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ABSTRACT Unmanned aerial vehicles (UAVs) are expected to be integrated into future wireless networks
to offer services, especially in unreachable or congested areas. To improve the spectral efficiency, non-
orthogonal multiple access (NOMA) scheme can be utilised within the UAV communication to allow more
users to be covered and associated. The performance of the NOMA-UAVs network is governed by several
factors including power allocation, user association and pairing methods. This paper presents an approach
that uses multi-armed bandit (MAB) and two-sided matching frameworks to maximize the throughput of
multi-UAV-assisted NOMA networks in a decentralized manner. The approach enables the UAVs to propose
to the ground users (GUs) without explicit cooperation among the UAVs while the GUs can accept or reject
the proposals. To this end, we propose a modified Thompson sampling algorithm that we named decaying
epsilon Thompson sampling (DϵTS)MAB algorithm that is designed to improve the exploration-exploitation
tradeoff in the MAB. The performance of the proposed DϵTS MAB algorithm is evaluated against other
existing MAB techniques. Simulation results show that the DϵTS algorithm attains faster convergence and
improved performance in terms of smaller regret and increased achievable system throughput. The DϵTS
MAB algorithm particularly excels in regards of the convergence rate when the number of available action
spaces increases.

INDEX TERMS Multi-UAV networks, user association and pairing, multi-armed bandit, decaying-epsilon,
Thompson sampling, NOMA, throughput maximization, two-sided matching.

I. INTRODUCTION
The future wireless technologies to be integrated in 6G and
beyond networks, will be driven by real-world applications
such as telemedicine, smart cities, the Internet of Things
(IoT), virtual reality, etc. These niche applications demand
high-speed and uninterruptible network services [1], [2].
Learning-based techniques have been increasingly deployed
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to improve the performance in IoT networks. For example,
the work in [3] applies reinforcement learning to maximise
throughput of wireless-powered access points.

This is a clear evidence that the technologies to be
integrated in the future networks will be those that are
optimised for the best performance for real-life applications
and can tackle the inherent deployment challenges and chang-
ing environment. One major challenge that is encountered
with the plethora of IoT applications, is the unprecedented
increase in the number of users. This massive number of
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users coupled with limited coverage and scarce resources
can pose a challenge for future quality of service (QoS)
demanding applications. The standard terrestrial networks
supported by fixed base stations stand short to meet all these
requirements. Consequently, the integration of non-terrestrial
networks is intended to enhance the QoS, increase the number
of supported devices, and expand the coverage by embedding
unmanned aerial vehicles (UAVs), high-altitude platforms
(HAPs), or satellite networks [4], [5], [6]. The UAVs which
can serve as an aerial base station (ABS) have been seen to
be one of the ways to provide network services, especially
in areas that are overcrowded and difficult to access [7],
[8]. Much attention is required in the deployment of the
UAVs depending on the target users and their requirements,
energy consumption, and available resources [9], [10], [11].
To improve spectrum efficiency, QoS, and performance in the
UAVs’ network, non-orthogonal multiple access (NOMA)
technology which allows multiple users to access the same
resource block, can be applied.More specifically, the network
performance is influenced by the NOMA design methods
for user association and pairing especially the achievable
rate of the system [12]. Traditional user association methods
are highly based on matching theory that relies on matching
two sides with well-known preference lists [13], [14], [15].
However, it is not always possible for either party to know
its preference list. Further studies are needed to improve the
throughput of the UAV networks. Integrating the multi-armed
bandit (MAB) with matching theory could facilitate the
agents that do not have prior preference lists to learn
through exploration and exploitation and this can improve the
system’s capacity [16], [17], [18].
This paper presents the MAB and two-sided matching

methods for efficient user association and pairing in multi-
UAV-assisted NOMA networks. The agents (UAVs) that do
not know their preference lists adaptively learn them by
balancing exploration and exploitation trade-offs. Through
the two-sided matching, the UAVs propose to the ground
users (GUs) using the learned preference lists fromMAB and
the GUs accept or reject the proposals depending on their
channel conditions.

A. RELATED WORKS
Several studies have analyzed the performance of a single
UAV serving as a relay node or an ABS [19], [20], [21],
[22]. In most cases, the user association design methods
affect the performance of the UAV’s networks. The work
in [23] considered the UAV as a relay node to forward the
signal to the ground users by employing the NOMA scheme.
Similarly, the outage probability of the UAV’s network as
ABS was analysed for both NOMA and orthogonal multiple
access (OMA) schemes [24]. This study found that the
NOMA scheme achieves better performance than OMA.
Employing NOMA in multi-UAV networks could indeed
improve not only the performance of the system but also
spectrum efficiency.

In [22], they proposed a heuristic algorithm for scheduling
users to the available subchannels of the UAV networks
based on matching and swapping theories. The overall goal
was to optimize energy efficiency through optimal resource
allocation and trajectory of the UAV. However, this study was
done over a single UAV. User scheduling in multiple UAVs is
done in [11], which was based on two-sided matching and
users are served in the NOMA scheme. However, this work
considers the case that the two sides know their preference
lists. The case of an unknown preference list of either party
was done for example, applicants and colleges, workers and
companies in [17], [18], [25], and [26], but its application in
wireless networks is not fully studied.

