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ABSTRACT Accurate node localization inWireless Sensor Networks (WSNs) is crucial for applications like
environmental monitoring and military surveillance. Traditional localization methods, such as trilateration,
often struggle with accuracy due to signal attenuation and environmental obstructions, leading to significant
localization errors in practical scenarios. This paper aims to address the limitations of traditional localization
methods by developing and evaluating a hybrid localization method that enhances accuracy and robustness in
node localization within WSNs. The proposed method integrates the Bounding Box approach with the Har-
mony Search optimization algorithm, resulting in the Bounding Box Harmony Search (BBHS) method. The
BBHS method utilizes the initial geometric constraints provided by the Bounding Box approach and refines
these estimates using the global optimization capabilities of the Harmony Search algorithm. Simulation
results, obtained using a custom-developedWSN localization simulator, demonstrate that the BBHSmethod
significantly reduces localization errors compared to traditional trilateration and the standalone Bounding
Box method. The BBHS method consistently provides enhanced accuracy and robustness across varying
network conditions, highlighting its effectiveness in practical deployment scenarios. The advancements
presented in this paper suggest that hybrid methods like BBHS represent a significant step forward in
WSN localization technologies. By combining geometric constraints with optimization processes, the BBHS
method overcomes the drawbacks of earlier techniques, paving the way for more reliable and resilient WSN
operations.

INDEX TERMS Wireless sensor networks (WSNs), node localization, trilateration, bounding box method,
harmony search algorithm, localization accuracy.

I. INTRODUCTION
The development of localization techniques for WSNs is an
ongoing area of research, driven by the expanding scope
of network applications and the continuous quest for better
performance. Innovations in this field seek to address the
challenges posed by varying environmental conditions, node
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mobility, and the inherent limitations of sensor hardware.
As these technologies evolve, the emphasis is on creating
scalable, resilient, and accurate localization solutions that
can support the growing complexity and diversity of network
deployments [1]. Node localization is a critical and complex
component of wireless sensor networks (WSN), encompass-
ing a range of techniques from trilateration and triangulation
to hybrid methods that blend the best of range-based and
range-free approaches. The choice of localization method
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significantly impacts the network’s performance, applicabil-
ity, and operational costs. As the demand for WSNs grows
across different sectors, so does the need for advanced local-
ization techniques that can provide accurate and efficient
positioning in diverse and challenging environments.

Node localization in wireless sensor networks plays a piv-
otal role in the functionality and operational efficiency of
these networks. It entails determining the positions of nodes
within the network, which is crucial for tasks ranging from
environmental monitoring to precision agriculture, military
operations, and emergency response (Fig. 1). The essence
of node localization is to facilitate accurate data collection,
target tracking, and networkmanagement, among other appli-
cations. Given the diverse environments and applications of
WSNs, localization techniques must be robust, accurate, and
resource-efficient.

FIGURE 1. A wireless sensors network or regular nodes and anchors.

Localization techniques in WSNs are divided into two
main categories: range-based and range-free methods.
Range-based localization methods depend on the measure-
ment of physical properties such as distance or angle between
nodes [2]. These methods include trilateration, triangulation,
time of arrival, time difference of arrival, angle of arrival, and
received signal strength indicator (RSSI). Each method has
its unique requirements and applications, with trilateration
and triangulation being among the most prevalent due to
their simplicity and effectiveness in certain contexts. Trilater-
ation is a widely utilized range-based localization technique
that determines the position of an unknown node by mea-
suring its distance from at least three known points. This
method is particularly effective in environments where the
signal strength can accurately indicate the distance between
nodes. By employing advanced signal processing techniques
and optimizing the placement of reference nodes, the accu-
racy of trilateration-based localization can be significantly
enhanced [3]. Research in this area focuses on minimizing
the error margin and improving the reliability of distance
measurements. Triangulation, another range-based method,
calculates the position of an unknown node using the angles
of arrival from at least two known points. Unlike trilat-
eration, triangulation relies on geometric principles rather
than distance measurements, making it suitable for scenarios
where measuring distance is challenging. Studies leveraging

triangulation strive to refine angle measurement techniques
and develop algorithms that can efficiently process angular
information to pinpoint node locations accurately.

On the other hand, range-free localization methods do
not require precise measurements of distance or angle [2].
Instead, these methods use connectivity information and
relative proximity between nodes to estimate their posi-
tions. Range-free techniques are often preferred in large-scale
deployments or applications where high accuracy is not
paramount. These methods are more cost-effective and
consume less energy compared to range-based techniques,
making them suitable for resource-constrained environments.
The selection between range-based and range-free methods
depends on several factors, including the desired accu-
racy, environmental conditions, and resource availability.
While range-based methods generally offer higher preci-
sion, they demand additional hardware and computational
resources. This makes them more expensive and energy-
intensive. In contrast, range-free methods are less precise
but more economical and energy-efficient, catering to the
needs of extensive networks where moderate accuracy suf-
fices. Hybrid localization methods have emerged, combining
range-based and range-free techniques to exploit the advan-
tages of both approaches. These hybrid strategies aim to
achieve a balance between accuracy and resource efficiency.
By integrating machine learning algorithms, these methods
optimize localization performance based on the available
data and network conditions. Such approaches are gaining
traction, offering adaptability and improved efficiency in
dynamic environments.

This paper makes several key contributions to the field of
WSN localization:

• We propose a novel hybrid localization method, the
Bounding Box Harmony Search (BBHS) method, which
combines geometric constraints with optimization
techniques.

• We develop a comprehensive WSN localization simula-
tor that allows for the detailed evaluation of localization
methods under various network conditions.

• We conduct extensive simulations to demonstrate the
improved accuracy and robustness of the BBHS method
compared to traditional trilateration and the standalone
Bounding Box method.

• We provide a thorough analysis of the performance met-
rics and the impact of different network parameters on
localization accuracy.

The remainder of this paper is organized as follows.
Section II reviews existing literature on WSN localiza-
tion methods. Section III describes the implemented WSN
localization methods, including the Trilateration Technique,
Bounding Box, and Harmony Search. Section IV details the
development of a network simulator for node localization,
including the design, conceptual framework, and simulator
interface. Section V presents the experimental results and
analysis, including comparisons of localization errors under
various conditions and the fine-tuning of Harmony Search
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hyperparameters. Section VI concludes the paper with a
summary of findings and future research directions.

II. LITERATURE REVIEW
The problem of range measuring errors is a major concern in
wireless node localization and was addressed by Ramadurai
and Sichitiu [4]. While research on localization in wireless
sensor networks has been conducted, the issues arising from
inaccurate range measurements have received less attention.
They handled these errors using a probabilistic methodology.
To estimate the locations of sensor nodes, it makes use of
Received Signal Strength Indicator (RSSI) readings, a widely
used metric in wireless communication. Errors can always
occur in RSSI data because of things likemultipath fading and
interference. To calculate RSSI as a function of distance, data
of signal strength at different distances was collected, using
mobile devices with wireless cards installed. Measurements
were made to capture the effect of environmental elements
from various positions and orientations. The fact that proba-
bility distributions are visible in RSSI measurements is one
important finding from the data collection procedure. These
distributions frequently exhibit characteristics of a normal
distribution. Ramadurai and Mihail emphasize that position
estimate is based on these probability distributions. Key fac-
tors in the localization process are the mean and standard
deviation of these distributions for each measurement of the
signal strength. Experimental evaluations were conducted
based on unknown nodes and beacons in an actual outdoor
setting. These tests show that the algorithm can produce
reliable position estimations even with errors in the range
measurement.

Tran and Nguyen [5] addressed the difficulty of localiz-
ing nodes in wireless sensor networks using Support Vector
Machines (SVM). They stress how impractical centralized
methods for large-scale networks can be because of the high
processing and communication costs. As a response, they
suggested a distributed approach to sensor location estima-
tion, taking into account the resource constraints of low-cost
sensor devices in WSNs. LSVM (Localization with Support
Vector Machines) presents a different approach for node
localization that is based on connectedness rather than signal
strength. By assuming that nodes can connect with beacon
nodes via a multi-hop connection, the method enables a
more scalable solution appropriate for bigger networks. The
LSVM algorithm estimates the location of beacon nodes
using support vector machines with a radial basis function
kernel. The authors used a decision tree for localization in
both x and y dimensions. The error analysis acknowledged
that SVM and LSVM are subject to errors, but LSVM’s error
is formulated under the effect of SVM. The paper presents
a modified Mass-Spring Optimization (MSO) technique to
improve LSVM. This technique modifies node locations
based on a ‘‘spring force’’ calculated from neighboring
nodes’ positions.

The results showed that LSVM outperforms Diffusion and
AFL (Anchor-Free Localization) in terms of accuracy and

TABLE 1. List of acronyms and their meanings.

efficiency, even in networks with coverage holes. LSVM’s
improved performance is attributed to its reduced traffic
generation and better error distribution across sensors.
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Gopakumar and Lillykutty Jacob in their paper, ‘‘Local-
ization in wireless sensor networks using particle swarm
optimization’’ [6], introduce a pioneering approach to WSN
localization, employing PSO. Unlike traditional gradient
search-based methods, PSO mitigates the risk of local
minima, ensuring superior convergence characteristics. Oper-
ating within a centralized architecture, their algorithm opti-
mizes distance measurements between anchor and target
nodes in the WSN. By minimizing mean squared range
error, it aims to estimate target node coordinates. The
iterative nature of PSO allows for updates to particle posi-
tions representing target nodes, leveraging individual and
population-wide best positions. Factors like anchor node
density, transmission range, and range measurement stan-
dard deviation are systematically considered. Experimental
findings reveal insights such as improved localization with
increased anchor node density and transmission range. PSO
consistently outperforms Simulated Annealing, particularly
regarding convergence and overall performance. This com-
parative analysis underscores the efficacy of PSO in WSN
localization, demonstrating its superiority over traditional
methods.

Moses et al. discuss the derivation of a maximum like-
lihood (ML) estimator for sensor node location and ori-
entation parameters in the context of self-calibration [7].
The ML algorithm involves iterative minimization of a
cost function, solving nonlinear equations for unknown
parameters, including nuisance parameters. The Fisher infor-
mation matrix computes the Cramér-Rao bound (CRB) for
parameter variance, serving as a benchmark for evaluating
self-localization algorithms. While computational complex-
ity isn’t discussed, it’s inferred to depend on factors like
node and source numbers. Location uncertainty indirectly
impacts separation between nodes and sources, influenc-
ing average uncertainty. Adding more sources improves
accuracy and decreases uncertainty. Benefits of the method
include versatility, flexibility in signal sources, and accurate
estimation of node locations and orientations. Drawbacks
include reliance on assumptions and factors affecting effec-
tiveness and accuracy. Potential future research directions
include scalability evaluation, impact of environmental fac-
tors, comparison with other methods, extension to dynamic
networks, and integration of additional information sources
to enhance accuracy and reliability. The paper concludes
with suggestions for further investigation into these areas
to advance self-localization techniques in wireless sensor
networks.

In their paper ‘‘A soft computing approach to localiza-
tion in wireless sensor networks’’ [8], Yun et al. propose
two intelligent localization schemes utilizing received signal
strength intensity (RSSI) from anchor nodes, demonstrat-
ing range-free localization for wireless sensor networks.
These schemes address the simplicity and cost-effectiveness
of range-free methods but acknowledge their lower accu-
racy due to the absence of angle or distance information

from anchor nodes. Employing soft computing techniques
to overcome these drawbacks, the proposed schemes require
no complex hardware. Assumptions include positionally
unaware sensor nodes, preconfigured or GPS-located anchor
nodes, uniform transmission ranges, and perfectly spheri-
cal radio propagation. The first scheme divides localization
into discrete problems, considering each anchor node’s edge
weight independently, modeling these weights with fuzzy
logic, and optimizing them with a genetic algorithm (GA).
This approach enhances localization precision but may still
exhibit errors inherent to range-free methods and entail com-
putational complexity. The second scheme employs a neural
network to approximate sensor locationmapping from anchor
node signals, treating localization as a single problem and
learning input-output relationships. Despite simplifying the
localization process and achieving accurate results, chal-
lenges include precision issues compared to range-based
techniques and the computational demands of network design
and training. Both schemes outperform current approaches in
simulations and outdoor experiments, suitable for large-scale
networks due to autonomous sensor node positioning. Future
research should focus on minimizing training time and adapt-
ing techniques to noisy indoor environments. Additionally,
the paper clarifies the roles of localization beacons and
anchor nodes in WSNs, noting variations in terminology and
usage across literature.

