IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 March 2024, accepted 10 June 2024, date of publication 19 June 2024, date of current version 28 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3416871

= RESEARCH ARTICLE
The Angular Set Covering Problem

FREDY BARRIGA-GALLEGOS“!, ARMIN LUER-VILLAGRA“2,
AND GABRIEL GUTIERREZ-JARPA"“!

I'School of Industrial Engineering, Pontificia Universidad Catélica de Valparaiso, Valparaiso 2340025, Chile
2Department of Engineering Sciences, Universidad Andres Bello, Talcahuano 4260000, Chile

Corresponding author: Fredy Barriga-Gallegos (fredy.barriga@pucv.cl)
This work was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnolégico (FONDECYT) under Grant 1231023

and in part by the Agencia Nacional de Investigacién y Desarrollo (ANID)-Programa Formacién de Capital Humano Avanzado
(PFCHA )/Doctorado Nacional under Grant 2023-21230628.

ABSTRACT We present an innovative extension of the Set Covering Problem, transitioning from a traditional
radial covering to an angular covering structure. The decisions are based on locating the facilities and
identifying the directional servers installed in each, covering a set of points in a geographic area. The
strategic placement of surveillance cameras inspired this novel approach. We aim to minimize the cost of
covering demand points by strategically installing directional servers on facilities. We propose an integer
linear model and an initial approach based on column generation decomposition. We conducted extensive
computational experiments on different test instances, including a practical case study involving positioning
security cameras for surveillance in Valparaiso, Chile. The results highlight the effectiveness of column
generation in achieving optimal solutions or significantly improving solution quality compared with solving
the model directly with standard optimization solvers, especially for larger instances. In particular, the
column generation algorithm achieves up to a 67% improvement in solution quality compared to the
optimization model for real-world size instances, demonstrating its practical applicability and potential for
enhancing surveillance infrastructure design.

INDEX TERMS Angular covering, column generation, combinatorial optimization, location problem, set
covering.

I. INTRODUCTION

The set covering problem (SCP) is one of the most studied
location problems. The SCP finds the minimum-cost set of
facilities from a finite discrete candidate set, covering all
demand points of a geographic area, including the service
level through the distance between facilities and demand
points.

The SCP was first proposed by [1] to determine the
minimum number of police officers required to keep a
road network covered. Reference [2] proposed the first
mathematical model for locating emergency facility services.
Moreover, SCP has been applied to other fields, such as bus
stops [3], tool selection in flexible manufacturing systems [4],
vehicle path planning [5], location of recycling facilities [6],
location of healthcare facilities [7], relocation of hierarchical
emergency response facilities [8], nature reserve design [9],
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optimization of gas detectors in chemical plants [10], and
wireless network design for uncrewed aerial vehicles (UAV)
in disaster areas [11].

Some assumptions were made in the mathematical model
for the SCP:

1) All demand points are equally important in receiving
service, independent of their demand level.

2) All demand points must be covered by at least one
located facility.

3) The coverage is radial. Therefore, a facility covers a
point of demand if the distance between the facilities is
less than or equal to the coverage radius.

4) All covered demand points received the same service
level, which did not depend on their distance from the
facility that covered them.

5) These facilities are uncapacitated and do not have a
maximum number of demand points to cover.

Several extensions of SCP have been proposed. Dynamic
SCP assumes that the parameters of the model can take
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different values depending on the period within the planning
horizon [12]. The Capacitated SCP assumes that facilities
have a limited capacity to attend to demand points [13]. The
Multiple Optimal SCP determines the optimal number of
facilities to cover all demand points as a secondary objective
that minimizes the distance between facilities and demand
points [14]. The Fuzzy SCP determines the optimal covering
degree by considering fuzzy coverage [15]. In [16], an edge-
covering problem (ECP) is addressed in a fuzzy environment,
and three models were proposed. The set k-covering problem
guarantees coverage of each demand point at least k
times [17]. In [18], maximizing the demand points covered
at least twice was proposed as a secondary objective. In [19],
three models were proposed: a) gradual cover models, where
the covered demand depends on the proximity between the
facility and the demand point. b) Cooperative cover model,
which considers multiple facilities to address the demands
of each point. ¢) Variable radius model with coverage radius
depending on location cost. In [20], a continuous version
of a covering model was proposed, including risk. The
fuzzy concept introduces a degree of customer satisfaction
based on the covering radius. The model determines the
locations of facilities in a continuous space. In [21], the
coverage radius is a decision variable and not an exogenous
parameter of the model applied to the hub-covering problem.
In [22], deterministic equivalence was proposed to include the
uncertainty in the SCP based on an uncertainty distribution.

However, some applications consider servers with angular
covering, such as security cameras, where the angle defines
the image quality. This structure guarantees the coverage of
zones where the demand points are located and avoids cov-
ering unnecessary spaces where there are no demand points
or, when necessary, requires service to some geographic areas
(security cameras).

This angular covering structure is beneficial when the
cost is associated with establishing coverage. Therefore,
it is crucial to consider this structure to cover areas with
clustered demand points, leaving areas with no demand points
or minor importance uncovered. This extends the classical
SCP problem because, together with the location decision,
we consider an angular covering decision.

Figure 1 shows an example of an angular covering
structure. The nodes, shown in light gray circles, represent
the demand points. Squares represent the candidate locations
of a facility. The nodes where the facilities are located are
shown in dark grey. Servers are installed on the located
facilities and establish angular covering, represented by the
gray area covering the demand points. Instead of radial
coverage, three servers establish angular coverage from each
facility. One group is configured at 90°, 60°, and 45°, and
the other is configured at 30°, 45°, and 90°. By adopting this
innovative approach, we efficiently cover areas with demand
points, a significant advantage of the angular coverage
structure. A radial coverage structure also covers the demand
points; however, the area would be larger, covering zones
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without demand points, which would mean higher costs for
establishing coverage toward the same demand points.