Motivated by these works and the desire to maximize the
system throughput of the multi-UAV networks, we propose
the MAB and two-sided matching frameworks for user
association and pairing whereby the UAVs propose to the
GUs aiming to identify the potential ones and the GUs can
accept or reject the proposals. In our earlier work in [27],
prior analysis and the algorithm for user pairing inmulti-UAV
networks that apply NOMA was developed. The algorithm
was based on the upper confidence bound (UCB) MAB
technique and two-sided matching in which the UAVs act
as the agents while the users are the actions to be selected.
However, there is still a need for extensive study to maximize
the system throughput of multi-UAV networks in case all
the UAVs start with an unknown prior reward distribution
of the actions. This is especially necessary when there are
many actions in the network environment. In addition, the
algorithm proposed in [27] assumes that once a user accepts
the proposal from a certain UAV, it is obligated to retain it.
These limitations prompted further research to maximize the
throughput of multi-UAV networks.

This current work adopts the system model in [27], and
aims to maximize the overall throughput of multi-UAV
networks. Every GU can switch to a new proposing UAV if it
is highly ranked in its preference list and reject the previous
one. In addition, the work in [27] applies the UCB, which
uses the deterministic approach to balance exploration and
exploitation trade-offs, however, its performance is affected
by the number of actions available in the system [28], and it
is mostly applied with an initial complete scan of the actions
which can be difficult when there are many actions [16], [21],
[29], [30].

On the other hand, a more efficient method is presented
in the literature known as Thompson sampling (TS). The TS
is a probabilistic approach that is particularly suitable for
complex and unknown reward distributions within a changing
environment [28]. Therefore, in this work, we take advantage
of TS to develop the decaying epsilon Thompson sampling
(DϵTS) framework.
In [31], the authors proposed the ϵ-exploring Thompson

sampling (ϵ-TS), a modified version of the TS algorithm.
In the ϵ-TS, arms are exploited greedily based on empirical
mean rewards with probability 1-ϵ and based on posterior
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samples obtained from TS with probability ϵ (exploration).
The ϵ-TS improves computational efficiency compared to
standard TS while achieving better regret bounds.

This inspired us to develop the DϵTS algorithm. The
DϵTS starts with a relatively large value of ϵ allowing
more exploration, which in effect allows faster building
and collection of initial beliefs about the actions, but this
rate is decreasingly updated to exploit the actions with the
highest expected rewards from the learnt information. This
improves the achieved rewards by the agents and enables
convergence to the best rewards faster than the other MAB
algorithms. We integrate the proposed DϵTS within our
proposed NOMA-UAV pairing and association framework
to improve the performance, especially, when the number of
users increases.

B. CONTRIBUTION AND STRUCTURE
The summary of the major contributions of the paper is as
follows:

• We investigate a realistic multi-UAV network with lim-
ited quotas, multi-ground user pairing and association
problem. We consider a realistic aerial-ground channel
model with a path-loss model that considers both
line and non-line-of-sight probabilities. The interaction
between UAVs and GUs aims to maximize the overall
system throughput formulated in the optimization prob-
lem while considering the GUs’ preference as well as
giving the GUs the right to switch the association and
pairing when a more opportunistic offer from a different
UAV is present.

• To solve the optimization problem, we propose an DϵTS
MAB algorithm which is based on standard Thompson
sampling. However, the standard TS is modified to work
with an exploration rate ϵ which gradually decreases
as information becomes available. The algorithm allows
the agents to select actions with the highest expected
rewards in the remaining (1)-ϵ) rate. At every time step,
the UAVs make preference lists based on the learned
information and enter a two-sided matching game with
GUs. Moreover, we consider practical scenarios where
the agents start with unknown reward distributions of
the available actions in the system and learn through
continuous exploration and exploitation.

• To integrate the GUs’ preferences, we formulate a
two-sided matching game to perform assignments of
users to the available UAVs in the network that takes
into account the dynamic nature between the UAVs and
GUs. At the UAV side, this dynamic nature is addressed
by including a learning framework to gather information
at every time step aiming to maximize the long-term
rewards of the UAV. Therefore, the UAVs build up their
preference lists based on the MAB and then propose
to the GUs. On the other hand, the GUs can accept or
reject the proposal according to their preference lists
built based on the channel conditions. Enabling the GUs

TABLE 1. Symbols and notations.

to reject the previous UAVs if a better UAV is proposing
improves the system’s achievable rate since the GUs can
be matched with their potential best UAVs.

• We evaluate the performance of the proposed DϵTS
MAB algorithm against other standard MAB techniques
in terms of cumulative regret and achievable rate. The
evaluation is done under different conditions and the
results obtained from simulation are provided with a
detailed discussion. The utilisation of theDϵTS provides
improved results especially when the number of GUs,
i.e action space increases. It provides an improved
convergence time as well as the best reward among other
MAB techniques.

The structure of this paper is organized as follows.
Section II describes the system and aerial channel mod-
els. The optimization problem formulation is provided in
section III and Section IV details the proposed joint user
association and pairing algorithm based on DϵTS MAB and
two-sided matching. Section V provides simulation setups,
Section VI provides results and discussions, and Section VII
concludes the paper.

II. SYSTEM AND CHANNEL MODELS
Table 1 provides a summary of symbols and notations used
in this paper to facilitate readability.