In their article ‘‘Improved DV-Hop node localization
algorithm in wireless sensor networks’’ [9], Chen and Zhang
introduce enhancements to overcome limitations of the orig-
inal DV-Hop algorithm, focusing on precision and reliability
in range-free node localization. The study emphasizes the
criticality of accurate sensor location for generating valid
network information in WSNs. Key adaptations include
strategic placement of anchor nodes, dispersing them around
monitoring regions to improve global network consideration
and enhance location accuracy. Additionally, the algorithm
modifies the computation of unknown node average one-
hop distances, integrating weights based on least squares
error considerations for improved accuracy. Classical posi-
tioning techniques are replaced with a two-dimensional
hyperbolic localization algorithm, providing more precise
node location estimations. Moreover, PSO is incorporated
to adjust locations computed by the hyperbolic algorithm,
balancing precision and computation efficiency. Simulation
results demonstrate the superiority of the enhanced DV-Hop
algorithm over the original and other variants, with signif-
icantly reduced localization error and variance, enhancing
precision and stability. While the inclusion of PSO slightly
increases computation time, it offers a more reliable mech-
anism for node localization in real-life scenarios. Overall,
the proposed modifications represent significant progress
in WSNs, improving precision and reliability crucial for
accurate information collection, and highlighting the impor-
tance of balancing accuracy with computational efficiency in
practical WSN applications.
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In their paper ‘‘Node localization in wireless sensor net-
works using butterfly optimization algorithm’’ [10], Arora
and Singh present a node localization scheme employing the
butterfly optimization algorithm, crucial for enhancing net-
work performance in wireless sensor networks. The scheme’s
efficacy is compared against established methods such as
PSO and firefly algorithm (FA), with the butterfly optimiza-
tion algorithm demonstrating superior and more consistent
node localization accuracy. The article offers a concise review
of nature-inspired metaheuristic algorithms like PSO, GA,
and the butterfly optimization algorithm, outlining the iter-
ative process of node localization involving initialization,
distance estimation, and position estimation using optimiza-
tion algorithms. Simulation results reveal that the butterfly
optimization algorithm achieves better accuracy and faster
computation times compared to PSO and FA. Localization
performance is influenced by factors including anchor node
density, transmission range, and the number of iterations,
with increased density and range correlating with improved
accuracy and localization of more nodes. Furthermore, more
iterations lead to enhanced accuracy. The proposed scheme
outperforms alternative algorithms in terms of both accuracy
and computation time, offering a comprehensive analysis of
its performance across diverse scenarios.

In their paper ‘‘A new fuzzy logic-based node localization
mechanism for wireless sensor networks’’ [11], Amri et al.
propose a node localization mechanism utilizing the but-
terfly optimization algorithm, which differs from purely
range-based or range-free methods by incorporating RSSI
information into a fuzzy inference system for node position
estimation. The mechanism integrates multi-hop routing pro-
tocols and a hierarchical communication model to enhance
geographic routing precision in WSNs. Through a cluster-
based approach, individual clusters are formed, with member
nodes communicating with cluster heads for data aggregation
and transmission to the base station. The technique measures
flow between anchor and sensor nodes, estimating distances
using RSSI and employing a weighted centroid formula
for sensor node localization. Utilizing fuzzy Mamdani and
Takagi-Sugeno-Kang inference systems enhances processing
time and accuracy, with the Sugeno method replacing the
laborious defuzzification procedure. Fuzzy logic is further
employed to select the next cluster head, reducing energy
dissipation and improving position estimation precision. Sim-
ulation results demonstrate the superiority of the proposed
mechanism over alternative approaches, with reduced local-
ization error and improved energy efficiency, validated across
various scenarios. While the mechanism assumes precise
anchor node positioning and stable wireless channels, its
applicability to practical situations and potential complex-
ity in implementation warrant further study. Nevertheless,
the mechanism’s performance underscores its significance in
IoT applications, such as environmental monitoring, indus-
trial automation, and medical tracking, where precise node

localization is essential for optimizing data transfer and
network longevity.

In their paper ‘‘An Effective Cuckoo Search Algorithm
for Node Localization in Wireless Sensor Network’’ [12],
Cheng and Xia highlight the growing significance of wire-
less sensor networks in various domains such as healthcare,
transportation, and environmental monitoring. They empha-
size the importance of accurate node localization in WSN
applications for data differentiation, geographical routing,
and power conservation. To address challenges like compu-
tational complexity and communication overhead that can
hinder efficient localization, the authors propose a new vari-
ation of the Cuckoo Search (CS) algorithm tailored for
node localization. This nature-inspired algorithm mimics
the behavior of cuckoos and introduces modifications such
as adjusting step size, using solutions’ fitness to generate
mutation probabilities, and limiting the range for population,
aimed at optimizing global solution search while minimizing
unnecessary computational expenditure. Through extensive
simulations considering node and anchor numbers, as well as
distance, the authors demonstrate the efficacy of the modi-
fied CS algorithm in reducing average localization error and
improving localization success ratio compared to standard
CS and PSO algorithms. The modified CS algorithm exhibits
faster convergence and reduced localization error, particu-
larly noticeable in initial generations, indicating its potential
for enhancing WSN precision and energy efficiency. This
improvement is crucial for applications relying on accurate
location information and efficient performance, underscoring
the significance of themodified CS algorithm for futureWSN
advancements.

Kumar et al. in their article ‘‘Meta-heuristic range-based
node localization algorithm for wireless sensor networks’’
[13], delve into the integration of Hybrid PSO (HPSO)
and Biogeography-BasedOptimization (BBO) algorithms for
enhancing node localization in wireless sensor networks.
HPSO, derived from PSO, subdivides the swarm into smaller
sub-swarms to improve accuracy and convergence speed,
with each particle moving towards its personal best, global
best, and the best position encountered by its sub-swarm.
BBO, inspired by biological principles, utilizes a mathemat-
ical model based on the Habitat Suitability Index (HSI) to
optimize solutions. The proposed algorithm combines these
techniques, iteratively localizing nodes by estimating dis-
tances from neighboring nodes and anchors. Two case studies
demonstrate the effectiveness of HPSO and BBO, with sim-
ulation results showing their superior performance compared
to PSO in terms of accuracy and convergence speed. HPSO
offers fast convergence and better accuracy, while BBO pro-
vides even higher accuracy at a slower convergence rate.
The choice between HPSO and BBO depends on specific
requirements, such as accuracy or fast convergence. Overall,
the integration of HPSO and BBO offers improved accu-
racy, convergence speed, and energy conservation in WSNs,
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with implications for enhancing the capabilities of WSNs in
various practical settings.

Chen et al. proposed the Node Localization Algorithm
for Wireless Sensor Networks with Mobile Beacon Node
(NLA_MB) in [14] to address challenges related to the
maximum movement distance of mobile beacon nodes in
WSNs. Aimed at improving sensor node localization accu-
racy, NLA_MB seeks to enhance the number of sojourn
locations for the beacon node, increase the average number of
anchor nodes for sensor nodes, and reduce the average local-
ization error. In the context of multi-hop ad hoc networks,
where accurate sensor node locations are crucial for various
applications like smart grids, traditional satellite localization
systems are deemed impractical due to high energy consump-
tion. NLA_MB operates within a 2-dimensional area with
static sensor nodes, anchor nodes, and a mobile beacon node
equipped with GPS or Beidou satellite localization module.
The algorithm employs a heuristic approach, based on vir-
tual force theory, to optimize node localization errors while
considering constraints such as movement path and distance.
By dividing the search area into hexagonal grids and uti-
lizing beacon node movement constrained by mathematical
formulas, NLA_MB enables sensor nodes to estimate their
coordinates based on received beacon node location infor-
mation. Simulation results demonstrate NLA_MB’s ability
to cover more sensor nodes with limited beacon node move-
ment distance, yielding higher anchor node numbers and
improved localization accuracy across various node distri-
butions. Despite considerations of communication overhead
due to frequent location information exchange, NLA_MB
presents a promising distributed solution for enhancing sen-
sor node localization accuracy in WSNs with mobile beacon
nodes.

Wu et al. present in [15] the ‘‘AHybridMobileNode Local-
ization Algorithm Based on Adaptive MCB-PSO Approach
in Wireless Sensor Networks,’’ offering a novel approach to
node localization in dynamic wireless environments. By inte-
grating PSO with Monte Carlo localization boxing (MCB),
the method addresses challenges associated with locating
nodes in three-dimensional mobile spaces. Emphasizing the
importance of localization in wireless sensor networks, where
energy-constrained smart sensors are widely deployed, the
research underscores the need for accurate data represen-
tation amidst changing network conditions. The proposed
MCB-PSO hybrid method introduces enhancements over tra-
ditional MCB by incorporating a random waypoint moving
model to account for mobile node behavior and adapt to real-
life scenarios. This modification improves the algorithm’s
ability to handle both known and unknown locations effi-
ciently. Additionally, the inclusion of a novel anchor selection
method enhances the effectiveness of the PSO component by
dynamically adjusting the search strategy based on temporal
and spatial considerations. The study evaluates the perfor-
mance of the hybrid approach against existing localization
methods like DV-Hop and Centroid through simulations,
demonstrating its superiority in terms of accuracy, speed,

and efficiency. The results highlight the effectiveness of the
MCB-PSO hybrid algorithm in swiftly and accurately local-
izing mobile nodes in dynamic wireless environments, repre-
senting a significant advancement over traditional stationary
network models.

In [16], Hao et al. introduce ‘‘A node localization algorithm
based on Voronoi diagram and support vector machine for
wireless sensor networks,’’ addressing the challenge of accu-
rately determining the locations of nodes within wireless
sensor networks. Recognizing the significance of node local-
ization in diverse applications such as healthcare, environ-
mental monitoring, and industrial control, the paper identifies
limitations in current localizationmethods, categorizing them
as distance-based or not and advocating for improved effi-
ciency and accuracy. To overcome these challenges, the
authors propose a novel approach that combines Voronoi dia-
grams with SVM. Initially, Voronoi diagrams are employed
to partition the sensor network area, providing an initial
estimation of node locations and facilitating the management
of localization complexity by dividing the space into smaller
regions. Subsequently, SVM, a robust machine learning tech-
nique, is utilized to refine these estimations by leveraging data
collected from the sensor network. This integration enables
the algorithm to effectively identify node locations by capi-
talizing on SVM’s pattern recognition capabilities. The paper
underscores the importance of striking a balance between
localization accuracy and resource constraints inherent in
WSNs, highlighting the method’s practicality in real-world
scenarios. Experimental validation demonstrates the effi-
cacy and flexibility of the proposed approach across diverse
indoor and outdoor environments, substantiating its utility in
challenging conditions. Ultimately, the study contributes sig-
nificantly toWSN localization technologies, offering a robust
solution that promises to enhance localization efficiency and
accuracy across various applications. The comprehensive
approach presented, from theoretical development to real-
world testing, underscores the transformative potential of the
proposed method and opens avenues for further research and
innovation in WSN localization techniques.

In [17], Li et al. present ‘‘A parallel compact cat swarm
optimization and its application in DV-Hop node localiza-
tion for wireless sensor network,’’ introducing the Parallel
Compact Cat Swarm Optimization (PCCSO) algorithm as a
solution to the convergence and memory consumption chal-
lenges associated with Cat Swarm Optimization (CSO). The
PCCSO algorithm is designed to enhance local search capa-
bilities while conserving computational memory, particularly
focusing on its application in the DV-Hop node localization
for wireless sensor networks. The authors demonstrate that
incorporating PCCSO into DV-Hop improves localization
accuracy and reduces memory usage compared to other DV-
Hop-based optimization algorithms. The paper begins by
discussing the widespread adoption of global optimization
algorithms like CSO in various fields, highlighting CSO’s
applications in WSNs for tasks such as energy-aware rout-
ing and sensor configuration. However, CSO’s significant
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memory consumption hampers its convergence speed and
optimization accuracy, motivating the development of a more
memory-efficient solution. The proposed PCCSO algorithm
is described in detail, featuring a parallel communication
strategy and a compact scheme to enhance its efficiency
and effectiveness in optimization tasks. Experimental results,
conducted using CEC2013 benchmark functions, demon-
strate PCCSO’s superior performance across different func-
tion types, showcasing its ability to escape local optima and
solve various function problems with lower memory require-
ments. Furthermore, the application of PCCSO to DV-Hop
node localization is explored, revealing its effectiveness in
addressing issues related to asynchronous non-uniform distri-
bution and improving the accuracy of WSN localization. The
paper concludes by highlighting the robustness of PCCSO-
based DV-Hop localization, emphasizing its ability to handle
changes in communication radius and its superiority over
traditional CSO and PSO algorithms. Overall, the study
presents PCCSO as a promising algorithm for WSN local-
ization, offering improvements in optimization efficiency
and memory usage, particularly in DV-Hop localization
scenarios.