Studies have addressed the location of security cameras
that adopt an angular covering structure. In [23], the authors
addressed the first two-dimensional (2D) angular covering
problem. The coverage area was divided into grids to be
covered. They proposed a covering model that minimizes
server installation costs by covering all grids. The model
includes a covering matrix that indicates whether the server
can cover the grid or not. Therefore, the model is identical
to the SCP model. They considered one server type and
multiple configurations, installing at most one server in each
grid centroid, including an angle-distance relationship. They
presented the optimization model. In [24], the authors studied
a three-dimensional (3D) angular covering problem. The
area was divided into grids, and the goal was to install the
minimum number of servers to obtain the most coverage
possible. They considered one server type and multiple server
configurations. The optimization model is not presented, but
they solve instances using a particle swarm optimization
algorithm. In [25], a 2D angular covering problem was
addressed by dividing the area into grids. They proposed an
extension of the maximal covering location problem (MCLP),
which includes a service-level component that guarantees a
given level of coverage. They also considered multiple server
types and configurations. The servers are installed at the grid
centroid, and the covering is cooperative; multiple servers
can cover a grid. The server type and configuration decisions
are based on an algorithm that includes server interferences.
In [26], a 2D angular covering problem was considered,
with the study area divided into grids. The objective is to
maximize grid coverage, regardless of the cost of installing
the servers, where the grids can be partially covered.
They considered multiple server types, configurations, and
up to eight possible positions. They did not present the
optimization model but solved instances with two different
algorithms. In [27], an angular covering problem in two
dimensions was presented where the coverage area was
divided into nodes. He proposed an angular covering model
for a problem called the angled maximal covering location
problem. It extends the MCLP with angular covering
characteristics. In addition, the objective function maximizes
coverage overlap. He considered multiple server types and
configurations with several coverage levels depending on the
day or night. He does not present a model for the problem but
solves instances using a genetic algorithm.

Several studies have proposed methods to improve the
computational time for solving SCP and their exten-
sions. In [28], the authors proposed diverse preprocessing
techniques for SCP with conflict constraints, where the
simultaneous selection of pairs of columns is prohibited.
These techniques include row and column reduction and
the introduction of valid inequalities. In [29], the presolving
methods for partial SCP are presented. The objective is to
minimize facility location costs while ensuring coverage of
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FIGURE 1. Example of the angular covering structure.

a specific number of demand points. In [30], a novel demand
point aggregation method was proposed that effectively
reduces the number of original demand points in covering
problems. This method is accurate and significantly reduces
computational costs in real-world location problems.

Exact methods, such as column generation, have been used
in addition to the preprocessing and heuristic approaches
mentioned above to solve location problems. The literature
emphasizes the development of efficient methodologies for
addressing covering problems using column generation.
In [31], a column generation method was proposed that
effectively solved the Maximal Covering Location Problem.
In [32], adecomposition approach was introduced to solve the
probabilistic maximal covering location-allocation problem,
leveraging column generation and covering graph techniques.
In [33], the authors presented a hybrid column generation
approach to address large-scale coverage programs, particu-
larly in transportation planning. In [34], the authors proposed
extensions of column generation applied to greedy heuristics
to address large-scale set covering problems.

Column generation is an effective method to solve com-
plex coverage problems. This approach involves generating
columns in each iteration to improve the solution quality.
The relaxed master problem selects a subset of the available
set of columns that converges to an optimal solution faster
than the original model. It achieves this without enumerating
all the columns but by generating only those considered
favorable [35].

This research contributes to relaxing the third SCP
assumption, leaving aside a radial covering structure to
propose an alternative angular covering design where the
facilities cover the specific zones that are the demand points
or groups of demand points. We propose a mathematical
formulation and model for the angular covering problem
in two dimensions as an extension of the SCP, where the
coverage area is represented by discrete demand points,
considering multiple server types and angles. The model
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determines the server type, location, configuration, and
installation position. In addition, it guarantees the coverage
of all demand points, minimizes the total cost (facility
and server), and allows the installation of multiple servers
per location. In addition, a column generation algorithm
is proposed to determine near-optimal solutions for the
addressed problem. We solve a set of medium/large instances
showing the performance of the model and the column
generation methodology. Finally, we solve a real case to
locate security cameras in Valparaiso, Chile.

The remainder of this paper is organized as follows.
In section II, we formulate the angular set covering problem
and present mathematical models considering an angular
covering structure. Section III presents the first approach
to column generation and the methodology based on it
to determine a feasible solution. Section IV describes
the computational experiments over the instance tests.
In Section V, we apply our approach to a case study on the
location of security cameras in Valparaiso, Chile. Finally,
in Section VI, we present our conclusions and suggestions
for future research. An outline of the acronyms used in this
paper is showed in Table 1.

TABLE 1. Summary of acronyms.

SCP set covering problem

MCLP maximal covering location problem
CVRP  capacitated vehicle routing problem
ACP angular set covering problem

CG column generation

Il. THE ANGULAR SET COVERING PROBLEM

This section presents the angular set covering problem (ACP).
The angular covering structure simultaneously considers
facility location and server installation decisions. Servers
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are installed in the facilities to establish the angular
covering.

The ACP minimizes facility location and server installation
costs, ensuring that at least one server covers each demand
point. This model is a powerful tool for locating facilities and
determining the server type, location, configuration (angle),
and position (orientation).

The assumptions of ACP indicate that the facilities are
selected from a set of candidate locations to be installed. The
servers are installed on the facilities; that is, to install servers
in a location, it is necessary to locate a facility. The covering
distance and angle of the servers are deterministic. Thus,
a demand point is covered if it is within the coverage area
of the server. Both facilities and servers are uncapacitated.
Therefore, facilities do not have a limit for installing servers,
and servers do not have a limit for covering demand points.
A demand point is served if it is covered by at least one
server. Without loss of generality, the server positions are
enumerated counterclockwise from the positive x-axis.

