms (e.g., IAE,
ISE and ITAE) [80] and [82] were used. Those are based on
the reference tracking error (SAE, SSE, STAE and STSE)
and on the control signal (SACS, SSCS, STACS and STSCS),
defined as follows:

SAE =
N∑
k=1

|e(k)|Ts, SACS =
N∑
k=1

|u(k)|Ts,

STAE =
N∑
k=1

k|e(k)|T 2
s , STACS =

N∑
k=1

k|u(k)|T 2
s ,

SSE =
N∑
k=1

e2(k)Ts, SSCS =
N∑
k=1

u2(k)Ts,

STSE =
N∑
k=1

ke2(k)T 2
s , STSCS =

N∑
k=1

ku2(k)T 2
s .

The integral of time-weighted indexes (as ITACS and
ITSE) are more suitable for transient analysis just like non
time-weighted ones (like IAE and ISCS) are for steady-
state [82]. So, these last indexes were utilized because the
time-weighted ones tend to zero when TNS decreases, since
they employ the square of the sampling period, as it will
be better emphasized in Section III. Furthermore, the IAE
and IACS indexes are used because the error signal has an
amplitude of less than 1 in steady-state, as suggested by [83].

III. SIMULATION RESULTS
This section shows the setups, the quantitative and the
qualitative results, after employing the SPA tool for the
simulations. Thus, the Algorithm 3 was applied to each
process in Table 1, according to the parameters in Table 3,
in order to get the dataset for the numerical analysis,
from which the trade-off between the sampling period
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FIGURE 6. The trend of the noise mean and standard deviation according
to MSNF values evaluated for twenty noise sequences applied to each
MSNF.

TABLE 3. The SPA setups for simulation analysis.

smallness and control-loop performance was achieved for
such controlled processes, as depicted in Table 4.

The following results were obtained using MATLAB
2015b 64-bit on Windows 7 Ultimate SP1 64-bit, running on
a laptop with a Hewlett-Packard 1854 motherboard, an Intel
Core i5-3230M processor, 8GB of DDR3 memory clocked at
1600MHz, and an SSD Sata-2.

A. SETUPS
Both controllers were evaluated concerning the noise dis-
turbance, ξ (t). In Fig. 5 it is shown two statistical features,
mean (µξ ) and variance (σ 2

ξ ), of just five of the twenty noise
sequences applied to the simulations of the Gp2 process for
each MSNF. The MSNF is highlighted as a subscript of ξ (t)
since the number of samples in the noise sequence changes
for every Ts value considered, affecting the two statistical
features. Each process was evaluated according to Table 3
that shows the fundamental Nyquist-Shannon frequency and
period obtained from the Algorithm 1.
In Table 3, it must be remarked that Gp1 and Gp3 were

unable to allow a range forMSNF composed solely by integer
values, since for higher values these systems became unstable
in closed-loop with GMV. Then, forGp1, MSNF ranged from
1 to 7 using steps of 0.15 (i.e., 1 : 0.15 : 7) and for Gp3, from

FIGURE 7. Multiple correlation coefficient for Gp2 process identification
regarding MSNF values.

FIGURE 8. Multiple correlation coefficient for Gp5 process identification
regarding MSNF values.

FIGURE 9. Comparison of the reference tracking performance of both
controllers and the open-loop discrete-time response of the Gp2 models
for three MSNF (5, 10 and 40).

1 to 5 using steps of 0.1 (i.e., 1 : 0.1 : 5). Another remark,
regarding to Gp5 and MSNF, is that except for MSNF =
{7, 8}, Gp5 could be stabilized with GMV control, thus in
Table 3 the MSNF range was highlighted with ‘‘*’’. So,
these facts already suggest a more cautious and systematic
analysis when choosing the sampling period in GPAGMV
control design, despite no such consideration has been found
in previous GPAGMV studies, e.g., in [59], [60], and [55].

Notice that larger Ts (small MSNF values) affect more
the µξ and σ 2

ξ because there are few samples in the
simulation regarding ones using narrower Ts (large MSNF).
This behavior can be better seen in Fig. 6 looking at the
aforesaid two statistical features.
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FIGURE 10. The reference tracking performance for both controllers and
the open-loop discrete-time response for Gp2 models when using three
MSNF (5, 10 and 40) and adding noise in the process variable.

