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ABSTRACT Traffic sign detection (TSD) is crucial for real-world applications like driverless vehicles,
intelligent driver-assistance systems, and traffic management. Recent advancements in TSD have
demonstrated promising outcomes. Nonetheless, challenges persist in terms of speed, accuracy, memory
consumption, the capability of the backbone to generate features, and computational cost, especially in
handling diverse traffic sign characteristics. To overcome these challenges, we propose Sign-YOLO (You
Only Look Once), a novel attention-based one-stage method that integrates YOLOv7 with the squeeze-and-
excitation (SE) model and special attention mechanism. Sign-YOLO enhances the feature representation
capacity of the model in the presence of variations in traffic sign sizes. The SE block adjusts channel-specific
feature responses by actively considering the relationships between channels. By selectively focusing on
relevant features, the attention mechanism helps the model better capture and understand the distinctive
characteristics of traffic signs, thereby improving detection accuracy. Sign-YOLO effectively reduces the
computational cost and memory consumption; further, it effectively enriches the robustness of extracted
features. The proposed approach enables the model to allocate more attention to relevant regions of the
input, thereby reducing the impact of size discrepancies and contributing to the overall robustness of the
system. The experimental findings highlight the success of Sign-YOLO in TSD tasks. Our proposed method
exhibits cutting-edge performance on the German Traffic Signs Detection Benchmark (GTSDB) dataset,
simultaneously achieving a 98% reduction in model size and memory consumption. Sign-YOLO attains a
99.10% mean average precision (mAP) on the GTSDB dataset. In comparison to both two- and one-stage
detectors, our approach exhibits an improvement of 3.33%. The proposed approach is the swiftest and most
lightweight framework in terms of memory usage, making it the ideal option for implementation in real-time
applications.

INDEX TERMS Traffic sign detection, deep learning, driver-assistance system, automated driving system.

I. INTRODUCTION
In recent years, computer vision has shown great success
in real-world applications such as self-piloted vehicles,
medical diagnostics, augmented reality/virtual reality, safety
measures, and surveillance. Traffic sign detection (TSD)
is a crucial element in advanced driver-assistance systems

The associate editor coordinating the review of this manuscript and
approving it for publication was Rajesh Kumar.

(ADAS). It plays a crucial role in practical applications
including driverless vehicles, traffic monitoring, improving
driver safety, offering support, managing road networks, and
analyzing traffic scenarios. The primary goal of TSD is to
enable automated systems such as ADAS and autonomous
vehicles. An effective TSD system aids vehicles in perceiving
their surroundings. In the context of ADAS, the TSD system
serves to notify drivers about traffic regulations. In ADAS,
apart from perceiving the surroundings, the TSD system
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FIGURE 1. German Traffic Signs Detection Benchmark’s (GTSDB) collection of traffic signs.

FIGURE 2. Meta-architectures for deep-learning-based detection models.

also supplies the vehicle navigation system with information
about the locations of traffic signs. This location data can

serve as unique reference points for generating a high-
definition (HD) road map. Recent advancements in TSD have
yielded favorable results. Nonetheless, challenges related to
speed, accuracy, memory consumption, the capability of the
backbone to extract features, and the computational cost of
the detection process persist. This is particularly evident in
addressing the diverse characteristics of various traffic signs.

The identification and detection of traffic signs involve two
distinct tasks: TSD and traffic sign recognition (TSR). Tradi-
tional TSDmethods heavily depended onmanually extracting
features from the original dataset. Manual algorithms were
employed for feature extraction based on shade information,
perimeter detection, and geometric patterns. Color-centric
approaches generally segmented regions with traffic signs in
detailed color spaces such as hue-saturation-intensity (HSI)
[1] and hue-chroma-luminance (HCL) [2]. However, these
solutions required the manual curation of large numbers of
images and were thus expensive and time-consuming. Shape-
and color-oriented techniques [3] were also widely utilized;
however, they had drawbacks such as sensitivity to changes
in illumination, occlusions, scale variations, rotations, and
translations. Although machine learning (ML) can mitigate
some of these challenges, it requires extensive annotated
datasets. In recent years, deep learning (DL) has emerged as
a powerful approach for TSR and has demonstrated excellent
performance.

