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ABSTRACT Deep learning’s immense capabilities are often constrained by the complexity of its models,
leading to an increasing demand for effective sparsification techniques. Bayesian sparsification for deep
learning emerges as a crucial approach, facilitating the design of models that are both computationally
efficient and competitive in terms of performance across various deep learning applications. The state-
of-the-art – in Bayesian sparsification of deep neural networks – combines structural shrinkage priors on
model weights with an approximate inference scheme based on stochastic variational inference. However,
model inversion of the full generative model is exceptionally computationally demanding, especially when
compared to standard deep learning of point estimates. In this context, we advocate for the use of Bayesian
model reduction (BMR) as a more efficient alternative for pruning of model weights. As a generalization
of the Savage-Dickey ratio, BMR allows a post-hoc elimination of redundant model weights based on the
posterior estimates under a straightforward (non-hierarchical) generative model. Our comparative study
highlights the advantages of the BMR method relative to established approaches, which are based on
hierarchical horseshoe priors over model weights. We illustrate the potential of BMR across various
deep learning architectures, from classical networks like LeNet to modern frameworks such as Vision
Transformers and MLP-Mixers.

INDEX TERMS Bayesian model reduction, stochastic variational inference, deep neural networks.

I. INTRODUCTION
Bayesian deep learning integrates the principles of Bayesian
methodology with the objectives of deep learning, facilitating
the training of expansive parametric models tailored for clas-
sifying and generating intricate audio-visual data, including
images, text, and speech [1], [2], [3]. Notably, the Bayesian
approach frames the challenge of model optimization as an
inference problem. This perspective is especially apt for sce-
narios necessitating decision-making under uncertainty [4],
[5]. As a result, Bayesian formulations in deep learning
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have proven advantageous in various respects, offering
enhancements in generalization [6], accuracy, calibration [7],
[8], and model compression [9].

These functional enhancements are intrinsically tied to
judiciously chosen structural priors [10]. The priors, integral
to the probabilistic generativemodel, scaffold the architecture
of the network, thereby reducing the data required for the
inference of optimal parametric solutions. Recent studies
have highlighted the efficacy of hierarchical shrinkage priors
over model weights, a specific category of structural priors,
in achieving highly-sparse network representations [9], [11],
[12], [13]. Sparse representations not only reduce redundancy
but also evince additional performance benefits. However,
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the adoption of shrinkage priors in all deep learning
models presents a conundrum: the ballooning space of latent
parameters and the diminishing scalability of prevailing
approximate inference schemes [7], [14], [15], [16].

In line with ongoing research on scalable Bayesian
inference, we introduce an approximate inference scheme
rooted in Bayesianmodel reduction (BMR). In essence, BMR
extends the foundational principles of the Savage-Dickey
Density Ratio method [17]. BMR is typically conceptualized
as a combinatorial model comparison framework, enabling
swift estimations of model evidence across an extensive
array of models, that differ in their prior assumptions,
to identify the most probable one. Originally conceived for
model comparison within the dynamical causal modeling
framework [18], [19], the scope of BMR has since broadened.
Subsequent works expanded its methodology [20], [21], [22]
and adapted it for structure learning [23]. More recently,
BMRhas found applications in Bayesian nonlinear regression
and classification tasks using Bayesian neural networks with
variance backpropagation [24], [25].
The BMR method is intimately connected with the spike-

and-slab prior, a type of shrinkage prior [26]. Intriguingly, this
specific structured shrinkage prior has parallels with Dropout
regularization [11]. Such an association spurred researchers
in Bayesian deep learning to formulate sparsification meth-
ods based on a different type of shrinkage prior—the hierar-
chical horseshoe prior [27]—as a tool for automated depth
determination. Subsequent studies suggested that merging
horseshoe priors with structured variational approximations
yields robust, highly sparse representations [13]. The allure
of continuous shrinkage priors (e.g., horseshoe priors) stems
from the computational challenges associated with model
inversion reliant on spike-and-slab priors [11], [27]. However,
continuous shrinkage priors necessitate a considerably more
expansive parameter space, to represent the approximate
posterior, compared to optimizing neural networks using the
traditional point estimate method.

