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ABSTRACT Expensive optimization problems are characterized by the significant amount of time and
resources needed to determine the quality of potential solutions. This poses severe limitations for the
application of metaheuristic optimization methods, such as evolutionary algorithms, as they usually require
evaluating many candidate solutions to deliver satisfactory results. Surrogate model-based strategies have
become a popular choice to tackle this type of problem. The key idea of these strategies is to build a model
which can approximate and (partially) replace the mechanisms for assessing solution quality, such that the
use of this less expensive alternative lowers the overall computational cost of the optimization process.
This paper analyzes surrogate model-based strategies in the context of a specific, expensive, combinatorial
optimization problem: the configuration of the gas distribution system for an electrostatic precipitator.
Focusing on this relevant case study from industry, the aim of this paper is twofold: (i) to investigate the
most suitable learning techniques for building the surrogate models and (ii) to explore the advantages of
ensemble strategies allowing various surrogate models to collaborate during optimization. This contrasts
with previous studies where a single, fixed modeling technique is adopted to address this problem. The
experimental evaluation involves eight different learning techniques, three alternative ensemble strategies,
and two reference approaches from the literature (previously used to tackle this specific problem). Our
results reveal the best modeling techniques at the individual level, while highlighting clear benefits of the
simultaneous exploitation of multiple surrogate models when facing this particular optimization challenge.

INDEX TERMS Electrostatic precipitator problem, evolutionary algorithms, expensive optimization,
surrogate models, surrogate model-based optimization, surrogate-model ensembles.

I. INTRODUCTION
Expensive optimization problems arise in different fields
and involve costly, resource-demanding mechanisms to
assess the quality of potential solutions [1]. The expensive
nature of such mechanisms stems from conditions which
are inherent to specific applications; for example, the use
of computationally intensive simulations [2], [3], [4], [5],
the time-consuming fabrication and physical inspection of
candidate prototypes [6], [7], or the need to process large
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volumes of data [8], [9]. The main challenge in expensive
optimization is that the high cost of solution evaluations
renders the use of conventional evolutionary algorithms and
other metaheuristics impractical, or even prohibitive, as these
methods usually evaluate thousands (or tens of thousands) of
solution samples during optimization.
Surrogate model-based optimization (SMBO) has attracted

increasing attention in recent years [10], [11], [12]. The
capabilities of this approach in dealing with expensive
problems have earned it recognition as one of the main
categories of global optimization techniques in modern
taxonomies [13]. As explained in detail in Section II-B,
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SMBO aims to accelerate the convergence of the search
process. This translates into achieving satisfactory results
but, at the same time, reducing the number of solution
evaluations required to do so (keeping it consistent with
the limited budget of resources that may be available in
a given application scenario). A key aspect that allows
SMBO to accomplish such a goal, is that the evaluations
carried out are further exploited to build a surrogate model
which serves as an inexpensive alternative to the original
evaluation mechanisms. This enables additional optimization
efforts (based on the approximation model in lieu of the
expensive problem mechanisms), increasing performance
while maintaining the computational costs reasonable.

The use of ensembles has also emerged as a promising
approach within the context of SMBO. Given the variety
of learning techniques that exist for building the surrogate
models [13], [14], but also the fact that a universally
best method is unlikely to exist (as per the no-free-
lunch theorem [15]), the adoption of strategies which can
simultaneously leverage the strengths of multiple techniques
is, at least conceptually, advantageous. Whereas opting for
a single modeling technique implies relying on assumptions
about problem characteristics (which are difficult to know
in advance, especially in expensive optimization), ensembles
may represent a more flexible alternative. Such an approach
has reported encouraging results [10], [16], [17], [18], [19],
as seen in Section II-E.

A. RESEARCH GOALS AND MOTIVATION
In this paper, we explore the use of SMBO and ensemble
strategies in the context of a real-world industrial challenge:
the electrostatic precipitator (ESP) problem [20], [21]. ESPs
are filtering devices commonly used for cleaning the exhaust
gases of industrial processes. Optimizing the design of these
devices’ components maximizes their efficiency, reduces
maintenance costs, and is critical to meeting particulate
emission regulations [22]. As described in Section II-C,
the evaluation of candidate solutions for the ESP problem
requires running an intensive computational fluid dynamics
(CFD) simulation. This characteristic makes it not only com-
putationally expensive, but also a black-box optimization [23]
scenario whereby problem peculiarities cannot be exploited
to devise a tailored algorithmic solution. This has motivated
the use of SMBO in previous studies [20], [21], [24], [25],
where specific surrogate-modeling techniques (in particular,
kriging, as seen in Section II-D) have been adopted and
proved beneficial in dealing with this optimization task.

Given the expensive, black-box nature of the ESP problem
and, therefore, the unknown characteristics of its search
landscape, the question of which modeling technique is the
most suitable remains open. Hence, rather than choosing a
technique a priori (as in previous works [20], [21], [24],
[25]), we conduct a comparative analysis of eight learning
approaches with the aim of identifying the ones standing
out in this specific setting. Furthermore, we investigate

whether the use of surrogate-model ensembles can yield
a better performance than the use of individual models,
an approach which has not been considered in the particular
context of this application (to the best of our knowledge).
Some types of models might perform better than others at
different stages of the optimization process, and depending
on the training samples available at each stage, with several
important factors such as the quantity, variety, quality, and
representativeness of these samples. Thus, the combination of
multiple modeling techniques through an ensemble strategy
may offer an increased robustness. One of the goals of our
experimental study is to determine whether this hypothesis
holds in practice.

B. CONTRIBUTIONS
In summary, the contributions of this paper are as follows:
• We focus on a particular case study from industry, the
ESP problem, which is of high practical relevance and
involves clear economic and environmental impacts.
This is also an expensive, black-box problem, which
makes it interesting from the computational and opti-
mization perspectives.

• Our comparison of surrogate-modeling techniques
showcases the most effective learning approaches (at the
individual level) for this real-world application. Previous
studies have considered specific, fixed models only.

• We explore, for the first time, the use of surrogate-model
ensembles in the context of the ESP problem. Our
evaluation reveals significant advantages of ensemble
strategies over the use of individual models, achieving
an almost 4-fold speedup in optimization convergence.

• SMBO applications in combinatorial optimization are
scarce compared to the significant volume of research
focused on continuous domains [10]. Given the com-
binatorial nature of the ESP problem, this study
contributes to the body of knowledge on this subject.

C. ORGANIZATION
This paper is organized as follows. First, Section II introduces
background concepts and the ESP problem, discussing the
relevant literature. Then, Section III describes the flexible
framework that we consider for the implementation of sur-
rogate models and ensemble strategies. Section IV presents
our experimental analysis. Finally, Section V concludes.

II. BACKGROUND CONCEPTS AND RELATED WORK
This section provides background concepts on optimization,
expensive optimization problems, and SMBO (Sections II-A
and II-B). It also describes the industrial case study consid-
ered in this paper (Sections II-C), the previous works related
to this application (Sections II-D), and the relevant literature
about surrogate-model ensembles (Sections II-E).

