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ABSTRACT Recently, much work has been devoted to the management of perishable inventories. However,
the available results are obtained under various simplifying assumptions. It is most often assumed that the
amount of deteriorating goods is proportional to the total amount of goods stored in the warehouse. Since
this assumption is quite unrealistic, in this article we explicitly take into account the fact that every product
has a limited shelf life (represented by an expiration date). Therefore we are introducing a non-linear, state
space model of supply chains with a finite shelf life. In this model, the remaining shelf lives are represented
by individual state variables. In the first place, stored products with the shortest shelf life are sold, and in
the event of insufficient demand, the products are disposed of. We then apply a sliding mode control (SMC)
strategy to control the flow of goods in the system under consideration. It has been shown that the proposed
SM control strategy prevents the loss of products due to the end of their shelf life, and ensures full satisfaction
of unpredictable consumer demand. Moreover, the strategy requires limited storage capacity and respects the
capabilities of suppliers. These properties are then verified in a simulation example.

INDEX TERMS Inventory management, perishable inventory, sliding mode control.

I. INTRODUCTION
Effective management of logistic chains is a crucial concern
of many businesses in current times. With the growth of
population, the consumption of consumer goods increases as
well. This creates the need to devise more efficient strategies
for managing limited storage space. As such, supply chain
management is an important and relevant topic in the control
engineering community.

Many works on modeling of supply chains have been
published, with different assumptions about the underlying
system. Most common models consider products that either
do not lose quality over time, or such ones where that loss
is negligible and can be ignored. Those models seek efficient
control of the plant, where the available storage space is often
constrained or expensive [1], [2]. The product delivered to
the warehouse might become delayed [3], defective or lost
in shipping [4]. In multi-echelon logistic chains, undesirable
phenomena such as the bullwhip effect might occur [5].
If not taken into account, this effect can potentially lead
to unfulfilled customers’ demand in multi-echelon systems.
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Some research explores cases where this demand can be
backlogged [1], [3], [6], and others consider complex cases
where it is represented as a random variable [2], [7].
While discussing inventory management strategies, one

must often consider the problem of wares with limited
shelf life. Many of the goods kept in warehouses cannot be
stored indefinitely. There are several works that consider how
degradation affects the problem of inventory management.
Early studies, such as [3], focused on streamlined cases where
the product has to be sold immediately after being delivered,
with no ability to remain in the warehouse. Works such
as [6] expand that idea for perishable inventories. Majority
of such papers define a fraction that specifies how much of
the product stored in the warehouse degrades in each discrete
period [8], [9], [10] or the rate at which the product degrades
in continuous time [11], [12], [13]. Some works consider
a situation where this fraction specifies the rate of quality
loss (which lowers the price of the product [14], [15] or
the demand for it [16], [17]) and attempt to slow down the
decay [14], [18].

Established literature on inventory management rarely
takes the amount of time the product has already been stored
in the warehouse into account. Authors of [14] and [16]
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touch upon this idea, but they focus on devising policies
that help minimize the operating costs of the warehouse.
Authors of [19] are also somewhat close to this approach,
as they consider a shop with two shelves, where ordering
fresh product triggers an event where product gets moved
between full-price and discount shelves. Similarly, theAuthor
of [20] considers that the age of the product lowers its price.
Both of these approaches focus on a demand model with
the sales dependent on the freshness/age of the product.
The Authors of [21] consider a warehouse with a single,
perishable product with a known lifetime. All the wares that
exceed it are removed from the warehouse and can no longer
be sold. The paper also considers that some product expires
earlier, according to the Weibull distribution. These ideas
are also considered in [22], where the same model is used
with a neural network controller. This allows one to improve
the robustness of the system and improve the associated
costs. In another work [23] Authors consider a network of
machines that manufacture a product that completely perishes
after a defined time, but they focus on maximizing profits
with machines that might break down during production.
In conclusion, although various approaches to products with
limited shelf life have been considered, the problem of
modeling this phenomenon in a practical manner, where
wares have a finite shelf life and it is in warehouse manager’s
best interest to sell the oldest wares first, has not been
explored fully.