A. SYSTEM MODEL
We consider a system of L UAVs acting as ABSs with
resource blocks obtained from the backhaul link of the nearby
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FIGURE 1. The multi-UAV’s system model considered in this work.

base station and M GUs in a downlink direction as shown in
Figure 1. The set of UAVs and GUs are respectively given by
L = {1, 2, ..., l, ...,L} andM = {1, 2, ...,m, ...,M}. During
association, the UAVs seek to identify potential GUs aiming
to maximize their achievable throughput. The 3D coordinate
of each UAV is given by (xl, yl, zl) where xl and yl are the
positions at the ground and zl is the vertical altitude that
remains fixed for all UAVs. To reduce the amount of energy
consumed by the UAVs, it is assumed that they are launched
in positions where each revolves with a constant speed on
a small horizontal circle of radius rl . Additionally, similar
to [21] and [27], the GUs are deployed following Random
Waypoint, a mobility model widely used to simulate wireless
networks. Therefore, during association, a snapshot of the
mobility process is taken whereby the 3D coordinate of each
GU is given by (xm, ym, 0). We have also assumed that each
GU can be associated with any of the UAVs. In addition, the
UAVs have a limited number of users they can support known
as quota defined by setQ = {q1, q2, . . . , ql, . . . , qL}, ∀l ∈ L.
Let dm,l represents the Euclidean distance between the UAV
l and GU m, then it is calculated as follows,

dm,l =
√
(xl − xm)2 + (yl − ym)2 + z2l . (1)

B. CHANNEL MODEL
We adopt type B aerial-to-ground (A2G) channel model
detailed in [32] and [33]. The path-loss between UAV l and
GU m defined in [33] is used and stated as,

PLm,l[dB] = 10γ log10 dm,l + η, (2)

and its absolute value expression is given by,

8m,l = 10
PLm,l [dB]

10 = 0m,ld
γ
m,l, (3)

FIGURE 2. Illustration of NOMA principle for the considered system
model.

where 0m,l = 10
η
10 , γ is the path-loss exponent and η is

the path-loss at the reference point (1 meter). From [33], the
typical values for γ and 0m,l in a free space A2G channel are

γ = 2, and 0m,l = 10
B
10+

A
10+10 a′ exp(−b′(θm,l−a′)) , (4)

where the constants A and B are given by A = ηLOS− ηNLOS
and B = 20 log10(

4π f
c ) + ηNLOS. The f = 2 GHz represents

the carrier frequency and c = 3 × 108 m/s is the speed of
light [32]. The θm,l represents the elevation angle between
UAV l and user m given by,

θm,l =
180
π

arctan
(

zl
dm,l

)
. (5)

The a′, b′, ηLOS, and ηNLOS are the parameters that depend
on the environment; in sub-urban areas, a′ = 5.0188, b′ =
0.3511, ηLOS = 0.1 dB, and ηNLOS = 21 dB [33].
Therefore, the A2G channel gain coefficient between the

UAV l and GU m is given by,

hm,l =
gm,l√
8m,l

, (6)

where gm,l ∼ CN (µ, 2σ 2) is the small-scale fading modeled
from the Rician distribution since there is a dominant LoS
between UAVs and GUs. Complex Gaussian distribution
with mean µ and variance 2σ 2, is used to model Rician
fading similar to [21]. The mean and variance are given by

µ =

√
Km,l

Km,l+1
PLOS and σ = PLOS√

2(Km,l+1)
, where Km,l =

A1 exp(A2θm,l) is the Rician factor and PLOS is the power of
the line-of-sight. The θm,l is the elevation angle between user
m and UAV l provided in (5). The A1 and A2 are the constants
depending on the environment. From [21], A1 = 5 and
A2 = 2

π
log10 (15/A1).

III. OPTIMIZATION PROBLEM FORMULATION
In NOMA technology, the signals of multiple users are
superposed at the transmitter side and then sent through the
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channel as a single signal. It is assumed that the available
number of GUs in the system is greater than or equal to the
sum of the quotas of all the UAVs and the ql of UAV l is an
even number to facilitate pairing,

M ≥
L∑
l=1

ql . (7)

The ql GUs associated to UAV l are grouped into pairs of
two GUs such that p=1, . . . , 2, . . . ql/2. Figure 2 illustrates
the UAV serving the GUs in the NOMA scheme for the
considered systemmodel. The twoGUswhich are in the same
pair are given a single resource block as in [21]. Hence the
signal received at the two GUs in pair p is given by,

ym,p = |hm,p|2
(

2∑
n=1

xn,p
√
�n,pPt

)
+ ζm,p, (8)

where hm,p is the channel gain coefficient between the
UAV l and the GU m in pair p, �n,p represents the power
coefficient allocated to the GUs in pair p, and Pt is the UAV’s
transmit power. The signal being transmitted is xn,p while ζm,p
represents the noise term of the channel modeled by Gaussian
distribution with zero mean and variance σ 2. We assume
that the near user to the UAV has a strong channel while
the far user has a weak channel. Therefore, the near user
is allocated low power while the far user is allocated high
power to maintain the NOMAprinciple. This requires that the
channel gain coefficient of the far user be less than or equal to
that of the near user, |h1,p,l |2 ≤ |h2,p,l |2 where h1,p,l and h2,p,l
are respectively the channel gains of the far and near users
which belong in pair p of UAV l. The instantaneous signal-
to-interference-plus-noise ratio (SINR), δ1,p,l , at the far GU
in pair p being served by UAV l is calculated as follows,

δ1,p,l =
ρ|h1,p,l |2�1,p,l

ρ|h1,p,l |2�2,p,l + 1
, (9)

where �1,p,l and �2,p,l are respectively the power allocation
coefficients for the far and near GUs that belong to pair p of
the UAV l. The ρ = Pt/N 2

0 is the transmit SNR of the UAVs
which is obtained from transmit power Pt and average noise
power spectral density N 2