A. OPTIMIZATION AND EXPENSIVE PROBLEMS
Optimization refers to the process of identifying the best
possible way to solve a given problem. This can be stated
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more formally as the task of finding a solution x∗, defining
a specific configuration for a set of design parameters or
decision variables, such that this configuration yields the
best outcome for a certain performance criterion f . Assuming
that f is to be minimized (without loss of generality), this
means that f (x∗) = min{f (x) | x ∈ X }, where X denotes the
set of all possible solutions, i.e., the search space. Criterion
f : X → R is a key component, formally known as the
objective function of the problem. By reflecting solution-
quality aspects which are specific to the application domain,
f allows us to discriminate among candidates in X , serving
the critical purposes of guiding the optimization process.

Whereas some problems have a function f that is readily
available to be computed, as it is given by an algebraic,
closed-form expression, some others lack such an explicit
definition. The latter case corresponds to the so-called black-
box optimization problems [23] and arises, for example,
when evaluating solution quality involves capturing aspects
or phenomena which are too complex to be modeled
algebraically. In these scenarios, evaluating solution quality
often requires specialized simulation software [2], [3], [4],
[5], processing large volumes of data [8], [9], or even human
intervention [6], [7].

The above situations may cause the evaluation of solution
quality to become expensive, in the sense that it is time-
consuming and/or resource-intensive (such is the case of the
ESP problem studied here, see Section II-C). This gives rise
to the category of expensive optimization problems [1], for
which the high cost of computing f collides with an inherent
limitation of conventional optimization methods: these meth-
ods usually require sampling and evaluating a large number of
candidate solutions during the search process, which results
impractical in the context of expensive optimization. These
characteristics, therefore, call for alternative methodologies
that can handle expensive problems more effectively; one
such methodology is SMBO, as discussed in Section II-B.

B. SURROGATE MODEL-BASED OPTIMIZATION
As discussed before, expensive problems prevent the use
of conventional optimization techniques due to the high
costs that the mechanisms for evaluating solution quality
introduce. The goal in expensive optimization is thus to
increase convergence speed; more precisely, the goal is to
achieve the best possible quality while respecting the limited
budget of time and resources available for the task. This leads
to a maximum number of effective solution evaluations that
can be performed (where, by effective, we refer to those using
the expensive, problem-specific evaluation mechanisms).

The framework of SMBO aligns with the above goal.
As illustrated in Fig. 1, it exploits the reduced number
of effective evaluations carried out, so that the knowledge
acquired from those evaluations can be used to train a
model which enables the consideration of a larger number
of candidate solutions (for which quality is estimated by
the model rather than explicitly computed using the original
evaluationmechanisms). In this way, the effective evaluations

FIGURE 1. Surrogate model-based optimization (SMBO) framework.

represent samples of the search landscape, and the obtained
surrogate model (also referred to as metamodel or response
surface) serves as an approximation for the landscape’s
unsampled regions [16].

As can be seen from Fig. 1, the SMBO process starts
by generating some initial solution samples, whose quality
is determined using the problem’s (expensive) evaluation
mechanisms. This results in a repository that represents the
knowledge acquired so far, as given by the solutions sampled
together with their evaluation information. The repository
serves as input for building a predictive model, which is
then used as a surrogate for the evaluation mechanisms
during the application of a given optimizer. Note that this
optimizer continues to explore the search space, sampling
(potentially many) additional solutions, but these solutions
are inexpensively evaluated on the basis of the surrogate
model. Only the solution(s) generated as output by this
optimizer are evaluated using the original mechanisms, and
then added to the repository to contribute to model training
in subsequent iterations. This process repeats until a stopping
condition is met (usually, until the available budget of
evaluations is exhausted).

It is important to highlight that other possible realizations
of the SMBO framework exist, defining alternative ways to
integrate learning mechanisms and the obtained surrogate
models into the optimization process [10], [11], [12].
Also, the description provided above is generic, aiming to
illustrate the functioning and rationale of SMBO only. The
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FIGURE 2. Illustration of an electrostatic precipitator. The gas distribution system, which is the focus of the optimization problem studied here,
involves metal plates that control the flow so that the incoming gases reach the particle-separation zones in optimal conditions (regarding speed
and distribution). Electrostatic precipitators, commonly used in cement plants and other industrial settings, are large devices that can weigh
between 4500 and 6900 kg.

application of this framework to a given problem requires a
precise definition of its components (namely, the particular
initialization, learning, and optimization routines adopted,
as well as their settings), as specified in Section III for this
paper’s case study.

C. THE ELECTROSTATIC PRECIPITATOR PROBLEM
Electrostatic precipitation is the technique of electrostatically
charging fine particles (using a high-voltage, high-frequency
power supply) to separate and remove them from a gas
stream [26], [27]. ESPs are filtering devices following the
above principle, commonly used to clean the exhaust gases
produced by various industrial processes and prevent the
release of polluting particles into the environment [22], [28].
These devices are, therefore, essential to allow large-scale
industries to comply with stringent emission standards.

An industrial ESP is illustrated in Fig. 2. The figure empha-
sizes the gas distribution system, whose configuration is the
particular subject of the optimization problem addressed in
this paper: the ESP problem. The gas distribution system is
a critical component that controls the gas flow through the
ESP. It consists of a collection of slots where perforated metal
plates are inserted to block, reduce, or redirect the gas so that
it can spread uniformly across the particle-separation zones
of the ESP. The number, location, and porosity of these plates
are key parameters on which flow uniformity depends [29].
The proper configuration of this component allows the gas to
reach separation zones under optimal conditions (regarding
flow distribution and velocity) and is, therefore, essential for
the correct operation and efficiency of the entire device.

The ESP problem is an industrial case study which is not
only interesting from the optimization and computer science
perspectives, but also relevant from a practical standpoint.
Addressing this real-world problem involves significant
impacts in terms of operational expenses, adherence to regu-
latory requirements, and environmental considerations [22].
A more formal description of the optimization challenge that
this particular application represents is provided below.

The ESP problem considers a device equipped with
a gas distribution system, which features S slots and

P alternative plate options for each of them. From the
optimization viewpoint, each configurable slot constitutes a
design parameter, and the discrete (and categorical) nature
of the available plate alternatives makes this a combinatorial
problem. A potential solution to this problem defines a full
configuration, with a specific choice of plate for every slot
of the gas distribution system. Besides its exponential search
space of PS possible solutions, the ESP problem is an expen-
sive optimization task. That is, a distinctively challenging
characteristic of the ESP problem is the high cost associated
with the quality assessment of candidate configurations,
as it requires running a (computationally intensive) CFD
simulation.

The particular abstraction of the ESP problem studied here
was introduced by Rehbach et al. [20], [21], and was adopted
as the Industrial Challenge within the competitions of the
2020 edition of the Genetic and Evolutionary Computation
Conference (GECCO 2020).1 The problem comprises a total
of S = 49 slots and P = 8 plate types. It is important to note
that this is a reduced version of an originally more complex
problem, with S = 334 slots. In the original (real) problem,
a single solution evaluation based on the CFD simulation
takes about eight hours to run using 16 CPUs, in contrast to
the twominutes required for the reduced version [21]. Despite
such a significant decrease in complexity, Rehbach et al.
highlight that the reduced problem still preserves the main
difficult features of the original one, reproducing its rugged
search landscape [21]. The consideration of this reduced
problem version has allowed us to conduct the extensive
experiments and comparative analyses presented later in this
paper.