A crucial aspect of effective inventory management
is the control algorithm, which determines the size of
orders based on the available data. Indeed, many different
authors have successfully applied control theory methods
in inventory management problems in the past [1], [5], [7],
[24]. In [1] Authors create an optimal control policy for a
production-inventory systemwith the demand and production
time modeled as aMarkovian arrival processes. The goal is to
minimize the costs of holding the inventory and backlogging
the demand. Another approach can be seen in [7], where the
Authors consider a model predictive control strategy based
on a Laguerre function. They propose a warehouse model
with multiple products, each with a lead time required before
delivery. On the other hand, Authors of [5] propose a control
strategy for a continuous, nonlinear three-stage production-
distribution model. In particular, an adaptive SMC strategy
is used to counter numerical chattering. Authors further
consider adaptive fractional-order SMC, which carries even
greater benefits. In article [24], a non-switching type reaching
law based SMC strategy is proposed for supply chains with
non-negligible lead time and imperfect supply lines with a
certain loss factor. Sliding mode control strategies [25] are
particularly significant in the context of this paper. Compared
to alternatives such as LQ-optimal control ormodel predictive
control, they are easy to design and tune for any dynamical
system with full state information. Their most discerning
feature is the ability to reject the effect of disturbance
on system dynamics by driving its state onto a specific
hyperplane [26] or to its immediate vicinity [27]. Since

the considered inventory management problem involves
uncertainties with potentially large magnitude and rate of
change, it is natural to consider SMC strategies, which are
well suited to counteract such disturbances. Such strategies
are not devoid of shortcomings, but their most prominent
disadvantages, such as undesirable chattering or the need
for full state information, do not become a concern in the
considered class of inventory management systems. A robust
way of designing SMC strategies for discrete-time systems
involves the use of the so-called reaching law [28], [29]. This
approach allows one to define a function which specifies the
desired evolution of the system representative point and then
apply it to design the desired control signal.

In this work we introduce a new model of logistic chains
in which limited shelf life of stored wares is explicitly
taken into account. This makes an essential difference when
compared to previous results based on simplified or indirect
modeling of commodity deterioration. In particular, in this
model the full amount of goods stored in the warehouse is
split between multiple state variables. Each variable defines
the amount of products with a particular remaining shelf
life. This allows one to accurately represent products with
a finite lifespan and to satisfy the demand in a way that
aims to always make use of wares before they expire. Indeed,
the goal of the control process discussed in our work is to
satisfy the unpredictable (but bounded) consumers’ demand
while completely preventing the loss of wares. This objective
needs to be achieved while taking limited warehouse capacity
into account. To that end, the novel non-linear model of
a supply chain is controlled with a reaching law based
sliding mode control strategy, which is shown to achieve all
aforementioned goals.

The remainder of the paper is organized as follows.
In Section II we present a new approach to modeling of
inventory management systems in the state space. To the best
of our knowledge, the proposed approach is the first one
which explicitly takes into account finite shelf life of the
stored goods. Then, in Section III we describe the proposed
sliding mode control algorithm. Section IV contains formal
proofs of several important properties of the system provided
by the proposed control scheme. This includes ensuring that
all wares are sold before the end of their shelf life and making
sure that the warehouse is capable of fully satisfying the
unpredictable demand. Finally, in Section V we showcase
these properties via simulation and in Section VI we give
concluding remarks.

II. INVENTORY MANAGEMENT SYSTEM
In this paper we consider logistic chains in which multiple
suppliers deliver goods to a common warehouse. As opposed
to many previous research works, in this paper limited shelf
life of these goods is explicitly taken into account. Stored
wares are then sold according to a largely unpredictable
consumers’ demand. Ideally, the objective of the control
process for such delivery chains is to ensure full satisfaction
of the demand while preventing the stored goods from
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becoming too old and unsuitable for use or consumption. This
objective needs to be achieved taking the limited warehouse
capacity into consideration. In this section, notation related
to the considered class of logistic systems will be introduced,
and dynamics of such systems will be modeled in the state
space.

We introduce the following notation regarding the supply
chains considered in this paper. Let r denote the number
of suppliers who deliver goods to the common warehouse
with limited capacity yd . For each i = 1, 2, . . . , r the i−th
supplier:

• Fulfills the part si ∈ (0, 1) of the order generated by the
controller.

• Has an individual delivery time mi ∈ N.
• Sends products with a set lifespan λi > mi after
which these products can no longer be sold (i.e. λi is
the length of time from the moment of manufacturing
till the moment the products get unusable or unfit for
consumption). Thus, the supplier delivers wares that can
be stored at the warehouse for ni = λi−mi time instants.

• Has certain maximum transport capabilities equal to
constant uimax.