Fig. 7 presents the Gp2 process identification quality
using second-order ARX and ARMAX models. Observe that
the process was appropriately identified for control design
purposes, concerning each Ts assessed, which is confirmed
by the R2 coefficients obtained [65], even using reduced-
order models. This corroborates that it cannot be generalized
that the lowest Ts is the best choice in system identification,
as highlighted by [3]. Besides, the identification quality was
slightly different for Gp5, as depicted in Fig. 8, but R2 is
suitable for practical applications, according to [65]. The best
R2 and trade-off sampling period were observed for larger Ts,
as will be shown next.

A deeper analysis of the results is shown next, from
sections III-B to III-D, related solely to the Gp2 process for
the sake of convenience. However, further results regarding
the other processes will be highlighted in order to depict some
results of more significance.

B. TRACKING PERFORMANCE FOR MSNF VALUES
In Fig. 9 it is shown the process variable and the control signal
for both controllers as well as the open-loop response of the
Gp2 discrete-time process models for three MSNF values (5,
10 and 40).

Observe in Fig. 9 that all controlled responses are tracking
the reference signal. This is also true for the white noise
disturbance essay, as depicted in Fig. 10. The overshoot of
1.5%, which is bound to the desired ζ (shown in Table 3), was
not achieved for the case where MSNF = 5 using the RST
controller; thus resulting in a greater oscillation when the
MSNF decreases, as mentioned in [2]. The GMV controller is
more restrained overall, possibly because of its one step ahead
prediction, as it can be seen by comparing its u(t) signal to
the one generated by the RST controller. Figures 11 and 12
improve the visualization of the control requirements for y(t)
and u(t) for each mentioned MSNF.

FIGURE 11. Comparison of the reference tracking performance of both
controllers and the open-loop discrete-time response of the Gp2 models
for three MSNF (5, 10 and 40).

FIGURE 12. The reference tracking performance for both controllers and
the open-loop discrete-time response for Gp2 models when using three
MSNF (5, 10 and 40) and noise affects the process variable.

In Fig. 13 it is shown the mean and standard deviation of
the process variable variance (σ 2

y ) and of the control signal
variance (σ 2

u ) when deterministic and stochastic controllers
are operating in a noisy scenario.

Notice in Fig. 13 that both controllers increase the control
signal variance when MSNF decreases, as highlighted by [4]
and [11], regarding stochastic controllers. Besides, the RST
starts building up a smooth raise when MSNF increases,
degrading the disturbance rejection for the deterministic
case. The same problem was observed for the Gp5 process,
as depicted in Fig. 14.
In GMVC, the mean value of the control and output

variances tend to reduce as MSNF increase. The RST
controller has achieved small mean variance values for Gp2
and larger ones for Gp5 with tendency to increase the control
signal variance as fs enlarges. This aspects are expected
since the design of the minimum variance controller is better
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FIGURE 13. Comparison of mean and standard deviation of the variances
(process variable and control signal) when applying both controllers to
the Gp2 models adding stochastic disturbances to the output.

FIGURE 14. Comparison of mean and standard deviation of the variances
(process variable and control signal) when applying both controllers to
the Gp5 models adding stochastic disturbances to the output.

to reject stochastic disturbances, attenuating these effects
because of its stochastic approach.

The GMVC’s mean variance values are fewer than or equal
to those obtained by the deterministic controller, either for
output or control signals. It is also worth mentioning that the
difference between such values becomes greater as theMSNF
is reduced.

C. PERFORMANCE INDEXES REGARDING MSNF AND
STOCHASTIC DISTURBANCE
Since both controllers are tracking the reference signal for
several Ts and noises, now it is evaluated how such scenario
influences the SAE and SACS indexes when the GMV
and RST controllers are applied to the processes under
investigation while using the setups shown in Table 3.

In Fig. 15 there is the relation among the forenamed
indexes regarding the control of the Gp2 process models –
one for each Ts or MSNF, applying twenty noise sequences

FIGURE 15. The SACS and SAE performances for Gp2 models from both
controllers for several MSNF and noises.

for each MSNF – whose variances are shown in Table 3.
Thus, for instance, the left-superior created surface in Fig. 15
shows the relation between the four hundred computed index
amplitudes (SAE for GMV controller) for each reference
tracking response when each noise (stochastic disturbance)
is applied to the process variable using every analysed
MSNF. The other amplitude index surfaces are related to
the RST controller reference tracking response and the SAE
indexes for cited controllers’ control signal, performing
similar relations to originate the other three surfaces.