D. PREVIOUS WORK ON THE ESP PROBLEM
The inherently expensive nature of the ESP problem reflects
on the fact that SMBO is at the core of all previous efforts
to tackle this challenge. To the best of our knowledge,
the ESP problem is first considered by Rehbach et al. [20],
who adopted kriging (also referred to as Gaussian process

1https://gecco-2020.sigevo.org
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regression) as the surrogate-modeling technique. In addition,
the authors propose a parallel computing approach to
further deal with problem complexity. The use of kriging
in dealing with the ESP problem is also reported in more
recent studies by the same research group [21], [30]. These
studies propose the incorporation of dimensionality reduction
strategies, which helps to further alleviate the computational
burden in comparison to standard SMBO. However, this
increase in computational efficiency is achieved at the
expense of some decreases in optimization performance (i.e.,
reporting lower solution qualities) for some of the strategies
analyzed.

The ESP problem is considered as an example application
in a recent study by Karlsson et al. [24]. The work aims
to show that continuous surrogate models, such as krig-
ing, can be successfully applied to this kind of problem
involving discrete decision variables. Finally, a modified
version of the problem, to which some continuous variables
are added, is investigated in the context of the mixed-
variable ReLU-based surrogate modeling (MVR) method by
Bliek et al. [25].

As can be seen, previous works have all adopted specific
surrogate-modeling techniques to address the ESP problem.
Nevertheless, the question of what type of model is the
most appropriate for this particular application remains open.
Identifying the most suitable model type for a given problem
is not straightforward and has been regarded as a challenging
task on its own [10], [13]. It cannot be expected that a certain
technique will provide the best results in every scenario,
which is a consequence of the no-free-lunch theorem [15].
Model type selection implies making assumptions about
the suitability of particular learning techniques according to
problem characteristics [14]. But our inability to explore the
search landscape in advance, which is inherent to expensive
optimization problems, prevents us from exploiting such
specificities to make a fully informed decision. Therefore,
rather than choosing a fixed model type in advance (as in
previous studies), this paper investigates and compares a
range of alternative learning techniques, analyzing which of
them are the most effective in dealing with the ESP problem.
Furthermore, surrogate-model ensembles have emerged as
a promising approach to circumvent the aforementioned
difficulties (as discussed in Section II-E); this paper explores
such an approach for the first time in the specific context of
the ESP problem.

E. SURROGATE-MODEL ENSEMBLES
When the nature of the search landscape is unknown,
and a tailored approach is therefore difficult to elucidate,
the simultaneous exploitation of multiple surrogate models
may represent a suitable alternative, providing an increased
flexibility and robustness with respect to the diversity of
problem characteristics. Strategies enabling this alternative
are known by different names, such as ensemble, multi-
surrogate, and committee approaches. Although these terms
are often used distinctly to highlight peculiarities of the

mechanisms through which multiple surrogates collaborate,
we adopt the term ensemble to generally refer to strategies
allowing two or more models to cooperatively assist the
optimization process.

In contrast to single-model approaches, ensembles allow
the integration of multiple, potentially heterogeneous surro-
gates (each constructed using a different learning technique).
In the words of Stork et al. [13], ‘‘the goal is to create a
sophisticated predictor that surpasses the performance of
a single model’’. Some models may perform better than
others depending on the problem addressed, as well as
on the availability of training samples and the regions of
the landscape where efforts are concentrated at a given
search stage [2]. Thus, ensemble members may complement
each other and synergistically provide a more reliable
approximation [31].

However, there remains the question of how to accomplish
such an integration of multiple models. Various approaches
have been explored [32]. A simple and intuitive strategy
is to always select the most-promising surrogate from the
ensemble members (the one with the lowest prediction error,
as observed during training). This has reported better results
than the use of fixed, individual surrogate models [16].
Linear combinations of multiple surrogates have also been
considered, where models are (locally and adaptively)
weighted according to their prediction variances [2] or
errors [16]. The weighting of ensemble members has also
been addressed as an optimization problem itself [33]. The
aggregation of surrogate models is further investigated in
other independent studies [31], [34], [35], including more
comprehensive analyses on the issues of how to choose and
properly weight themodels to be combined [36], [37]. Instead
of explicitly defining weights, an interesting alternative
which has been explored is stacking [10], [38]: a number
of individual surrogates are first trained, and a (potentially)
more robust final model is then built by exploiting the
predictions of such individual surrogates as explanatory
(input) variables.

Multiple surrogate models have also been used to simul-
taneously capture global and local aspects of the fitness
landscape. In [39], for instance, a global surrogate is first
constructed from all available training samples, and an
evolutionary search is performed based on it. Then, the
best solution reached during such a global search, and a
number of samples adjacent to it, are used to build a local
model optimized within a local search procedure. Local
surrogate models are also considered in [17], where each
individual generated through the evolutionary operators is
subjected to local search improvement, relying on a surrogate
model trained locally within its neighborhood (using only
the nearest samples). The novelty of this proposal is that the
modeling technique is chosen independently for each solution
on the basis of a measure of evolvability. Such a measure
reflects the fitness improvement that can be expected by using
each available modeling technique, which is inferred from
historical data collected throughout the search.

86148 VOLUME 12, 2024



M. Garza-Fabre et al.: Surrogate Models and Ensemble Strategiesfor Expensive Evolutionary Optimization

The importance of balancing global and local models has
been highlighted [18]. It was shown empirically that global
surrogates are useful in smoothing the landscape, which
is particularly relevant to deal with multimodality. Instead,
local models offer more accurate approximations, facilitating
the exploitation of local optima basins. Some algorithms
switch from global to local surrogate models and vice versa;
whenever no improvement is observed using one of these
strategies, they switch to the other [40]. To improve model
performance at the local level, it has also been proposed
that their training focuses on the highest-fitness samples
only [41], which contrasts with the idea of constructing local
models by filtering samples based on the notion of distance.
A similar approach was reported more recently [19], where
the resulting local model and a global surrogate trained on
all samples constitute the two separate tasks to be solved
by a multi-tasking evolutionary optimization method. It is
argued that optimizing the global surrogate contributes to
exploration, while optimizing the local model intensifies the
search in promising sub-regions.

Ensembles can also be used to determine the degree of
uncertainty in solution-quality estimations. A high discrep-
ancy in the outputs produced by the ensemble members
is indicative of high uncertainty [2], [40], which suggests
an undersampled region of the landscape (the inclusion of
new samples from that region to the training set is likely
to increase prediction accuracy). Some works have used
ensembles to improve computational efficiency in algorithms
that exploit uncertainty information during optimization [42],
[43]. The use of a single (global) surrogate model (namely,
kriging), which informs about uncertainty but scales poorly
regarding the size of the training set, is replaced with
an ensemble of either homogeneous local computations
of the same model [42] or heterogeneous more scalable
alternatives [43], which can deliver uncertainty information
less expensively.

Furthermore, multiple surrogates have been employed
separately to conduct parallel local searches, each based
on a different model. In [44], for example, every candidate
individual is replaced by the best outcome from a set of
parallel local searches starting from it. A related approach
is adopted in [31], where each individual is replaced by
the best out of two local-search outcomes. The first local
search optimizes a weighted aggregation of multiple models,
intended to mitigate the ‘‘curse of uncertainty’’ caused by
the inaccuracies of the individual surrogates. In contrast,
the second local search seeks to exploit the ‘‘bless of
uncertainty’’, using a single surrogate model as a means to
smooth the fitness landscape.