In their paper [18], Liu et al. introduce an adaptation
of the multi-group quasi-affine transformation evolutionary
algorithm, aiming to overcome limitations of the original
QUATRE algorithm and enhance its efficiency. This novel
algorithm, named AMG-QUATRE, involves randomly divid-
ing the population into three groups, each employing a
different mutation strategy to balance population diversity
and convergence speed. By dynamically adjusting the muta-
tion scale factor during the search process, AMG-QUATRE
overcomes manual tuning complexities associated with con-
trol parameters, thus improving exploration and develop-
ment capabilities. The authors apply the AMG-QUATRE
algorithm to the node localization problem in wireless sen-
sor networks, specifically enhancing the DV-Hop algorithm.
Through experiments using standard benchmark functions,
AMG-QUATRE demonstrates superior optimization accu-
racy compared to QUATRE variants, DE, ODE, CLPSO,
and SLPSO algorithms. Additionally, simulations evaluating
the proposed DV-Hop algorithm based on AMG-QUATRE
show better localization accuracy compared to standard DV-
Hop, Hyperbolic-DV-hop, PSO-DV-hop, and DE-DV-hop
algorithms across different scenarios. The results highlight
AMG-QUATRE’s sensitivity to varying anchor node ratios,
communication ranges, and node densities, demonstrating
its effectiveness in practical localization scenarios. Over-
all, the study showcases the improved performance of the
AMG-QUATRE algorithm in global optimization problems
and its effectiveness in enhancing node localization accuracy
in WSNs, positioning it as a viable solution for complex
optimization tasks.

In their paper [19], Phoemphon et al. introduce a hybrid
localization model, termed NS-IPSO, designed to enhance
localization accuracy in wireless sensor networks particularly

in environments with obstacles. The model combines node
segmentation with an improved PSO algorithm to address
the challenges posed by obstructions affecting signal trans-
mission in range-based localization techniques. Through
node segmentation, sensor nodes are clustered to facilitate
more precise distance calculations between anchor nodes
and unknown nodes, thereby increasing overall localiza-
tion accuracy. The NS-IPSO model incorporates significant
enhancements to the PSO algorithm, including a tailored
fitness function for each anchor node based on the num-
ber of hops between anchor nodes and unknown nodes,
and mechanisms to mitigate convergence to local optima,
ensuring a more robust search for global optimum solutions.
Rigorous simulations, considering various node configu-
rations and obstacle-laden environments, demonstrate the
superiority of the NS-IPSO model over existing methods
such as hybrid discrete PSO (HDPSO), Hybrid PSO, and
min-max PSO techniques, particularly in scenarios with
obstacles. This research represents a significant advance-
ment in WSN localization, offering a reliable and precise
localization mechanism vital for numerous applications in
challenging environments where physical obstacles may
impede traditional approaches.

The paper [20] by Sabale and Mini delves into the intri-
cacies of localization in wireless sensor networks with a
focus on a mobile anchor node path planning mechanism.
Addressing the crucial need for accurate sensor node local-
ization in WSNs deployed across various applications, the
authors propose a novel Cosine Rule-based Localization
(CRL) algorithm, distinct from conventional trilateration
methods. The CRL algorithm leverages the cosine rule
and Received Signal Strength Indicator (RSSI) to achieve
high precision by creating intersecting lines at specific
points, enhancing accuracy beyond traditional trilateration
techniques. The paper categorizes localization algorithms
based on triggering mechanisms, range computation meth-
ods, and anchor node availability, while emphasizing the
importance of optimizing trajectories for mobile beacon
nodes economically. Various trajectory patterns such as Scan,
Double Scan, Hilbert, Z-curve, and LMAT are explored,
each with its own trade-offs between localization accu-
racy and energy efficiency. The implementation of the CRL
algorithm involves defining communication range parame-
ters, forming curves with beacon positions, and employing
the cosine rule for accurate sensor node localization. Sim-
ulation results demonstrate the superiority of the CRL
algorithm over dominant methods like Accuracy-Priority Tri-
lateration (APT) and Bary–Hilbert localization algorithms
in terms of localization precision across different node
densities and environmental conditions. The comprehensive
study not only provides theoretical foundations and algo-
rithmic descriptions but also validates its efficacy through
simulations, highlighting the CRL algorithm’s efficiency
and feasibility in real-world WSN applications. Overall,
the paper contributes valuable insights and solutions to the
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ongoing challenge of accurate localization in wireless sensor
networks.

The paper [21] by Wang et al. introduces the Kernel
Extreme Learning Machines based on Hop-count Quanti-
zation (KELM-HQ) algorithm to improve node localization
accuracy in wireless sensor networks (WSNs). Traditional
hop-count-based localization algorithms often use integer
hop-count values, leading to suboptimal accuracy in practical
scenarios. To address this issue, the KELM-HQ algorithm
enhances localization accuracy by transforming integer
hop-count values into real-number hop-counts through par-
titioning a node’s one-hop neighbor set into three subsets
and calculating intersection region areas to estimate distance.
The core innovation of KELM-HQ lies in its utilization
of Kernel Extreme Learning Machines, which outperforms
existing algorithms such as fast-SVM, GADV-Hop, and
DV-Hop ELM in terms of accuracy. The algorithm transforms
hop-count values into real numbers to estimate hop bound-
ary distance and transmission range, leading to improved
accuracy in unknown node localization. During the training
process, the algorithm minimizes both training error and
the norm of the output weight using the Extreme Learning
Machine (ELM) model with L hidden nodes. The trained
KELM model is then used to determine unknown node loca-
tions, reducing computation time significantly. Simulation
results demonstrate the superior performance of KELM-HQ
compared to fast-SVM, GADV-Hop, and DV-Hop-ELM
algorithms, with localization error decreasing as the number
of anchors increases. KELM-HQ consistently outperforms its
counterparts, with significantly smaller localization errors.
The algorithm’s effectiveness in reducing localization errors
while maintaining high accuracy, along with its efficiency
in computation time, positions it as a promising solution for
node localization inWSNs. Results from the simulation show
that the KELM-HQ algorithm improves localization error by
34.6% compared to fast-SVM, 19.2% compared to GADV-
Hop, and 11.9% compared to DV-Hop-ELM.

The paper [22] by Rout et al. presents a dynamic genetic
algorithm designed to address the challenges of node local-
ization in wireless sensor networks (WSNs), emphasizing
accuracy while minimizing energy consumption. By lever-
aging received RSSI data, the algorithm employs genetic
operators including selection, mutation, crossover, and repro-
duction to maintain a stable population size of candidate
solutions. Through multiple RSSI readings and an arith-
metic crossover operator, the algorithm aims to minimize
the discrepancy between actual and estimated distances,
thereby enhancing localization accuracy. The initialization
phase involves randomly assigning anchor nodes to the
network, followed by estimating distances using signal inten-
sity and computing unknown sensor node coordinates based
on an objective function. During the localization process,
anchor nodes transmit their coordinate values and power
levels to facilitate distance estimation, leading to the com-
putation of the unknown node’s position once the distance

measurement procedure is complete. Subsequently, the evo-
lutionary algorithm is applied to refine the objective function
operation, optimizing the node localization process. The
proposed method is evaluated through simulations, which
demonstrate its effectiveness in determining wireless device
locations with high accuracy. The results indicate that the
error decreases as the number of generations increases, with
the genetic algorithm finding a satisfactory solution in less
than 0.01 seconds around the 33rd generation. The simu-
lation outcomes underscore the efficiency of the proposed
approach, with less than one percent average error achieved
within a short timeframe. In conclusion, the dynamic genetic
algorithm offers a promising solution for node localization in
WSNs, mitigating existing challenges and delivering efficient
performance in terms of accuracy and energy consumption.

The paper by Zhang et al. [23] introduces a Multi-Strategy
Improved Sparrow Search Algorithm (ISSA) aimed at
enhancing the performance of the Sparrow Search Algorithm
(SSA) and applying it to solve the node localization prob-
lem in Heterogeneous Wireless Sensor Networks (HWSNs).
While SSA is inspired by the foraging behavior of sparrows
and divides the population into producers, scroungers, and
investigators, it suffers from slow convergence and low accu-
racy due to its location updating formulas. To overcome these
limitations, ISSA incorporates three key strategies. Firstly,
it integrates the golden sine algorithm into the producers’
position update to enhance global exploration capability by
traversing the search space using the relationship between the
unit circle and sine function. Secondly, it incorporates the idea
of individual optimality from Particle Swarm Optimization
into investigators’ updates to improve convergence speed by
attracting their positions toward the historical best position.
Finally, Gaussian perturbation is applied to globally optimal
individuals to prevent them from getting trapped in local
optima. Evaluation on 23 benchmark functions demonstrates
ISSA’s superiority over SSA and other benchmark algorithms
in terms of average value, standard deviation, and conver-
gence accuracy. ISSA also exhibits faster convergence speed
in most cases. Moreover, when applied to node localization
in HWSNs, ISSA outperforms traditional methods like least
squares and SSA, yielding higher positioning precision. How-
ever, there is room for further improvement, particularly in
reducing computation time and exploring distance estimation
methods for better results. Overall, ISSA presents a promising
solution for real-world engineering optimization problems in
HWSNs.

Tan et al. [24] present the Distance Mapping Algorithm
(DMA), a novel localization approach tailored for wireless
sensor networks, aiming to achieve accurate node position-
ing while minimizing energy consumption. The algorithm
addresses the challenges posed by manual configuration and
the high cost of equipping each node with a GPS receiver in
large-scale WSN deployments. It begins with an overview of
WSNs, emphasizing the significance of localization in meet-
ing accuracy and power consumption requirements, while
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highlighting the limitations of GPS in such networks. The
DMA algorithm comprises three main stages: preprocess-
ing, parameter determination, and non-anchor localization.
Preprocessing involves initializing nodes, setting thresholds,
and broadcasting packets for anchor and non-anchor nodes.
Parameter determination updates link lists and computes
matrices for localization variables, enabling anchor nodes
to send updated data packages to each other. The localiza-
tion stage employs trilateration principles optimized with a
GA to minimize energy consumption and enhance hardware
accuracy. The GA iteratively improves node positions by
generating populations of individuals and selecting those
with better fitness values through successive generations.
Experimental results demonstrate DMA’s superior localiza-
tion accuracy compared to other algorithms like DV-Hop
and MDS-map, even with varying numbers of anchor nodes.
The study also highlights DMA’s energy efficiency, attributed
to anchor nodes automatically rejecting nodes outside their
range and utilizing neighboring nodes for transmitting local
positioning information. In conclusion, DMA presents a
promising solution for high-accuracy WSN localization with
a focus on energy efficiency, though further enhancements
integrating path planning and prediction strategies are sug-
gested for future work.

Annepu and Anbazhagan propose an efficient Extreme
LearningMachine (ELM) for node localization in Unmanned
Aerial Vehicle (UAV) assisted wireless sensor networks [25].
Their methodology focuses on enhancing localization
accuracy using a single UAV and involves UAV-assisted
localization and a modified optimization-based least square
localization (OLSL) problem. Least square problems are
formulated to optimize the UAV’s flying height, while
Received Signal Strength Indicator (RSSI) multilateration
and DEA-assisted OLSL techniques aid in distance measure-
ment between anchor nodes and unknown nodes. The authors
categorize localization techniques into fixed terrestrial and
mobile aerial anchor-based methods, highlighting the advan-
tages of the latter in providing high accuracy due to the
reliability of the air-to-ground channel link. They introduce
MLP and ELM models as effective solutions for localiza-
tion, with ELM showing superiority in computer simulations
over multilateration, DEA, and MLP techniques. The paper
concludes by underscoring the importance of accurate node
localization in various networking protocols and applications
and presents UAV-assisted localization as a cost-effective and
accurate alternative to classical fixed ground anchor-based
methods, with ELMoffering significant complexity gains and
addressing challenges in WSN node localization effectively.
Their findings suggest that the ELM technique outperforms
multilateration and DEAmethods, providing higher accuracy
even for UNs located far from all anchor nodes, thus offering
promising avenues for improved node localization in WSNs.