Observe in Fig. 15 that the SACS indexes are strongly
attenuated while the SAE ones are highly increased when
there is a MSNF decrease, either using GMV or RST,
as considered in [2] and justified when [27] states that
between samples, a sampled-data control system operates
without feedback. Besides, each noise addition originates a
slight variation in such indexes. In this stochastic scenario,
notice that larger MSNF increases the RST’s SAE while the
GMV’s one stays approximately constant, this being justified
because of the stochastic approach of the GMV, whose design
is performed to optimally reject stochastic disturbances – in
this case for the MSNFs evaluated too. Also observe that the
RST’s SACS has slight oscillations when compared to GMV.
From this behavior, consider it the application ofmethods that
adapt both controllers in terms of Ts, for example, optimizing
the control loop using it as a tuning parameter.

Figure 16 provides another way to see those variations
and indexes in order to improve this assessment. Since some
of such amplitudes are hidden in 3D graphics, this other
viewpoint gets to show all of them, because each color on
the colormap is related to each plane of amplitude, i.e., the
amplitude slicing plane parallel to the MSNF-Noise plane is
associated with each color. Thus, the attenuated variations
in the aforesaid amplitudes result in a color regularity for
distinct noises in the GMV controller, emphasizing again its
stochastic approach [77]. On the other hand, reduced color
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FIGURE 16. SACS and SAE performance indexes of Gp2 models from both
controllers for several MSNF and noises.

FIGURE 17. The SACS and SAE performances for Gp5 models from both
controllers for several MSNF and noises.

regularity is observed for the deterministic controller. The
process Gp5 was the unique exception to these comments,
as depicted in Fig. 17 and Fig. 18.
The mean (µ) and standard deviation (σ ) for both the

SACS and SAE indexes are shown in Fig. 19, in order to
statistically evaluate these indexes.

It was noticed in Fig. 19 that the noise sequences do
not affect the SAE, neither for GMV nor RST controllers.
However, the RST increases the SACS standard deviation
(σSACS ) when MSNF increases, i.e., this controller is more
sensible to the noise, as expected: higher sampling frequen-
cies results in more frequent control actions in deterministic
control loops under a noisy scenario, once it has no stochastic
control skills. Also, observe that the mean of SAE (µSAE )
is enlarged in RST, while it does not change concerning the
GMVC, as stated by [44] that faster sampling implies better

FIGURE 18. SACS and SAE performance indexes of the Gp5 models from
both controllers for several MSNF and noises.

FIGURE 19. Mean and standard deviation of the SACS and the SAE
performance indexes for Gp2 models from both controllers for several
MSNF and noises.

disturbance rejection. Excepting the processGp5 (cf. Fig. 20),
the GMV’s µSAE is less or equal to the RST’s one, where the
last controller has higher deviation.

Figure 21 reveals the mean behavior of the absolute and
square performance indexes for both the error and control
signals regarding the MSNF.

For both digital controllers, by analyzing the absolute
and the square performance indexes it is possible to elect a
MSNF value that assures controlling the process, satisfying
a better compromise between the error level and the control
signals quality, i.e., the controlled processes do not have a
minimum error but they also do not waste a large amount
of energy in the control system [2], [36], [84]). Provided
the mentioned trade-off can be employed for a controlled
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FIGURE 20. Mean and standard deviation of the SACS and the SAE
performance indexes for Gp5 models from both controllers for several
MSNF and noises.

FIGURE 21. Mean of the absolute and the square performance indexes
(control and error signals) when using both controllers and Gp2 models.

process, the SPA allows the selection of a more suitable
sampling period among the analyzed range, similar to [44]
and [84] approaches, but with advantages highlighted next,
e.g., the possibility of extending such choice for controlling
high-order processes and minimizing the complexity of the
mathematical approach for such selection in deterministic
and stochastic linear discrete-time control systems.