III. FLEXIBLE FRAMEWORK FOR SURROGATE
MODEL-BASED OPTIMIZATION
This section describes the specific framework adopted in
this study for the analysis and comparison of surrogate
models and ensemble strategies. First, general aspects of this
framework are discussed in Section III-A, complementing

explanations regarding SMBO provided earlier in
Section II-B. Then, Sections III-B, III-C, and III-D elaborate
on the particular instantiation of the SMBO framework we
consider, including the internal optimizer and settings used,
as well as the specific modeling techniques and ensemble
strategies evaluated.

Note that the literature spans a variety of approaches that
enable the incorporation of surrogate models into the search
process, either individually or in the form of ensembles [10].
Rather than investigating the best possible method, our aim
is to adopt a fixed but flexible framework which allows
us to assess the impact of using different model types
and ensemble strategies on optimization performance. Also,
whereas some works have explored the notion of locality
of the models (such as those discussed in Section II-E), our
study focuses on global surrogates trained over all available
landscape samples. Moreover, we adopt an online (also
called sequential) approach to SMBO, where models are
(repeatedly) trained as samples are systematically gathered
throughout the optimization process; this contrasts with the
offline approach where models are built in advance and
completely replace the problem’s evaluation mechanisms
during the search [45].

A. OVERALL FUNCTIONING OF THE SMBO FRAMEWORK
The general functioning of the flexible SMBO framework
considered in this work is outlined in Algorithm 1. As can
be seen, the process starts by initializing a repository, R0,
with |R0| = NR candidate solutions (Algorithm 1, Line 2).
The solution samples in R0 are evaluated using the real
(expensive) objective function (Algorithm 1, Line 3), so that
this repository can later be used as the training set during
the construction of the initial surrogate model(s), to obtain
an incipient approximation to the problem’s landscape.

Algorithm 1 Flexible SMBO Framework
1: t ← 0
2: Rt ← Initialization(NR) ▷ Create repository with NR initial solutions
3: Evaluation(Rt ) ▷ Evaluate using real objective function
4: while ⟨ stopping criterion ⟩ do ▷ Iterate until stop condition is met
5: {m1

t , . . . ,m
n
t } ←ModelTraining(Rt ) ▷ Train n models over Rt

6: x← Optimization({m1
t , . . . ,m

n
t }) ▷ Optimization based on models

7: Evaluation(x) ▷ Evaluate using real objective function
8: Rt+1 ← Rt ∪ {x} ▷ Include new solution to repository
9: t ← t + 1
10: end while
11: Return the best solution from Rt as output

Once the initial repository R0 has been created and all
samples in it have been evaluated, the iterative process of
SMBO is performed until a given stop condition is met
(Algorithm 1, Lines 4-10). At each iteration t , a set of
n ≥ 1 surrogate models are trained over all samples in
Rt (Algorithm 1, Line 5). The n ≥ 1 resulting models
are used (in one way or another) by a chosen optimizer
as a replacement for the objective function within an
inexpensive, internal optimization process (Algorithm 1,
Line 6). In other words, the evaluation of solutions in this
internal optimization process relies on the surrogate models
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instead of the expensive mechanisms of the problem. Only x,
the new candidate solution delivered by the internal optimizer
as output (i.e., the one with the best quality, as estimated
by the models), is evaluated using the original (expensive)
objective function (Algorithm 1, Line 7). After this, solution
x is included in Rt to serve as a training sample in subsequent
iterations (Algorithm 1, Line 8). The addition of a new
sample at each iteration is expected to contribute to defining
increasingly accurate surrogates and, thus, to the discovery of
higher-quality solutions over time. In the end, the best sample
from Rt is delivered as the final solution.

It is worth emphasizing the following aspects regarding
the training process and the usage of the obtained surrogate
models by the internal optimizer:
• The training data consists of both the solution samples in
Rt and their quality-assessment information, as derived
through the effective evaluation of solutions.2 Data
is gradually collected as new candidate solutions are
discovered and evaluated at each iteration, therefore
leading to an online approach to SMBO, as discussed
earlier.

• Models are intended to capture the relationship between
the characteristics and the quality of solutions, so that
they can be exploited to estimate (predict) the quality of
other solution samples during the internal optimization
process, replacing the original evaluation mechanisms.

• Models do not need to be accurate at estimating
solution quality. What is important is that models
allow us to properly discriminate among candidate
solution samples, so that they can guide the internal
optimization process towards promising regions of the
search space. Even poor estimations can be useful,
as long as they induce a reasonable ordering among
solutions. Hence, model accuracy is a sufficient but
not necessary condition to enable such an effective
discrimination.

• Model training and the subsequent estimation of solution
quality by the obtained models is significantly cheaper
than the effective evaluation through the original prob-
lem mechanisms, as we are dealing with expensive
optimization scenarios (refer to Section II-A).

• Each of the n ≥ 1 predictive models can potentially be
obtained through a differentmachine learning technique.

The following subsections provide details on the particular
components and parameter settings adopted for the above
framework, including the initialization routine and the
internal optimizer chosen, as well as the surrogate-modeling
techniques and ensemble strategies evaluated.

B. OPTIMIZER, ALGORITHMIC CHOICES, AND SETTINGS
We adopt specific algorithmic design choices and settings,
keeping them constant throughout the experiments of this
study. This allows us to more accurately evaluate the impact

2As discussed in Section II-B, we consider that an effective evaluation
occurs when solution quality is explicitly computed using the original
(expensive) objective function (or evaluation mechanisms) of the problem.

FIGURE 3. Genetic representation used to encode candidate solutions.
The genotype involves ℓ = S genes, accounting for the S = 49 slots of the
gas distribution system in the ESP device considered in this study. Each
gene can assume an allele value from set {1, 2, . . . , 8}, denoting the
P = 8 plate types available for the configuration of each slot.

of varying the components that are particularly relevant
for the purposes of this research: the surrogate-modeling
techniques and ensemble strategies. First, the training repos-
itory is initialized with NR = 10 candidate solutions, which
in all cases are generated uniformly at random. In both
the outer framework described in Section III-A and the
internal optimizer introduced below, candidate solutions are
encoded using the genetic representation illustrated in Fig. 3.
This is an integer encoding with genotype length ℓ = S,
specifying which of the P = 8 plate choices is used to
configure each of the S = 49 slots in the gas distribution
system of the ESP (see Section II-C). As the stop condition
for the whole SMBO process, we consider a fixed budget
of Emax = 200 evaluations of the real (expensive) objective
function. This means that, after creating and evaluating
the initial solution repository (which consumes NR = 10
evaluations), the method outlined in Algorithm 1 is allowed
to perform a total of 190 iterations (each producing and
evaluating an additional sample).