Traffic signs are designed to attract human attention
quickly. Methods that depend on handcrafted features [1],
[4], [5], [6], [7] utilize the visual attributes of these
signs during the feature extraction process. However, these
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approaches lack robustness in distinguishing genuine signs
from counterfeit ones globally, as numerous objects resemble
traffic signs. The use of low-level handcrafted features
proves challenging in accurately representing the unique
characteristics that differentiate traffic sign

Significant progress has been made in object detection
owing to advancements in DL algorithms. Convolutional
neural network (CNN) applications including You Only
Look Once (YOLO) [8], SSD [9], Cascade R-CNN [10],
Faster R-CNN [11], and Fast R-CNN [12] have been
widely adopted as detectors and have demonstrated excellent
performance. Figure 1 illustrates the four classes derived from
the German Traffic Signs Detection Benchmark (GTSDB)
dataset: prohibitory, mandatory, danger, and other [14].
These classes are further divided into 43 subclasses. For
identifying the optimal detector for a particular application,
conventional accuracy metrics such as mean average pre-
cision (mAP) as well as other variables including memory
consumption and processing times must be evaluated. For
instance, autonomous vehicles require both precise detection
and real-time performance, and self-driving cars benefit
from streamlined model architectures with minimal memory
usage.

As shown in Figure 2, advanced detectors are categorized
into two groups: one-stage detectors [8], [9] that can predict
the entire image in a single pass and two-stage detectors [10],
[11], [12] that employ a multistage detection process using
a series of detectors, where each stage refines the results of
the previous one. Recent two-stage traffic sign detectors [13],
[14], [15] have shown promising results. However, the
use of a region proposal generator (RPN) to generate
candidate object bounding box proposals in an image that
likely contains objects imposes an additional computational
burden, thus limiting the real-world application performance
and accuracy. Furthermore, these methods require a larger
memory size compared to one-stage approaches. Earlier
frameworks have attained state-of-the-art performance on
several benchmarks. However, recent TSD frameworks are
not capable of generating robust features, thus limiting
the model performance. To overcome these challenges,
we propose a Sign-YOLO approach that integrates YOLOv7
[16] with a Squeeze-and-Excitation (SE) block and a special
attention mechanism. YOLOv7 is a single-stage detector that
can generate predictions for the entire image in a single pass,
making it highly suitable for real-time applications. The SE
block enhances the quality of representations generated by a
network by explicitly capturing the relationships among the
channels in its convolutional features. It enables the network
to recalibrate features, thereby leveraging global information
to highlight important features selectively while downplaying
less relevant ones. The special attention mechanism allows
the model to selectively enhance or suppress features of
different scales and positions, thereby mitigating the problem
of over-segmentation. This mechanism contributes to more
accurate sign representations. Additionally, it helps the

model better filter background areas, reduce false alarms,
and integrate detected sign fragments, ultimately leading to
improved precision and recall in sign detection tasks. Finally,
it highlights important spatial locations in the feature maps.
Sign-YOLO enhances the feature extractor, generating robust
features that significantly improve accuracy and effectively
reduce the model size.

The primary contributions of this article are as follows:

• We have developed a robust one-stage detector, Sign-
YOLO, based on YOLOv7. Sign-YOLO effectively
enriches extracted features in real-time capability with
good performance for TSD tasks.

• We propose an attention-based approach for the TSD
framework that extracts high-frequency features. This
approach achieves superior or competitive performance
while overcoming false positives.

• Sign-YOLO effectively reduces the memory consump-
tion and reduces the model size by 98% compared to
those of a two-stage traffic sign detector.

• Sign-YOLO considers all categories, including ‘‘other,’’
from the GTSDB dataset, whereas other methods
neglected it.

• Extensive experiments were performed to evaluate the
effectiveness of Sign-YOLO on the GTSDB dataset. The
results revealed that it achieved excellent performance,
with a mAP of 99.10%.

The rest of this paper is organized as follows. In Section II,
we review related works. In Section III, we describe the
proposed method. In Section IV, we introduce the datasets
and evaluation metrics and describe the experiments and their
analyses. Lastly, in Section V, we present the conclusions of
this study.