In this work, we reexamine the spike-and-slab prior within
the framework of BMR-based sparsification, highlighting its
efficiency. Notably, this approach circumvents the need to
expand the approximate posterior beyond the conventional
fully factorised mean-field approximation, making it more
scalable than structured variational approximations [13].
In this light, BMR can be seen as a layered stochastic
and black-box variational inference technique, which we
term stochastic BMR. We subject the stochastic BMR to
rigorous validation across various image classification tasks
and network architectures, including LeNet-5 [28], Vision
Transformers [29], and MLP-Mixers [30].
Central to our study is an empirical comparison of

stochastic BMR with methods anchored in hierarchical
horseshoe priors. Through multiple metrics - from Top-1
accuracy to expected calibration error and negative log-
likelihood - we establish the competitive performance of
stochastic BMR. We argue its computational efficiency, and
remarkable sparsification rate. These findings position BMR

as an appealing choice that can enhance the scalability and
proficiency of contemporary deep learning networks across
diverse machine learning challenges, extending beyond
provided computer vision examples. We conclude with a
discussion on potential avenues of future research that
could further facilitate BMR based pruning of deep neural
networks.

II. METHODS
In this section, we first describe the methods and techniques
used in our research to address the problem of efficient
Bayesian sparsification of deep neural networks. We provide
a detailed overview of our approach, starting with Bayesian
deep learning and variational inference methods, followed
by the formulation of the Bayesian model reduction (BMR),
Bayesian neural networks with shrinkage priors, and the
description of corresponding approximate posterior.

A. BAYESIAN DEEP LEARNING
The core idea of Bayesian deep learning consists of treating
the model parameters as random variables, hence casting the
optimization problem of classical deep learning as an infer-
ence problem, where one computes the posterior distribution
of model parameters given the data. Mathematically, this can
be expressed as:

p
(
WWW|DDD

)
∝ p

(
WWW

)
p

(
DDD|WWW

)
= p

(
WWW

) n∏
i=1

p
(
yyyi|WWW,xxx i

)
whereWWW denotes the model parameters,DDD =

(
XXX ,YYY

)
denotes

the dataset, p
(
WWW|DDD

)
is the posterior distribution over model

parameters, p
(
DDD|WWW

)
is the likelihood of the data given the

parameters, p
(
WWW

)
is the prior distribution of the parameters.

A probabilistic formulation of the deep learning task,
enhances the model’s ability to quantify uncertainty and
improves generalization in a range of deep learning appli-
cations [31]. A key reason for these improvements is
the implicit bias introduced to the model-parameters WWW
in the form of a prior distribution. The choice of the
prior distribution is crucial for optimal task performance,
and a prior assumption of structural sparsity is essential
for inferring sparse representations of over-parameterised
models, such as deep neural networks.

In a general (nonlinear) regression problem, we model the
relationship between predictors XXX = (xxx1, . . . ,xxxn) and target
variables YYY =

(
yyy1, . . . ,yyyn

)
using a likelihood distribution

from an exponential family as

yyyi ∼ p
(
yyy|WWW,xxx i

)
= h(yyy) exp

[
ηηη

(
fff

(
WWW,xxx i

))
· TTT

(
yyy
)
− A

(
fff

(
WWW,xxx i

))]
.

(1)

Functions h(·),ηηη(·),TTT (·),A(·) are known and selected
depending on the task.

The choice of the likelihood function establishes a link
between the optimization problem in classical deep learning
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and the inference problem in Bayesian deep learning. For
instance, the cross-entropy loss function, widely used for
classification tasks, corresponds to the negative log likelihood
of a Bernoulli or multinomial (categorical) distribution.

Finally, the mapping fff
(
WWW,xxx i

)
, in eq. (1), represents a

generic deep neural network of depth L, defined as

WWW =
(
WWW 1, . . . ,WWW L

)
hhh0i = xxx i

hhhli = ggg
(
WWW l ·

[
hhhl−1i ; 1

])
fff

(
WWW,xxx i

)
=WWW L ·

[
hhhL−1i ; 1

]
B. VARIATIONAL INFERENCE
Given a joint density of latent variables, represented as zzz =
(z1, . . . , zk), and a dataset of n observationsDDD =

(
y1, . . . , yn

)
we can express the joint density, that is, the generative model,
as

p
(
DDD, zzz

)
= p (zzz) p

(
DDD|zzz

)
.

The posterior density is then obtained, following the Bayes
rule, as

p
(
zzz|DDD

)
∝ p (zzz) p

(
DDD|zzz

)
. (2)

For complex generative models, direct inference as
described above becomes computationally prohibitive. To cir-
cumvent this, we approximate the exact posterior p

(
zzz|DDD

)
,

constraining it to a distribution q (z) that belongs to a
named distribution family Q. We then seek q∗ (z) ∈
Q, an approximate solution that minimizes the following
Kullback-Leibler divergence [32].

q∗ (zzz) = argmin
q∈Q

DKL
(
q (zzz) ||p

(
zzz|DDD

))
= argmin

q∈Q
F

[
q
]
,

where F
[
q
]
stands for the variational free energy (VFE),

defined as

F
[
q
]
= Eq(zzz)

[
ln q (zzz)− ln p

(
DDD, zzz

)]
.