In order to streamline future analysis, we further define
combined transport capabilities of all suppliers as

umax =

∑r

i=1
uimax. (1)

One easily concludes that the maximum order size umax
exceeds capabilities of each individual supplier, which is why
the order is distributed between them according to constants
si. These constants are typically defined so that each supplier
receives a part of the order proportional to its capabilities,
which implies si = uimax/umax for all i = 1, 2, . . . , r . Then,
one easily notices that these constants satisfy∑r

i=1
si =

1
umax

∑r

i=1
uimax = 1. (2)

In the considered system, we denote the longest delivery time
and the longest time wares can spend at the warehouse as

m = max
i=1,...,r

(mi), n = max
i=1,...,r

(ni). (3)

The considered system is reviewed periodically, with constant
T being the review period. The replenishment orders for the
warehouse are generated at regular time instants kT with
k = 0, 1, 2, . . . . In order to streamline notation, in the
remainder of the paper we will enumerate instants kT simply
with k . The objective of the control process is to ensure that
the unpredictable consumers’ demand d̃(k) is always fully
satisfied. Although this demand is not explicitly known, it is
assumed to be bounded in the following way for all time
instants

0 < dmin ≤ d̃(k) ≤ dmax ≤ umax. (4)

In particular, it is assumed that maximum capabilities of
the suppliers umax ≥ dmax, since otherwise it would be
impossible to satisfy the consumers’ demand regardless of

the applied controller. In order to design a successful control
strategy for such supply chains, their dynamics will first be
modeled in the n+m dimensional state space, where n states
of the system will represent stored goods, while m remaining
ones will model deliveries in progress.

A. STATE SPACE DYNAMICS REPRESENTATION OF THE
CONSIDERED PLANT
In order to accurately control the distribution of wares in the
considered supply chain, it is desirable to obtain its delay-free
representation in the extended state space. In particular,
dynamics of this inventory management system will be
expressed as

x(k + 1) = Ax(k) + bu(k) − d(k)

y(k) = qTx(k), (5)

where state vector x contains information about the amount
of stored goods with different remaining shelf life as well as
deliveries that are already underway, output y denotes the total
amount of goods in the warehouse, which is naturally limited
by the warehouse capacity yd . Control signal u represents
the amount of ordered wares at a given time, d denotes
the amount of sold goods and A, b, q are of appropriate
dimensions. All of these elements will now be properly
defined.

1) VECTOR x
State vector in the considered model will be divided into two
distinct parts xα(k) and xβ (k) so that

x(k) =

[
xα(k)
xβ (k)

]
∈ Rn+m. (6)

Elements of sub-vector

xα(k) =

 x1(k)
...

xn(k)

 ∈ Rn
+ (7)

contain information about the amount of goods stored at the
warehouse, and having different remaining shelf life. In this
way, state variable x1(k) denotes wares which are one time
instant away from becoming unsuitable for use and, if not
sold, will have to be disposed of at time k + 1. State variable
xn represents stored goods that can spend the longest possible
time n at the warehouse before getting too old to be sold.
Naturally, the amount of stored wares is always non-negative.
The second sub-vector

xβ (k) =

 xn+1(k)
...

xn+m(k)

 ∈ Rm (8)

contains information about the orders that have already been
placed, but have not necessarily yet arrived at the warehouse.
In this way, state variable xn+1(k) denotes wares which were
ordered m time instants ago. Likewise, state variable xn+m(k)

VOLUME 12, 2024 87503



P. Latosinski et al.: Modeling and SMC of Supply Chains With Limited Product Shelf Life

represents wares which were ordered in the previous time
instant, i.e. xn+m(k) = u(k − 1). More generally

xn+j(k) = u(k − m+ j− 1) (9)

for any j = 1, . . . ,m. Assuming that initially the warehouse
is empty and no orders have been placed at any time k < 0,
x(0) = 0n+m.

2) MATRIX A
The state matrix in model (5) must be defined to reflect the
following characteristics of the supply chain:

• warehouse contains goods with different expiry dates,
that gradually approach their end of shelf life in each
time instant,

• it takes time to deliver ordered goods, and individual
suppliers have different delivery times,

• deliveries from each supplier arrive with a particular
time until expiration date.

With this in mind, matrix A is divided into the following four
sub-matrices

A =

[
A11 A12
A21 A22

]
. (10)

Sub-matrix A11 reflects the fact that stored wares gradually
approach their expiry date. Since the maximum time goods
can be stored at the warehouse is n, this matrix is defined as

A11 =


0 1 0 · · · 0 0
0 0 1 0 0
...

. . .
...

0 0 0 0 1
0 0 0 · · · 0 0

 ∈ Rn×n. (11)

This implies that, in the absence of sales or new goods arrival,
the amount of goods xj(k) with remaining shelf life j, after
each discretization period becomes xj−1(k + 1). Similarly,
sub-matrix A22 representing delayed deliveries is expressed
as

A22 =


0 1 0 · · · 0 0
0 0 1 0 0
...

. . .
...