Higher MSNF values increase the mean of the absolute
error in the evaluated deterministic control, while in the
stochastic one the mean is almost constant and, for the square
index mean, it was observed a slight reduction in the control
effort, consequently decreasing energy, computational effort,
and network bandwidth resources, as highlighted in [84].
In both cases, the choice of large sampling frequency (MSNF)
incurs almost no bonus for the system or, in the RST
approach, there are even inferior performances, suggesting

FIGURE 22. Comparison between normalized mean of the control and
error performance indexes when both controllers are acting on Gp2
models.

that higher sampling frequencies are always the worst
choice. It achieved similar results when controlling the other
benchmark processes shown in Table 3.

D. CHOOSING MSNF BASED ON THE TRADE-OFF
PERFORMANCE INDEXES
From Fig. 21 results, it was noticeable that GMVC’s squared
performance indexes have sudden changes for small MSNF,
but when MSNF is increased it is difficult to visualize the
performance changes in order to choose the best compromise
sampling period based on these squared indexes. Thus, the
absolute ones (SACS and SAE) were chosen.

So, for the purpose of improving the visualization and com-
parison of the chosen indexes, Fig. 22 exhibits a normalized
version for the mean of SAE and SACS performance indexes,
regarding MSNF.

Based on the performance compromise, the selected
sampling period is viewed and computed into the assessment
range whose both SAE and SACS curves have simultaneous
minimum value for the same MSNF. From Fig. 22, this
value is MSNF = 2, i.e., Ts = (2f ′NS )

−1
= 1.5708 s or

fs = 0.6366 Hz for the GMV and MSNF = 4 for the
RST. The other trade-offs for all the benchmark processes
are shown in Table 4. Note that if the choice had been based
on the curves shown in Fig. 21, the selected sampling period
would be erroneous, since the µSAE and µSACS amplitudes
were extremely different provided they were not normalized.

Based on the indexes trade-offs, the selected sampling
period is then the minimum value of the normalized curve of
the SACS’s mean plus the minimum one for such SAE curve
for every MSNF. Thereby, from Fig. 22, the compromise
MSNF values are 2 and 4, for the GMV and the RST
controllers, respectively. Such values were expected, since
the sum (accumulation) of the error signal and the sum of the
control signal are concurrent curves, related to MSNF (fs),
as shown in Fig. 23 and from values in Table 5, for instance.
Besides, the sampling period directly influences the moment
of control action, as stated in the control theory references and
also shown in Fig. 23. Thus, there was the hypothesis of the
compromise between these signals in relation to fs and seen
in Fig. 21, Fig. 22 and Fig. 24, a proof of concept from this
work, since no references with such a contribution could be
found previously.
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TABLE 4. Compromise MSNF from SPA for all benchmark processes.

FIGURE 23. Error signal and control signal regarding two Ts (MSNF) for
Gp2 models.

TABLE 5. Accumulation of the error signal and the control signal
regarding fs.

FIGURE 24. Curves summation of the absolute normalized mean of
control and error performance indexes guiding to the best trade-off
sampling period selection for the Gp2 model.

The MSNF choice can be better observed and analyzed
in Fig. 24, which shows the sum of the cited normalized
curves, mainly because the other analyzed processes have
many oscillations on such curves, interfering in this selection
by mere visual inspection.

Overall, when observing Table 4 the stochastic controller
canworkwith sampling frequencies lower than or equal to the
deterministic one. Therefore, GMV has got the performance
indexes trade-off with the lowest computational effort,
possibly because of its optimal, predictive and stochastic
characteristics. It is important to emphasize this result
because a low fs results in reduced computational burden,
leaving more time to process data between successive data
samples, to implement more sophisticated control algorithms
possibilities and reducing network bandwidth resources
requirements (reduces data load in feedback communication
channels) [27].

It is worthy complementing that in all the studied
cases – except for the deterministic control applied to Gp4 –
the trade-off was obtained for small sampling frequencies,
as depicted in Table 4, with relation to the rule of thumb
adopted in control systems like in [1], [2], [43], [44], and [85].

Finally, observe that the SPA tool places the Ts as
a design parameter for both deterministic and stochastic
pole assignment controllers, similar to what [12] and [13]
presented in the deterministic approach. For that, it is enough
to consult the normalized curve of the sum of the performance
indexes, which shows the SACS and SAE evolution as a
function of MSNF. Thus, the SPA creates an abacus to be
consulted and starts the synthesis of new strategies in optimal
digital control systems.