Regarding the internal optimizer, we use the genetic
algorithm (GA) sketched in Algorithm 2. After generating
an initial population of candidate individuals (Algorithm 2,
Line 3), the GA follows a standard evolutionary process
consisting of parent selection, genetic variation, and survivor
selection (Algorithm 2, Lines 5-11), which repeats until a
given criterion is satisfied. The aspect worth emphasizing is
that, as discussed before, this algorithm is provided with a set
of n ≥ 1 surrogate models, which will serve the purposes of
(inexpensively) estimating the quality of individuals during
this internal optimization process (Algorithm 2, Lines 4
and 8). Therefore, the GA navigates the problem’s landscape,
as approximated by the given surrogate models. Note that
the case with n = 1 corresponds to a conventional SMBO
scheme, where a single surrogate model is directly used to
impose an ordering among candidate individuals and guide
the evolutionary process. The modeling techniques evaluated
are discussed in Section III-C. However, when n > 1,
an ensemble strategy is required such that, in one way
or another, the multiple models can contribute to steering
the search. Section III-D discusses the ensemble strategies
considered.

The GA uses a random initialization routine and a
fixed population size of NP = 100 individuals. Standard,
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Algorithm 2Model-Based GA Used as Internal Optimizer
1: M ← {m1

t , . . . ,m
n
t } ▷ Given set of n surrogate models

2: g← 0
3: Pg← Initialization(NP) ▷ Create population of NP initial individuals
4: ModelEvaluation(Pg, M ) ▷ Evaluate/rank individuals overM
5: while ⟨ stopping criterion ⟩ do
6: P′g←MatingSelection(Pg) ▷ Select parents for reproduction
7: Og← VariationOperators(P′g) ▷ Generate offspring individuals
8: ModelEvaluation(Og, M ) ▷ Evaluate/rank individuals overM
9: Pg+1← SurvivorSelection(Pg ∪ Og) ▷ Select next generation’s population
10: g← g+ 1
11: end while
12: Return the best individual from Pg as output

TABLE 1. Modeling techniques and ensemble strategies investigated.

well-known operators are adopted for the selection and
genetic variation processes. Specifically, parent selection is
accomplished bymeans of (deterministic) binary tournament.
For variation, the uniform crossover and uniform mutation
operators are used (which are applied with probabilities
pc = 0.9 and pm = 1/ℓ, respectively, where ℓ is the geno-
type length). Finally, survivor selection chooses the best
individuals from the union of the parent and offspring
populations, ensuring the removal of duplicates to promote
diversity. The evolutionary process is repeated for a total of
Gmax = 100 generations.

C. SURROGATE-MODELING TECHNIQUES
We consider eight distinct supervised learning techniques
for constructing the surrogate models. These modeling
techniques are listed in Table 1. Note that a two-letter
acronym has been assigned to refer to these approaches
hereafter. Also, note that we are concerned with regression
techniques, as the models are expected to predict continuous
values reflecting solution quality (albeit some of these
techniques are applicable to classification problems as well).
Finally, it is worth noting that two of these approaches,
AD and RF, are ensemble methods on their own (their
predictions are computed from those produced by a collection
of base learners). We are interested in investigating the
effectiveness of AD and RF as individual surrogate-modeling
techniques, but also the advantages of combining them
with other learning methods through the ensemble strategies
described in Section III-D.

It is important to remark that the eight learning techniques
analyzed involve hyperparameters whose configuration
impacts the obtained models and their predictions. With the
aim to favor a fair comparison and to give all techniques
the opportunity to perform at their best, the model-training
process includes cross-validated tuning of hyperparameters in
all the cases. Notice that training (and the embedded tuning)
occurs at every iteration of the SMBO process (as seen in
Algorithm 1 and in Section III-A), and that the best settings
identified for each model type may vary from one iteration to
another. This makes it challenging to investigate the influence
of each specific parameter on performance (an assessment
which is beyond the scope of this study).

D. ENSEMBLE STRATEGIES
Below we introduce three mechanisms for enabling the
integration of multiple surrogate models into the optimization
process. They are implemented at the internal optimization
step of the SMBO framework (Algorithm 1, Line 6),
more specifically at the evaluation of candidate individuals
(Algorithm 2, Lines 4 and 8). These mechanisms, and the
acronyms adopted to refer to them, are summarized in
Table 1.

1) LOWEST-ERROR MODEL SELECTION
As discussed in Section III-A, the accuracy of model
predictions is not necessary as long as they are sufficiently
informative to enable a proper discrimination among can-
didate solutions. Yet, the accuracy can be exploited as a
measure to identify which of the n surrogates provided to
the internal optimizer as input approximates the problem’s
landscape better.

In the lowest-error model selection (ER) strategy, every
application of the internal optimizer relies on the single, most-
accurate surrogate model (out of the nmodels provided to this
algorithm as input). This is determined on the basis of the
(cross-validated) prediction errors observed during training
(the root mean squared error is used here), prior to the
invocation of the internal optimizer (Algorithm 1, Line 5).
Note that the model selected (i.e., the one identified as the
most accurate) may be different from one iteration of the
SMBO process to the next. This allows multiple models to
participate and contribute to the overall search process. Also,
this behavior is consistent with the fact that models’ accuracy
may change over time; some models may be more effective
than others at early stages, when the training set cardinality
is small, but this may change as new training samples are
collected throughout the search. This approach has been
explored with success in previous studies (e.g., [16]).

2) AVERAGE OF PREDICTED VALUES
The average of predicted values (AV) ensemble strategy
computes a final estimation of solution quality as the
arithmetic mean of the values predicted by the given set of
n surrogate models. This is equivalent to using a weighted
aggregation (as explored, for example, in [33] and [37],
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and other works discussed in Section II-E), but using
equal weights for all the models being combined. In this
strategy, therefore, all the n ensemble members collaborate
simultaneously to guide the search during every application
of the internal optimizer; this contrasts with the ER strategy
described above, where a single model (the most accurate
one) is selected each time.

3) AVERAGE OF INDUCED RANKS
The last ensemble strategy, average of induced ranks (RK),
is similar to the above-defined AV approach in that all
the n models are simultaneously exploited to discriminate
among candidate solutions during the internal optimization
process. The RK strategy, however, averages the ranks
induced by the predicted quality values of the solutions,
rather than averaging their predicted qualities directly (as
strategy AV does). That is, all candidate solutions are ranked
independently based on the predictions of each individual
ensemble member, such that the best solution is assigned
rank 1, the second-best solution is assigned rank 2, and so on.
Let ri(x) be the rank of solution x according to the predictions
of the i-th surrogate model, 1 ≤ i ≤ n; the average rank of x
is given by:

R(x) =
1
n

n∑
i=1

ri(x) (1)

The average rank of all solutions is computed and used to
impose a final ordering between them, guiding themating and
survivor selection processes of the internal GA optimizer.

IV. EXPERIMENTS AND RESULTS
This section reports the results of our evaluation of surrogate-
modeling strategies, centering on a specific industrial
case study: the ESP problem (see Section II-C). First of
all, Section IV-A discusses the experimental conditions,
including the performance assessment criteria, reference
approaches, and settings considered. Our initial experi-
ments, presented in Section IV-B, involve the analysis
and comparison of surrogate-modeling techniques at the
individual level. Section IV-C covers the second part of our
experiments, which concerns ensemble strategies allowing
multiple promising models (as identified in Section IV-B) to
be employed simultaneously. Then, Section IV-D contrasts
the results of the best-performing individual models and
ensemble strategies (as observed in Sections IV-B and IV-C),
including also reference methods previously investigated in
the specific context of the ESP problem. Finally, Section IV-E
concludes this evaluation by analyzing how the use of surro-
gate models and particularly ensemble strategies impacts on
computational efficiency.