VFE serves as an upper bound on the marginal log-likelihood

F
[
q
]
= DKL

(
q (zzz) ||p

(
zzz|DDD

))
− ln p

(
DDD

)
≥ − ln p

(
DDD

)
.

As KL-divergence is always greater or equal to zero,
minimizing VFE brings the approximate solution as close as
possible to the true posterior, without having to compute the
exact posterior.

The most straightforward way to obtain the approximate
posterior q∗ (zzz), is to minimize the VFE along its negative
gradient:

φ̇φφ = −∇φφφF
[
q
]

whereφφφ signifies the parameters of the approximate posterior
qφφφ (zzz) = q

(
zzz|φφφ

)
. Thus, variational inference reframes the

inference problem highlighted in eq. (2) as an optimization
problem [33].

C. STOCHASTIC AND BLACK-BOX VARIATIONAL
INFERENCE
Stochastic variational inference (SVI) improves the com-
putational efficiency of gradient descent by approximat-
ing the variational free energy using a subset—KKKi =(
ysi1
, . . . , ysik

)
; k ≪ n—of the entire data set DDD. This

approach fosters a stochastic gradient descent (SGD) mech-
anism, capable of managing large datasets [34]. Crucially,
at every iteration step i of the SGD process, the subset KKKi
undergoes re-sampling.
Black-box Variational Inference (BBVI) facilitates the

optimization of any (named or unnamed) posterior density
qφφφ (zzz), through Monte Carlo estimates of variational gradi-
ents [35]. This can be formulated as the following relation

∇φφφF
[
q
]
≈ ∇φφφF̂

[
q
]
,

∇φφφF̂
[
q
]
=

1
S

S∑
s=1

∇φφφ ln qφφφ (zzz)

[
ln

qφφφ (zzz)

p
(
DDD, zzz

) + 1

]
,

zzzs ∼ q
(
zzz|φφφ

)
, (3)

which is known as the REINFORCE estimator [36].
To mitigate the variance inherent to Monte Carlo gradient
estimations, we employ a pathwise gradient estimator [37],
[38] for a fully factorised Gaussian posterior distribution
(see section II-F for details) and Rao-Blackwellization [39],
with an implementation provided in NumPyro PPL [40].
Although, numerous other techniques exist for variance
reduction of gradient estimators [41] they are often more
expensive to compute, hence we did not explore them in this
work.

For stochastically minimizing the variational objective,
one can in practice employ any of the readily available
deep learning optimizers within the JAX ecosystem [42]
implemented within the Optax package. Here we have
selected the AdaBelief optimizer [43] as it enabled the
fastest convergence rate (tested on a fixed number of
gradient updates) on the set of problems we explored in this
work. A more systematic benchmark and tuning of different
optimization algorithms would be required to identify the
optimal algorithm [44], but this falls beyond the scope of the
paper.

D. BAYESIAN MODEL REDUCTION
Let us consider two generative processes for the data: a full
model

p
(
zzz|DDD

)
∝ p

(
DDD|zzz

)
p (zzz)

and a reduced model (the term ‘reduced’ here implies
applying constraints of any form to the prior to obtain a
posterior with reduced entropy) in which the original prior
p (zzz) is replaced with a more informative prior p̃ (zzz) = p

(
zzz|θθθ

)
that depends on hyper-parameters θθθ . This change leads to a
different posterior

p̃
(
zzz|DDD

)
∝ p

(
DDD|zzz

)
p̃ (zzz) .
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Noting that as the following relation holds:

1 =
∫

dzzzp̃
(
zzz|DDD

)
=

∫
dzzzp

(
zzz|DDD

) p̃ (zzz) p (
DDD

)
p (zzz) p̃

(
DDD

) ,
we can express the link between the models as:

− ln p̃
(
DDD

)
= − ln p

(
DDD

)
− ln

∫
dzzzp

(
zzz|DDD

) p̃ (zzz)
p (zzz)

≈ F
(
φφφ∗

)
− ln

∫
dzzzqφφφ∗ (zzz)

p̃ (zzz)
p (zzz)

(4)

where we assumed the approximate posterior for the
full model corresponds to p

(
zzz|DDD

)
≈ qφφφ∗ (zzz), and that

− ln p
(
DDD

)
≈ F

(
φφφ∗

)
.