0 .
At the near GUs, the signal of the far user is decoded

first and then be removed from the received one by using
successive interference cancellation (SIC). Assuming perfect
SIC, the instantaneous SINR, δ2,p,l , at the near GUs in pair p
being served by UAV l is given by

δ2,p,l = ρ|h2,p,l |2�2,p,l . (10)

The instantaneous rate achieved by both far and near GUs are
respectively given by

RNOMA
1,p,l = log2

(
1+ δ1,p,l

)
, (11)

and

RNOMA
2,p,l = log2

(
1+ δ2,p,l

)
. (12)

Therefore, the overall system achievable capacity of all the
UAVs with the associated GUs is given by,

RNOMA
=

L∑
l=1

ql/2∑
p=1

(
RNOMA
1,p,l + R

NOMA
2,p,l

)
. (13)

To ensure the QoS requirements for every NOMA user,
orthogonal multiple access (OMA) is also considered similar
to [21]. The instantaneous rate of far and near GUs served by
UAV l under OMA scheme is calculated as follows,

ROMA
i,p,l =

1
2
log2

(
1+ ρ|hi,p,l |2

)
, i ∈ {1, 2}, (14)

where multiplication of factor 1
2 , represents the equal power

allocation for the two OMA users [34], [35]. The overall
system achievable capacity of all the UAVs in the OMA
scheme is given by,

ROMA
=

L∑
l=1

ql/2∑
p=1

(
ROMA
1,p,l + R

OMA
2,p,l

)
. (15)

We aim to maximize the system throughput of the UAV’s
network. Referring to [21] and [27], the optimization problem
is formulated as follows:

max
�

L∑
l=1

ql/2∑
p=1

(
RNOMA
1,p,l + R

NOMA
2,p,l

)
(16a)

s.t. : RNOMA
1,p,l ≥ R

OMA
1,p,l , (16b)

RNOMA
2,p,l ≥ R

OMA
2,p,l , (16c)

�1,p,l, �2,p,l ≥ 0, (16d)

�1,p,l +�2,p,l = 1, (16e)

�1,p,l ≥ �2,p,l . (16f)

The conditions specified in (16b) and (16c) are in place to
guarantee that the QoS is maintained by ensuring that the rate
achieved by both the far and near GUs in the NOMA scheme
is greater than or equal to that of OMA [21], [34]. In every
NOMA pair, the power coefficients allocated to the far and
near GUs denoted by �1,p,l and �2,p,l , respectively, must be
non-negative (16d) and sum up to one (16e). It is ensured that
the far user is allocated higher power than the near user (16f),
as per the NOMA principle.

IV. JOINT USER ASSOCIATION AND PAIRING BASED ON
DϵTS MAB AND TWO-SIDED MATCHING
This section details the solution approach to the optimization
problem in (16a). We propose the DϵTS MAB and two-sided
matching frameworks for joint user association and pairing to
maximize the overall system throughput.

A. POWER ALLOCATION COEFFICIENTS DESIGN
We first design the adaptive power allocation coefficients for
far and near users that satisfy the constraints in (16b)-(16f)
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referring to [34]. The relation in constraint (16b) states that

log2

(
1+

ρ|h1,p,l |2�1,p,l

ρ|h1,p,l |2�2,p,l + 1

)
≥ log2

(
1+ ρ|h1,p,l |2

)
.

(17)

By expanding the constraint (16e) which states that �1,p,l =

1 − �2,p,l and through algebraic manipulation of (17), the
upper bound of �2,p,l is given by,

�2,p,l ≤
1

1+
√
1+ ρ|h1,p,l |2

. (18)

Similarly, from constraint (16c) and (19),

log2
(
1+ ρ|h2,p,l |2�2,p,l

)
≥ log2

(
1+ ρ|h2,p,l |2

)
, (19)

the lower bound of �2,p,l is calculated as,

�2,p,l ≥
1

1+
√
1+ ρ|h2,p,l |2

. (20)

From (18) and (20), the adaptive power allocation coeffi-
cients for the near and far GUs in pair p, served by UAV l are
as follows:

�2,p,l =
ψ1

1+
√
1+ ρ|h1,p,l |2

+
ψ2

1+
√
1+ ρ|h2,p,l |2

,

(21)

and

�1,p,l = 1−�2,p,l, (22)

where ψ1 for far GU and ψ2 for near GU are respectively the
parameters to balance the achievable rate. Both parameters
must sum to one, ψ1 + ψ2 = 1 and 0 ≤ ψi ≤ 1 with
i = 1, 2. The designed power allocation coefficients �1,p,l
and�2,p,l depend on the channel conditions and the transmit
SNR. In addition, they ensure that all the constraints in the
optimization problem are satisfied.

B. PROPOSED D ϵTS FRAMEWORK
The MAB techniques have generally been used to solve
decision-making problems in which agents adaptively learn
the dynamic environment to maximize long-term rewards.
The joint user association and pairing in UAV-assisted
NOMAnetworks fit theMABproblemwhereUAVs act as the
agents need to identify the potential GUs that can maximize
the long-term rewards.

1) ACTION SPACE DESIGN
With the total number of GUs available in the network M ,
each UAV forms action space, Al,space according to its quota
ql . For every UAV, the total number of actions available is
calculated as follows,

Al =
M !

(M − ql)!(
ql
2 )!(2

ql
2 )
, (23)

Algorithm 1 Action Space Generator for Every UAV
Input:M number of GUs and quota of each UAV ql .
Output: Al,space

1: Initialization: Set of all possible combinations of ql out
of M GUs, Dl , which results into total number Fl =

M !
ql !(M−ql )!