Fig. 2 shows the number of positions and their number. For
server configurations of 90°, 60°, 45°, and 30°, the number
of positions to install a server is 4, 6, 8, and 12, respectively.
The number of positions changes depending on the angle, but
they are numbered the same way up to cover 360°. When
the angle associated with the server configuration is large,
the number of positions is small. For example, there are four
possible positions in the 90° server configuration, whereas in
the 30° configuration, there are twelve possible positions.

Fig. 3 presents the two server types for the two configura-
tions. For simplicity, the difference between the servers is the
amount of covered area, which affects the covering distance
for the same configuration. Fig. 3(a) shows the servers for a
configuration of 90° where the covering distances are 11 and
16. Fig. 3(b) shows the same servers for a configuration
of 45°. The covering distance of each server with a 45°
configuration is greater than 90°, but the area covered is the
same for each server.

A. MATHEMATICAL FORMULATION

Let M be the set of demand points, indexed by i. N is the set
of candidate locations to locate a facility, indexed by j. T is
the server configuration set that defines the feasible covering
angles, indexed by t. For example T = {30°, 45°, 60°, 90°}.
P; is the set of positions for a server configuration ¢, e.g.,
Peopo = {1,2,3,4,5, 6}. Finally, S; is the set of server types
for a configuration ¢ with different coverage area, e.g., Sgoc =
{1, 2}, meaning that there are two types of servers that cover
60°, as Fig. 2 shows. A server is identified as a quadruplet
(t, s, p, J), which consists of configuration t where server type
s is installed at position p at location j. We define facility
location cost as gj, which represents the cost of locating a
facility at candidate location j. The server installation cost is
¢! and represents the cost of installing server type s adopting
server configuration ¢ for a determined facility. Finally, the
binary parameter o, f is one if demand point i is covered by

server (¢, s, p, j), and zero otherwise.
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The decision variables are:
w; = 1, if and only if a facility is placed at location j,
and O otherwise.
yf; = 1, if and only if a server (¢, s, p, j) is installed, and
0 otherwise.

The integer linear model for the ACP is given as follows:

min Zngj + ZZ Z ch A ey

JEN JEN teT peP; se$;

s.t. yﬁ“gwj, VieN,teT,peP,seS;, )
Z)ﬁ‘gl, VieN,teT,pePp,, (3)
SES;
SE S Td 1 vien, @
JeN teT peP; s€S;
wj€{0,1}, VjeN, ©)

“e{0,1}, VjeN,teT,peP;,secS,. (6)

jt

Objective function (1) minimizes the total costs. The
first term is the facility location costs, and the second is
the server cost. Constraints (2) allow the installation of
servers at locations where a facility is located. Constraints (3)
ensure that at most, one type of server is installed in
a position for a configuration considering each potential
facility. Constraints (4) guarantee that all the demand points
are covered by at least one server type. Constraints (5) and (6)
define the domain of the decision variables.

As the size of instances to solve through the ACP
model increases, the model can become intractable, requiring
extensive computation time to find the optimal solution or
obtain a low-quality feasible solution within a specified time
interval. We propose using a Column Generation algorithm
to address this challenge. This algorithm decomposes the
ACP model into a master problem and subproblems. This
approach aims to improve the performance of the algorithm,
particularly in solving large-sized instances efficiently. The
details of the column generation approach will be addressed
in the next section.

Ill. A COLUMN GENERATION APPROACH

This section introduces a column generation approach for
obtaining nearly optimal solutions for the ACP model. In the
proposed Column Generation (CG) algorithm, we define a
column as a combination of servers installed on a located
facility. The master problem chooses combinations, and the
subproblems are iteratively solved to propose new attractive
combinations of servers (f,p,s) to improve the value of
the master problem, allowing us to decompose the solution
process.

A. THE MASTER PROBLEM

First, we formulate the problem regarding facility location
and server combination decisions to obtain a mathematical
formulation suitable for column generation. This formulation
is called the following Master Problem.
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FIGURE 3. Covering angle-distance ratio for the 45° and 90° server configurations.

This formulation selects, if any, at most one server
combination per facility location from a set of possible server
combinations.

Table 2 provides an additional notation that facilitates this
reformulation.

TABLE 2. Additional notation for ACPMP,

Sets

Rj:  setof server combinations (¢, p, s) for the location j, indexed

by a.

Parameters

cf

«': cost of locating a facility at location j with the server com-

bination a.
0 1,if the demand point i is covered from location j with server

combination a, 0 otherwise.

Decision variables

S+ 1,if a facility is located at location j with the server combi-

nation a, 0 otherwise.

The master problem ACPM? is formulated as follows:
min Z Z it @)
JjenN aERj
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st D D8 = 1, VieM, )

JEN acR;

D=1 VjeN, ©)
aeR;

ff €10,1}, VjeN. (10)

Objective function (7) minimizes the total costs of the
network, which involves the cost of locating facilities and
installing a combination of servers. Constraints (8) ensure
the coverage of all demand points by at least one server
combination of the located facilities. Constraints (9) indicate
the possibility of selecting at least one server combination
per location, and constraints (10) define the domain of the
decision variables.

The CG algorithm, inspired by [36], optimally solves the
linear relaxation of the ACP model, offering a lower bound
for it. This lower bound is attainable by solving the relaxed
master problem ACPRM” using all possible columns. How-
ever, the CG algorithm includes only promising columns, thus
avoiding a complete enumeration.

First, the reduced master problem, that is, ACPMP with
only a subset of columns, is solved to obtain an initial solution
and dual variables associated with all constraints. Subse-
quently, in each iteration of the CG algorithm, subproblems
ACPjSP, based on the dual variables obtained in ACPRMP,
identify the most promising column for each location, which
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are added to the master problem if they have negative reduced
cost C]” This loop is repeated until no more columns with
negative reduced cost are found.