From eq. (4) we obtain the free energy of the reduced
model as

− ln p̃
(
DDD

)
≈ − lnEq

[
p̃ (zzz)
p (zzz)

]
+ F

(
φφφ∗

)
= −1F

(
θθθ
)
, (5)

where1F
(
θθθ
)
denotes the change in the free energy of going

from the full model to the reduced model, given hyper-
parameters θθθ . Note that for 1F

(
θθθ
)
> 0 the reduced model

has a better variational free energy compared to the flat
model. Consequently, the reduced model offers a model with
a greater marginal likelihood; i.e., a better explanation for the
data and improved generalization capabilities. Heuristically,
this can be understood as minimising model complexity,
without sacrificing accuracy (because log evidence can be
expressed as accuracyminus complexity, where complexity is
the KL divergence between posterior and prior beliefs). This
relationship is pivotal in formulating efficient pruning cri-
teria, especially for extensive parametric models commonly
employed in deep learning.

E. BAYESIAN NEURAL NETWORKS WITH SHRINKAGE
PRIORS
Shrinkage priors instantiate a prior belief about the sparse
structure of model parameters. Here, we will investigate
two well-established forms of shrinkage priors for network
weight parameters, a canonical spike-and-slab prior [26], [45]
defined as

wijl ∼ N
(
0, λ2ijlγ

2
0

)
λijl ∼ Bernoulli (πl)

πl ∼ Be
(
α0, β0

)
and a regularised-horseshoe prior [27].

wijl ∼ N
(
0, γ 2

il

)
γ 2
il =

c2l v
2
l τ

2
il

c2l + τ
2
ilv

2
l

c−2l ∼ 0 (2, 6)

τil ∼ C+(0, 1)
vl ∼ C+(0, τ0) (6)

where i ∈ {1, . . . ,Kl}, j ∈
[
1, . . . ,Kl−1 + 1

]
, and where

wijl denotes ijth element of the weight matrix at depth l. The
symbols Be, and C+ denote a Beta distribution and a half-
Cauchy distribution, respectively.

Importantly, the spike-and-slab prior relates to dropout
regularisation, which is commonly introduced as a sparsi-
fication method in deep learning [11], [46]. This type of
prior is considered the gold standard in shrinkage priors
and has been used in many recent applications of Bayesian
sparsification on neuronal networks [47], [48], [49], [50],
[51] showing excellent sparsification rates. However, the
inversion of the resulting hierarchical model is challenging
and requires carefully constructed posterior approximations.
Moreover, their dependence on discrete random variables
renders them unsuitable for Markov-Chain Monte Carlo-
based sampling schemes. As a result, researchers often use
continuous formulations of the shrinkage-prior, with the
horseshoe prior being a notable example.

In contexts that involve sparse learning with scant data,
the regularised horseshoe prior has emerged as one of
the preferred choices within shrinkage prior families [52].
A distinct advantage of this prior is its ability to define both
the magnitude of regularisation for prominent coefficients
and convey information about sparsity. It is worth noting a
dependency highlighted in [13]: for vlτil ≪ 1 the equation
simplifies to γil ≈ vlτil recovering the original horseshoe
prior. In contrast, for vlτil ≫ 1, the equation becomes
γ 2
il ≈ c2l . In this latter scenario, the prior over the weights

is defined as wijl ∼ N
(
0, c2l

)
, with cl serving as a weight

decay hyper-parameter for layer l.

F. APPROXIMATE POSTERIOR FOR BAYESIAN NEURAL
NETWORKS
To benchmark stochastic BMR,we explore two forms of prior
distribution p

(
WWW

)
—a flat and a hierarchical structure—in

conjunctionwith a fully factorisedmean-field approximation.
Firstly, let us consider the flat prior over model weights,

represented in a non-centered parameterization:

c−2l ∼ 0(2, 2)

ŵijl ∼ N (0, 1)

wijl = γ0clŵijl (7)

where we set γ0 = 0.1. Note that in the flat prior we
incorporate a layer specific scale parameter, which we found
to stabilise variational inference. Based on this, we describe
a fully factorised approximate posterior as a composite
of Normal and Log-Normal distributed random variables.
Hence,

q
(
Ŵ̂ŴW,ccc

)
=

∏
l

q
(
c−2l

) ∏
i

∏
j

q
(
ŵijl

)
q

(
ŵijl

)
= N

(
µijl, σ

2
ijl

)
q

(
c−2l

)
= LN

(
µc,l, σ

2
c,l

)
. (8)
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When inverting a hierarchical generative model over
weights of artificial neural network, we exclusively apply
stochastic black-box variational inference to the model
variant with the regularised horseshoe prior. This choice is
motivated by its documented superiority over the spike-and-
slab prior, as established in [13]. We express the hierarchical
prior in the non-centered parameterization as:

ail, bil ∼ 0
(
1
2
, 1

)
âl, b̂l ∼ 0

(
1
2
, 1

)
τ 2il =

ail
bil
; v2l = τ

2
0
âl
b̂l

wijl = γilŵijl

where cl and ŵijl are drawn from the same prior as in
eq. (7). Note that the expression in section II-F involves
a reparameterization of Half-Cauchy distributed random
variables as the square-root of the quotient of two Gamma
distributed random variables, a strategy drawn from [53] (see
Appendix B for additional details). Such a reparameterization
of the Half-Cauchy ensures capturing of fat-tails in the
posterior, even when leveraging a fully-factorised mean-field
posterior approximation, as referenced in [13].

For the fully-factorised mean-field approximation, the
approximate posterior is portrayed as a composite of Normal
and Log-Normal distributed random variables, expressed as:

q
(
Ŵ̂ŴW,aaa,bbb, â̂âa, b̂̂b̂b,ccc

)
=

∏
l

q
(
c−2l

)
q

(
âl

)
q

(
b̂l

)
·

∏
i

q (ail) q (bil)
∏
j

q
(
ŵijl

)
q (cl) = LN

(
µc,l, σ

2
c,l

)
q

(
âl

)
= LN

(
µ̂a,l, σ̂

2
a,l

)
q

(
b̂l

)
= LN

(
µ̂b,l, σ̂

2
b,l

)
q (ail) = LN

(
µa,il, σ

2
a,il

)
q (bil) = LN

(
µb,il, σ

2
b,il

)
q

(
ŵijl

)
= N

(
µw,ijl, σ

2
w,ijl

)
G. APPLICATION OF STOCHASTIC BMR TO BAYESIAN
NEURAL NETWORKS
Here we derive a detailed account of stochastic BMR,
specifying a novel algorithm for Bayesian sparsification of
artificial neural networks. The stochastic BMR is summa-
rized in algorithm 1.

To apply BMR toBayesian neural networks, we commence
by estimating an approximate posterior for the flat model,
as detailed in eq. (7). To retain high computational efficiency,
we pair BMR solely with the fully factorised approximate
posterior, as presented in eq. (8). While it is feasible to
use this method alongside the structured posterior [13],

it requires considerably more computationally intensive
estimations of the reduced free energy. As shown below,
we obtain satisfactory results with a fully factorised posterior.
Therefore, we defer the exploration of BMRwith a structured
posterior to future endeavours.

Given a fully factorised approximate posterior, we can
determine the change in variational free energy, 1F—after
substituting the priorN (0, 1)withN

(
0, θ2ijl

)
for the weight

ŵijl—as:

1F
(
θijl

)
= −

1
2
ln ρ2ijl −

1
2

µ2
ijl

σ 2
ijl

1−
θ2ijl

ρ2ijl


ρ2ijl = θ

2
ijl + σ

2
ijl − θ

2
ijlσ

2
ijl

For the second hierarchical level of the approximate
posterior, we aim to minimize the following form for the
variational free energy:

F =
L∑
l=1

Eq(θθθ l)

−∑
i,j

1F(θijl)+ ln
q

(
θθθ l

)
p

(
θθθ l

)
 (9)

This minimization is done with respect to q
(
222

)
=∏

l q
(
θθθ l

)
, the approximate posterior over hyper-parameters.

Note the application of eq. (5) in substituting the marginal
log-likelihood with the change in the variational free energy.

For the spike-and-slab prior we can write the following
relation:

θθθ l =
[
πl, λijl | for i, j ∈ {1, . . . ,Kl} ,

{
1, . . . ,Kl−1 + 1

}]
,

θijl = λijl .

Consequently, the approximate posterior at the second
level of the hierarchy can be approximated as:

q
(
222

)
=

∏
l

q (πl)
∏
ij

q
(
λijl

)
q

(
λijl

)
= q

λijl
ijl

(
1− qijl

)1−λijl
q (πl) = B

(
αl, βl

)
The iterative update to obtain the minimum of the

simplified variational free energy (eq. (9)) is then:

qk+1ijl =
1

1+ e
−

[
ζ kl −1F

(
λijl=0

)]
ζ kl = ψ(α

k
l )− ψ(β

k
l )

αk+1l =

∑
i,j

qk+1ijl + α0

βk+1l =

∑
i,j

(
1− qk+1ijl

)
+ β0

Here, α0l = α0, β0l = β0, 1F
(
λijl = 0

)
=

−
1
2

[
ln σ 2

ijl +
µ2
ijl

σ 2ijl

]
, and ψ (·) refers to the digamma function.
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Algorithm 1 Stochastic BMR
Require: data (y, x), joint distribution p, approximate posterior q.