II. RELATED WORK
A. TSD USING CNNs
The CNN algorithm, a popular DL technique, currently finds
widespread applications across diverse domains including
computer vision, natural language processing, and visual-
semantic alignments [20], [21], [22], [23]. Depending on
the necessity of the region proposal, it can be categorized
into two types: one-stage detection and two-stage detection.
One-stage detection is commonly employed in scenarios
like traffic detection owing to its swift performance. For
example, Shao et al. [24], [25] presented an enhanced
iteration of Faster R-CNN designed for the identification of
traffic signs. They optimized the Gabor wavelet through the
implementation of a regional suggestion algorithm, thereby
enhancing the network’s recognition speed. Zhang et al. [26]
enhanced a single-stage traffic sign detector by modifying
the convolutional layers in a YOLOv2-based network.
They employed the China Traffic Sign Dataset during
training to improve its alignment with Chinese traffic road
scenes. Another study created a new perceptual generative
adversarial network for the recognition of small-sized traffic

VOLUME 12, 2024 132691



R. Mahadshetti et al.: Sign-YOLO: Traffic Sign Detection Using Attention-Based YOLOv7

FIGURE 3. Fundamental structure of YOLOv7’s architecture.

signs [27]. This approach improved the detection accu-
racy by creating high-resolution representations specifically
designed for compact traffic signs.

In addressing the challenge of diverse scales in TSD,
SADANet [28] integrates a domain adaptive network with
a multiscale prediction network to enhance the capability
of extracting features across various scales. Many previous
networks employed one-stage detection and relied solely
on one-scale depth features, making it difficult to achieve
optimal performance in complex traffic scenarios. The visual
characteristics of traffic signs at various scales exhibit notable
distinctions, and the overall proportion of traffic signs in
a given traffic scene image is minimal. As a result, scale
variety emerges as the main challenge in TSD and TSR.
Creating a scale-invariant representation is essential for
accurate target recognition and localization [29]. Wang et al.
[17] introduced the attention fusion feature pyramid network
(AF-FPN), an enhanced feature pyramid model, to augment
the representational capabilities of the feature pyramid within
the YOLOv5 network, especially for real-time multiscale
TSD. The AF-FPN model reduced information loss and
improved detection accuracy for multiscale traffic signs. Tang
et al. [15] presented the integrated feature pyramid network
with feature aggregation (IFA-FPN) method to enhance both
the precision and efficiency of TSD. They also explored the
constraints associated with conventional FPN methodologies
and compared the performance of their proposed approach
and other CNN-based methods for TSD. Hong et al. [19]
introduced the CCSPNet feature extraction module based on
CNN and Transformer as well as the joint training method
CCSPNet Joint. Another study presented the CCTSDB-AUG
dataset that includes images with foggy, rainy, and blurry per-
spectives [19]. YOLOv7-TS [48] uses sub-pixel convolution

to preserve rich information and enhance the effectiveness of
feature fusion. It is more complex and struggles to handle
real-world conditions. Unfortunately, these approaches have
high computational cost and low resilience, and they require
a large memory capacity. Sign-YOLO overcomes these
challenges by achieving better performance and reducing the
model size.

B. DATA AUGMENTATION
Data augmentation plays a crucial role in optimizing
networks and has proved effective in various vision tasks [2],
[11], [18]. It enhances the CNN performance, serves as
a safeguard against overfitting [30], and offers a straight-
forward implementation [31]. Data augmentation methods
are of two main types: color transformation (including
contrast, blur, noise, and color casting) and geometric trans-
formation (including zoom, translation, random cropping,
and rotation) [32]. These techniques artificially expand the
size of the training dataset by employing data warping
or oversampling. Tabernik and Skočaj [42] proposed a
Mask R-CNN framework to enhance recall rates for small
traffic signs and presented a novel augmentation technique
suitable for traffic sign categories. Additionally, a new
dataset with 200 traffic sign categories and 13,000 instances
is introduced as a benchmark for complex traffic signs.
Temel et al. [43] emphasized the significance of utilizing
diverse data augmentation methods and combining simulated
and real-world data to enhance recognition performance.
Jöckel et al. [44] address the challenge of insufficient
training data by developing an approach to create realistic
image augmentations with various quality deficits. They also
highlighted the need to incorporate contextual information
and consider the influence of the quality deficit combination.
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FIGURE 4. Detailed architecture of Sign-YOLO framework.

Other studies [45], [46] proposed a framework using different
color enhancement techniques.