B. THE SUBPROBLEMS

Subproblems aim to generate new feasible columns for
each location j, so that the reduced cost is minimized.
A new column is accepted if the reduced cost is negative.
As mentioned previously, the dual variable values from
ACPRMP oyide the subproblems ACPJSP, toward better
columns for each location j. The notation for the subproblems
is presented in Table 3.

TABLE 3. Additional notation for ACPI?".

Parameters

0;:  Dual value associated to Constraint (8), Vi € M
Aj: Dual value associated to Constraint (9), Vj € N

Decision variables

zij: 1, if demand point i is covered from facility j, O otherwise

The subproblems ACPjSP are presented below:

min 6;' (11)
st > W =z VieM, (12)
(st,p,5)€Qi
D Vi<, VieT,per, (13)
ses
y]?f € {0,1}, ViteT,peP,seS,. (14)
z{;‘ e {0,1}, VieM (15)

The expression (11) minimizes the reduced costs of
facility-server configuration, which means adding a new
column for the relaxation master problem. Constraints (12)
ensures that at least one server configuration is selected if
a facility covers a demand point. Constraints (13) indicate
that, at most, one server type with the same configuration and
position can be selected. Constraints (14) and (15) specify the
domain of the decision variables.

The reduced costs 6]" are calculated according to the
ACPRMP 55 follows:

Cr=cf - (Zeﬂsg + Aj), (16)

ieM
However, to propose a new column, a and j are unknown;

we represent them in terms of ACP model variables (w;

facility location and y;’ configuration for a facility). Thus,

the reduced cost for a facility with a configuration is:

Cr=egmwi+2.> Dk _(Zel"s?ﬂrkf')’

teT peP; s€$; ieM
(17)
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In addition, the parameter 8;’]- of the ACPMP depends on the
values of the variables z;; of ACPSP(]') when a new column a
is added. This way, it can communicate with ACPMP whether
column a covers demand point i from location j. Thus, in the
next iteration, it selects at most one column per location and
as many columns as needed to cover all demand points. Then,
the reduced cost for each facility j:

G =g =M+ > D ey = > 0z (18)

teT peP; seS; ieM

v1(SPj) v2(SP))

Note that v{(SP;) is constant for each ACP.SP, that is,
facility j is located. If vi(SP;) + v2(SP;) < O, then the
exchange is considered beneficial, and a column is added
to the set ’Isj, which is updated by adding the column
newly generated by ACPSY. After performing this for all
subproblems, the ACPRMP] has new options to be selected in
the next iteration. These steps are repeated until no further
columns can be added, meaning that ACPryp has been
solved to optimality, thereby providing a lower bound for
ACPp\p. To find near-optimal solutions, that is, the upper
bounds for ACPyp, we solve the ACPMP with all columns
generated. Fig. 4 illustrates the CG algorithm.

A summary of the algorithm steps is as follows:

Step 1: Propose an initial feasible considering a subset of
combinations, ensuring that all demand points are
covered. Then, it goes to step 2.

Step 2: Solve ACPRMP_ calculating the value of dual vari-
ables 6; and A;. Then, it goes to step 3.

Step 3: Solve each ACPjSP considering the value of the dual
variables. Then, it goes to step 4.

Step 4: If the solution of subproblem ACPjSP is negative
(negative reduced cost), then a new column is
included in the list of new variables to add to the
master problem. Then, it goes to step 5.

Step 5: If the list of new variables to add to the master
problem is not empty, then go to Step 2. Otherwise,
it goes to Step 6.

Step 6: Solve ACPRMP_If the varaibles are integer, then the
algorithm finishes, obtaining the optimal solution.
Otherwise, it goes to step 7.

Step 7: Solve the ACPMP with all the added columns in
ﬁj. Then, the algorithm finishes obtaining a feasible
solution.

To provide the initial feasible combination for each
location, we install a server type that covers the largest area
in the minor configuration at all positions in each candidate
location. It guarantees the highest coverage from all facilities.

The results of solving the ACP model directly with CPLEX
and using the CG algorithm are discussed in Section IV.

IV. COMPUTATIONAL EXPERIENCE

This section describes the computational experiments we
performed with 43 sets of demand points, each including four
instances obtained by varying the parameters for each set.
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FIGURE 4. Column generation algorithm.

We coded and solved the ACP model and CG algorithm
using C++/CPLEX 20.0.1. We ran the tests on an AMD
Ryzen 7 5700G CPU with 16.0 GB of RAM and a Windows
11 operating system. We configured CPLEX to use only one
thread with a 1-hour time limit for solution computation.

A. TEST INSTANCES GENERATION

An ACP instance comprises demand points, potential facility
locations, server types, and server configurations. We sys-
tematically produce four instances for each set by leveraging
43 sets of demand points derived from established capacitated
vehicle routing (CVRP) instances (Christofides et al.; Fisher;
Golden et al.; Christofides and Eilon; Rochat and Taillard).
This process involves varying the instance parameters to
yield 172 instances. Table 4 outlines the instance generation
scheme and providees a comprehensive overview of the
parameter variations applied. The number of potential facility
locations depends on the number of demand points in the
set. In two instances, the number of locations is 20% of
the total number of points, whereas in the remaining two
instances, it is 50%. We consider either two or four server
types for each. Finally, all instances consider four server
configurations.

We generate the coordinates of the potential facility
locations following a uniform distribution. We link the
parameters of this distribution to the coordinates of each
set of demand points, ensuring the generated locations
are within the minimum and maximum limits along the
x- and y-axes. Consequently, the coordinates of the potential
locations are consistently distributed randomly within the
boundaries defined by the demand point coordinates. This
approach guarantees a spatial randomness that aligns with
the geographical context of demand points. We chose the
rest of the instance parameters to reflect real conditions with
broad ranges to evaluate the behavior of the ACP model and
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A CPJ.SP have

reduced costs?

( The solution
obtained by
the ACPEMP jg
integer?

TABLE 4. Instance generation scheme.