Initialise φφφ randomly, e = 1.
while e ≤ MaxEpochs do
t = 1, k = 1.
while t ≤ MaxIters do
for s = 1 to S do
Ŵ̂ŴW s,t ,cccs,t ∼ qφφφt

(
ŴWW ,ccc

)
{Draw S samples from q.}

end for
φφφt+1← AdaBelief

[
φφφt ,∇φφφF̂

[
qφtφtφt

]]
t ← t + 1

end while
Compute 1F

(
λijl = 0

)
.

Initialise α0l = α0, and β
0
l = β0.

while k ≤ kmax do
ζ kl ← ψ(αkl )− ψ(β

k
l )

qk+1ijl ← σ
(
ζ kl −1F

(
λijl = 0

))
αk+1l ←

∑
i,j q

k+1
ijl + α0

βk+1l ←
∑

i,j

(
1− qk+1ijl

)
+ β0

k ← k + 1
end while
if qkmaxijl < 1/2 then
ŵijl ← 0

end if
e← e+ 1

end while

When combined with a simple pruning heuristics for
eliminating model weights, defined as

if qkmaxijl <
1
2
, set ŵijl = 0.

the pruning algorithm requires only few iterations for estimat-
ing posterior probabilities qijl and subsequently eliminating
weights. Note that, already after a single iteration all
probabilities will be either smaller or larger than one half,
and one can easily apply pruning heuristics. Subsequent
iterations are relevant for fine tuning values close to the
decision threshold, thus eliminating potential false positives.
In practice, we cap the maximum number of iterations at
kmax = 4, as increasing this value does not have any
noticeable impact on the pruning dynamics.

To achieve the high sparsification rate presented in the
next section, we adopt an iterative optimisation and pruning
approach proposed in [24]. We perform weight pruning at
the beginning of each epoch (except the first one), and
further optimisation for 500 iterations, completing one epoch.
In total, we apply iterative pruning and optimisation for fifty
epochs in all examples below.

The complete implementation of stochastic BMR is avail-
able at an online repository https://github.com/dimarkov/
bmr4pml with notebooks and scripts necessary to recreate all
result figures.

III. RESULTS
In this section, we present the outcomes of our experiments
and analyses conducted to evaluate the performance and
efficiency of the stochastic Bayesian model reduction in the
context of Bayesian sparsification of deep neural networks.
Our results are structured to provide insights into the
capabilities and advantages of our approach.

A. PERFORMANCE COMPARISON
The training regimen used a batch size of NB = 128 and
the AdaBelief algorithm with learning rate set to α = 10−3

in the case of the MAP estimate, α = 5 · 10−3 in the
case of the mean-field methods, and α = 10−2 in the
case of stochastic BMR (the exponential decay rates were
kept at default values β1 = 0.9, and β2 = 0.999).
Fig. 1 charts the epoch-wise evolution of Top-1 accuracy
(ACC) expected-calibration error (ECE), and negative log-
likelihood (NLL) for each architecture, under five distinct
approximate inference strategies: (i) Maximum a posteriori
(MAP) estimate for the flat generative model, akin to
traditional deep learning point estimates coupled with weight
decay. (ii) A fully factorised posterior approximation for
the flat generative model (Flat-FF). (iii) A fully factorised
posterior approximation of the hierarchical generative model
with a regularised horseshoe prior (Tiered-FF). (iv) The
stochastic BMR algorithm augmented with a spike-and-slab
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FIGURE 1. Classification performance comparison on FashoinMNIST dataset for different neuronal architectures and approximate inference schemes.

FIGURE 2. Total fraction of pruned model parameters obtained with the stochastic BMR algorithm across different DNN architectures and datasets.

prior (BMR-S&S). Each epoch is defined by 500 stochastic
gradient steps, with each step randomly drawing NB data
instances from the training pool. Furthermore, the three
performance metrics (ACC, ECE and NLL) are obtained
using the marginal likelihood of data labels, estimated as
average (predictive) probability of each label given M =

100 samples from the approximate posterior at the end of each
epoch.