0 0 0 0 1
0 0 0 · · · 0 0

 ∈ Rm×m. (12)

This sub-matrix helps keep track of the pastm orders that have
not yet fully arrived at the warehouse. Matrix A12 ∈ Rn×m is
responsible for ensuring that the correct part of past orders
arrives at the warehouse from each supplier. Furthermore,
it guarantees that the received goods are added to determine
the appropriate state variable of vector xα , according to the
remaining time until their expiry date. In order to ensure these
properties, for all i = 1, . . . , r constants si are added to the
element at row ni and column m − mi + 1 of matrix A12,
while the remaining elements of this matrix are equal to zero.
Finally, sub-matrix A21 = 0m×n.
It is worth noting that in this paper a very general case

of logistic chains is considered, where goods with different

remaining shelf life can arrive at the warehouse. However,
in many practical cases it is reasonable to assume that all
wares have an identical shelf life upon arriving, in which
case matrix A12 can be simplified. Indeed, when shelf life of
arriving goods ni = n for all i = 1, . . . , r , then all rows of
A12 other than the n-th one will consist of zeros.

3) VECTOR d
Before this vector is properly defined, we introduce the
following scalar variable

d0(k) = min
(
d̃(k), x1(k)

)
, (13)

where d̃(k) is the current demand. This variable represents the
amount of wares sold at time k that would otherwise be lost
due to their end of shelf life in the next time instant (i.e. they
would leave the warehouse regardless of demand). On the
other hand, vector d(k) denotes the amount of wares sold at
time k that would have otherwise remained in the warehouse
until k + 1. This n+ m dimensional vector is expressed as

d(k) = [d1(k) . . . dn−1(k) 0 . . . 0]T, (14)

where d1, . . . , dn−1 denote sales of goods with different
remaining shelf life. With the inclusion of d0(k) defined
by (13), for any j = 0, . . . n − 1 variable dj(k), representing
the amount of goods with the remaining shelf life equal to j
units and sold at time k , can be expressed as

dj(k) = min
(
pj(k), xj+1(k)

)
, (15)

where p0(k) = d̃(k) and

pj(k) = pj−1(k) − dj−1(k) (16)

for j = 1, . . . , n − 1. In this equation pj(k) represents the
remaining part of the demand which cannot be satisfied by
these goods whose shelf life is smaller than or equal to j− 1.
Variables dj(k) defined in this way reflect the fact that wares
closest to their expiry date are always sold first. At the same
time, total sales will never exceed the demand d̃(k) at a given
time k . However, sales can actually be lower than the demand
if there is not enough products to sell, which implies that∑n−1

j=0
dj(k) ≤ d̃(k). (17)

Finally, since state variables xn+1(k), . . . , xn+m(k) represent
ordered goods that have not yet arrived at the warehouse and
cannot be sold, elements of vector (14) corresponding to these
variables are zeros.

4) VECTORS b AND q
Input distribution vector b in the considered logistic system
is defined as

b = [0 0 . . . 0 1]T, (18)

which implies that the control signal u(k) denoting the
amount of ordered goods becomes the final state variable
xn+m(k + 1).

87504 VOLUME 12, 2024



P. Latosinski et al.: Modeling and SMC of Supply Chains With Limited Product Shelf Life

FIGURE 1. Flow of wares in the considered logistic chain.

Vector q must be selected to ensure that output y(k) in
relation (5) represents all stored wares, but not ones that are
still in transit. Consequently, this vector becomes

q = [1 . . . 1︸ ︷︷ ︸
n

0 . . . 0︸ ︷︷ ︸
m

]T. (19)

The model introduced in this section has never been
discussed before and presents a new approach to the
supply chain management problem. In order to better
illustrate the flow of wares in this model, a generalized
block diagram is given in Figure 1. Distinct ‘‘levels’’
of the warehouse in that diagram represent wares with
different times until their end of shelf life. The model
will now be illustrated in an example system with three
suppliers.

B. EXAMPLE SYSTEM WITH THREE SUPPLIERS
In order to make the structure of the considered plants more
clear, an example inventory management system will now
be presented. This particular system will also be used in a
simulation example later in this paper. This system involves
three suppliers that:

• fulfill parts of the order s1 = 0.5, s2 = 0.3 and s3 = 0.2,
• have delivery times m1 = 5, m2 = 2 and m3 = 2,
• send products with remaining lifespan λ1 = 13, λ2 =

10 and λ3 = 7,
• ultimately deliver wares that can be stored for n1 = 8,
n2 = 8 and n3 = 5.

This yields n = 8 and m = 5, which means that state-
space representation (5) of this supply chain will be a 13-th
order system. Consequently, state vector (6) for this system
becomes x(k) = [xTα(k) xTβ (k)]

T, where

xα(k) =

 x1(k)
...

x8(k)

 , xβ (k) =

 x9(k)
...

x13(k)

 . (20)

Furthermore, elements of state matrix (10) are expressed as

A11 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, (21)

A12 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.2 0
0 0 0 0 0
0 0 0 0 0
0.5 0 0 0.3 0


, (22)

A22 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 (23)

and A21 = 05×8. Finally, b and q have the following form

b = [0 0 0 0 0 0 0 0 0 0 0 0 1]T,

q = [1 1 1 1 1 1 1 1 0 0 0 0 0]T.