Ingabire et al. [26] introduce a novel approach for outdoor
node localization in large-scale urban IoT LoRa networks
using Random Neural Networks (RNNs). They highlight

the significance of localization in IoT and Wireless Sensor
Networks, discussing various range-based localization tech-
niques such as Time-of-Arrival, Received Signal Strength
Indicator (RSSI) ranging, and Time-Difference-of-Arrival,
commonly employed for determining end device coordinates.
The paper focuses on addressing challenges like high-power
consumption and hardware costs in dense wireless sensor
networks by utilizing RNNs to develop a low-power, large-
scale localization system. This system leverages LoRaWAN
RSSI values for predicting unknown 2D coordinates on a
LoRaWAN dataset for Antwerp, Belgium. The RNN-based
localization models outperform other systems in related
works, achieving a minimum mean localization error of
0.29 meters. LoRaWAN networks, employing LoRa end
devices connected in a star topology, utilize RSSI val-
ues for fingerprint localization algorithms. The proposed
RNN algorithm predicts the X and Y coordinates of LoRa
end devices based on RSSI values received by gateways.
Simulation results demonstrate the system’s accuracy, with
the RNN-based localization approach achieving a minimum
mean localization error of 0.39 meters for a small-scale
urban area, comparable to traditional approaches like Mul-
tilateration and Deep Learning. Notably, it outperforms
other RSSI fingerprint LoRaWAN-based localization sys-
tems, showcasing its potential effectiveness in large, dense
urban environments. The study underscores the promising
prospects of the proposed RNN-based approach while sug-
gesting future optimizations and extensions for addressing
challenges in more complex environments.

In their study, Kumar et al. [27] propose a range-free 3D
node localization technique tailored for anisotropic wireless
sensor networks, deploying anchor nodes solely at the top
layer and scattering target nodes randomly across bottom
layers. Anchor nodes emit beacon signals to assist target
nodes in self-localization, with target node coordinates deter-
mined using neighboring anchor nodes’ known coordinates.
The study emphasizes the significance of accounting for
device heterogeneity and anisotropic properties in the Range
Information Matrix (RIM), introducing fuzzy rule bases,
Mamdani fuzzy models, and weight generation through
HPSO and BBO to model the relationship between anchor
node weight and RSSI for estimating distances. Practical
implementation with 80 randomly deployed target nodes in
a 10 × 10 sensor field demonstrates the superiority of the
proposed methods over centroid-based approaches and ear-
lier range-free methods, with algorithms optimizing edge
weights computing values between 0 and 1 to assess the
distance between estimated and actual positions of target
nodes. Scalability evaluation reveals performance improve-
ment as the number of anchor and target nodes increases,
with anchor node impact diminishing beyond a certain thresh-
old. Comparison results between range-based and range-free
methods for 3D node coordinates using HPSO and BBO sug-
gest that while range-based methods outperform range-free
methods, the latter are cost-effective and easier to compute.
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Notably, the range-free HPSO algorithm offers better accu-
racy and faster convergence, while the range-free BBO
algorithm delivers superior accuracy albeit with slower con-
vergence. In conclusion, the paper introduces two range-free
3D node localization techniques employing HPSO and BBO
algorithms for anisotropic WSNs, demonstrating improved
performance over centroid-based approaches in terms of
error and scalability, while future endeavors could involve
refining the algorithms, exploring additional soft computing
techniques, and addressing specific challenges in anisotropic
WSNs to enhance accuracy and applicability.

Kanoosh et al. [28] tackle the crucial challenge of achiev-
ing precise node localization in Wireless Sensor Networks
(WSNs), recognizing the impracticality of equipping each
sensor node with GPS. Instead, they propose a Salp Swarm
Algorithm (SSA) for localization, comparing its perfor-
mance favorably against other metaheuristic algorithms such
as PSO, Butterfly Optimization Algorithm (BOA), Firefly
Algorithm, and Grey Wolf Optimizer. The Swarm Intelli-
gence Algorithms section introduces fundamental concepts
such as PSO, BOA, Firefly Algorithm, and Grey Wolf
Optimizer, elucidating their mechanisms inspired by natural
phenomena. SSA, inspired by the collective behavior of salps
in deep oceans, updates follower positions using Newton’s
law of motion. The formulation of the WSN Localiza-
tion Problem involves a single-hop range-based distribution
technique and anchor nodes, with SSA iterating through
initialization, anchor communication, and node localization
steps. Results demonstrate SSA’s superiority in terms of
localization accuracy and computing time, with simulations
showing increased iterations leading to more localized nodes
and reduced localization error, albeit with higher computing
time. Moreover, increasing the number of unknown nodes
and anchor nodes escalates computing time for all algorithms.
The paper concludes by highlighting SSA’s outperformance
of other algorithms, positioning it as a promising solution
for WSN node localization. In summary, the study provides
a thorough exploration of node localization algorithms in
WSNs, introducing the innovative SSA and showcasing its
efficacy through comprehensive experiments, thus contribut-
ing significantly to advancing WSN localization techniques.

Latha and Rekha [29] address the vital task of node
localization in wireless sensor networks, essential for mon-
itoring environmental changes in remote areas inaccessible
to humans, proposing a hybrid metaheuristic approach that
combines the BAT algorithm with Simulated Annealing (SA)
to improve traditional localization methods like the Dis-
tance Vector Hop (DV-Hop) algorithm. In WSNs, nodes
are categorized as unknown and Beacon nodes, with Bea-
con nodes equipped with GPS devices for self-location.
While distance-based algorithms rely on parameters like
Time of Arrival and Received Signal Strength Indicator,
distance-free algorithms such as DV-HOP estimate distance
based on the maximum hop count between nodes. The BAT
algorithm, inspired by echolocation in bats, explores the

solution space using dynamically adjusted frequency pulses,
balancing global and local searches. Simulated Annealing
enhances the BAT algorithm’s efficiency by exploring the
solution space and accepting worse solutions with decreasing
probability, allowing it to escape local optima. The proposed
BAT with SA algorithm optimizes paths and energy con-
sumption across the network, leading to enhanced energy
efficiency and an extended network lifetime. Performance
evaluation in a 1000m radius network area demonstrates
that the proposed algorithm outperforms DV-HOP and the
conventional BAT algorithm in accuracy, computing rate,
network scalability, and success rate, contributing to a more
optimized WSN. Overall, the hybrid BAT with SA algorithm
presents a promising solution for WSN localization, con-
sistently demonstrating superior performance compared to
traditional methods.

Latha et al. [30] introduce modifications to the APIT
algorithm for node localization in wireless sensor net-
works, partitioning the application area into overlapping
and non-overlapping subregions to address challenges like
small areas and narrow triangles. The APIT algorithm uti-
lizes beacon signals from anchor nodes to determine the
position of target nodes, with each target node compar-
ing the beacon RSSI received from anchor nodes to its
neighboring sensor nodes. However, APIT has limitations,
including dependency on neighbor nodes and issues with
increased network density and specific node distributions.
To overcome these challenges, the authors propose enhanc-
ing APIT with the Bat algorithm combined with Simulated
Annealing (SA). The BAT algorithm utilizes echolocation for
distance sensing and dynamically adjusts frequency pulses
for effective exploration of the solution space. Simulated
Annealing enhances efficiency by accepting worse solutions
with decreasing probability, escaping local optima. The pro-
posed algorithm optimizes paths and energy consumption,
leading to enhanced energy efficiency and extended network
lifetime. Simulations demonstrate that the proposed APIT
with Bat-SA algorithm outperforms the conventional APIT,
achieving more even node distribution, less node positioning
error, and lower latency. Moreover, the algorithm’s efficiency
improves with increased iterations, and it demonstrates sig-
nificant reduction in latency compared to the increase in
communication radius. Overall, the proposed APIT with
Bat-SA algorithm significantly optimizes WSN localization,
enhancing system performance and scalability.

Yu et al. [31] present the Quantum Annealing Bat
Algorithm (QABA) as an innovative solution for node local-
ization in wireless sensor networks, integrating quantum
evolutionary principles and annealing techniques into the
bat algorithm framework to enhance both local and global
search capabilities. QABA incorporates tournament and nat-
ural selection mechanisms to achieve a balance between
search exploration and convergence towards optimal val-
ues. The paper introduces both 2D (QABA-2D) and 3D
(QABA-3D) localization algorithms optimized with QABA,
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demonstrating significant improvements in convergence
speed and solution accuracy compared to other heuristic
algorithms. Simulation results highlight QABA’s effective-
ness across standard test functions, showcasing superior
performance in convergent evolutionary strategies. Quantum
evolutionary strategies guide variation using optimized val-
ues, accelerating convergence and improving accuracy, while
simulated annealing enhances solution efficiency by direct-
ing populations towards optimal values. QABA’s dynamic
weighting and improved selection mechanisms ensure effi-
cient convergence while preserving diversity, resulting in
superior search performance. Simulations of 2D and 3D
spatial localization confirm QABA’s higher accuracy and
efficiency, with resilience against noise interference and
sustained performance across different noise levels, under-
scoring its robustness and real-world applicability. The paper
concludes by highlighting QABA’s excellence in node local-
ization optimization for WSNs and proposes future research
to extend its application to diverse optimization problems,
positioning QABA as a significant advancement in WSN
node localization.

Cao et al. [32] introduce a novel node localization method
for wireless sensor networks based on the quantum anneal-
ing (QA) algorithm, aiming to overcome the limitations of
classical approaches like SA and GA. Unlike traditional
methods, which struggle with local optima, global optima
attainment, and energy consumption issues, QA leverages the
quantum tunneling effect to facilitate rapid traversal from
local to global optima, simplifying calculations and acceler-
ating computation speed. Simulation results demonstrate the
efficacy of QA, showcasing enhanced precision and reduced
energy consumption compared to GA and SA, thus offering
promising prospects for broader application in WSN node
localization. Edge computing, with its distributed nature,
offers proximity to data sources, enabling real-time process-
ing and reducing data transmission volume. By exploiting
QA’s quantum-inspired approach, this method significantly
improves localization speed, accuracy, and energy efficiency,
outperforming classical algorithms in various metrics. QA’s
ability to traverse energy barriers efficiently translates into
lower energy consumption, prolonging node lifespan and
reducing maintenance frequency. In conclusion, the proposed
QA algorithm presents a quantum-inspired solution to opti-
mize WSN performance, demonstrating superior precision
and energy efficiency, and contributing to the advancement
of edge computing applications in WSN node localization.

Rajakumar et al. introduced the Grey Wolf Optimization
(GWO) algorithm, drawing inspiration from the social behav-
ior of grey wolves, to tackle the node localization problem
in wireless sensor networks [33]. The study implemented
the GWO algorithm deploying nodes randomly within the
network area and assessing its performance based on metrics
such as computation time, percentage of localized nodes,
and minimum localization error. The results showcased
that GWO exhibited promising performance, demonstrating
rapid convergence rates and high success rates compared

to other metaheuristic algorithms like PSO and Modified
Bat Algorithm. The GWO algorithm mirrors the hierarchical
hunting strategy of grey wolves, employing alpha, beta, and
delta wolves to guide the exploration and exploitation phases.
Alpha wolves represent the best candidate solution, with beta
and delta wolves assisting in decision-making and explo-
ration. Strategies such as encircling prey, attacking prey, and
searching for prey are employed to explore optimal solutions
in both local and global search spaces. In addressing the
WSN localization problem, the GWO algorithm initializes
unknown and anchor nodes within the communication range,
leveraging neighboring anchor nodes to estimate the locations
of localized nodes. Environmental factors are accounted for
by incorporatingGaussian noise, and optimization techniques
are applied to minimize localization errors. Node positions
are updated based on the locations of alpha, beta, and delta
wolves, steering the algorithm towards optimal solutions
while circumventing local optima. The study highlights the
efficacy of the GWO algorithm in tackling the localization
problem in WSNs, showcasing its superiority over other
metaheuristic approaches. Future research avenues include
testing the algorithm in dynamic node networks such as
Mobile Ad hoc Networks (MANETs) and exploring hybrid
algorithms that integrate GWOwith other metaheuristic vari-
ants to enhance convergence and diversity in identifying
unknown node positions.

A. DISCUSSION
The exploration of node localization techniques in wireless
sensor networks WSNs is a multifaceted research area that
addresses the critical challenge of determining the physical
coordinates of sensor nodes within a network. As detailed
in Table 2 and the provided summaries, these techniques
employ a wide range of strategies, including probabilistic
models, SVM, PSO, and various metaheuristic and hybrid
algorithms, each with unique benefits and limitations. This
analysis will delve into the comparative aspects of these
techniques, drawing upon their deployment strategies, com-
putational complexities, and performance metrics such as
overhead, accuracy, and scalability.

The range-based methods, including those employing
Quantum principles or Grey Wolf Optimization, typically
offer more precise localization by using distance measure-
ments between nodes and anchors. In contrast, range-free
methods like SSA and BAT-SA rely on proximity and con-
nectivity, providing cost-effective solutions in environments
where distance measurement is challenging or impractical.