A. EVALUATION SETUP
Our investigation of surrogate-modeling approaches in the
context of the ESP problem starts by evaluating the suitability
of a range of learning techniques. This involves eight distinct

techniques, namely, AD, DT, KN, KR, NN, RB, RF, and
SV, as defined in Section III-C. Then, our analysis centers
on exploring the advantages of surrogate-model ensembles,
considering three strategies that enable the integration ofmul-
tiple surrogate models into the optimization process; namely,
strategies ER, AV, and RK, introduced in Section III-D.

It is important to remark that all the experiments of
this study consider the flexible SMBO framework whose
functioning, design components, and parameter settings have
already been specified in Section III. Below, we describe
our performance assessment considerations as well as the
approaches adopted as references during this evaluation.

1) PERFORMANCE ASSESSMENT
This paper is concerned with a specific, expensive
optimization challenge: the ESP problem. In particular,
our experiments investigate whether the use of different
surrogate-modeling techniques and ensemble strategies
allows us to discover better solutions to this problem. Accord-
ingly, throughout our experiments, the main performance
criterion used is solution quality, as given by the values scored
for the real (expensive) objective function of this problem (to
be minimized).

In Sections IV-B, IV-C, and IV-D, results are mostly
presented in the form of convergence curves, reporting
the best solution quality achieved so far along the SMBO
process (at each iteration, every time a new solution is
evaluated, Line 7 of Algorithm 1). This is complemented with
plots summarizing the performance observed after a limited
budget of 50 solution evaluations, and after exhausting
the Emax = 200 evaluations adopted as stopping condition.
We report the area under the convergence curve (AUCC)
as an additional indicator to capture convergence behavior,
with lower AUCC values indicating a deeper and/or faster
convergence.

Section IV-E, on the other hand, focuses on the impact of
the studied surrogate-modeling techniques on computational
efficiency. We primarily assess convergence speed, which
reflects on the number of objective function evaluations
required to reach a certain solution quality. The reduction that
individual and ensemble surrogate-model strategies achieve
in the number of evaluations is measured in terms of speedup
and how it translates into significant execution time savings.

Due to the stochastic nature of the methods analyzed,
the results reported in all the cases correspond to statistics
computed from a set of 20 independent repetitions of each
experiment. The (non-parametric) Mann-Whitney U test is
used for analyzing statistical significance, considering a sig-
nificance level of α = 0.05 and Holm-Bonferroni correction.

2) REFERENCE APPROACHES
The main (and mandatory) baseline against which the
performance of SMBO approaches is evaluated in this study
corresponds to the GA by itself; that is, to the same GA
used as internal optimizer in our SMBO framework (see
Algorithm 2 and its description in Section III-B), but without
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using surrogate models and always evaluating candidate
solutions through the problem’s original objective function.
Considering this GA as our main benchmark allows us to
assess the impact of introducing surrogate models (either
individually or in the form of ensembles) on both solution
quality and convergence speed. To enable a fair comparison,
the GA is granted the same total budget of Emax = 200
effective evaluations as for the SMBO approaches. Therefore,
we adopt parameter settings which are consistent with such
a budget, namely, a population size of NP = 10 and a total
number of generations of Gmax = 20 (all other parameters
and operators of the GA remain the same as described in
Section III-B).

Our comparison of the best-performing individual
surrogate models and ensemble strategies, presented in
Section IV-D, also includes two reference approaches that
have been previously explored in the particular context
of the ESP problem. The first approach is the efficient
global optimization (EGO) method by Jones et al. [46].
EGO showed the best optimization performance in the
experiments conducted recently by Rehbach et al. [21].
As discussed in Section II-D, Rehbach et al. proposed
the incorporation of dimensionality reduction techniques
to improve computational efficiency. However, this caused
some decreases in solution quality, and the standard EGO
(without enforcing dimensionality reduction) delivered the
best results for the ESP problem [21]. EGO is thus
an appropriate reference to consider in this study. The
implementation of EGO available through the CEGO R
package [47] is used here, such as reported in [21].
As the second reference approach, we consider the mixed-

variable ReLU-based surrogate modeling (MVR) method
proposed recently by Bliek et al. [25]. MVR has been
particularly developed to tackle problems involving both
continuous and discrete design parameters. Although the ESP
problem features discrete, categorical variables only, the
authors included five continuous variables (in addition to the
original 49 variables, see Section II-C) for the purposes of
testing. In this study, however, the original version of the ESP
problem is always considered (with 49 discrete variables).
We use the implementation of MVR which has been made
available by its authors (https://github.com/lbliek/MVRSM).

B. ANALYSIS OF INDIVIDUAL SURROGATE MODELS
The computational costs associated with the ESP problem,
as well as its black-box optimization nature, challenge our
ability to make a priori decisions regarding the choice of
suitable surrogate-modeling techniques. Therefore, we con-
duct a comparative analysis of eight popular approaches (see
Section III-C): {AD, DT, KN, KR, NN, RB, RF, SV}. The
baseline GA is also included in this analysis as a reference.

Some of the modeling techniques are known to offer
certain robustness with respect to the nature of design
variables, but others may find difficulties given the discrete,
categorical variables of the ESP problem. Whilst an in-depth

FIGURE 4. Convergence behavior exhibited by the eight
surrogate-modeling techniques. Results of the baseline GA are included
as a reference.

FIGURE 5. Performance of the eight surrogate-modeling techniques and
the baseline GA. The plots report the objective values achieved after
(a) 50 and (b) 200 solution evaluations, as well as the results for the
(c) AUCC indicator. Marker • highlights the method with the best (lowest)
average objective value; markers + and ◦ indicate, respectively, whether
or not a statistically significant difference is observed with respect to this
best-performing approach.

exploration of mechanisms to deal with this type of variable
is beyond the scope of this paper, we aimed to identify
conditions under which all models can have a reasonable
operation, thus favoring a fair comparison. Hence, a pre-
liminary evaluation was carried out to determine whether
each model can handle the original encoding of variables,
or if the use of an alternative binary (one-hot) encoding
can boost their performance. The analysis presented here
(and in subsequent subsections) considers the encoding that
allows each individual modeling technique to obtain better
results (the main findings of such a preliminary evaluation
are summarized in the Appendix).

The results of our comparative analysis are presented
in Figs. 4 and 5. First, we can observe very different
convergence behaviors from Fig. 4. An interesting result is
that the baseline GA displays a better and faster convergence
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ability than SMBO approaches relying on some of the
surrogate models, in particular SV, NN, and DT, which report
the worst performances during this evaluation (as confirmed
by the results of Fig. 5). Indeed, the average objective values
reached by the GA at the end of the search (after 200 solution
evaluations) are better (i.e., lower) than those obtained using
most of the surrogate models. The only exceptions are AD
and RF, achieving a deeper convergence in the end, but with
no statistically significant differences over the GA, as seen
from Fig. 5b. The slope of the convergence curve of the GA
suggests that, if provided with a larger budget of evaluations,
it would be able to improve solution quality even further. This
confirms the effectiveness of the GA, which is our chosen
optimizer integrated within the adopted SMBO framework.