C. BASELINE
YOLO is a widely adopted and efficient object detection
algorithm in the field of computer vision. Its effectiveness
lies in its ability to perform real-time object detection with
high accuracy. Compared with the latest YOLO model,
YOLOv7 [16] emerges as the optimal choice for inference at
high resolution, albeit with a slightly lower speed. YOLOv7
comprises six models: YOLOv7, YOLOv7-X, YOLOv7-W6,
YOLOv7-E6, YOLOv7-D6, and YOLOv7-E6E. YOLOv7 is
lightweight and utilitarian, making it suitable for real-world
applications that require low memory space and high
accuracy. Figure 3 shows the fundamental structure of the
baseline.

III. PROPOSED METHOD
The detailed architecture of the proposed framework is shown
in Figure 4.We integrated the SE block and a special attention
approach with the backbone. The backbone takes an image
as the input and extracts features. Subsequently, the neck is
employed for feature aggregation. Finally, the head is used
for prediction.

As illustrated in Figure 3, the basic architecture of
YOLOv7 is divided into three parts: Backbone, Neck,
and Head. The backbone is responsible for extracting
hierarchical features from the input image. It usually consists
of a CNN that processes the input image in a series of
convolutional and pooling layers. The neck may include
additional convolutional layers, skip connections, or other
structures that enhance feature representations before they are

fed into the head. The neck helps in improving the model’s
ability to detect objects at various scales and resolutions. The
head makes predictions based on the features extracted by the
backbone and processed by the neck. It typically consists of
a set of convolutional and fully connected layers. The output
of the head is a set of bounding boxes, class probabilities, and
confidence scores for each object class.

A. SQUEEZE-AND-EXCITATION BLOCK
The SE block aims to enhance the representational capa-
bilities of CNNs. The pivotal feature of the SE block is a
mechanism called ‘‘channel-wise attention’’; it enables the
framework to adaptively recalibrate the feature maps at each
layer. The core concept behind the SE block is to explicitly
model the interdependencies between the different channels
in the feature maps. This is done to selectively emphasize the
informative features while suppressing the less relevant ones.
This is achieved through a two-step process:

1) SQUEEZE PHASE
During the squeeze phase, spatial information from fea-
ture maps is consolidated through global average pooling.
In essence, it compresses spatial dimensions into a singular
descriptive vector for every channel.

2) EXCITATION PHASE
To leverage the data consolidated during the squeeze phase,
we proceed with another step aimed at comprehensively
grasping the dependencies between channels. This step
requires the function to satisfy two conditions: flexibility,
especially in learning nonlinear interactions among channels,
and the ability to learn non-mutually-exclusive relationships.
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We prefer multiple channels to be highlighted instead of
enforcing a one-hot activation. The sigmoid function is
employed with the gated approach to fulfill these require-
ments.

Fexc(x) = σ (FC(ReLU (FC(x)))) (1)

Here, σ denotes the sigmoid function, and FC stands for the
fully connected layer. A method involving two FC layers is
employed to enhance its capability to generalize and diminish
framework complexity by incorporating a gating mechanism
around the nonlinear part. This involves adding a layer to
reduce the dimensionality by a reduction ratio (r), followed
by a ReLU activation function, and then a layer to restore
dimensionality to the original channel dimension of the
output transformation. After the excitation process, element-
wise multiplication is performed across channels between the
features extracted by the backbone and the outcome of the
excitation phase.

B. SPECIAL ATTENTION
In this study, an attention-based approach to TSD, based
on [39], is introduced to enhance the feature extractor’s capa-
bility, further improve the model performance, and reduce
the memory consumption and model size. Following the SE
block, we employ the special attention mechanism illustrated
in Fig. 4. The primary objective of the attention-based
approach is to derive resilient features from the output of
the backbone and SE block, thereby enhancing detection
accuracy.

Regarding the spatial attention module, we employ max-
pooling and average-pooling along the channel axis and
combine them to create the feature descriptors FMP ∈

R1×H×W and FAP ∈ R1×H×W , respectively. Subsequently,
we apply a convolution layer and a sigmoid layer to produce
the spatial attention map F ∈ RH×W , where H and W
represent the height and width, respectively.