(24)

A visual diagram describing the flow of wares in the
considered system can be seen from Figure 2.

III. SLIDING MODES IN LOGISTIC CHAINS
The design process of a sliding mode control strategy for
the considered inventory management system will now be
described. This process begins with the selection of the
so-called sliding hyperplane, which is typically described as

σ (k) = cTxd − cTx(k) = σd − cTx(k) = 0, (25)

where xd is the target state and vector c consists of constants
selected to ensure a stable response of the system. Selection
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FIGURE 2. Example logistic chain. The left side represents delayed orders, i.e. the xβ part of the state vector. The right side depicts the amount of goods in
the warehouse, denoted by xα . Order allocation between the suppliers and demand distribution can be seen in the middle.

of these two elements will now be described in greater detail.
Constant σd in relation (25) is defined in order to streamline
the analysis presented in the later part of the paper.

1) VECTOR xd
Target state for the controlled plant must be selected in a
way that puts constraints on the amount of goods stored in
the warehouse. At the same time, the vector must take into
account the layout of matrix (10), which specifies when and
how the wares are actually delivered. In order to formulate
this vector properly, let us first define Ri as the sum of all
elements of the i-th row of matrix A12. Then, xd can be
expressed as

xd =

[ γ1yd
γ ∗

. . .
γnyd
γ ∗︸ ︷︷ ︸

n

yd
γ ∗

. . .
yd
γ ∗︸ ︷︷ ︸

m

]T
, (26)

where yd is the constant warehouse capacity and

γj =

∑n

i=j
Ri, γ ∗

=

∑n

j=1
γj. (27)

In other words, target vector xd is designed to reflect a steady
state of the system taking into account the form of matrix A.
It is easy to notice that γ1 is always equal to 1 and that the sum
of first n elements of this vector yields exactly yd . Particular
choice of warehouse capacity yd will be discussed later in this
paper.

2) VECTOR c ∈ Rn+m

In discrete-time sliding mode control, this vector is selected
so that all closed-loop poles of the controlled plant are placed
inside the unit circle. This involves analyzing the eigenvalues
of the closed-loop system state matrix

Acl = A− b(cTb)−1cTA, (28)

which immediately implies that cTb ̸= 0. Considering state
matrix (10) and input distribution vector (18), this vector
can be divided into two parts just like the state vector itself.
In particular

c =

[
cα
cβ

]
∈ Rn+m. (29)

In this work, elements of sub-vectors cα and cβ are chosen to
place all eigenvalues ofmatrix (28) at zero. In order to achieve
this, one selects

cα = [1 . . . 1︸ ︷︷ ︸
n

]T, cβ = [cβ1 . . . cβm︸ ︷︷ ︸
m

]T. (30)

Constants cβi for i = 1, . . . ,m in this relation are expressed
as

cβi =

∑i

j=1
Sj (31)

where Sj is the sumof all elements of the j-th column ofmatrix
A12. With this in mind, vector cβ becomes

cβ =

[
S1 S1 + S2 . . .

∑m

j=1
Sj

]T
. (32)
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and it is easy to verify that this vector places all eigenvalues
of closed-loop system state matrix (28) at zero. In particular,
for the example system described in Section II-B, the entire
vector c has the following form

c =
[
1 1 1 1 1 1 1 1 0.5 0.5 0.5 1 1

]T (33)

In the next section, the selected sliding hyperplane will be
used to design an effective control strategy for the considered
logistic chains.

IV. PROPOSED SLIDING MODE CONTROL STRATEGY
The control strategy proposed in this work is based on the
reaching law approach, in which the desired evolution of
sliding variable σ (k) is first stated in the form of a function.
Considering the unpredictable effect of disturbance on this
variable, the proposed reaching law [29] is expressed as

σ (k + 1) = σ (0)max
{
1 −

k
k∗

, 0
}

+ cTd(k), (34)

where k∗ is a positive integer selected by the designer. The
objective of this reaching law is to drive σ (k) towards zero
in exactly k∗ steps of equal magnitude and confine it to the
vicinity of zero in each step afterwards. This property will
now be stated and proven in the following lemma.
Lemma 1: If the reaching law is designed according

to (34) and the disturbance affecting the plant is bounded
according to (4), then for all k ≥ k∗ sliding variable σ (k)
satisfies

0 ≤ σ (k) ≤ dmax − d0(k − 1), (35)

where d0(k − 1) is defined according to (13).
Proof: For any k ≥ k∗ reaching law (34) is effectively
reduced to σ (k + 1) = cTd(k). Considering (14) and (30),
one gets

σ (k + 1) = d1(k) + d2(k) + . . . + dn−1(k). (36)