Hybrid approaches, which combine two or more opti-
mization techniques, are gaining traction for their ability to
address the limitations of individual methods. For instance,
the Bat Algorithm with Simulated Annealing (BAT-SA)
merges the explorative capabilities of the bat algorithm with
the fine-tuning proficiency of simulated annealing, lead-
ing to improved energy consumption profiles and extended
network lifetimes. Similarly, the Quantum Annealing Bat
Algorithm (QABA) applies quantum evolutionary strategies
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to enhance solution quality and convergence speed, repre-
senting a significant advancement over traditional heuristic
algorithms.

Techniques like Cuckoo Search and Grey Wolf Optimiza-
tion are relatively newer entrants in the node localization
domain, presenting innovative approaches inspired by natural
processes. These algorithms show promise in minimizing
localization errors and reducing computational requirements,
although their performance in real-world scenarios may
necessitate further empirical validation.

The deployment of nodes, whether random or uniform,
significantly impacts the effectiveness of localization tech-
niques. Random deployment, employed by algorithms like
Fuzzy Logic and Neural Network PSO, is typically used
in inaccessible terrains, while uniform deployment, seen in
methods such as Trilateration PSO, is chosen for structured
environments. Regarding mobility, most of the techniques
analyzed focus on static nodes, suggesting a primary appli-
cation in stable environments where nodes do not frequently
change their positions.

The computational mode, whether distributed or central-
ized, affects the network’s efficiency and scalability. Dis-
tributed techniques, which are prevalent among the reviewed
algorithms, allow for parallel computations and thus can
potentially scale better to larger networks. However, central-
ized methods, such as those using cosine rule optimization,
can provide more accurate localizations at the cost of higher
computational load on central nodes.

Pause time is a critical aspect of certain algorithms, such
as the one that integrates Fuzzy Logic with Neural Net-
works, indicating a requirement for a period of stabilization
before localization can proceed. The number of anchors—a
term referring to nodes with known locations—varies greatly
among the techniques, ranging from zero in SVM to over
a hundred in some Fuzzy Logic applications. Anchors are
pivotal for range-based localization methods, as they directly
influence accuracy.

Accuracy, a paramount performance metric, varies across
the techniques. While SVM and PSO exhibit high accu-
racy, other methods like those based on Voronoi diagrams
provide medium accuracy. This metric often correlates
with the overhead, the computational and communication
resources required for localization. Notably, methods with
high overhead, like Likelihood-based localization, can poten-
tially offer better accuracy but may not be suitable for
resource-constrained networks.

Scalability is another essential factor, especially for WSNs
that may need to operate over large areas or integrate
additional nodes over time. Techniques such as proba-
bilistic models and SVM exhibit high scalability, making
them well-suited for expanding networks. Meanwhile, some
PSO-based methods show medium scalability, highlighting
the need for a balance between localization performance and
network growth.

Upon comparative evaluation, it is apparent that there is
no one-fits-all solution for node localization in WSNs. Each

algorithm presents a trade-off between various performance
metrics. For example, probabilistic methods are scalable and
havemoderate accuracy butmay incur long beacon utilization
times, making them less desirable in time-sensitive applica-
tions. SVM stands out for its high accuracy and scalability
with zero anchor requirement, suggesting its utility in densely
deployed networks. PSO variants are versatile, being appli-
cable in both centralized and distributed modes, but their
performance is often contingent upon the specific variant and
parameter tuning.

B. SUMMARY OF OUR LITERATURE REVIEW
CONTRIBUTIONS
This review offers several distinct contributions to the exist-
ing body of work on node localization accuracy in wireless
sensor networks (WSNs). First, it provides a comprehen-
sive comparison of a wide range of localization techniques,
as detailed in Table 2, highlighting key aspects such as
computational mode, node deployment, mobility, the num-
ber of anchors, and accuracy. Unlike many existing reviews
that focus on a limited set of techniques, this review
encompasses both traditional methods like trilateration and
advanced optimization-based approaches such as PSO, GA,
and Harmony Search. Secondly, it systematically evalu-
ates the scalability and overhead of each method, offering
a nuanced understanding of their practical applicability in
diverse WSN scenarios. Furthermore, the inclusion of both
static and mobile node scenarios broadens the scope of the
review, making it relevant to a wider range of applications.
By integrating these various dimensions, this review not only
identifies the strengths and limitations of individual methods
but also provides a holistic view of the current state of node
localization technologies, paving the way for future research
and development in this critical area of WSNs.

C. COMPARISON WITH OTHER LITERATURE REVIEWS
Ahmad et al. [34] offer a thorough review of various opti-
mization algorithms applied to node localization in WSNs.
It emphasizes the significance of accurate node localiza-
tion and examines a wide array of optimization techniques,
including evolutionary algorithms, swarm intelligence, and
metaheuristic approaches. The review evaluates these tech-
niques based on key factors such as localization accu-
racy, scalability, computational complexity, and robustness.
By identifying the strengths and limitations of each opti-
mization approach, the review provides valuable insights
into their applicability across different WSN deployment
scenarios. Compared to the current review, Ahmad et al. pro-
vided an extensive analysis focused primarily on optimization
algorithms, highlighting their effectiveness in improving
localization accuracy and other performance metrics. While
both reviews aim to enhance node localization in WSNs,
the current review expands on this by integrating traditional
methods like trilateration with advanced optimization tech-
niques. It also explores the practical aspects of implementing
these methods within a WSN localization simulator, offering
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TABLE 2. Reviewed techniques comparison.

a hands-on evaluation of their performance under varied
network conditions.

Osamy et al. [35] focus on the integration of Artificial
Intelligence (AI) methods to address challenges related to
Coverage, Deployment, and Localization inWSNs. Spanning
research from 2010 to 2021, it provides a detailed analysis
of AI techniques such as swarm intelligence, nature-inspired

algorithms, and evolutionary computation, evaluating their
effectiveness in enhancing various WSN functions. The
review systematically discusses the performance parame-
ters, objectives, and deployment scenarios of different AI
methods, guiding researchers toward understanding the latest
applications and identifying suitable AI approaches for spe-
cific WSN challenges. Additionally, it outlines open research
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issues and suggests future research directions, thereby offer-
ing a roadmap for advancing WSN technologies using AI.
Compared to the current review, the article has a broader
focus on AI methods applied to multiple aspects of WSNs,
including coverage and deployment, in addition to localiza-
tion. While the current review is specifically concentrated
on node localization accuracy, it stands out by integrating
traditional geometric methods with optimization algorithms.
Furthermore, the current review’s in-depth analysis of local-
ization errors and the impact of network parameters provides
a targeted enhancement over the more general AI-focused
analysis.

Annepu et al. [36] focus on node localization using
unmanned aerial vehicles (UAVs) and compares various soft
computing-based localization techniques, including tradi-
tional multilateration and advanced neural network archi-
tectures. It highlights the limitations of the conventional
RSS-multilateration technique due to distortions in the
propagation medium and underscores the advantages of
optimization-based schemes and neural networks. Among
the neural networks, the Extreme Learning Machine (ELM)
is emphasized for its superior performance over other NN
classifiers likeMultilayer Perceptron (MLP) and Radial Basis
Function (RBF) due to its fast and strong learning capa-
bilities. The article provides a comprehensive review of
localization techniques using both fixed terrestrial anchor
nodes and aerial anchor nodes, presenting a detailed com-
parison of their performance, complexity, and suitability for
different WSN scenarios. Compared to the current review,
the article narrows its focus on the use of UAVs and soft
computing techniques for node localization.While it provides
a valuable comparison of traditional and advanced neural net-
work approaches, its primary emphasis is on overcoming the
limitations of RSS-based multilateration through the use of
sophisticated learning algorithms. The current review, on the
other hand, offers a broader evaluation perspective using a
WSN localization simulator, which rigorously tests the hybrid
method under varied network conditions, providing action-
able insights into its real-world applicability. This hands-on
approach, combined with the detailed analysis of localization
errors and the impact of network parameters, sets the current
review apart by offering a more comprehensive and practical
examination of localization techniques across diverse WSN
scenarios.

III. IMPLEMENTED WSN LOCALIZATION METHODS
A. TRILATERATION TECHNIQUE
Trilateration is a mathematical technique used in various
fields such as geography, navigation, and mobile phone
tracking, to determine the precise location of a point by
measuring its distance from three distinct points [37]. This
method is pivotal in localization technologies, especially
in GPS, where it helps to pinpoint the exact position of
a GPS receiver on Earth’s surface. Understanding trilatera-
tion requires an exploration of its principles, applications,

and how it distinguishes itself from similar methods like
triangulation.

FIGURE 2. Trilateration using three anchor nodes.

At its core, trilateration is based on the concept of cir-
cles (Fig. 2), spheres, or hyperbolas, depending on whether
the context is two-dimensional or three-dimensional. In a
two-dimensional space, for instance, trilateration involves
drawing circles around three known points. Each circle’s
radius corresponds to the distance from that point to the
unknown location. The point where all three circles intersect
is the location being determined. In three-dimensional space,
such as with GPS, spheres are used instead of circles.

Given three known points A(x1, y1), B(x2, y2), and
C(x3, y3) and their distances to an unknown point (x, y) as
d1, d2 and d3, respectively, the distance formulas are:

(x − x1)2 + (y− y1)2 = d21
(x − x2)2 + (y− y2)2 = d22
(x − x3)2 + (y− y3)2 = d23

These equations represent circles around each known point
with radii equal to the distances d1, d2 and d3. The solution
to this system of equations is the coordinates of the unknown
point where these circles intersect (Fig. 3).

When the receiver calculates its distance from at least three
satellites, it effectively determines three spheres in space. The
point where these spheres intersect is the receiver’s location.
Because of minor errors in time measurement, a fourth satel-
lite is often used to correct any discrepancies, enhancing the
accuracy of the location data.

Trilateration has a wide array of applications beyond GPS.
It is used in cellular phone tracking, where the location
of a phone is determined by its distance from cell towers.
In indoor positioning systems, it helps navigate complex
indoor spaces where GPS signals are unavailable. Even in
robotics and drone navigation, trilateration plays a crucial
role in enabling autonomous movement by helping these
machines under-stand their positions relative to known points
in their environment.

B. BOUNDING BOX
The bounding box technique for node localization in wireless
sensor networks is a geometric method used to estimate the
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FIGURE 3. Flowchart of the Trilateration technique.

location of an unknown node based on the known locations
of several anchor nodes (also known as beacon nodes) and
the measured distances from these anchors to the unknown
node [38]. This method is particularly useful when you need a
simple and computationally inexpensive approach to localize
nodes in a network (Fig. 4).

FIGURE 4. Bounding Box localization in WSN.

Assuming the distance d to the unknown node from at least
three non-collinear anchor nodes is known, a bounding box
can be formed around the unknown node’s possible location.
This box is defined by the maximum and minimum x and y
coordinates that the unknown node can occupy based on the
distances to the anchor nodes (Fig. 5).

For each anchor node Ai with coordinates (xi, yi) and dis-
tance di to the unknown node, the bounding box coordinates
can be defined as:

xmin = max(xmin, xi − di)

ymin = max(ymin, yi − di)

xmax = min(xmax , xi + di)

ymax = min(ymax , xi + di)

where xmin, xmax , ymin, ymax are the initial bounding box coor-
dinates which are updated as each anchor node is processed.

The position of the unknown node can then be estimated
as a random point inside the resulting bounding box:

FIGURE 5. Flowchart of Bounding Box used for node localization.

In practice, further refinement steps may be necessary
to improve the accuracy of the location estimate. These
may include using more sophisticated models to estimate
distance based on signal strength, accounting for obsta-
cles, or using optimization techniques to minimize the error
between the measured distances and the distances implied by
the estimated position.

C. HARMONY SEARCH
Inspired by the musical improvisation process, the HS
algorithm mimics the improvisation of musicians in search-
ing for better harmony. Originally proposed by Geem et al.
in [39], the HS algorithm has been successfully applied to
various optimization problems, including node localization in
WSNs. At its core, the HS algorithm maintains a population
of candidate solutions called ‘‘harmonies.’’ Each harmony
represents a possible solution to the optimization problem,
in this case, the coordinates of sensor nodes in the net-
work. The algorithm iteratively improves these solutions by
iteratively refining them based on the concept of harmony
memory, pitch adjustment, and harmony updating.

In the context of node localization (Fig. 6), the HS
algorithm aims to find the optimal spatial coordinates for
sensor nodes that minimize the localization error [40]. The
algorithm starts with an initial population of random solu-
tions representing potential node locations. During each
iteration, the algorithm evaluates the fitness of each har-
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FIGURE 6. Harmony Search localization in WSN.

mony solution based on a localization error metric, such
as Euclidean distance or received signal strength indicator
(RSSI) measurements.