Parameter Values Description

IN| 72 -483 Total number of demand points in
the set

|M| 0.2|N|,0.5|N| Total number of potential facility
locations

|S] 2,4 Total number of server types (with
different covering distance)

|T| 4 Total number con server configura-

tion (30°, 45°, 60°, and 90°)

CG algorithm in different scenarios, including simple and
complex coverage scenarios, ensuring that the instances are
representative.

The 172 instances are grouped according to the num-
ber of demand points to make the analysis more man-
ageable. The grouping results are listed in Table 5.
As shown in the first column, five groups are obtained
based on demand points. The second column shows
the range, and the third column presents the number
of instances in that range. The generated instances are
available at https://github.com/fredyandres73/The-Angular-
Set-Covering-Problem.

As expected, increasing the number of demand points
also increases the time required to solve each instance.
Section IV-C shows this trend.

B. BENEFIT OF THE ANGULAR COVERING STRUCTURE

The angular coverage structure adopted by the ACP has
advantages over a radial coverage structure, primarily
because the area covered to meet the demand is minor.
In addition, the radial coverage assumption is only sometimes
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FIGURE 5. Optimal solution for an instance composed of 72 demand points and 14 locations for ACP and SCP.

TABLE 5. Instance grouping based on the number of demand points.

Group Demand points interval — Instances
1 72-99 28
2 100-199 60
3 200-299 24
4 300-399 36
5 400-483 24

valid in the surveillance context. The same happens if the
problem is to locate directional communication antennas to
cover demand.

Fig. 5 presents both coverage structures for the same
instance, composed of 72 demand points, 14 potential
locations, two server types, and four server configurations.

For comparison, we assume that the cost of facility location
is the same. In contrast, the server installation cost for
the SCP is equivalent to installing all the servers needed
to cover the 360° in the ACP; for example, four servers
with a 90° configuration are installed in each position. The
area covered by a radial coverage structure is more than
twice that covered by an angular coverage structure covering
the same demand points. Therefore, radial coverage creates
unnecessary coverage in spaces with no demand. It is critical
to avoid covering spaces with no demand when the cost is
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associated with establishing coverage. In particular, when
analyzing the total implementation cost, there is an increase,
for this instance, of more than 20%. In addition, we note
that there are areas where double coverage is established,
which increases network robustness in the event of a server
failure.

C. TEST INSTANCES RESULTS

We compare the performance of the ACP model and CG
algorithm for solving all the test instances. If, by reaching the
time limit, the ACP model or CG algorithm is still in progress,
we can save the best integer solution attained up to that point.
This approach ensures a systematic, time-controlled model
and algorithm performance evaluation.

The results for each group are presented below. Table 6
presents the results for group 1, which includes 28 instances
of 72-99 demand points. The first column displays the dataset
and instance, whereas the second, third, and fourth columns
show the optimal value, Obj; solution time, T; and optimality
gap, OptGap, obtained when solving the ACP model using
CPLEX. The fifth and sixth columns display the optimal
value, Objcg, and the time required to solve the relaxed
master problem in the CG algorithm, Tcg. If their solution
is an integer, solving the ACPMP g unnecessary; therefore,
Objip = Objcg. The seventh and eighth columns indicate
the optimal value, Objp, and time for solving the integer
master problem in the column generation algorithm, Typ. The
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TABLE 6. ACP model and CG algorithm comparisons for group 1.

ACP model CG algorithm
# Ob_] T (5) OptGap (%) ObjCG TCG (b) Objlp TIP (5) Gapcc, (%) Gap (%)
1.1 20,027 0.2 0.0 *20,027.0 3.1 20,027 0.00 0.0 0.0
1.2 19,180 0.3 0.0 19,1610 1.5 19,180 0.03 0.1 0.0
1.3 19,059 9.0 0.0 *19,059.0 94 19,059 0.00 0.0 0.0
1.4 18,514 14.4 0.0 18,505.0 1.9 18,530 0.03 0.1 0.1
2.1 29,208 0.1 0.0 *29,208.0 1.1 29,208 0.00 0.0 0.0
22 27,793 0.4 0.0 *27,7193.0 14 27,793 0.00 0.0 0.0
23 29,179 1.0 0.0 29,1580 23 29,283 0.05 0.4 0.4
2.4 27,672 1.3 0.0 27,627.5 2.2 27,678 0.03 0.2 0.0
3.1 20,070 0.1 0.0 *20,070.0 0.8 20,070 0.00 0.0 0.0
32 18,768 0.2 0.0 18,767.5 0.7 18,768 0.02 0.0 0.0
33 19,847 0.4 0.0 19,7705 23 19,847 0.03 0.4 0.0
34 18,650 2.1 0.0 *18,650.0 1.5 18,650 0.00 0.0 0.0
4.1 29,750 0.1 0.0 *29,750.0 2.3 29,750 0.00 0.0 0.0
42 21,120 0.2 0.0 *21,120.0 3.6 21,120 0.00 0.0 0.0
4.3 28,934 24 0.0 259320 42 29,466 0.11 12.0 1.8
4.4 20,309 4.5 0.0 20,290.8 4.5 20,338 0.05 0.2 0.1
5.1 26,602 0.0 0.0 *26,602.0 0.3 26,602 0.00 0.0 0.0
5.2 18,538 0.2 0.0 *18,538.0 0.7 18,538 0.00 0.0 0.0
5.3 20,034 0.3 0.0 *20,034.0 1.7 20,034 0.00 0.0 0.0
54 18,538 1.6 0.0 *18,538.0 1.2 18,538 0.00 0.0 0.0
6.1 40,898 0.6 0.0 40,805.8 3.8 41,215 0.15 1.0 0.8
6.2 23,771 0.3 0.0 *23,771.0 5.6 23,771 0.00 0.0 0.0
6.3 34,058 47.5 0.0 *34,058.0 114 34,058 0.00 0.0 0.0
6.4 23,771 7.3 0.0 23,612.5 14.6 23,935 0.14 1.3 0.7
7.1 40,339 0.3 0.0 40,213.8 4.8 40,341 0.09 0.3 0.0
72 30,404 0.6 0.0 *30,404.0 59 30,404 0.00 0.0 0.0
7.3 39,634 413 0.0 39,5825 5.1 39,659 0.07 0.2 0.1
7.4 25,132 24 0.0 *25,132.0 16.0 25,132 0.00 0.0 0.0
Avg - 5.0 0.0 - 4.1 - 0.03 0.6 0.1