Relations (15) and (16) directly imply that di(k) ≥ 0 for all
i = 1 . . . n− 1, which gives

σ (k + 1) ≥ 0 (37)

for all k . Furthermore, from (36) using inequalities (4)
and (17) one can obtain

σ (k + 1) = d0(k) − d0(k) + d1(k) + . . . + dn−1(k)

≤ d̃(k) − d0(k) ≤ dmax − d0(k), (38)

which concludes the proof. □
It is further worth noticing that, since reaching law (34) has

no switching term depending on sgn[σ (k)], it will not produce
undesirable chattering in the sliding phase. In the next step
of sliding mode controller design, formula (34) denoting the
desired values of the sliding variable is applied to design an
appropriate control signal. First, substitution of (5) into the
right hand side of (25) yields

σ (k + 1) = cTxd − cTAx(k) − cTbu(k) + cTd(k). (39)

Then, considering reaching law (34), one obtains

cTxd − cTAx(k) − cTbu(k) + cTd(k) =

= σ (0)max
{
1 −

k
k∗

, 0
}

+ cTd(k). (40)

Then, since σ (0) = cTxd , the reaching law based control
signal can be obtained as

u(k) = (cTb)−1
[
cTxd min

{
k
k∗

, 1
}

− cTAx(k)
]

. (41)

Then, the obtained control strategy can be applied to generate
delivery requests in the considered logistic chain. In order to
ensure full efficiency of the supply chain, the control strategy
should guarantee that:

• The stored goods are always sold before the end of their
shelf life.

• The unpredictable consumers’ demand is always
satisfied despite limited warehouse capacity.

• The amount of goods ordered at any time is limited, and
the control strategy does not generate returns.

These properties will now be formally demonstrated in the
following three subsections. It is also important to mention
that, since this approach allows one to stay inside certain
bounds of the control signal, we do not use any conventional
saturation in the system.

A. PREVENTING LOSS OF WARES DUE TO END OF SHELF
LIFE
It will now be shown that, with the right choice of design
parameters in the proposed control scheme, all goods can be
sold before the end of their shelf life.
Theorem 1: If the control signal for system (5) is described

by (41) and constant σd satisfies the following inequality

σd ≤

∑n

l=1
lRldmin +

∑m

j=1
cβjdmin, (42)

where for any l = 1, . . . , n constant Rl is the sum of all
elements of l-th row of matrix A12, then for every k ≥ k∗

+m
loss of wares due to end of their shelf life will be avoided.
Proof: Let k ≥ k∗. One can notice that reaching law (34) is
reduced to σ (k + 1) = cTd(k) for such k . Two cases will be
considered. First, suppose that cTd(k) < d̃(k). This implies
that all goods available at the warehouse have been sold to
consumers. Since empty warehouse poses no risk of losing
wares, this case needs no further analysis.

Suppose now that σ (k + 1) = cTd(k) = d̃(k) ≥ dmin.
Then, since the amount of stored goods is reduced by at least
dmin in each step due to demand, control signal (41) will have
to compensate for that amount to keep σ (k) close to zero.
In other words, we have

u(k) ≥ dmin (43)

for k ≥ k∗. Then, matrix A22 in (23) implies that elements
of vector xβ in (6) are delayed control signals. Thus, after m
time instants, i.e. for k ≥ k∗

+ m one obtains

xβi ≥ dmin for i = 1, . . . ,m. (44)
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Considering (6), (25) and (29), one obtains

σ (k) = σd − cTαxα(k) − cTβxβ (k). (45)

Element cTαxα(k) in this relation represents the amount of
goods stored in the warehouse at a given time, as evident
from (6), (29) and (30). Then, Lemma 1 implies that σ (k) ≥

0 for all k , which further gives

cTαxα(k) ≤ σd − cTβxβ (k). (46)

Then, for any k ≥ k∗
+ m, inequalities (44) lead to

cTαxα(k) ≤ σd −

∑m

j=1
cβjdmin. (47)

If σd satisfies inequality (42), then the relation above leads to

cTαxα(k) ≤

∑n

l=1
lRldmin (48)

This implies that the largest possible delivery at any given
time k ≥ k∗

+ m equals
∑n

l=1 lRldmin. In particular, this
sum represents the maximum amount of product that can be
delivered to the warehouse that will not cause degradation to
occur, even in the worst case scenario of minimum demand.
This delivery is then distributed among elements of vector
xα according to coefficients in matrix A12. Since minimum
demand at any given time is equal to dmin, it is easy to notice
that wares distributed in such a way will always be sold in
time. One concludes that if constant σd is selected according
to (42), then for all k ≥ k∗

+ m loss of wares is prevented.□
Remark 1: It should be reminded that constant σd =

cTxd in relation (42) is not equal to the required warehouse
capacity, but represents a value connected with sliding
motion of the system, as evident from (25). The actual
warehouse capacity needed to achieve the property described
in Theorem 1 is

yd = σd −

∑m

j=1
cβjdmin, (49)

as it excludes variables of vector xβ (k) representing goods
that are not yet delivered. As seen from (44), these variables
are lower bounded by dmin for all k ≥ k∗

+ m.