Despite the competitive performance shown by the GA
on its own, the incorporation of some surrogate models,
namely, AD, KR, RB, and RF, has significantly accelerated
convergence during the initial stages of the optimization
process; refer, for example, to the results obtained after
50 evaluations in Fig. 5a. This increased convergence speed is
particularly relevant when facing a very restrictive budget of
solution evaluations. Out of these four approaches, AD and
RF exhibit the most consistent trends of improvement
throughout the search, being the best performers in this
comparative analysis. It is noteworthy that, by themselves,
AD and RF are ensemble learning techniques (as discussed in
Section III-C). The fact that these approaches scored the best
results in this test supports the relevance of ensemblemethods
in an SMBO setting, and encourages the investigation of
more sophisticated ensembles further combining AD and
RF with other different learning techniques (as explored in
Section IV-C).

C. EVALUATION OF SURROGATE-MODEL ENSEMBLES
The three ensemble strategies described in Section III-D, ER,
AV, and RK, enable the collaborative integration of a set
of n surrogate models within the SMBO process. A clearly
important aspect refers to the specific surrogatemodels which
are chosen as the ensemble members. This section delves
into such a key aspect, analyzing the impact of ensemble
conformation on the performance of these strategies.

We define two different sets of surrogate models based
on observations from their evaluation in Section IV-B.
An ensemble size of n = 4 is considered in both cases:

A = {AD, KN, KR, RF} B = {KR, RB, RF, SV}

On the one hand, set A consists of: AD and RF, the
overall best performers; KR, which reports an accelerated
convergence at early optimization stages; and KN, which
scores the third best (average) performance at the end
of the search. Thus, by involving only models providing
competitive results at the individual level, set A may be
expected to yield a competitive performance at the ensemble
level as well. On the other hand, we are interested in
investigating robustness, by evaluating whether the inclusion
of low-performance models compromises the effectiveness

FIGURE 6. Convergence behavior of ensemble strategies ER, AV, and RK
when using surrogate-model sets A and B (the baseline GA is shown as
a reference).

FIGURE 7. Contrasting the performance of ensemble strategies ER, AV,
and RK when using sets A and B of surrogate models. Plots refer to the
objective values achieved after (a) 50 and (b) 200 evaluations, and to the
(c) AUCC indicator. At the top, the results of each strategy are
independently marked either + or ◦, depending on whether or not a
statistically significant difference is observed between sets A and B. The
baseline GA is included as a reference.

of the ensemble strategies. Therefore, together with some
well-performing surrogates (namely, KR, RB, and RF), set B
includes the SVmodel, which shows the poorest performance
in the comparative analysis of Section IV-B.

Figs. 6 and 7 summarize the performance of the six
resulting combinations of ensemble strategies and surrogate-
model sets. All six approaches report a remarkably superior
performance in comparison to the baseline GA, both in terms
of convergence speed and solution quality at the end of the
search process. Strategy ER performs slightly better when
using model set A, but the differences with respect to the
use of set B are not statistically significant. Contrary to what
was anticipated, strategy AV (based on the aggregation of
model predictions) obtains better results using set B, in spite
of the inclusion of the (poor-performing) SV model (with
significant performance differences at 50 evaluations and
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regarding indicator AUCC, Figs. 7a and 7c, respectively).
Likewise, model set B leads to a better performance of
strategy RK (aggregating model-induced ranks), although no
significant differences are observed with respect to the use of
set A.

The clear superiority of all six configurations analyzed
with respect to the baseline GA highlights the suitability
of the three ensemble strategies and the relevance of this
type of approach in the particular context of our case
study. Moreover, the ensemble strategies have shown some
robustness to the combination of surrogate models of varying
quality and reliability; this property could be enhanced by
considering a weighting scheme for the ensemble members
(such as in the methods discussed in Section II-E). The
results of this section suggest that ensemble strategy AV,
using model set B, represents the best choice to address
the ESP problem. The three ensemble strategies are further
evaluated in Section IV-D through comparisons against
the best-performing individual surrogate models and some
references from the literature.

D. COMPARISON OF INDIVIDUAL SURROGATE MODELS,
ENSEMBLE STRATEGIES, AND REFERENCE APPROACHES
After independently evaluating individual surrogate models
and ensemble strategies in previous sections, here we
contrast the results obtained by: (i) the three best-performing
modeling techniques at the individual level, AD, RF, and
KR; (ii) our three ensemble strategies, ERA, AVB, RKB,
with subscripts specifying the surrogate-model set adopted in
each case, according to the results of Section IV-C; and (iii)
two reference methods from the literature, EGO and MVR.
As before, the baseline GA is also included in this comparison
as our main benchmark. The results are shown in Figs. 8
and 9.
Whilst the individual surrogate models increase conver-

gence speed with respect to the baseline GA (as seen in
Section IV-B), the three ensemble strategies and reference
method EGO achieve a notably deeper convergence during
the first 50 evaluations. As shown in Fig. 9a, strategy
AVB scores the best performance at these early stages,
with statistically significant differences against all other
approaches, except RKB. A similar trend is observed in
Fig. 9b regarding indicator AUCC, whereas Fig. 9c highlights
the three ensemble strategies as the best performers at the
end of the search (after 200 evaluations), with no significant
differences between them. Although all three strategies are
found to be highly competitive, AVB and RKB exhibit a more
accelerated initial convergence than ERA. This suggests that
the aggregation of surrogate models, either by combining
their predictions (AVB) or the ranks they induce (RKB),
is more effective than model selection (ERA), which is
consistent with previously reported findings [16].
An unexpected result is that of reference method MVR,

which is found to be the less successful approach in this
comparison. In contrast, EGO shows one of the most

FIGURE 8. Convergence behavior of the best-performing individual
surrogates (AD, KR, RF), ensemble strategies (ERA, AVB , RKB), and
methods from the literature (EGO, MVR). The baseline GA is included as a
reference.

FIGURE 9. Comparison of selected surrogate models (AD, KR, RF),
ensemble strategies (ERA, AVB , RKB), reference approaches (EGO, MVR),
and the baseline GA. Plots report the results at (a) 50 and
(b) 200 evaluations, and those for the (c) AUCC indicator. Marker •

indicates the method with the best average objective value; + and ◦

indicate, respectively, whether or not a significant difference is seen with
respect to this best-performing method.

promising performances, being surpassed only by the ensem-
ble strategies and competing closely with AD. An interesting
aspect of EGO is that it uses kriging as the surrogate-
modeling technique, the same technique that we evaluate
within our SMBO framework and refer to as KR during these
experiments.

Note, however, that EGO reports much better results than
KR in this evaluation. The use of distinct optimization
frameworks explains, to a certain degree, the performance
variations between EGO and KR. More importantly, though,
EGO employs the so-called expected improvement (EI)
infill criterion (or acquisition function). At each iteration
of our adopted SMBO framework, we search for a solution
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optimizing the (predicted) objective function value, so that
this new sample is evaluated and included in the training
repository (Algorithm 1, Lines 6-8). Rather than focusing on
predicted objective values only, criterion EI exploits addi-
tional information regarding model uncertainty to achieve
a more suitable exploration/exploitation balance [48]. Thus,
the consideration of this type of infill criteria seems to
be a promising avenue towards improving the performance
of the (individual and ensemble-based) surrogate-modeling
approaches analyzed.