.
2: Set Al,space = ∅.
3: for z = 1 −→ Fl do
4: Get row z of Dl , rowl = Dl(z, :).
5: function ASET = generateActions(rowl, ql)
6: Calculate:W = ql !

2ql /2(ql/2)!
7: Initialize: ASET = zeros(W , ql)
8: Update: ASET(:, 1) = rowl(1)
9: for i = 1 −→ ql − 1 do

10: ASET(i+(i−1)∗ W
ql−1
:
i∗W
ql−1

, 2) = rowl(i+1)
11: if ql ̸= 2 then
12: j = 2 : ql
13: j = j(j ̸= (i+ 1))
14: ASET(i+ (i− 1) ∗ W

ql−1
:
i∗W
ql−1

, 3 : ql) =
generateActions(rowl(j)).

15: end if
16: end for
17: end function
18: Al,space = [Al,space;ASET]
19: end for

where operation (!) is factorial. Algorithm 1 details the
process of generating actions, Al,space formulated from M
GUs and quota ql of UAV l. For instance, if M = 8 and
ql = 4 for UAV l, the action space could be as follows,

Al,space =



1 2 3 4
1 3 2 4
1 4 2 3
1 2 3 5
. . . . . . . . . . . .

5 7 6 8
5 8 6 7


, (24)

with Al = 210 total actions. Let suppose that the action al =[
1 2 3 4

]
is selected from Al,space by UAV l, then the UAV

forms the pairs as follows,

Pset =

[
1 2
3 4

]
, (25)

where GUs 1 and 2 make the first pair; and 3 and 4 make the
second pair.

2) DϵTS ALGORITHM
Inspired by [31], we detail the proposed DϵTS MAB
algorithm. The authors in [31] proposed an ϵ-explore
Thompson sampling (ϵ-TS) where the agents apply the
standard Thompson sampling with a fixed small exploration
rate ϵ and (1 − ϵ) for playing actions with high expected
rewards.
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Algorithm 2 Proposed DϵTS and Two-sided Matching
Algorithm

Input: Number of GUs M , number of UAVs L, preference lists of GUs
Um, expected rewards xl for all UAVs, and exploration rate ϵl .
Output: Assignment matrixAmatch

l
1: function DϵTS(L,M ,Um, x)
2: Initialize:Amatch

l = ∅, ∀l ∈ L, that store the selected action.
3: Initialize the setAapt

m = ∅ that stores and keeps track of the UAVs’
proposals at the GUs.

4: whileAmatch
l (:) = ∅ do

5: for each UAV l = 1 −→ L do
6: Check whether no GU rejected the UAV l in the previously

accepted GUs.
7: Pick a random number rl from uniform distribution in [0, 1]

for all UAVs.
8: if rl ≤ ϵl then
9: Draw sample means M̂a as per (38).
10: Choose action with the highest sample mean:

Aprop(l) = argmax
a∈A

M̂a.

11: else
12: Select an action with the highest expected rewards,

Aprop(l) = argmax(xl (:).
13: end if
14: end for
15: for each GU m = 1 −→ M do
16: Pull the request from the proposing UAVs,Aprop(:) and store

them in set ⊔m.
17: if Aapt

m = ∅ then
18: Accept the high-ranked UAVs in the user’s preferences

list,Aapt
m = max (Um(⊔m)).

19: else ifAapt
m < Um(⊔m) then

20: Check and accept the high-ranked UAV among
the proposing ones and reject the previous acceptance.
Aapt
m = max (Um(⊔m)).

21: else
22: Keep the previous accepted UAV:Aapt

m .
23: end if
24: end for
25: for each UAV l = 1 −→ L do
26: Check the feedback from the GUs which is either acceptance

or rejection.
27: if allAapt(Aprop

l ) = l then
28: Keep all the GUs in the selected action:

Amatch
l = Aprop

l (:).
29: else if anyAapt(Aprop

l ) ̸= l then
30: Keep only the actions with the accepted GUs and remove

the ones that have rejected the proposals in the expected
rewards of the UAV and continue to the next iteration.

31: else if allAapt(Aprop
l ) ̸= l then

32: Remove the actions that contain the GUs that have
rejected the proposals in the expected rewards of the UAV
and continue to the next iteration.

33: end if
34: end for
35: end while
36: end function

WithDϵTS, the agents start with an initial large exploration
rate ϵ = 0.5 for applying the standard Thompson sampling
which gradually decreases as information about the actions
becomes available and in the rest (1 − ϵ), the agents
select actions with the highest expected rewards. The main
motivation is that starting with high ϵ gives a high chance to
apply Thompson sampling which helps in collecting much
information about the actions then later as ϵ decreases, the
chance of choosing actions with the highest expected rewards

increases. This allows enough exploration during the starting
and minimizes unnecessary exploration once better actions
are identified.