B. LIMITING THE MAGNITUDE OF ORDERS
In this section it will be demonstrated that the proposed
control scheme does not generate negative control signals
and never requires the suppliers to exceed their transport
capabilities. These properties will be summarized in the
following theorem.
Theorem 2: If the control signal for system (5) is described

by (41) and constant σd conforms to (42), then for all k ≥

k∗
+ m the control signal satisfies

0 ≤ u(k) ≤ umax. (50)

Proof: First, lower bounds of the control signal will be
investigated. As evident from reaching law (34), the control
signal is designed to always drive sliding variable σ (k)
towards zero. Since σ (0) = σd > 0, Lemma 1 implies that the
sliding variable never changes its sign. Thus, control signal
u(k) will always maintain non-negative values.

Let us now analyze upper bounds of the control signal.
If σd satisfies (42), then Theorem 1 implies that no wares
are lost for any k ≥ k∗

+ m. Thus, since control signal
u(k) is non-negative, value of sliding variable σ (k) can be
increased only by the sales d(k) specified in (14). After k∗

initial time instants, control strategy (41) drives the sliding
variable to zero (plus the effect of most recent disturbance)
in each step. Therefore, controller u(k) will strictly generate
signals that compensate for sales cTd(k−1) from the previous
time instant. In other words

u(k) = cTd(k − 1) (51)

for k ≥ k∗. Then, considering (4), (14) and (17) one gets

u(k) ≤ dmax ≤ umax, (52)

which concludes the proof. □
The theorem has demonstrated that the control signal is

bounded for all k after k∗
+ m initial time instants. In order

to ensure that u(k) is also limited at the beginning of the
control process, one needs to choose a sufficiently large k∗

with respect to σ (0) = σd . In particular, it is recommended
to select

k∗
≥

⌈
σd

umax

⌉
, (53)

where ⌈·⌉ is the ceiling function. Such a choice ensures that
u(k) will also be bounded by umax in the initial stages of the
control process.

C. SATISFYING THE UNPREDICTABLE DEMAND
In the final subsection of this chapter, it will be shown
that when the warehouse capacity is sufficiently large, the
consumers’ demand is always fully satisfied. This will be
achieved by demonstrating that, after a finite number of initial
time instants, the warehouse is never completely emptied.
Theorem 3: If the control signal for system (5) is described

by (41) and constant σd satisfies the following inequality

σd >
∑m

j=1
cβjdmax + 2dmax, (54)

then for all k ≥ k∗
+2m the amount of stored wares y(k) > 0.

Proof: Let us first use (25) and (30) to express sliding variable
σ (k) as

σ (k) = σd −
[
x1(k) + . . . + xn(k)

]
−

−

∑m

j=1
cβjxn+j(k)

= σd − y(k) −

∑m

j=1
cβjxn+j(k). (55)

Lemma 1 implies that for all k ≥ k∗

dmax − d0(k − 1) ≥ σd − y(k) −

∑m

j=1
cβjxn+j(k). (56)

Since d0(k − 1) ≥ 0, this further implies

y(k) ≥ σd − dmax −

∑m

j=1
cβjxn+j(k). (57)
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Theorem 2 guarantees that for any time instant starting from
k∗

+m, control signal will be bounded by umax. However, one
can further notice from relation (52) that the actual bound of
the control signal for k ≥ k∗

+m is equal to dmax. Thus, since
elements of vector xβ (k) ∈ Rm are delayed control signals,
one concludes that for all k ≥ k∗

+ 2m

xβj(k) ≤ dmax for j = 1, . . . ,m. (58)

With this in mind, relation (57) becomes

y(k) ≥ σd − dmax −

∑m

j=1
cβjdmax. (59)

Since y(k) represents the amount of stored wares before sales
at time k occur, we require it to be greater than dmax to
always satisfy the unpredictable demand. In order to ensure
this property, one must select

σd >
∑m

j=1
cβjdmax + dmax + dmax, (60)

which is consistent with (54). □
Remark 2: It is worth pointing out that in some logistic

chains it might become impossible to satisfy inequalities (42)
and (54) at the same time. Thus, one would have to accept
either the risk of losing wares or potentially unfulfilled
demand. However, the gap between lower and upper bounds
of yd becomeswidewhen n is significantly larger thanm. This
is the case in most practical applications, since time spent
in the warehouse is typically much longer than time spent
in transit. Therefore, satisfying (42) and (54) simultaneously
does not pose a challenge.