The spatial attention is computed as follows:

F(x) = σ (conv2d([FMP(x) ⊙ FAP(x)])) (2)

Here, MP and AP denote max-pooling and average-
pooling, respectively; σ is the sigmoid function; ⊙ is the
concatenate operation; and conv2d is a convolution layer.
Using the attention mechanism enables the model to combine
multilevel features to form more accurate representations of
text. After obtaining features, these extracted characteristics
are utilized as inputs for prediction in both the Neck and Head
stages.

The pseudocode outlines the basic steps involved in
the proposed framework, including initializing the network;
loading pre-trained weights; preprocessing the input image;
performing convolution and fully connected operations;
applying the SE block; applying the attention approach;
extracting feature maps; and predicting the bounding box
coordinates, objectness scores, and class probabilities.

Algorithm 1 Pseudocode of Proposed Framework
Input: input_image
Output: bounding_box, objectness_score, class
Initialize neural network parameters
Load pre-trained backbone network weights
Preprocess input_image
while training not converged do

Read batch of training data (images and labels)
Forward pass through the backbone network
Apply squeeze-and-excitation block

- Apply Global Average pooling
- Apply fully-connected (FC) layer
- Apply ReLU
- Apply fully-connected (FC) layer
- Apply Sigmoid
- Apply scale and combine

Apply attention mechanism
- Apply max-pooling
- Apply average-pooling
- Feature concatenation
- Apply convolution layer

Generate feature maps at multiple scales
Apply detection head to each scale for bounding
box predictions
Compute loss for bounding box predictions
Update weights using backpropagation and
optimization algorithm

end while
while testing do

Read input image
Forward pass through the backbone network
Apply squeeze and excitation block

/* Same as training phase */
Apply attention mechanism

/* Same as training phase */
Generate feature maps at multiple scales
Apply detection head to each scale for bounding
box predictions
Apply non-maximum suppression to filter
redundant detections

end while

IV. EXPERIMENT
In this section, we demonstrate the effectiveness of the Sign-
YOLO approach. First, we provide an overview of the
datasets used for training and analysis. Then, we present
the implementation details of the proposed model along
with the evaluation information. Finally, we compare the pro-
posed framework against state-of-the-art (SOTA) approaches.

A. DATASET
Numerous publicly accessible datasets containing traffic
sign information have been compiled from various coun-
tries, including Germany [14], Belgium [34], the United
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TABLE 1. Comparison of performance metrics of proposed method with those of other TSD approaches.

States [35], Italy [36], China [37], Croatia [38], and
Sweden [5]. In this study, we performed experiments using
the GTSDB dataset [14], which has been widely used for
comparing TSD methods.

The GTSDB dataset encompasses natural traffic scenes
captured across diverse road types (e.g., highway, rural,
urban) in both daytime and twilight conditions, illustrating
various weather scenarios. This dataset comprises 900 full
images containing 1206 traffic signs; it was divided into a
training set of 600 images (with 846 traffic signs) and a testing
set of 300 images (with 360 traffic signs). Each image may
contain zero, one, or multiple traffic signs, and these signs
often exhibit variations in orientation, lighting, or occlusion.
The signs are categorized into four main types: mandatory,
prohibitory, dangerous, and others, with 43 subcategories as
shown in Figure 1. This dataset was used for the subsequent
training and evaluation of deep neural networks for TSD.

B. EVALUATION MATRIX
To evaluate the accuracy of our proposed method, we employ
standard metrics like precision (P) and recall (R). In this
context, we define a closed bounding box containing a
sign as a true positive (TP) and a rectangular box without
any sign inside as a false positive (FP). If a sign exists
without a rectangular box, it is categorized as a true
negative (TN).

The precision (P) is calculated by determining the ratio
of correctly identified signs by our proposed method to the
total sum of both correctly and incorrectly detected signs.
This metric gauges the accuracy of identified sign regions.
Meanwhile, the recall (R) is the ratio of correctly detected
signs; it serves as a measure of the method’s capability
to identify all sign instances in the scene. Additionally,
we utilize the intersection over union (IoU) ratio as a
threshold for classifying predicted outcomes as either TP or
FP, with a specified value of 0.2 in this study.