The formula below is used by each UAV to update the rate
of applying Thompson sampling, ϵt+1,l at every time step,

ϵt+1,l =
ϵt,l

1+ Nt,l,al/T
, (26)

where t is the current time step while T is the total time step
for the entire experiment. The Nt,l,al is the number of times
an action al was played by UAV l.
When the agents select to apply Thompson sampling, the

details below show how it is applied.
Let the reward received by UAV l on the chosen action al ∈

Al,space at time t be Xt,l,al ∈ R and defined by,

Xt,l,al =
RNOMA
t,l,al
ω ql

,∀l ∈ L,∀al ∈ Al,space, (27)

which is designed based on the overall rate achieved on the
GUs of the selected action, the number of constraints in
the optimization problem ω and the quota of the UAV ql .
We assume that the mean τl,al and variance σ

2
l,al of the actions

are unknown to the UAVs, then we adopt the use of conjugate
priors NIG as normal-inverse-gamma distribution similar
to [36] and [37] as follows,

P
(
τl,al , σ

2
l,al |τl,al , vl,al , αl,al , βl,al

)
∼ NIG(τl,al , val , αl,al , βl,al ),∀al ∈ Al,space (28)

where τl,al , vl,al , αl,al , and βl,al are the parameters repre-
senting the prior mean, prior count, prior shape and prior
scale parameters, respectively. Both prior count, shape and
scale parameters must be positive, vl,al , αl,al , βl,al > 0. For
the UAVs to select the actions with Thompson sampling,
they calculate the posterior distributions that also follow the
normal-inverse-gamma distribution ( details cf. [36], [37]),

P
(
µl,al , σ

2
l,al |Dt,l,al

)
∝ N

(
µl,al ; ϱt,a;ϕ

2
l,al

)
IG

(
σ 2
l,al ;

1
2
Nt,l,al + αl,al ;βt,l,al

)
, (29)

where

ϱt,l,al =
vl,al τl,al + Nt,l,al x t,l,al

vl,al + Nt,l,al
, (30)

ϕ2l,al =
σ 2
l,al

vl,al + Nt,l,al
, (31)

βt,l,al = βl,al +
1
2
st,l,al +

Nt,l,al vl,al (x t,l,al − τl,al )
2

2(Nt,l,al + vl,al )
. (32)

The Dt,l,al is the set that contains all the rewards collected
up to time step t − 1. The x t,l,al and Nt,l,al are the
average expected rewards and the number of times a UAV
l successfully played the action al , respectively. The st+1,l,al
is the parameter that depends on the rewards collected and is
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updated as follows,

st+1,l,al = st,l,al + X
2
t,l,al + Nt,l,al x

2
t,l,al

−Nt+1,l,al x
2
t+1,l,al . (33)

Once a UAV takes an action, the posterior parameters are
updated as follows:

x t+1,l,al ←− x t,l,al +
Xt,l,al − x t,l,al
Nt+1,l,al

, (34)

Nt+1,l,al = Nt,l,al + 1, (35)

where x t+1,l,al is the updated expected rewards of the played
action at time step t . The Nt+1,l,al is the updated number of
times the action al has been selected by UAV l. The posterior
variance, σ̂ 2

l,al and posterior mean, M̂l,al are respectively
updated as follows,

σ̂ 2
l,al ∼ IG

(
1
2
Nt,l,al + αl,al , βt,l,al

)
, (36)

M̂l,al ∼ N
(
ϱt,l,al ,

σ̂ 2
l,al(

Nt,l,al + vl,al
)) , (37)

where IG(.) and N (.) are inverse-gamma and normal
distribution, respectively. Therefore, once a UAV applies
Thompson sampling, it proposes to the GUs that are in the
action which has the highest sample means as follows,

al = argmax
al∈Al,space

E
[
Xt,l,al |M̂l,al , σ̂

2
l,al

]
= argmax

al∈Al,space
M̂l,al .

(38)

The summary of the proposed DϵTS MAB and two-sided
matching is provided in Algorithm 2. The inputs to the
algorithm are the hyper-parameters of Thompson sampling,
a set of UAVs, a set of GUs, the probability to apply
Thompson sampling ϵl , and the expected rewards of all UAVs
over all actions. At the start, each UAV picks a random
number, r from a uniform distribution and compares it with
the ϵl . If r ≤ ϵl , the UAV chooses an action with Thompson
sampling, otherwise, it chooses an action with the highest
expected rewards. Each UAV starts to communicate with the
GUs in its selected action offering proposals containing the
promised throughput to those GUs. Note that all the UAVs
select the actions and propose to the GUs simultaneously
which leads to conflict on the user side. If multiple UAVs
attempt to choose the same GU, the GU accepts the proposal
of the UAV which is highly ranked in its preference lists.
Therefore, the following cases are considered for the UAV
to decide on the feedback received from the GUs.
i) When all GUs involved in the selected action al accept

the proposal made by UAV l. In this case, the UAV
has successfully found the GUs to serve. However,
it continues to check whether no GU rejects the previous
acceptance. If it happens, the UAV resumes proposing to
the GUs in the next better action excluding all the actions
which have any of the GUs that rejected the previous
proposals.

Algorithm3Rewards Calculation for DϵTSMABAlgorithm
Input: Number of GUsM , number of UAVs L, and total

time steps T .
Output: Association matrix

1: Obtain Aspace from Algorithm 1, for all UAVs.
2: Initialize the UAV’s expected rewards, x t,l,al , to random

numbers in the range 0 and 1 from the uniform
distribution.

3: Set Nl,al = 1, and ϵl = 0.5, ∀l ∈ L, ∀al ∈ Al,space.
4: for t = 1 −→ T do
5: Obtain an association matrixAmatch

l that contains the
selected GUs by running Algorithm 2.