As shown in Fig. 7, the HS algorithm then itera-
tively refines these solutions by exploring the search
space and adjusting the pitch of each harmony. This
exploration-exploitation tradeoff is crucial for balancing
between local and global search capabilities, ensuring that the
algorithm converges to near-optimal solutionswithout getting
trapped in local optima.

One of the key advantages of the HS algorithm is its ability
to adaptively adjust the search process based on the harmony
memory and pitch adjustment rate. By dynamically updat-
ing these parameters, the algorithm can effectively explore
the search space and converge to high-quality solutions
efficiently. Moreover, the HS algorithm is well-suited for
node localization in WSNs due to its simplicity, robustness,
and flexibility. Unlike traditional optimization techniques,
such as gradient descent or simulated annealing, the HS
algorithm does not require derivative information or com-
plex parameter tuning. This makes it particularly attractive
for resource-constrained sensor nodes with limited com-
putational capabilities and energy resources. Furthermore,
the HS algorithm can be easily parallelized and distributed,
allowing for scalable implementation in large-scale WSNs.
By leveraging parallel processing capabilities, the algorithm
can expedite the localization process and accommodate
dynamic changes in network topology or environmental
conditions.

D. PROPOSED METHODS (BBHS AND HSBB):
HYBRIDIZATION OF BOUNDING BOX AND HARMONY
SEARCH
The bounding box technique is a straightforward yet effective
method for node localization. By encapsulating a node’s pos-
sible positions within a bounding box based on nearby anchor
nodes, it provides a simple yet robust solution. However,
its deterministic nature may lead to suboptimal solutions,
especially in complex environments with irregular shapes or
obstacles. On the other hand, the harmony search technique
presents a metaheuristic optimization approach inspired
by musical improvisation. It iteratively refines candidate

FIGURE 7. Flowchart of Harmony Search used for node localization.

solutions within a search space, aiming to converge towards
optimal solutions. Harmony search exhibits strong explo-
ration and exploitation capabilities, enabling it to navigate
complex solution spaces effectively. However, its compu-
tational complexity and reliance on parameter tuning may
hinder its applicability in resource-constrained WSNs.

To address the limitations of both bounding box and har-
mony search techniques while leveraging their respective
strengths, a hybridization approach is proposed. The hybrid
technique (Fig. 8) combines the simplicity of bounding box
localization with the search capabilities of harmony search to
tailor the bounding box and refine the predicted node position
within it.

The BBHS hybrid technique begins by applying the bound-
ing box technique to determine the smallest bounding box
enclosing a node’s possible positions based on nearby anchor
nodes. This initial bounding box serves as the search space
for harmony search optimization. By constraining the search
space to a smaller region of interest defined by the bounding
box, the hybrid approach aims to improve the efficiency of
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FIGURE 8. Flowchart of BBHS (Bounding Box followed by Harmony Search).

harmony search while preserving the robustness of bounding
box localization.

Once the bounding box is determined, the harmony
search technique is employed to search for the pre-
dicted node position within the bounding box (Fig. 9).

Harmony search iteratively explores and refines candi-
date solutions within the constrained search space, aim-
ing to minimize localization error and improve accuracy.
The harmony search algorithm adjusts candidate solu-
tions based on harmony memory, pitch adjustment, and
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FIGURE 9. BBHS localization in WSN.

FIGURE 10. Flowchart of HSBB (Harmony Search followed by Bounding
Box).

fitness evaluation, iteratively improving the predicted node
position.

The second hybridization version is called HSBB. The
hybrid protocol depicted in Fig. 10 employs a combination
of Harmony Search and Bounding Box techniques to local-
ize sensor nodes, optimizing their positions within a given
space. The Harmony Search algorithm is applied to all sensor
nodes in the network. Then, the protocol evaluates whether
the sensors have nearby anchor nodes. If so, the Bounding
Box method is applied. This hybrid approach harnesses the
global optimization capabilities of Harmony Search with the
precision-enhancing Bounding Box method to efficiently and
accurately localize sensor nodes in a network.

IV. DEVELOPING A NETWORK SIMULATOR FOR NODE
LOCALIZATION
In order to evaluate and optimize localization algorithms,
researchers often rely on simulations to emulate real-world
network scenarios in a controlled environment. Building
a wireless network simulator tailored for node localiza-
tion offers a powerful tool for testing algorithms, analyzing

performance, and gaining insights into network behavior.
We explore in this section the design and implementa-
tion of such a simulator, focusing on key parameters and
considerations.

A. DESIGNING THE SIMULATOR
The development of a wireless network simulator for
node localization involves several key components and
considerations:

1) PARAMETERS DEFINITION
The simulator should allow users to specify essential param-
eters that characterize the simulated network environment.
Four critical parameters include:

• Number of Nodes:Represents the total number of sensor
nodes deployed in the network.

• Number of Anchors: Denotes the number of anchor
nodes with known positions used for localization
reference.

• Connectivity Range: Defines the maximum distance
within which sensor nodes can communicate directly
with each other or anchors.

• Zone Width: Specifies the width of the simulation area
or zone where nodes are deployed.

The simulator generates the network topology based on the
specified parameters. It distributes sensor nodes and anchor
nodes randomly or following a predefined pattern within the
simulation area. Additionally, it establishes communication
links between nodes based on the connectivity range.

2) LOCALIZATION ALGORITHM INTEGRATION
The simulator incorporates various node localization algo-
rithms for evaluation. It enables users to select and compare
different algorithms, such as bounding box, trilateration,
or hybrid approaches. The simulator applies the chosen
algorithm to estimate the positions of sensor nodes based on
received signal strength, time of arrival, or other localization
metrics.

3) PERFORMANCE METRICS
To assess the effectiveness of localization algorithms, the
simulator calculates and reports relevant performance met-
rics. These metrics may include localization accuracy, error
distribution, convergence time, energy consumption, and
scalability. By analyzing these metrics, researchers can evalu-
ate the strengths and limitations of different algorithms under
diverse network conditions.

4) VISUALIZATION AND ANALYSIS TOOLS
The simulator provides visualization tools to depict the sim-
ulated network topology, node positions, communication
links, and localization results. It enables users to visualize
algorithm behavior, identify localization errors, and gain
insights into network dynamics. Additionally, the simula-
tor may offer data analysis capabilities to generate plots,
histograms, or statistical summaries of simulation results.
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B. CONCEPTUAL DESIGN OF A WSN LOCALIZATION
SIMULATOR
The development of a wireless network simulator for node
localization involves several key components and considera-
tions. We will use UML diagrams to describe the conceptual
development of the simulator.

1) USE CASE DIAGRAM
The case diagram (Fig. 11) outlines the interactions a user has
with theWSNLocalization Simulator. The user is the primary
actor who can perform six main use cases within the system.
These include ‘‘Configure Simulation Parameters’’ to set up
initial conditions; ‘‘Select Localization Method’’ to deter-
mine how nodes are localized; ‘‘Set Simulation Confidence’’
to define the robustness of the simulation; ‘‘Run Simulation’’
to execute the simulation with the given parameters; ‘‘View
Results’’ to inspect the outcomes, and ‘‘Visualize Network’’
to see a graphical representation of the network based on the
simulation data. The use cases are depicted as processes that
the user can initiate or control in the simulator environment.

2) ACTIVITY DIAGRAM
The activity diagram (Fig. 12) depicts the workflow of a
WSN localization simulator from start to finish. The process
begins at the ‘‘Start’’ node and proceeds linearly. First, the
user ‘‘Set Simulation Parameters’’ for theWSN environment.
Next, they ‘‘Select Localization Method’’ to be used for the
nodes. The user then ‘‘Set Simulation Confidence,’’ which
likely determines the number of iterations or the accuracy
of the simulation. The simulation is then ‘‘Run,’’ followed
by the system ‘‘Calculate Localization Error’’ to evaluate the
performance. Subsequently, the ‘‘Generate Results’’ activity
creates output data or visualizations, which leads to ‘‘Visual-
ize Network,’’ where the network’s graphical representation
is displayed.

3) DEPLOYMENT DIAGRAM
The deployment diagram (Fig. 13) depicts the system archi-
tecture for a simulation application, divided across three main
nodes: User Workstation, Simulation Server, and Database
Server. The User Workstation hosts the UI Component,
through which users interact with the system. The Simulation
Server is the computational heart, housing the Simulation
Engine and the Result Processor, which performs simula-
tions and processes the outcomes, respectively. The Database
Server contains the Database, storing simulation data and
results. Communication flows are indicated, such as ‘‘User
to UI’’ for interactions, ‘‘UI to Simulation Engine’’ for simu-
lation commands, and ‘‘Simulation Engine to Database’’ for
data persistence. The Result Processor also communicates
with the UI Component, feeding results back for display.

4) CLASS DIAGRAM
The class diagram (Fig. 14) represents the structure of the
WSN Localization Simulator. The main class, Simulator,

has associations with several other classes: SimulationZone,
SimulationParameters, LocalizationMethod, SimulationRe-
sult, Node, and Graph. SimulationZone holds attributes for
the dimensions of the simulation area (width, height). Sim-
ulationParameters contains various settings like nodeRange,
anchorRange, connectivityRange, localizationMethod, and
numberOfRuns, and offers methods to validate and summa-
rize these parameters. The LocalizationMethod class has a
method localizeNodes() to determine the positions of the
nodes based on the anchor nodes. SimulationResult class
manages the results of the simulation, including various error
metrics and methods for graph generation, saving, and sum-
marizing results. Node class represents the sensors in the
network, with attributes like coordinates, nearbyAnchors, and
methods for distance calculation, position prediction, and
anchor identification. Anchor class is a subclass of Node,
adding anchorID. The class Graph encapsulates the data and
methods needed to create and manipulate graphical represen-
tations (plot(), update(), export()), with attributes to describe
its structure.

5) SEQUENCE DIAGRAM
The sequence diagram (Fig. 15) illustrates the interactions
between the user, various system components, and objects
within a WSN localization simulator. The diagram is a visual
representation of how different parts of the system commu-
nicate in order to complete a simulation run and display the
results to the user.

At the beginning, the user interacts with the ‘‘Simulation
Parameters Pane,’’ where they set the parameters for the
simulation. This action is denoted by the ‘‘Set parameters’’
message. Once the parameters are set, the user sends a ‘‘Start
Simulation’’ message to the ‘‘Simulator’’ object, initiating
the simulation process. The ‘‘Simulator’’ object then sends
‘‘Initialize Simulation’’ messages to itself, preparing the sim-
ulation environment. This involves two key actions: ‘‘Create
Nodes’’ and ‘‘Create Anchors,’’ which are sent as messages
from the ‘‘Simulator’’ to the ‘‘Node’’ and ‘‘Anchor’’ objects,
respectively. This depicts the creation of nodes and anchors
within the simulation space according to the parameters
defined by the user.

Following the initialization, each ‘‘Node’’ object requests
distance information from each ‘‘Anchor’’ object by send-
ing a ‘‘Request Distance’’ message. The ‘‘Anchor’’ objects
respond with ‘‘Respond with Distance’’ messages, providing
the necessary distance data back to the ‘‘Nodes.’’ Once all dis-
tance information has been gathered, the ‘‘Simulator’’ moves
forward with the localization process. A ‘‘Predict Positions’’
message is sent to the ‘‘LocalizationMethod’’ object, which
computes the predicted positions of the nodes. The results
are then communicated back to the ‘‘Simulator’’ with a ‘‘Set
Predicted Position’’ message for each node.

The ‘‘Simulator’’ continues to compile the simulation
results and sends a ‘‘Compile Results’’ message to the
‘‘SimulationResult’’ object. The process of result compila-
tion is likely to involve computing localization errors and
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FIGURE 11. Use case diagram for WSN localization simulator.

FIGURE 12. Activity diagram for WSN localization simulator.

preparing the data for visualization. After the results are com-
piled, the ‘‘Simulator’’ sends a ‘‘Generate Graphs’’ message
to the ‘‘Simulation Results Pane.’’ This action generates the
necessary graphs that depict the localization errors in various
forms, as specified by the user’s parameters.

Simultaneously, an ‘‘Update Visualization’’ message is
sent to the ‘‘Network Visualization Pane.’’ This pane updates
the visual representation of the network, showcasing the
nodes, anchors, and possibly their connectivity and pre-
dicted positions based on the simulation data. The last two
interactions in the diagram represent the user’s experience
of viewing the outcomes of the simulation. The ‘‘Display
Graphs’’ and ‘‘DisplayNetwork’’messages likely correspond
to the system presenting the visual data on the screen, allow-
ing the user to analyze the results and the visualized network
after the simulation run is complete.