Besides what was, the SPA tool can also extend the
assessments, for instance to high-order processes linear
models, in addition to second-order ones evaluated here,
as well as to other performance indexes, instead of SAE and
SACS employed in the present paper.

IV. CONCLUSION
This paper addressed the development and application
of an algorithmic technique for analyzing the periodic
sampling period based on the Nyquist-Shannon criterion, the
SPA, which uses the computational power to achieve the
compromise (trade-off) sampling frequency for deterministic
(RST) and stochastic (GMV) digital control systems designed
by generalized pole assignment.

The GPAGMV design technique did not achieve a stable
control system neither for all the assessed sampling frequen-
cies, nor for all benchmark processes parameterization. Thus,
not always the GMVC can absorb the RST pole assignment,
having a dependency on the Ts. However, this fact has
not been previously observed by any research on stochastic
augmentation technique.

In the system identification procedure, the R2 values
decrease for narrow Ts. Thus, the SPA might open novel
perspectives to guide researchers in the best selection of sam-
pling periods for system identification, similarly to the works
done in [3], [5], and [18]. Within the evaluated benchmark
processes in this present paper, it was observed that lower
sampling frequencies were generally more suitable, for both
system identification and control.
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From the error and control signals performance index
values, it was possible to choose the fs which sets a
performance compromise for the controlled system using
the deterministic or stochastic controllers. It was feasible to
elect a MSNF value that assured controlling the processes
satisfying the best trade-off for both control and error
signals’ quality, guaranteeing reduced energy consumption
and satisfactory asymptotic reference tracking which can
increase with larger values of fs, mainly when using
deterministic pole assignment controllers. Provided the SPA
can be applied to a controlled process, the algorithm allows
getting a more suitable Ts from an assessment range. Add
to this the case where there are hardware limitations, such
as in embedded control, the compromise as previously stated
becomes imperative [44].

Regarding controllers, the large fs increases the mean of
the error by spending even more energy for deterministic
control, while the stochastic one keeps this mean constant and
slightly reduces the control effort. In both cases, the choice
of large fs incurs no bonus for the system or even decreases
the performance. It was seen that the stochastic control
approach had the most adequate performance compared to
the deterministic one, especially in noisy scenarios. Besides,
it was observed that the GMV’s compromise sampling
periods have values smaller or equal compared to RST ones,
allowing the former to work with reduced computational
effort.

The trade-off fs was very close to the f ′NS , overall. Thus,
the strategy of using GPAGMV indicates a way to improve
even more the use of the embedded hardware, as long
as slower sampling frequencies are allowed to the control
system, which can cause problems mentioned in the literature
as in [1], [2], [85]. The SPA tool places the Ts as a design
parameter for pole placement deterministic and stochastic
controllers, extending to the stochastic case the deterministic
approaches of [12] and [13]. For that, it is enough to consult
the sum of the normalized performance indexes curve, which
shows the evolution of the SACS and SAE as the MSNF
function, i.e., the SPA originates an abacus to be consulted.

The SPA allows the adoption of a trade-off fs between
performance and control effort, mitigating the computational
burden, facilitating decision making without brilliant (despite
complex) optimization calculations as in [44] and [84].
Furthermore, the generalized tuning of controllers with
GPAGMV allows that the methodology could be extended to
higher-order systems, something that has become unfeasible
in the approach of [84] because it needed a complex analytical
treatment.

This paper has shown that it is extremely important to
test the fs to be applied in deterministic and stochastic
digital control systems. Such importance was shown per
the quantitative approach employing the SPA, which uses
the computer’s processing power to create a numerical
method to assist in the sampling period selection and
substantiate this, rather than simply taking general rules for
such selection/assignment or resorting to empiricism.

Future research aims at obtaining experimental results
from the SPA tool applied to SISO didactic processes, via
deterministic and/or stochastic control approaches, as well
as at expanding it by incorporating other controllers and
linear processes and developing the SPA in a state-space.
Besides, such researches should culminate in a software for
the scientific community, such as a MATLAB’s toolbox,
Scilab’s ATOM, or a script/function tool for Python, for
instance.
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