6: Calculate rewards Xt,l,al as per (27).
7: Update x t,l,al and Nt,l,al as per (34) and (35)

respectively.
8: Update st,l,al , ϱt,l,al , τt,l,al , and βt,l,al .
9: end for

ii) When some GUs in the selected action al accept the
proposal while others reject it. This happens when a GU
gets proposals from multiple UAVs. In this case, the GU
accept the UAV’s proposal which is highly ranked in its
preference list. Thus, each UAV keeps the actions that
contain only the accepted users and chooses from these
actions in the next matching iteration.

iii) When all GUs in the selected action al reject the
proposal of the UAV l. In this instance, the UAV selects
from only the actions that do not contain any of the GUs
that rejected the previous proposal. This means that the
UAV removes all actions that contain the rejected GUs
from the pool of available actions and moves to the next
matching iteration to choose again.

In contrast to the approach proposed in [27], where it is
assumed that a GU must reject all subsequent proposals if
it accepts an association with one UAV, this work allows
the GUs to switch to a new proposing UAV if it is high
ranked than the previous one. This could enhance the system
throughput since the GUs will be matched with the potential
UAVs in their preference lists that have ever proposed. Note
that the matching process has to run until all the UAVs are
matched according to their quotas. In addition, this matching
does not allow a GU to be matched with more than one UAV.

3) REWARDS CALCULATION
Once a UAV gets the GUs to serve from the chosen action,
the reward obtained is designed based on the overall rate
achieved, the number of constraints in the optimization
problem ω and the quota of the UAV ql as per (27).
Similarly, the expected reward of each UAV is updated
as per (34). Algorithm 3 summarizes the pseudo-code for
joint user association and pairing in multi-UAV-assisted
NOMA networks based on DϵTS. To understand clearly
the association and pairing process, a flowchart is provided
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FIGURE 3. Flowchart illustrating the proposed DϵTS method for user association and pairing in the
considered system model.

in Figure IV-B2. It shows where each of the mentioned
algorithms has to be applied.

4) PREFERENCE LISTS OF GUS
Referring to [27], [38], and [39], the GUs make their
preference lists according to the channel conditions as
follows,

Um = sort(h(:,m), ‘‘Descend ′′), (39)

where h(:,m) represents the channel gains between GU m
and all the UAVs, and sort is the function used for sorting.
The Descend operation means that the sorting is done in
descending order.

To evaluate the performance of the proposed algorithms,
regret analysis is considered. The regret of a particular UAV
is calculated by comparing the rewards that would have been
received if the best action was selected and the rewards it
has received from its current action [21]. Mathematically, it is

defined as,

Regretl =
T∑
t=1

(
max
al

x(l, :)− E[x t,l,al (t)]
)
, al ∈ Al,space,

(40)

where the E[.] operation denotes the statistical average.
Regret measures an algorithm’s efficiency, specifying how far
the UAVs deviate from the optimal selection.

V. SIMULATION SETUPS
The summary of simulation setups is provided in Table 2.
It consists of 4 UAVs available in the system and various
numbers of GUs. The ground coverage considered is 1000 m
x 1000 m while the heights of every UAV are considered
to be [50, 100, 150, 200] m. Following Random Waypoint
mobility model, the GUs are distributed in the coverage area
and change direction in every sample. The simulation is
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TABLE 2. Simulation parameters.

FIGURE 4. 3D coordinate plane of UAVs and GUs.

done by running 100 Montecarlo samples, and UAVs run the
algorithms for time steps T = 2000 in every sample. The
γ = 2.0 has been set for the path-loss exponent [33]. In every
NOMApair of GUs associatedwith eachUAV, parameters for
balancing the user’s rate areψ1 = 0.8 andψ2 = 0.2 in respect
of far and near GUs chosen similar to [21]. The average noise
power used isN 2

0 = −100 dBm as in [40]. In addition, to start
with unknown reward distributions of every action, we have
set the UAVs to initialize them at random following a uniform
distribution in the range between 0 and 1. Afterwards,
we evaluate the performance of the proposed DϵTS against
the TS, ϵ-Greedy, Greedy, and random matching methods.

VI. RESULTS AND DISCUSSIONS
The simulation was done in MATLAB R2023b software and
the results obtained are as follows: The 3D coordinate plane
demonstrating the positions of UAVs and GUs is shown in
Figure 4. The UAVs are deployed in space at a fixed altitude

FIGURE 5. Cumulative average system regret versus time steps
(Pt D 20 dBm, 4 UAVs, 24 GUs, quota = 4 GUs and height = 100 m for
each UAV).

FIGURE 6. Average system sum rate versus time steps (Pt D 20 dBm,
4 UAVs, 24 GUs, quota = 4 GUs and height = 100 m for each UAV).

where they revolve around a small horizontal circle for energy
saving while the GUs are deployed following the Random
Waypoint mobility model [21].

To evaluate the performance of the proposed DϵTS
and two-sided matching algorithm, a system consisting
of 4 UAVs, 24 GUs, quota = 4 GUs each UAV, and transmit
power Pt = 20dBm, is taken into account. This is considered
for Figure 5 and 6.

Note that the UCB method requires the agents to make
a complete scan of all actions for initialization [21], [27],
[29], [30]. Since there is a larger number of actions in the
considered system model than the running time steps, the
agents can not go through all actions. Therefore, it is not
considered in the simulation results.

Figure 5 depicts the average cumulative regret of the
system versus time steps. This figure shows how far the
algorithm is from choosing the optimal actions. The proposed
DϵTS method demonstrates the ability to identify potential
actions that can maximize the system throughput, resulting
in smaller regret compared to the other MAB algorithms.
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FIGURE 7. Average system sum rate versus time steps for different number of GUs and quotas (Pt D 20 dBm, 4 UAVs, height = 100 m for each
UAV).