6) STATE DIAGRAM
In Fig. 16, the state diagram represents the various
states of a simulation process and the transitions between
them. The process starts in the ‘‘Idle’’ state, transitions
to ‘‘Configuring_Parameters’’ when the user is inputting

FIGURE 13. Deployment diagram for WSN localization simulator.

settings, and moves to ‘‘Ready’’ once all parameters are set.
The ‘‘Running_Simulation’’ state follows the start of the
simulation, which then progresses to ‘‘Generating_Graphs’’
upon completion. After graphs are generated, the system
enters ‘‘Displaying_Results’’ and finally reaches ‘‘Simu-
lation_Complete.’’ There’s an ‘‘Error_State’’ that can be
reached from any state if a failure occurs, with transitions
back to either ‘‘Idle’’ or ‘‘Running_Simulation’’ after the
error is fixed, allowing for error handling and recovery.

7) COMPONENT DIAGRAM
The component diagram (Fig. 17) illustrates the architecture
of a WSN Localization Simulator. It shows a Simulation
Engine at the core, interacting with a User Interface that
includes a Simulation Control Panel. The Parameter Store
holds simulation parameters which are updated by the engine
and sent from the control panel. Data Management is a
central component responsible for orchestrating the flow of
data between the engine, Visualization for graphical rep-
resentation, Reporting for output generation, Persistence
for data storage, and a Results Store. The Results Dis-
play Panel queries the Results Store to present outcomes
to the user, completing the feedback loop of the simulation
cycle.
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FIGURE 14. Class diagram for WSN localization simulator.

FIGURE 15. Sequence diagram for WSN localization simulator.

C. SIMULATOR INTERFACE
The used WSN localization simulator, a specialized tool
designed to model and analyze the localization of nodes
within a wireless sensor network. This simulator is developed
by Mohammed Omari at the American University of Ras Al
Khaimah (AURAK) and funded by Mohammed Bin Rashed
Smart Learning Program (MBRSLP) in the year 2023. The
interface (Fig. 18) is user-friendly and divided into several
distinct sections, each dedicated to a specific aspect of the
simulation process.

1) PARAMETERS PANE
• Simulation Zone: At the top-left corner, users can set
the dimensions of the simulation area, with options to
adjust the width and height. There are also checkboxes to
toggle the visibility of connectivity and prediction lines
within the simulated network.

• Node Configuration: The ‘‘Nodes’’ section allows
users to define the range of nodes to be included in
the simulation by setting a minimum and maximum
value. Additionally, users can define a step size for
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FIGURE 16. State diagram for WSN localization simulator.

FIGURE 17. Component diagram for WSN localization simulator.

the range and have the option to fix the number of
nodes.

• Anchor Configuration: Similarly, the ‘‘Anchors’’ section
enables the configuration of anchors within the network.
Users can set the range of anchors, providing aminimum

and maximum count, a step size, and an option to use a
fixed value only.

• Connectivity Range: This parameter is crucial as it
defines the range within which nodes can commu-
nicate. Users can specify a minimum and maximum
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FIGURE 18. Interface of WSN localization simulator.

connectivity range and a step size for incremental adjust-
ments. A fixed value can also be selected.

• Simulation Confidence: Users can influence the robust-
ness of the simulation results by specifying the number
of runs. This parameter likely affects the statistical confi-
dence of the results and helps in assessing the reliability
of the localization method being tested.

• Localization Methods:A dropdown menu titled ‘‘Local-
ization Methods’’ allows the user to select the algorithm
used for node localization. In the given example, the
selected method is ‘‘Bounding Box.’’

• Simulation Controls:A green ‘‘Start Simulation’’ button
prominently initiates the simulation process. Below this,
a progress bar gives visual feedback on the simulation’s
progress, indicating what percentage of the simulation
has been completed.

2) NETWORK VISUALIZATION PANE
The central area of the simulator displays the network graph-
ically. Nodes are illustrated as dots, with anchor nodes in
one color and regular nodes in another. Lines between nodes
indicate connectivity, and prediction errors are represented by
lines that connect actual node positions with their predicted
positions based on the localization algorithm.

3) RESULTS PANE
The right side of the interface features four graphs that present
the localization error metrics:

• Localization Error vs Nodes: This graph plots the error
against the number of nodes, providing insight into how
node density affects localization accuracy.

• Localization Error vs Anchors: It shows the impact of
the number of anchor nodes on localization error.

• Localization Error vs Connectivity Range: This graph
depicts how varying the range of connectivity influences
the error, crucial for understanding the effect of node
isolation or network density.

• Localization Error vs Zone’s Width: Lastly, this graph
examines the correlation between the physical size of
the simulated area (zone’s width) and the localization
error, which could be vital for scaling the network in
real-world applications.

Each graph bears a legend indicating that the plotted data
points correspond to the localization method, implying the
interface can compare multiple methods.

V. EXPERIMENTAL RESULTS AND ANALYSIS
The network simulator was used in the experimental phase to
evaluate and illustrate the performance of different localiza-
tion methods and then compare themwith our hybrid method.
The simulation is based on different parameters such as the
number of anchors and the connectivity range (Table 3 ) in
addition to the harmony search hyperparameters.

A. COMPARISON OF LOCALIZATION ERROR VS. NUMBER
OF NODES
Fig. 19 presents a comparison of five different techniques for
localization. The accuracy of this process is critical, and it is
often measured using the Root Mean Square Error (RMSE).
The lower the RMSE, the more accurate the localization. The
graph plots RMSE against the number of nodes used in the
network, with the number of nodes ranging from 100 to 500.

The techniques compared are trilateration, bounding box,
harmony search, HSBB and BBHS. As the graph illustrates,
trilateration does not perform as well as the other methods,
showing a relatively high RMSE across all node numbers.
This suggests that while trilateration may be simple, it may

86774 VOLUME 12, 2024



M. Omari et al.: Enhancing Node Localization Accuracy in Wireless Sensor Networks

TABLE 3. Network simulation parameters.

FIGURE 19. Peer techniques comparison of localization error vs number
of nodes.

not be the most reliable for networks of the sizes tested. The
bounding box technique encloses an area where the nodes
are likely to be located and iteratively refines this area to
improve accuracy. It is evident that the bounding box method
outperforms trilateration, especially as the number of nodes
increases. This implies that bounding box techniques may
be more suited for larger networks. The harmony search
algorithm showed a performance that surpasses trilateration.
However, bounding box method consistently surpasses tri-
lateration and harmony search across all numbers of nodes,
indicating a more robust and adaptable approach to localiza-
tion.

The HSBB seems to combine the strengths of both the
bounding box and harmony search methods, leading to even
lower RMSE values than when these methods are applied
independently. Surprisingly, while one might expect method
to deliver the lowest RMSE, it does not outperform the BBHS
in most cases. It is, however, consistently more effective than
either trilateration or the bounding box method alone.

Comparatively, it is clear that hybrid methods involving
harmony search tend to yield better localization accuracy. The
data strongly suggests that incorporating the adaptive, heuris-
tic search properties of harmony search with the structured
approach of a bounding box significantly reduces localization
errors, particularly in larger networks.

An interesting trend observed is the impact of the number
of nodes on the RMSE for different methods. While all

FIGURE 20. Peer techniques comparison of localization error vs number
of anchors.

methods show some increase in error as the number of nodes
grows, the rate of increase is not uniform. For example, the
trilateration method’s error rate grows faster with the number
of nodes than the other methods. This might be due to the
geometric complexity and the increased probability of error
propagation in larger networks when using trilateration.

Moreover, the graph illustrates that the harmony search and
its hybrid with the bounding box are more scalable, as the
increase in RMSE is less steep as the network size grows.
This indicates that these methods are more stable and reliable
for extensive networks, where precise localization is crucial.

B. COMPARISON OF LOCALIZATION ERROR VS. NUMBER
OF ANCHORS
Fig. 20 offers a comparative visualization of the peer tech-
niques as they relate to the number of anchor nodes in a
network ranging from 5 to 30. The trilateration method per-
forms less effectively as the number of anchors increases,
with a relatively high RMSE that does not improve signifi-
cantly with more anchors. This suggests that beyond a certain
point, simply increasing the number of anchor nodes does not
necessarily enhance trilateration’s accuracy, possibly due to
cumulative distance measurement errors or geometric dilu-
tion of precision. While starting with high error rates at
lower numbers of anchors, the bounding box method shows
a marked improvement as the number of anchors increases.
The initial high RMSE could be indicative of the bounding
box method’s sensitivity to having a sufficient number of
anchor nodes to define an accurate initial boundary. As the
number of anchors grows, the method can more reliably
pinpoint the location within a progressively refined bound-
ing area. Harmony search demonstrates a consistent RMSE
across varying numbers of anchors. This suggests a robust-
ness inherent in the harmony search algorithm, which does
not rely as heavily on the number of anchor nodes but rather
on the iterative optimization process it employs to refine
localization estimates. It performs comparably well even
with fewer anchor nodes. HSBB initially starts with a high
error like the bounding box method, but its RMSE decreases
more dramatically as the number of anchors increases. This
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indicates that the combination of both methods leverages the
strengths of each: the structure provided by the bounding
box and the adaptive optimization of harmony search. Lastly,
BHSS appears to be less consistent across the range of anchor
nodes. It begins with a high RMSE that reduces as more
anchors are introduced, suggesting a dependency on having a
certain threshold number of anchors to optimize localization
accuracy effectively.

Upon comparing the techniques, it is clear that harmony
search, whether standalone or combined with bounding box
constraints, generally yields lower RMSEs, highlighting its
effectiveness in localization tasks. In contrast, the trilateration
method does not significantly benefit from additional anchor
nodes beyond a certain number, indicating a potential limita-
tion of this approach in environments where deploying a large
number of anchor nodes is feasible.

A trend observable across themethods is that increasing the
number of anchors up to a certain point improves localization
accuracy, but this improvement plateaus or becomes incon-
sistent after surpassing a certain number of anchors. This
could be due to overfitting, interference, or the complexity
of the network topology exceeding the algorithms’ ability to
compensate. Fig. 20 indicates that deploying a moderate to
a high number of anchor nodes, employing harmony search
in conjunction with bounding box methods can significantly
enhance localization accuracy. It also indicates that harmony
search alone is a robust method that performs well regardless
of the number of anchor nodes.

C. COMPARISON OF LOCALIZATION ERROR VS.
CONNECTIVITY RANGE
Fig. 21 shows the impact of connectivity range on the local-
ization error across peer techniques. The connectivity range,
varying from 10 to 40 units, indicates the maximum distance
over which nodes can communicate with each other or with
anchor nodes.

FIGURE 21. Peer techniques comparison of localization error vs
connectivity range.

Starting with trilateration, there is a noticeable trend
where the RMSE is initially very high at lower connectiv-
ity ranges and then sees a reduction as the range increases
to 20 units. Beyond this, the error begins to climb again.

This could be interpreted as trilateration benefiting from a
moderate connectivity range, where nodes can adequately
measure distances without excessive noise or errors. How-
ever, as connectivity increases further, the potential for
error accumulation or inaccuracies in distance measurements
might increase, leading to a higher RMSE. The bounding box
method also starts with a high RMSE at low connectivity
ranges, but it significantly improves as the range increases,
reaching its lowest RMSE at a connectivity range of 25 units.
Beyond this, the error slightly increases but remains relatively
stable. This suggests that the bounding box method relies
on a certain density of network connectivity to define an
accurate initial area for localization, but after a certain point,
further increases in range do not contribute to accuracy and
may even introduce more complexity. The harmony search
method, shows a consistent pattern of reducing RMSE as the
connectivity range increases. The gradual descent in RMSE
across all connectivity ranges implies that harmony search
benefits from increased connectivity, likely because it can
utilize more information to refine its optimization process
for localization. HSBB shows an initial decrease in RMSE
with increasing connectivity range, followed by a leveling off
and even a slight increase in error at the highest connectivity
range. The initial improvement may be due to the harmony
search algorithm efficiently optimizing within the constraints
provided by the bounding box method. However, the even-
tual increase in error at high connectivity ranges suggests
there may be a limit to how much connectivity contributes
to the accuracy of this combined approach. Lastly, BBHS
starts with a very high RMSE at low connectivity ranges.
As the connectivity increases, there is a substantial drop in
error, suggesting that this hybrid technique requires a certain
threshold of connectivity to function effectively. The error
rate for this method is the lowest at intermediate ranges and
begins to rise again at higher connectivity ranges, albeit not
as sharply as some of the other methods.