* The optimal solution of the ACPRM? is integer. ** The CG algorithm has reached the time limit.

ninth column indicates the gap between the optimal value
obtained by the relaxed master problem and the integer master
problem, Gapcg, which is computed as:

Objip — Objcc
Objp

Finally, the tenth column shows the gap between the best

solution found by the ACP model, Obj, and the best integer

solution found by the CG algorithm, Objp, calculated as
follows:

Gapce = (19)

Objip — Obj
Objip

A positive value indicates that, on average, the ACP model
yields better solutions. Conversely, a negative value means
that the CG algorithm, on average, outperforms the ACP
model by providing better solutions compared to the best
integer solution.

The ACP model finds optimal solutions for all group
instances within the time limit, whereas the CG algorithm
finds optimal solutions in 19 instances. The performance gap

Gap (20)
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between the ACP model and the CG algorithm is remarkably
small, with the most significant difference not exceeding
2%. There are differences in the solution times. Depending
on the instance, either the ACP model or CG algorithm
is faster. However, the average CG time of 4.1 seconds
is less than that of the ACP model solution time of
5 seconds.

Table 7 presents the results for group 2, which consisted of
60 instances with 100-199 demand points.

The ACP model finds optimal solutions in 57 instances
within the given time limit, whereas the CG algorithm
finds optimal solutions in 40 instances. For the remaining
instances, the CG algorithm demonstrates its competitive-
ness, with a performance gap of less than 3% compared to
the solution obtained by the ACP model. It is possible to
find instances in which the solution obtained through the
CG algorithm is better than that of the ACP model by 5%.
Regarding the solution times, while some instances solved
through the ACP model reached the time limit, the longest CG
algorithm time is 132 seconds (instance 22.4). On average,
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TABLE 7. ACP model and CG algorithm comparisons for group 2.

ACP model CG algorithm
# Ob_] T (S) OptGap (%) ObjCG Tco (S) Objlp Tip (S) GapCG (%) Gap (%)
8.1 52,680 0.4 0.0 *52,680.0 6.0 52,680 0.00 0.0 0.0
8.2 34,787 1.1 0.0 *34,787.0 8.7 34,787 0.00 0.0 0.0
8.3 44,055 10.5 0.0 44,0225 193 44,068 0.11 0.1 0.0
8.4 34,106 133 0.0 33,9522 238 34,132 0.23 0.5 0.1
9.1 37,876 0.0 0.0 *37,876.0 1.2 37,876 0.00 0.0 0.0
9.2 22,930 0.3 0.0 *22,930.0 4.2 22,930 0.00 0.0 0.0
9.3 30,867 1.1 0.0 *30,867.0 5.0 30,867 0.00 0.0 0.0
9.4 22,170 20.3 0.0 *22,170.0 6.7 22,170 0.00 0.0 0.0
10.1 30,648 0.2 0.0 *30,648.0 3.6 30,648 0.00 0.0 0.0
10.2 28,294 0.7 0.0 25,1727 3.0 29,049 0.04 13.3 2.6
10.3 30,613 5.5 0.0 *30,613.0 12.5 30,613 0.00 0.0 0.0
104 21,754 5.9 0.0 *21,754.0 21.0 21,754 0.00 0.0 0.0
11.1 39,061 0.2 0.0 *39,061.0 2.3 39,061 0.00 0.0 0.0
11.2 23,018 0.1 0.0 *23,018.0 5.1 23,018 0.00 0.0 0.0
11.3 30,587 1.8 0.0 30,495.0 6.5 30,653 0.08 0.5 0.2
11.4 22,036 2.7 0.0 22,003.7 13.1 22,058 0.08 0.2 0.1
12.1 28,825 0.3 0.0 *28,825.0 1.2 28,825 0.00 0.0 0.0
12.2 19,716 0.1 0.0 *19,716.0 3.3 19,716 0.00 0.0 0.0
12.3 21,819 8.9 0.0 *21,819.0 4.0 21,819 0.00 0.0 0.0
12.4 19,682 28.7 0.0 *19,682.0 5.9 19,682 0.00 0.0 0.0
13.1 38,841 0.3 0.0 *38,841.0 5.7 38,841 0.00 0.0 0.0
13.2 22,438 0.3 0.0 *22,438.0 79 22,438 0.00 0.0 0.0
13.3 32,161 14.7 0.0 *32,161.0 16.6 32,161 0.00 0.0 0.0
13.4 22,438 3.8 0.0 *22,438.0 234 22,438 0.00 0.0 0.0
14.1 9,384 0.0 0.0 *9,384.0 0.3 9,384 0.00 0.0 0.0
142 9,052 0.0 0.0 *9,0520 04 9,052 0.00 0.0 0.0
14.3 9,384 0.0 0.0 *9,384.0 0.5 9,384 0.00 0.0 0.0
14.4 9,052 0.1 0.0 *9,052.0 1.1 9,052 0.00 0.0 0.0
15.1 39,440 0.1 0.0 *39,440.0 1.3 39,440 0.00 0.0 0.0
152 37,427 0.5 0.0 34,207.0 23 37,546 0.04 8.9 0.3
15.3 39,440 1.1 0.0 *39,440.0 3.1 39,440 0.00 0.0 0.0
15.4 30,221 39.2 0.0 *30,221.0 4.6 30,221 0.00 0.0 0.0
16.1 30,218 0.2 0.0 *30,218.0 3.3 30,218 0.00 0.0 0.0
16.2 21,505 0.7 0.0 *21,505.0 3.5 21,505 0.00 0.0 0.0
16.3 29,353 17.7 0.0 29,2545 6.2 29,353 0.06 0.3 0.0
16.4 20,284 83.9 0.0 *20,284.0 5.3 20,284 0.00 0.0 0.0
17.1 71,801 0.6 0.0 68,531.0 129 72,886 0.63 6.0 1.5
17.2 53,085 1.6 0.0 52,8146 9.0 53,586 0.46 1.4 0.9
17.3 63,957 3,600.0 53 63,867.0  38.2 63,957 0.19 0.1 0.0
17.4 45,410 3,164.1 0.0 45,005.8  53.1 45,928 1.33 2.0 1.1
18.1 38,353 0.4 0.0 35,5200 44 38,640 0.04 8.1 0.7
18.2 22,022 0.3 0.0 *22,022.0 4.5 22,022 0.00 0.0 0.0
18.3 37,703 89.8 0.0 34,745.0 13.3 38,222 0.08 9.1 1.4
18.4 22,022 4.1 0.0 *22,022.0 9.8 22,022 0.00 0.0 0.0
19.1 48,324 0.1 0.0 *48,324.0 2.7 48,324 0.00 0.0 0.0
19.2 37,222 4.0 0.0 32,833.0 44 38,123 0.04 13.9 24
19.3 39,932 16.0 0.0 *39,932.0 4.2 39,932 0.00 0.0 0.0
194 30,267 309.1 0.0 30,200.8 8.0 30,280 0.07 0.3 0.0
20.1 45,905 0.5 0.0 *45,905.0 4.1 45,905 0.00 0.0 0.0
20.2 36,720 1.3 0.0 33,307.3 44 37,686 0.06 11.6 2.6
20.3 40,805 103.9 0.0 *40,805.0 4.6 40,805 0.00 0.0 0.0
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TABLE 7. (Continued.) ACP model and CG algorithm comparisons for group 2.