Figure 6 provides the performance of DϵTS algorithm along
with other MAB methods in terms of the achievable rate of
the system versus time steps. From this figure, it is clear that
the DϵTS can learn faster and converge to maximum than the
otherMAB algorithms. The reason for the better performance
of the DϵTS is that the exploration rate is initialized at a large
number ϵl = 0.5, which allows more chances of applying
TS by enabling the UAV to play the action with the highest
sample mean. This is a part of the learning process to identify
and build beliefs about the potential actions. Subsequently,
as the UAVs obtain information about actions, the ϵl is
decreased leading to a reduction of unnecessary exploration
which minimizes the time for learning. This ensures a focus
on actions that have the highest expected rewards.

The performance evaluation of the DϵTS against other
methods in terms of system achievable rate versus time steps
is done by varying the system size as shown in Figure 7.
In Figures 7.(a), (b), and (c), the quota was fixed to 2 GUs
for each UAV and changing the number of GUs. Clearly,
the DϵTS have better performance than others in all cases.
Similarly, once quota is set to 4 GUs, in Figures 7.(d), (e),
and (f), the DϵTS still outperforms others in identifying the
potential GUs that maximize the system sum rate. Increasing
the number of users in the system also allows the UAVs to
find the best users according to their quotas. We can simply
see that the rate achieved by the DϵTS during learning in
Figure 7.(d) is lower than that of Figures 7.(e) and (f) but still
outperforms other MAB methods.

Figure 8 and Table 3 demonstrate the performance of the
proposed DϵTS in comparison to other Thompson sampling

FIGURE 8. Average system sum rate versus time steps: different
Thompson sampling methods (Pt D 20 dBm, 4 UAVs, 24 GUs, quota =

2 GUs and height = 100 m for each UAV).

methods. In Figure 8, the DϵTS can successfully identify the
GUs that achieve higher throughput and quickly converge
to the maximum while taking shorter average running time
as shown in Table 3. The ϵ-TS method proposed in [31] is
applied by taking a small rate ϵl to apply Thompson sampling,
which remains fixed throughout the total time steps. As a
result, it continues to apply Thompson sampling with this
rate even after acquiring enough information to determine the
potential actions. This results into much convergence time
and reduced performance in finding suitable associations.
The ϵl = 0.1 [31] was considered to simulate the ϵ-TS
method. The average running time shown in Table 3 was
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TABLE 3. Average running time of different Thompson sampling
algorithms over total time steps T = 2000 (Pt D 20 dBm, 4 UAVs, 24 GUs,
quota = 2 GUs and height = 100 m for each UAV) in seconds.

TABLE 4. Average system sum rate at time step T = 2000 for various MAB
methods (Pt D 20 dBm, 4 UAVs, height = 100 m for each UAV) in
bits/s/Hz.

recorded and averaged over the total time steps T = 2000,
under different system sizes. It has been found that the
DϵTS takes the shortest time to run compared to the ϵ-TS
and standard TS. When the standard Thompson sampling
is applied for both exploration and exploitation, the UAVs
require a significant amount of time to create the distribution
beliefs of all actions. This is due to the large number of
actions available in the considered system model. Therefore,
its performance behaves like Randommatching in the starting
but later improves.

To further discuss the performance of the proposed DϵTS
method, the average system sum rate is recorded at T =
2000 and summarized in Table 4. The findings clearly
show that over different number of GUs available in the
system, the DϵTS method outperforms the other MAB
techniques in terms of the rate achieved by the entire system.
Table 5 provides the average system sum rate achieved by
changing the value of the vertical altitude of the UAVs.
The proposed method achieves better performance than other
MAB techniques when considering different heights and
quotas of UAVs. We have also noticed that when the vertical
height of the UAVs is increased, the maximum value of
the achievable rate of the system falls due to the change in
distances between UAVs and GUs which affect the channel
conditions.

Further validation of the proposed DϵTS method is done
by considering the system throughput versus the transmit
power of the UAVs as shown in Figure 9. Both the Exhaustive
search and random matching methods were simulated and
compared with the DϵTS. The DϵTS has shown a noteworthy
performance that is much closer to the Exhaustive search,
which was simulated over all the available actions and returns
the optimal one. In addition, random matching could not

TABLE 5. Average system sum rate versus heights of UAVs (Pt D 20 dBm,
4 UAVs, 24 GUs) in bits/s/Hz.

FIGURE 9. System sum rate versus transmit power (4 UAVs, 8 GUs,
quota = 2 GUs and height = 100 m for each UAV).

achieve good performance because it does not perform any
learning.

VII. CONCLUSION
In this paper, the system throughput of multi-UAV-assisted
NOMA networks has been maximized through joint user
associations and pairing with no cooperation among the
UAVs. The UAVs with quotas aim to identify the poten-
tial GUs that achieve better throughput while the GUs
seek the UAVs with better channel conditions. Therefore,
an optimization problem was formulated and analysed as an
MAB and two-sided matching problem. Moreover, a DϵTS
MAB algorithm was proposed and its performance evaluated
against other state-of-the-art MAB techniques such as stan-
dard Thompson sampling, ϵ-Greedy, and Greedy algorithms.
The simulation results are conducted under a realistic channel
model. The simulations took into account different numbers
of GUs available in the system as well as different quotas
for the UAVs. The results consistently demonstrated the
superiority of the DϵTS method in achieving faster learning
and convergence, minimum system regret as well as the
best reward among other MAB techniques. Additionally, the
DϵTS achieves a performance much closer to the exhaustive
search method and is more suitable when the number of GUs
increases.
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