Interestingly, all approximate inference methods demon-
strate comparable top-1 accuracy scores. However, the
stochastic BMR method followed by the Tiered-FF approxi-
matio (with a single exception), consistently resulted in the
lowest ECE and NLL scores across the majority of DNN
architectures and datasets (see the supplementary Fig. 5 for
CIFAR10 dataset and the supplementary Fig. 6 for CIFAR100

dataset). The implicit reduction inmodel complexity suggests
that—as anticipated—Stochastic BMR furnishes a model of
the data that has the greatest evidence or marginal likelihood
(not shown). In this setting, the NLL of the test data can be
regarded as a proxy for (negative log) marginal likelihood.

B. LEARNING OF SPARSE REPRESENTATIONS
Fig. 2 depicts the fraction of pruned model parameters for
different DNN architecures and datasets. It is noteworthy to
observe the substantive sparsity achieved by the stochastic
BMR algorithm. This sparsity is consistent across datasets
and architectures, with the exception of the LeNet-5 structure
when used for the FashionMNIST dataset, because by default
LeNet-5 architecture is already sparse and contains relatively
low-number of model weights (for other data sets we
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FIGURE 3. Cumulative Distribution Function (CDF) of absolute posterior parameter expectations at different layers of MLP (top row), and LeNet
architectures (bottom row). The y-axis represents the fraction of parameters with values less than or equal to the value on the x-axis.

FIGURE 4. Posterior expectations (color coded) over model weights obtained using different approximate inference schemes at the first layer of (a) MLP
architecture, and (b) LeNet architectures.

substantially increased the dimensionality of hidden layers as
detailed in Appendix A).

To delve deeper into the pruning behavior across varying
network depths, Fig. 3 presents a per-layer cumulative
distribution function (CDF) for model parameters, high-
lighting the proportion of parameters whose absolute mean
posterior estimate falls below a given threshold. When
juxtaposing the BMR CDF trajectories with those obtained
from the Tiered-FF method (sparsification is induced by
the regularised half-cauchy prior), it is evident that BMR
furnishes more pronounced sparsification. This distinction is

crucial, as the stochastic BMR not only matches or surpasses
the performance of the Tiered-FF algorithm but also averages
a 30% faster stochastic gradient descent.

To illustrate the structural learning variations among
algorithms, Fig. 4 presents heatmaps of posterior expectations
obtained using the four different methods. The Fig. 4 reveals
subtle differences between inferred representations of the
MLP and LeNet-5 architecture’s input layers trained on
the Fashion MNIST dataset. Divergent compression rates
among the algorithms indicate inherent trade-offs between
efficiency and performance. It is evident that the stochastic
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BMR strikes a balance between compression advantages and
performance, as it is less prone to over-pruning as compared
to the Tiered-FF method (two featured of the LeNet-5 input
layer are effective removed - see Fig. 4(b)).

IV. RELATED WORK
Over recent years, the Bayesian sparsification of neural
networks has gained momentum, primarily driven by the
spike-and-slab prior [47], [48], [49], [50], [51], [54] and
variants of the horseshoe prior [9], [52]. These works have
showcased the impressive sparsification capabilities inherent
to such shrinkage priors.

Nevertheless, when juxtaposed with the stochastic BMR
algorithm, they often necessitate supplementary assumptions
related to the approximate posterior. These assumptions,
in turn, lead to a more computation-intensive model inver-
sion. For example, in [47], [48], and [49] the authors
apply a continuous approximation to the Bernoulli dis-
tribution, in the form of Gumbel-softmax approximation.
This reparameterisation is successful for learning sparse
representations, but it increases the parameter space and
hence the computational complexity relative to the stochastic
BMR approach. On the other hand, in [50] the sparsification
rests on Metropolist-Hastings algorithm which requires
revaluation of the data likelihood for individual samples from
the proposal distribution.

Finally, in contrast to related approaches, the versatility
of stochastic BMR allows its integration with more efficient
optimization techniques, like variational Laplace [16] and
proximal-gradient methods [55], provided the resulting
approximate posterior in the form of a normal distribution is
apt for the application at hand. The computational complexity
of these extensions of stochastic BMR method would be
comparable to classical deep learning with point estimation
or an efficient Bayesian pruning algorithm recently proposed
in [51].

V. CONCLUSION
In this study, we presented a novel algorithm—stochastic
Bayesian model reduction—designed for an efficient
Bayesian sparsification of deep neural networks. Our pro-
posed method seamlessly integrates stochastic and black-box
variational inference with Bayesian model reduction (BMR),
a generalisation of the Savage-Dickey ratio. Through the
stochastic BMR strategy, we enable iterative pruning of
model parameters, relying on posterior estimates acquired
from a straightforward variational mean-field approximation
to the generative model. This model is characterized by
Gaussian priors over individual parameters and layer-specific
scale parameters. The result is an efficient pruning algorithm
for which the computational demand of the pruning step
is negligible compared to the direct stochastic black-box
optimization of the full hierarchical model.