V. SIMULATION RESULTS
In this section properties demonstrated in Theorems 1-3 will
be verified in a simulation. In particular, we consider a 13-th
order system described in Section II-B of this paper. The
objective is to ensure all aforementioned properties of the
system while the amount of ordered goods never exceeds
umax = 12. The consumers’ demand is expressed as

d̃(k) = 7.5 + 2.5 ∗ (−1)⌊k/50⌋ (61)

where only its minimum value dmin = 5 and maximum value
dmax = 10 are available to the controller. An appropriate
sliding hyperplane (25) for the considered control strategy is
first defined. Particularly, vector c is chosen according to (29)
and equals

c = [1 1 1 1 1 1 1 1 0.5 0.5 0.5 1 1]T (62)

Then, warehouse capacity for the considered problem will be
selected according to Theorems 1 and 3, taking Remark 1
into account. Inequality (42) implies that in order to sell all
ordered goods before the end of their shelf life, σd must be
upper bounded by 55.5. On the other hand, (54) suggests
that in order to fully satisfy demand (61), σd must be strictly
greater than 55. With this in mind, we define

σd = 55.5. (63)

FIGURE 3. Sliding variable.

FIGURE 4. Amount of stored goods.

FIGURE 5. Amount of ordered goods.

Considering Remark 1, physical warehouse capacity needed
to achieve the desired properties of the system is yd = 38.
Wares in the considered logistic system are ordered according
to control strategy (41). Constant k∗ in this strategy is selected
according to (53) and equals 5, which ensures that capabilities
of the suppliers (umax = 12) will never be exceeded.

Figures 3-6 illustrate the results of the simulation. Figure 3
demonstrates that sliding variable σ (k) is driven to the
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FIGURE 6. Lost goods and unfulfilled demand.

vicinity of zero in a small number of initial steps and remains
in that vicinity for all future time instants. Furthermore,
consistently with Lemma 1, this variable never assumes
negative values. Figure 4 shows the amount of goods stored
in the warehouse at a given time. It can be seen that, after a
finite number of initial steps, this amount is strictly positive,
which means the demand is always satisfied. Furthermore,
the available warehouse capacity of 38 is never exceeded.
Figure 5 illustrates the control signal. It can be clearly
seen that the amount of ordered goods never exceeds the
capabilities of the suppliers and never creates the need to
return stored wares. Finally, Figure 6 shows the amount of
goods that exceeded their shelf life as well as the amount
of unfulfilled demand. It can be seen that no goods are
ever lost due to their end of shelf life and that after a
finite number of initial time instants, customers’ demand is
always fully satisfied. This is consistent with Theorems 1
and 3, respectively. It is worth noticing that, in the considered
example, the admissible range of constant yd was very narrow
as we wish to satisfy (42) and (54), which makes it close to
the fringe case described in Remark 2.

VI. CONCLUSION
In this paper a control algorithm for management of inven-
tories with limited shelf life has been proposed. A logistic
chain in which a single type of product is being transported
from multiple suppliers to a common warehouse has first
been described in detail. Each supplier has a non-negligible
delivery time and the product can then be stored at the
warehouse for a specific amount of review periods. When
the product’s shelf life ends, it needs to be disposed of.
Goods stored at the warehouse are then sold according to
unpredictable consumers’ demand and the product closest
to the end of its shelf life is sold first. The model of a
supply chain introduced in this work reflects loss of wares
in a realistic manner as opposed to former works on the
subject, which have not strictly considered limited shelf life.
Indeed, former works have typically considered degradation
expressed as a fraction of stored wares, while in this paper

loss of wares is appropriately expressed as a finite expiration
date for each of the delivered products.

It has been demonstrated that, using the proposed sliding
mode control strategy, one can completely prevent loss of
wares after a finite number of initial review periods, while
also fully satisfying the consumers’ demand. As such, the
proposed sliding mode controller imposes practical bounds
on the considered plant, which can be seen in the theorems
presented in the paper. These properties are achieved with
the right selection of warehouse capacity. It has been further
shown that the size of orders generated by the proposed
control scheme is always lower and upper bounded, which
means it can comply with capabilities of the suppliers.
Increasing the order of the considered system for products
with a longer shelf life is also easy to achieve, due to
the simplicity of state matrix (10) and high computational
efficiency of the proposed sliding mode controller, as well
as the ease of its design.

Another interesting development one could consider is the
option of lowering price of products closer to the end of
their shelf life to incentivize their sales in a wider variety
of situations. However, since the main objective of this
particular paper is to present the novel state-space model of a
logistic chain with perishable products, these extensions will
be relegated to future works.
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