P =
TP

TP+ FP
(3)

R =
TP

TP+ FN
(4)

IoU =
Obj ∩ DB
Obj ∪ DB

(5)

Here, Obj is the correct object area; DB, the predicted
candidate area; ‘‘Obj ∩ DB,’’ the region where the two areas
overlap; and IoU, a numerical value (ranging from 0 to 1) that
signifies the degree of overlap between these regions.

C. IMPLEMENTATION DETAILS
We performed experiments with Ubuntu 20.04 LTS, CUDA
11.4, and CuDNN 8.2.1 on a PC equipped with an
AMD® Ryzen Threadripper Pro 3955WX (16 cores) and
two NVIDIA RTX A5000 GPUs, each with 24 GB of
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TABLE 2. Evaluating the characteristics of the Sign-YOLO approach in contrast to a two-stage detector model. ‘‘TD’’ represents a two-stage detector.

memory. The proposed Sign-YOLO network was trained
for 500 epochs with a batch size of 32. We used the
Adam optimizer approach with a learning rate of 0.01 to
optimize our network. We evaluated the performance of our
proposed Sign-YOLO model for traffic signs across four
different classes: prohibitory, mandatory, danger, and other.
The ground truth annotation file for the GTSDB dataset is
available in the PASCALVOC format.We used the Roboflow
annotation tool to convert the ground truth into the YOLOv7
format. Further, we used subclasses of the GTSDB dataset.
The resolution of the input images used for training and
testing the proposed model was 640 and 640, respectively.
Sign-YOLO uses the weights of YOLOv7 to train the model.

D. ABLATION STUDY
In this section, we demonstrate the validity and performance
of Sign-YOLO. Sign-YOLO was evaluated in terms of
various metrics including accuracy, precision, recall, number
of parameters, floating point operations (FLOPs), memory
usage, processing time, and memory consumption.

1) EFFECTIVENESS OF SIGN-YOLO
Table 1 presents the precision and recall scores achieved for
each superclass of traffic signs by the proposed method and
previous methods. Whereas previous methods focused solely
on the Prohibitory, Mandatory, and Danger superclasses
from the GTSDB dataset and neglected the Other class,
even though it plays an important role in the self-driving
car system, our proposed method considers all classes
for training and proficiency validation. We assess the
effectiveness of the suggested framework in two variations:
one incorporating both the SE block and attention mechanism
and the other utilizing only the attention approach without
the SE block. As shown in Table 1, Sign-YOLO exhibits
notable performance compared to that of one- and two-stage
detectors. We used YOLOv7 as a baseline; it achieved a
precision of 97%, 98%, 97.90%, and 95.10% and recall
of 98.30%, 80%, 93.30%, and 92.00%, respectively. The
proposed method, employing only the attention mechanism,
attained precision scores of 100%, 99.40%, 99.60%, and
99.70% with corresponding recall rates of 100%, 100%,
95.10%, and 96.00%. Specifically, when integrating both

TABLE 3. Comparison of average precision and recall of the proposed
method with other TSD approaches.

TABLE 4. Experimental comparison of one- and two-stage detectors and
proposed Sign-YOLO.

the SE block and a special attention approach, Sign-YOLO
achieved precision rates of 100%, 99.70%, 99.50%, and
99.70% with corresponding recall rates of 100%, 100%,
95.80%, and 97.10%, respectively, on the superclasses of the
GTSDB dataset.

Table 2 shows a comparison of Sign-YOLO with two-
stage detectors in terms of various model properties including
mAP, FPS, memory consumption, GigaFLOPS, and number
of parameters (in millions). The proposed Sign-YOLO
framework utilizes only the attention approach and attains a
3.13% improvement while reducing the memory consump-
tion. Upon combining the SE block and attention mechanism
with the baseline, the Sign-YOLO system achieves a 3.33%
enhancement on the German traffic sign dataset compared to
the system that utilizes only the attention approach. Addition-
ally, this integration reduces memory usage significantly by
98%, making it advantageous for practical implementations.

Table 3 presents the average precision and recall achieved
using the proposed method. When compared to previous
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TABLE 5. Validation of the proposed method on sub-classes of the GTSDB.

methods, baseline, and Sign-YOLO, Sign-YOLO exhibits
superior average precision and recall. The Sign-YOLO
approach demonstrates enhancements of 1.17% and 2.70%
in overall average precision and 16% and 1.10% in overall
recall accuracy, respectively, when excluding the SE block.
When incorporating the SE block, the proposed method
demonstrates improvements of 1.3% and 0.2% in average
recall compared to both the baseline and the framework
with the special attention mechanism. In comparison to
SADANet [28], the proposed framework demonstrates a gain
of 17.45% in average precision and 16% in overall average
recall.