E. IMPACT ON COMPUTATIONAL EFFICIENCY
So far, our experiments have shown that the use of surrogate
models, and particularly the simultaneous use of multiple
surrogates through an ensemble strategy, has the potential to
significantly improve the quality of the solutions discovered
for the ESP problem.Moreover, our analysis has revealed that
these approaches are able to provide a substantial increase in
convergence speed, matching or even surpassing the solution
quality reported by the baseline GA but without the need
to exhaust the allocated budget of solution evaluations. This
final part of our assessment pays further attention to the latter
aspect, which impacts directly on computational efficiency
and is therefore critical in expensive optimization.

First, we analyze how many solution evaluations are
required by the studied approaches to reach a certain
solution quality. More specifically, we take the GA’s average
final performance, that is, the average solution quality
reported by the GA after exhausting the full budget of
Emax = 200 evaluations, and determine the number of
evaluations that model-based approaches need to carry out
so that their average performance matches such a baseline.
Then, we explore how these numbers of required evaluations
translate into execution time estimations. These estimations
assume that evaluating solution quality takes eight hours
by means of the ESP problem’s objective function (refer to
Section II-C for details), as reported in [21].3 Finally, the
observed reductions in the number of evaluations and running
times are captured and analyzed in terms of speedup; if we
let α and σ be the number of evaluations consumed by the
baseline GA and a given alternative approach, respectively,
we compute the speedup offered by the alternative approach
as α/σ (speedup can equivalently be computed from the
estimated times).

The results obtained from the three aforementioned
perspectives (namely, number of evaluations, execution time,
and speedup) are separately presented in Fig. 10. Similar
to Section IV-D, results are shown for the best-performing
individual modeling techniques (AD and RF), ensem-
ble strategies (ERA, AVB, and RKB), and reference
approaches (the baseline GA and EGO). Notice that we have

3As explained in Section II-C, we consider a reduced and less computa-
tionally expensive approximation of the ESP problem, which has made the
extensive analyses of this paper possible. Considering the evaluation times
reported in the literature for the original version of the ESP problem allows
us to present more reliable (and realistic) execution time estimations.

FIGURE 10. Results of selected surrogate models (AD, RF), ensemble
strategies (ERA, AVB , RKB), and references (EGO) in terms of:
(a) reduction of the number of evaluations; (b) estimated time savings;
and (c) speedup. All three aspects are calculated by taking the GA’s
average final performance (after 200 solution evaluations) as the
baseline.

excluded model KR and reference method MVR (originally
included in Section IV-D), as the average performance
of these approaches does not reach the baseline defined
by the GA within the budget of Emax = 200 evaluations
(see Figs. 8 and 9).

As can be seen from Fig. 10a, all six SMBO approaches
exhibit a reduction in the number of evaluations with respect
to the GA. Any reduction is meaningful, given the high
cost of evaluations that characterizes expensive optimization
scenarios. However, once again, our results confirm the
superiority of ensemble approaches over the use of individual
surrogate models. The best performers are ensembles AVB
and RKB, reducing the number of evaluations by almost
75%. Ensemble ERA also shows a competitive performance,
consuming only 75 evaluations to reach a solution quality
that is at least as good as that produced by the GA after
200 evaluations.

The significance of the above reductions becomes more
evident when they are analyzed from the perspective of
execution time, as reported in Fig. 10b. Consider, for
example, that the solution quality that the baseline GA would
attain after almost 67 days (1,600 hours) could be delivered
within 18 days (424 hours) by using either ensemble AVB
or ensemble RKB, leading to an almost 4-fold speedup in
convergence according to Fig. 10c. This translates into clear,
tangible benefits that, in addition to time savings, could
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involve other potential positive impacts (such as the economic
impact).

V. CONCLUSION
We explored surrogate model-based approaches in the
context of a real-world problem involving the design of
an electrostatic precipitator. This is a relevant industrial
application, posing a computationally expensive, black-box,
combinatorial optimization challenge. Given the inherent
difficulty of a priori identifying the most appropriate
modeling technique under such conditions, we conducted a
comparative analysis involving eight popular choices. To our
knowledge, this is the first comparison of this sort with a
focus on this specific application. Furthermore, we explored,
for the first time in the context of this problem, surrogate-
model ensembles. We evaluated three strategies allowing the
collaborative integration of multiple surrogate models into
the optimization process.

Our analysis of (individual) modeling techniques revealed
that Adaptive Boosting (AdaBoost) and Random Forest
were the most effective ones. Nevertheless, performance
was further improved by using surrogate-model ensembles.
Especially, a strategy based on the aggregation of multiple
surrogates outperformed all individual models and some
references from the literature. Not only did ensembles score
better results at the end of the optimization process, but
they also reported an almost 4-fold speedup in convergence.
This is of particular importance when facing very restrictive
budgets of solution evaluations due to the high computational
costs they imply.

Our findings confirm that the conceptual advantages of
ensembles can translate into meaningful gains in practice.
Despite the promising results obtained, only basic, intu-
itive ensemble strategies were considered. Several potential
pathways to further enhance these results can be identified,
for example: devising more sophisticated model-integration
mechanisms; incorporating weighting schemes to prioritize
ensemble members according to their reliability (or other
criteria); exploring the notion of locality of surrogate models;
considering alternative infill (model management) criteria;
and evaluating the impact of varying the size and specific
elements of the ensembles. Some of these topics have
reported encouraging results in other domains; we will devote
part of our future work to exploring these pathways in the
context of our case study. Finally, an inherent limitation of
this study relates to the potential lack of generality of our
observations, as it centers on a particular application. The
insights gained motivate us to replicate this analysis in other
scenarios, which will contribute to overcoming the above
limitation.

APPENDIX A
IMPACT OF VARIABLE ENCODING
Here, we summarize our findings regarding the impact
of variable encoding on the effectiveness of the eight
(individual) surrogate-modeling techniques. In particular,

FIGURE 11. Impact of variable encoding on the performance of the eight
studied surrogate-modeling techniques. The original and binary (one-hot)
encodings are compared. Markers + and ◦ at the top indicate,
respectively, whether or not a statistically significant difference is
observed for each individual comparison.

we compare two alternative encodings: (i) the original
discrete, categorical encoding of the ESP problem; and (ii)
the binary, one-hot encoding, which maps each of the S = 49
decision variables to an eight-bit binary string (with each bit
representing one of the P = 8 different values that a variable
can assume).

As shown in Fig. 11, changing variable encoding does not
lead to statistically significant differences in the performance
of five model types (AD, DT, KN, RF, and SV). However,
highly significant differences can be observed for the
remaining three techniques (KR, NN, and RB). On the one
hand, KR is negatively affected by the binary encoding,
which might be explained by the increase in dimensionality.
On the other hand, the binary encoding clearly improves the
performance of NN and RB, highlighting the inability of
these techniques to handle the nature of the ESP problem’s
variables directly.

The experiments of Section IV consider the encoding
offering the best results for each technique. Three models
use the original encoding, {DT, KR, RF}, and the remaining
five models use the binary encoding, {AD, KN, NN, RB,
SV}.
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