The overall trend from Fig. 21 indicates that all techniques
benefit from an increase in connectivity range up to a point.
Beyond that optimal point, however, further increases in
connectivity range do not necessarily result in better local-
ization accuracy and may, in fact, lead to higher errors for
certain methods. This could be due to various factors such as
signal interference, multipath propagation, or computational
complexity.

From an application perspective, this graph suggests that
when deploying a network, there is an optimal connectivity
range that maximizes localization accuracy. This optimal
range seems to be around 20 to 30 units for most meth-
ods, with significant variations depending on the specific
localization technique used.

D. COMPARISON OF LOCALIZATION ERROR VS. ZONE’S
WIDTH
Fig. 22 presents an analysis of the effect of zone width on
localization error across peer localization techniques. Begin-
ning with trilateration, interesting pattern is shown: as the
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FIGURE 22. Peer techniques comparison of localization error vs zone’
width.

zone width increases, the RMSE initially decreases, suggest-
ing improved accuracy, but after a certain point, the RMSE
begins to rise again. This indicates that trilateration may be
more effective in medium-sized zones, where the distances
between nodes are neither too small to cause signal overlap
nor too large to introduce significant errors in distance esti-
mation. The bounding box method exhibits a steady increase
in RMSE as the zone width expands. This method appears
to work better in smaller zones, where defining a bounding
box is more manageable and less likely to include large error
margins. Harmony search shows a different trend: the RMSE
remains relatively stable as the zone width increases. This
stability suggests that the harmony search algorithm is less
sensitive to zone size changes, maintaining its performance
over a wide range of conditions. HSBB demonstrate a gradual
increase in RMSE with larger zones, similar to the bound-
ing box method but with generally lower error values. This
suggests that while the bounding box provides a structural
framework for the search, the harmony search’s optimization
capabilities can mitigate but not entirely overcome the chal-
lenges of increasing zone size. Finally, BBHS seems to offer a
middle ground in terms of RMSE progression. The increase in
RMSE is less pronounced thanwith the bounding boxmethod
alone but is more noticeable than with harmony search alone.
This combination may offer a balance between structure and
flexibility when it comes to handling varying zone widths.

Comparing the techniques, it is evident that no single
method is universally superior across all zone widths. Each
has its strengths and weaknesses that become more or less
pronounced depending on the size of the zone. For smaller
zones, the bounding box method appears adequate, but as
zones increase in size, harmony search exhibits a distinct
advantage in maintaining accuracy.

E. FINE-TUNING HARMONY SEARCH HYPERPARAMETERS
Fine-tuning hyperparameters for Harmony Search involves
systematically exploring the hyperparameter space to opti-
mize parameters like maximum iterations, consideration rate,
pitch adjustment rate, and memory size. This process begins

FIGURE 23. Fine tuning Harmony Search Hyperparameters: (a) Maximum
Iterations (b) Memory Size (c) Consideration Rate (d) Pitch Adjustment
Rate.

with an understanding of each parameter’s role, typically
starting with default or common values. Sensitivity analysis
identifies influential parameters, guiding subsequent explo-
ration.

This iterative exploration and refinement process,
informed by empirical observations and domain expertise,
ensures the effective optimization of HS across diverse tasks.
By continually exploring and refining the hyperparameter
space, practitioners enhance HS’s adaptability and perfor-
mance in various optimization scenarios.

Fig. 23 (a) presents the relationship between the
max-iteration hyperparameter and the localization error
(RMSE). Initially, as the max-iteration value increases
from 0 to 2, there’s a noticeable decrease in the error,
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suggesting early iterations significantly improve localization
accuracy. However, between 2 to 6 iterations, the error fluc-
tuates, reaching a peak around iteration 4. This indicates that
simply adding iterations does not monotonically improve
performance and may introduce overfitting or instability.
Post iteration 6, the error gradually decreases, stabilizing
and reaching its minimum at iteration 10. This suggests
that fine-tuning the max-iteration parameter to 10 yields the
most accurate localization results, balancing computational
effort against precision. The uptick in error at 10 hints at
diminishing returns thereafter. Therefore, setting the max-
iteration to 10 optimizes the balance between accuracy and
computational efficiency.

Fig. 23 (b) displays how the memory-size hyperparameter
affects the localization error. Initially, we observe a slight
decrease in error as memory size increases from 0 to 2,
suggesting more memory allocation up to a certain point
contributes to better localization. From 2 to around 6, the
error rate plateaus, indicating that within this range, changes
in memory size have a negligible effect on error reduction.
As the memory size approaches 10, there is a subtle yet
consistent decline in error, which infers that augmenting
memory size up to 10 improves the model’s performance.
This trend suggests that a memory size of 10 is optimal for
minimizing localization error while also implying efficient
resource utilization. Beyond this point, the error rate levels
off, indicating that further increases in memory size do not
translate into significant improvements in accuracy and could
be redundant or inefficient.

Fig. 23 (c) depicts the influence of the HS consideration
rate hyperparameter on the localization error. It begins with
a sharp decline in error as the rate increases from 0 to 0.2,
indicating that a small amount of consideration leads to
substantial improvements in localization accuracy. Between
0.2 and 0.6, the error oscillates, suggesting a complex rela-
tionship where adjustments to the consideration rate can
either improve or degrade performance. Beyond 0.6, the trend
again shows a general decline in error, with a noticeable
dip at 0.9. This marks the point at which the consideration
rate is optimally fine-tuned, achieving the lowest error and
indicating the most balanced and effective setting for this
hyperparameter. Post 0.9, the error slightly increases, hinting
that further increments might lead to overcompensation and
thus reduce performance.

Fig. 23 (d) shows the impacts of pitch adjustment rate
hyperparameter on the localization error. The error begins
relatively high and demonstrates a gentle decrease as the
pitch adjustment rate is increased from 0 to 0.2. The error
then increases slightly up to a rate of 0.3, implying that a
higher rate initially does not contribute to better localiza-
tion. However, the most significant observation is the marked
reduction in error at the 0.4 rate, indicating that this partic-
ular value of the hyperparameter substantially enhances the
accuracy of localization. Beyond this rate, the error ascends
sharply, suggesting that a rate higher than 0.4 leads to poorer
performance, likely due to over-adjustment. Hence, a pitch

adjustment rate of 0.4 appears to be the optimal setting,
where the error is minimized, and the system achieves its best
balance of adjustment for accurate localization.

F. COMPARISON AFTER FINE TUNING HARMONY SEARCH
HYPERPARAMETERS
Fine-tuning hyperparameters for Harmony Search involves
systematically exploring the hyperparameter space to opti-
mize parameters like maximum iterations, consideration rate,
pitch adjustment rate, and memory size. This process begins
with an understanding of each parameter’s role, typically
starting with default or common values. Sensitivity anal-
ysis identifies influential parameters, guiding subsequent
exploration.

FIGURE 24. Effect of fine tuning over localization error vs number of
nodes.

Fig. 24 showed that that the fine-tuned BBHS method con-
sistently outperforms the other two methods across the range
of nodes tested. Notably, as the number of nodes increases,
the fine-tuned method maintains a relatively lower error
rate, showcasing its scalability and robustness. This suggests
that the fine-tuning process has successfully optimized the
algorithm to handle larger networks more efficiently, where
maintaining low localization error is crucial for tasks such as
sensor network deployment and coordination.

FIGURE 25. Effect of fine tuning over localization error vs number of
anchors.

Fig. 25, demonstrates superior performance of tuned
BBHS, particularly as the number of anchors increases. This
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trend is significant because it indicates that the fine-tuned
method can leverage additional reference points more effec-
tively than the non-tuned methods. The capacity to reduce
error with more anchors is a valuable quality in real-world
applications where anchors can be viewed as known positions
in a network used to improve the accuracy of determining
unknown node positions.

FIGURE 26. Effect of fine tuning over localization error vs connectivity
range.

Fig. 26 displays how the localization error changes with the
connectivity range. It is interesting to note that the fine-tuned
method does not always have the lowest error; however, the
error decreases notably as the connectivity range increases
to 40. This implies that the fine-tuned method could be
optimized for scenarios where a higher connectivity range
is available. It underscores the importance of considering
the connectivity range when deploying a localization system
as it can greatly impact the performance of the localization
technique.

FIGURE 27. Effect of fine tuning over localization error vs zone’s width.

In Fig. 27, a dramatic increase in error is observed for all
methods as zone width increases, with the fine-tuned method
showing a relatively gradual rise. This indicates that while
all methods are affected by increased zone width, fine-tuning
has provided a degree of resilience. This resilience is crucial
in environments with wide zones where precise localization
is challenging but essential.

G. ANALYSIS OF FINE-TUNING ENHANCEMENTS
Across Figures 24-27, we observe a common theme: the
fine-tuned BBHS method offers a significant reduction in
localization error when compared to the other two meth-
ods. This is a clear indicator that the fine-tuning process
has yielded a more effective hybrid localization method.
Fine-tuning has likely involved adjusting hyperparame-
ters, enhancing the harmony search algorithm components,
or improving the bounding box algorithm’s sensitivity and
precision. The fine-tuning of the hybrid technique seems to
prepare the method for practical deployment better than its
counterparts. In real-world scenarios, where variables such as
the number of nodes, anchors, connectivity range, and zone
width can drastically vary and be unpredictable, a method that
can maintain a lower localization error across these variations
is invaluable.

VI. CONCLUSION
The importance of node localization in wireless sensor
networks cannot be overstated, as it underpins the effec-
tiveness and utility of these networks across a broad
spectrum of applications. From environmental monitor-
ing and disaster management to smart cities and mili-
tary surveillance, the accurate positioning of sensor nodes
is crucial for data integrity, decision-making processes,
and the execution of tasks dependent on spatial informa-
tion. The drive for precision in localization has spurred
a variety of methods, each striving to refine the accuracy
and reliability of the positioning under different network
conditions.

In this paper, we explained the development a WSN local-
ization simulator to serve as a tool for network designers,
allowing them to simulate and visualize different localiza-
tion algorithms’ performance in a controlled environment.
Through such simulation, one can understand the behavior
of WSNs under various conditions, optimize network param-
eters for improved accuracy and efficiency, and potentially
identify the best-suited localization methods for specific
applications or environments. The interface was designed for
ease of use, enabling both novice and expert users to set
up a simulation quickly, visualize complex data intuitively,
and obtain actionable insights into the dynamics of WSN
localization.

We implemented some traditional methods like trilatera-
tion which has provided foundational techniques, leveraging
geometric principles to deduce node positions. The accu-
racy of these methods, however, is often compromised
in real-world scenarios by factors such as signal atten-
uation, environmental obstructions, and noise, which can
significantly skew distance measurements and, consequently,
localization accuracy. Bounding Box emerged as an alter-
native, aiming to mitigate some of the vulnerabilities of
distance-dependent methods by estimating node positions
within the confines of a virtual geometric space defined by
anchor nodes. Despite its innovative approach, the Bounding
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Box method still encounters challenges, particularly in
environments with sparse node distributions or when scaling
up to larger areas, which can lead to less precise localization.

The hybridization of the Bounding Box method with the
Harmony Search algorithm, resulting in BBHS and HSBB,
has marked a significant step forward, especially with BBHS.
These methods blend the strengths of geometric containment
with an optimization process inspired by the improvisation of
musical ensembles, where the algorithm iteratively searches
for a harmonious (optimal) state—here, the accurate position
of nodes. BBHS demonstrated the potential of this hybrid
approach, showing notable improvements over both trilater-
ation and the standalone Bounding Box method. It leveraged
the global optimization prowess of the harmony search to
refine the initial estimates, consistently reducing localization
errors across a range of network configurations. BBHS intro-
duced enhancements that further reduced localization errors
and stabilized performance across varying numbers of nodes,
anchor densities, and connectivity ranges. The analyses of
BBHS performance, after fine-tuning HS hyperparameters,
illustrated its impressive adaptability and precision, with con-
sistent results that suggest an algorithm refined to the point
of being relatively unaffected by changes in the network
environment—a significant achievement for any localization
method.

The conclusion drawn from the literature review and the
experimental work is clear: hybrid methods represent the cut-
ting edge of localization in WSNs. They not only address the
limitations of earlier methods but also open the door to more
robust and reliable network operations across diverse appli-
cations. By effectively harnessing the power of optimization
algorithms, these hybrid techniques have demonstrated that
they can provide high accuracy while being less suscepti-
ble to environmental variables that traditionally hinder node
localization.

Future iterations of these methods might incorporate addi-
tional layers of sophistication, possibly integrating machine
learning to adapt and learn from the network environment
dynamically. As WSNs continue to grow in complexity
and scale, the drive for improved localization methods will
undoubtedly persist, with the ultimate goal of achieving
autonomous, self-organizing networks that can operate with
minimal human intervention and maximum efficiency.
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