Furthermore, it outperforms the earlier framework, as illus-
trated in Table 4, and attains a SOTA mAP value. Notably,
Sign-YOLO demonstrates outstanding accuracy compared
to one-stage detectors [8], [24], and it outperforms two-
stage detectors [10], [11], [13], [15], [25], [41] and the
baseline [16]. In comparison to the baseline without the SE
block, the proposed approach achieves a 1.9% and 2.4%
improvement in mAP. Upon combining the SE block and
a special attention mechanism, Sign-YOLO demonstrates
2.1% and 3.2% improvements in mAP over the baseline.
Table 4 provides an overview of the mAP across various IoU
thresholds ranging from 0.5 to 0.9.

2) EFFECTIVENESS OF SIGN-YOLO ON SUBCLASSES
To evaluate the efficiency of Sign-YOLO, we used the
subsets within the GTSDB. As noted earlier, this dataset
comprises 43 subclasses that are classified into four primary
superclasses: prohibitory, mandatory, danger, and other.
Table 5 presents Sign-YOLO’s validation performance with
the detected classes. We demonstrate the performance of
the framework with the SE block against the baseline
incorporating a special attention mechanism. Our proposed
framework shows promising results across subclasses by
leveraging both the SE block and the special attention
mechanism.

E. RESULT AND ANALYSIS
We evaluate the Sign-YOLO framework against previous
leadingmethods by using the standard dataset, as presented in
Table 4. Generally, one-stage detectors are more user-friendly
than two-stage ones. The Sign-YOLO framework achieves
superior accuracy on the GTSDB dataset by dynamically
enhancing the model’s capacity to comprehend and interpret
intricate visual cues in natural scenes. This, in turn, improves
the accuracy and resilience of TSD. Our framework can be
seamlessly integrated into real-world applications without
requiring specific adjustments. Experimental results show

VOLUME 12, 2024 132697



R. Mahadshetti et al.: Sign-YOLO: Traffic Sign Detection Using Attention-Based YOLOv7

FIGURE 5. Instances of accurate detections in a road environment with small, medium, and large traffic signs belonging to various
categories, as generated by the Sign-YOLO framework. All detections shown in these examples are accurate.

FIGURE 6. Precision.

that our approach outperforms existing methods, demonstrat-
ing remarkable performance and a notable 98% reduction in
memory consumption.

The results in Tables 1–5 clearly show that the proposed
Sign-YOLO method outperforms current SOTA techniques.
Figure 5 shows accurately identified signs within ordinary
scene photographs. The visualized detections have a score
exceeding the threshold of 0.5. These figures depict three
typical scenarios, including a road scene featuring traffic
signs of small, medium, and large size. The precision and
recall curves calculated using Equations (3) and (4) are
respectively shown in Figures 6 and 7 for the GSTDB dataset,

FIGURE 7. Recall.

and they indicate that the proposed method improves the
accuracy.

V. CONCLUSION
In this study, we introduce a real-time TSD network
built upon a refined version of YOLOv7. This network
demonstrates superior detection performance compared to
contemporary one- and two-stage detectors. The proposed
Sign-YOLO architecture enhances both the capability to
extract information from feature maps and its effective-
ness in representing multiscale objects during detection.
We emphasize the significance of strong extracted features.
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Precise and resilient visual features are crucial for detecting
traffic signs. The Sign-YOLO approach significantly boosts
the performance of the feature extractor, producing durable
attributes. In contrast to previous models, Sign-YOLO
demonstrates superior feature capacity. Experimental results
confirmed that it achieved cutting-edge performance with
rapid inference speed and accuracy. Specifically, Sign-
YOLO significantly diminishes the model size by 98%
compared to the case of two-stage detectors, making it
highly effective and practical for real-time applications. The
proposed architecture exhibits promising SOTA accuracy,
demonstrating a 3.33% improvement on the GTSDB dataset.
In future work, we aim to investigate a detection model
that offers enhanced performance for high-speed moving
targets.
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