204 30,770 762 0.0 30,599.5
21.1 45982 0.1 0.0 %45,082.0
212 30436 0.6 0.0 %30,436.0
21.3 38971 22 0.0 %38,971.0
214 30212 729 0.0 %30,212.0
22.1 92,062 479 0.0 87,596.1
222 57812 372 0.0 57,556.9
223 83,549  3,600.0 12.6 78,380.2
224 58,140  3,600.0 25.4 54,5515
Avg - 250.0 0.7 -

7.6 31,357 0.12 24 1.9
43 45,982 0.00 0.0 0.0
13.5 30,436 0.00 0.0 0.0
12.5 38,971 0.00 0.0 0.0
28.2 30,212 0.00 0.0 0.0
25.5 93,325 5.31 6.1 14
20.0 58,445 1.09 1.5 1.1
60.9 79,104 0.71 0.9 -5.6
71.6 59,028 59.77 7.6 1.5
11.1 - 1.18 1.6 0.2

* The optimal solution of the ACP®" is integer. ** The CG algorithm has reached the time limit.

TABLE 8. ACP model and CG algorithm comparisons for group 3.

ACP model CG algorithm
# Obj T (s) OptGap (%) Objcc Tca () Objp Tip (s) Gapcg (%) Gap (%)
23.1 93,530 40 0.0 93,042.7 147 94,638 1.35 1.7 1.2
23.2 58,618 102 0.0 58,287.1 23.7 59,364 1.64 1.8 1.3
23.3 85,342 3,600 16.2 80,802.8  30.2 86,993 29.89 7.1 1.9
23.4 57,272 3,600 24.7 51,687.3  76.1 51,862 0.36 0.3 -10.4
24.1 108,337 9 0.0 108,136.0 32.2 109,406 1.84 1.2 1.0
24.2 72,487 2,011 0.0 71,217.9  20.8 74,213 21.24 4.0 2.3
24.3 99,826 3,600 234 92,821.7  49.0 94,647 2.87 1.9 -5.5
244 70,831 3,600 31.7 66,837.0  29.1 74,401 183.15 10.2 4.8
25.1 82,649 2 0.0 82,046.7  28.9 83,165 0.55 1.3 0.6
25.2 54,551 13 0.0 54,529.2 389 54,592 0.24 0.1 0.1
25.3 73,816 3,600 8.7 *73,816.0 71.8 73,816 0.00 0.0 0.0
254 47,174 3,600 35 47,058.6  92.9 47,315 0.73 0.5 0.3
26.1 147,411 9 0.0 147,109.0 23.4 152,238 43.67 34 3.2
26.2 94,976 217 0.0 94,281.6  39.6 96,607 5.87 2.4 1.7
26.3 133,921 3,600 12.3 130,587.0 41.3 137,655 266.66 5.1 2.7
26.4 94,476 3,600 22.7 89,400.2  49.1 89,612 0.69 0.2 -5.4
27.1 85,361 7 0.0 81,770.1 28.2 87,281 8.04 6.3 2.2
27.2 50,322 18 0.0 50,252.0 425 50,520 0.28 0.5 04
27.3 77,888 3,600 25.5 74,700.5  46.3 78,680 48.52 5.1 1.0
27.4 49,069 3,600 5.5 48,891.8 114.1 49,152 1.30 0.5 0.2
28.1 124,528 156 0.0 120,612.0 444 127,290 211.12 5.2 2.2
28.2 81,601 841 0.0 81,1254  49.1 81,914 2.95 1.0 04
28.3 110,828 3,600 21.1 103,480.0 136.8 113,246 464.93 8.6 2.1
28.4 80,707 3,600 314 74,3284  47.0 83,021 401.45 10.5 2.8
Avg - 1,943 9.5 - 48.8 - 70.81 3.3 0.5

* The optimal solution of the ACP*™P is integer. ** The CG algorithm has reached the time limit.

the ACP model takes 250.0 seconds to solve, whereas the
CG algorithm finds solutions with objectives 0.2% above in
12.3 seconds.