The insights obtained here pave the way for a deeper
exploration of the potential applications of Bayesian model
reduction across a wider array of architectures and tasks

in probabilistic machine learning, such as audiovisual and
natural language processing tasks. A more detailed fine
tuning of the core dynamics of these algorithms, in terms
of iterations steps, learning rates, and other free-parameters,
might be the key to unveiling even more proficient Bayesian
deep learning methodologies in the near future.

APPENDIX A
SPECIFICATIONS OF NN MODELS
For the simplemulti-layer perceptron, we configure the archi-
tecture with five hidden layers, each comprising 400 neurons.
The chosen activation function is the Swish activation
function [56].

For the LeNet-5 architecture, we adhere to the original
design, which includes three convolutional layers, average
pooling following the initial two convolutional layers, and
two linear layers. The activation function used is the
hyperbolic tangent. The convolutional layers employ a kernel
size of 5 × 5, while the average pooling uses a window of
shape 2×2. For the FashionMNIST dataset, the feature counts
of the convolutional layers are designated as (6, 16, 120), and
the two linear layers have neuron counts of (84, 10). However,
for the CIFAR10 and CIFAR100 datasets, we elevate the
feature counts of the convolutional layers to (18, 48, 360),
with linear layer neuron counts set to (256, 10) for CIFAR10
and (256, 100) for CIFAR100.

For the MlpMixer architecture we employ six layers and
a patch resolution of 4 × 4. Across all datasets, we maintain
constant values for hidden size (C), sequence length (S),MLP
channel dimension (DC ), and MLP token dimension (DS );
specifically C = 256, S = 64, DC = 512 and DS = 512 for
all datasets.

For the VisionTransformer architecture, we adopt a slightly
modified version of the ViT-Tiny setup: we use six layers,
eight heads for each attention block, an embedding dimension
of 256, and a hidden dimension of 512. The patch resolution
of 4 × 4 is consistent with the MlpMixer. In both MlpMixer
and VisionTransformer architectures, the GeLU activation
function is used [57].
For training using the maximum a posteriori estimate

(Flat-MAP), dropout regularization, with dopout probability
set to 0.2, is applied to all linear layers across all architectures,
with the exception of the MlpMixer.

APPENDIX B
REPARAMETERIZATION
In the centered parameterization of a generative model,
Stochastic Variational Inference (SVI) with a fully factorized
posterior yields a non-sparse solution, undermining the
objective of employing shrinkage priors [52]. Typically,
this limitation is addressed by adopting the non-centered
parameterization of the prior.

Consider the unique property of the half-Cauchy distribu-
tion: given x ∼ C+(0, 1), and z = bx the resulting probability
distribution for z is z ∼ C+(0, b). Therefore, the non-centred
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FIGURE 5. Classification performance comparison on CIFAR10 dataset for different neuronal architectures and approximate inference schemes.

FIGURE 6. Classification performance comparison on CIFAR100 dataset for different neuronal architectures and approximate inference schemes.

parameterization is formulated as

τ̂ li ∼ C
+(0, 1)

λ̂lij ∼ C
+(0, 1)

ŵlij ∼ N (0, 1)

[
γ lij

]2
=

[
clτ l0τ̂
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i λ̂
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ij

]2
[cl]2 +

[
τ l0τ̂

l
i λ̂
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l
ijŵ

l
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However, while the half-Cauchy distribution is frequently
chosen for sampling-based inference, it poses challenges in
variational inference [27]. Firstly, exponential family-based
approximate posteriors (e.g., Gamma or log-Normal distribu-
tions) inadequately capture the half-Cauchy distribution’s fat
tails. Secondly, using a Cauchy approximating family for the
posterior results in high variance gradients during stochastic
variational inference [52]. Hence, in the context of stochastic
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variational inference, the half-Cauchy distribution undergoes
a reparameterization, as described in [13]:

x ∼ C+(0, b) ≡ x =

√
1
u
, u ∼ 0

(
1
2
,
1
v

)
, v ∼ 0

(
1
2
, b2

)
or, when represented in the non-centered parameterization:

x = b

√
v
u
, u ∼ 0

(
1
2
, 1

)
, v ∼ 0

(
1
2
, 1

)
(10)

APPENDIX C
FIGURES
See Figures 5 and 6.
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