Table 8 presents the results for group 3, which consists of
24 instances of 200-299 demand points.

The ACP model determines the optimal solutions in
12 instances. However, the CG algorithm does not find
optimal solutions for any instance. Nevertheless, their gap
compared to the model is not higher than 3.2%. For instances
in which the ACP model does not find optimal solutions,
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the CG algorithm takes advantage. It improves the solution
quality obtained by the ACP model by up to 10% (instance
23.4). While the ACP model reaches the time limit in 12 out
of 20 instances, the CG algorithm finds its best integer
solution in 602 seconds at most (instance 28.3). On average,
the ACP model takes 1,943 seconds to solve, whereas the
CG algorithm finds solutions with objectives 0.5% above in
119.6 seconds.

Table 9 presents the results for group 4, which consist of
36 instances of demand points between 300-399.

87191



IEEE Access

F. Barriga-Gallegos et al.: The Angular Set Covering Problem

TABLE 9. ACP model and CG algorithm comparisons for group 4.

ACP model CG algorithm
# Ob_] T (S) OptGap (%) ObjCG TCG (b) Objlp TIP (5) Gapcc, (%) Gap (%)
29.1 93,568 119 0.0 89,408.0 47.0 95,441 183.20 6.3 2.0
29.2 65,277 204 0.0 64,342.6 412 66,118 1.56 2.7 1.3
293 85,402 3,600 20.6 84,9354 753 85,881 4.95 1.1 0.6
29.4 63,339 3,600 28.3 60,562.1  60.1 63,597 3.11 4.8 0.4
30.1 175,190 12 0.0 174,854.0 70.6 176,329 3.26 0.8 0.6
30.2 117,001 1,277 0.0 113,922.0 85.0 119,696 174.71 4.8 23
30.3 172,433 3,600 22.0 161,167.0 82.0 169,413 3,413.32 4.9 -1.8
30.4 116,582 3,600 27.7 105,709.0 89.6 114,056 531.22 7.3 -2.2
31.1 133,802 84 0.0 133,601.0 68.8 134,801 2.77 0.9 0.7
312 93,769 3,600 0.8 92,5543  48.6 95,573 18.10 32 1.9
31.3 138,425 3,600 27.7 124,685.0 57.1 130,819 21647 4.7 -5.8
314 101,707 3,600 36.8 85,8824 735 90,761 507.36 54 -12.1
321 98,368 17 0.0 97,897.7 572 99,536 4.54 1.6 1.2
322 62,699 474 0.0 62,799.2 759 62,887 0.64 0.1 0.3
323 97,484 3,600 19.6 93,916.5 1459 99,711 432.23 5.8 22
324 62,189 3,600 15.3 60,423.7 86.3 63,663 9.68 5.1 23
33.1 98,317 6 0.0 98,374.0 65.6 98,374 0.24 0.0 0.1
33.2 75,955 2,363 0.0 75,717.6 849 76,504 3.15 1.0 0.7
333 97,963 3,600 20.8 96,066.3  79.9 100,051 56.01 4.0 2.1
334 21,944 303 0.0 *21,944.0 644 21,944 0.00 0.0 0.0
34.1 153,296 554 0.0 149,514.0 493 156,617 407.27 4.5 2.1
342 97,710 3,600 8.5 94,671.2 722 100,270 131.81 5.6 2.6
343 150,388 3,600 30.0 134,057.0 759 142,678 1,003.75 6.0 -5.4
34.4 103,218 3,600 29.2 91,659.2 1159 94,460 29.83 3.0 -9.3
35.1 110,848 19 0.0 110,336.0 56.1 111,463 0.60 1.0 0.6
352 68,083 92 0.0 67,7053 795 68,487 1.20 1.1 0.6
353 94,805 3,600 8.6 94,209.2  168.1 95,427 5.58 1.3 0.7
354 66,675 3,600 16.5 66,338.1 142.2 66,644 0.88 0.5 0.0
36.1 215,812 590 0.0 214,770.0 87.6 219,242 403.53 2.0 1.6
36.2 139,566 1,658 0.0 138,760.0 116.9 144,940 699.73 43 3.7
36.3 207,184 3,600 20.8 191,143.0 111.0 199,590 1,900.17 4.2 -3.8
36.4 143,393 3,600 274 128,615.0 152.1 135,259 638.12 4.9 -6.0
37.1 121,139 204 0.0 120,235.0 73.1 122,977 21.60 2.2 1.5
37.2 82,164 3,600 7.9 78,048.6 619 84,686 149.28 7.8 3.0
373 120,336 3,600 25.0 109,601.0 97.3 116,523 619.61 5.9 -33
374 82,496 3,600 21.3 72,9782  99.0 77,283 93.09 5.6 -6.7
Avg - 2,222 11.5 - 83.8 - 324.24 35 -0.6

* The optimal solution of the ACP®™" is integer. ** The CG algorithm has reached the time limit.

The ACP model finds optimal solutions in 16 instances
within the time limit, whereas more than 20 instances
have optimality gaps that reach more than 30% in some
instances. The CG algorithm matches one optimal solution
found by the ACP model. It also provides better solu-
tions than the ACP model in 10 instances, improving the
quality of the solutions by up to 13% (instance 31.4).
Regarding solution times, the ACP model reaches the
solution time limit in more than half of the instances.
In contrast, the average solution time of the CG algorithm
is close to 408 seconds. On average, the ACP model
takes 2,222 seconds to solve, whereas the CG algorithm
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finds solutions in 408 seconds, improving their quality
by 0.6%.

Table 10 presents results for 24 instances with 400-483
demand points in group 5.

The ACP model finds optimal solutions in only four
instances within the time limit, and the other 20 instances
have an optimality gap of 42%. The CG algorithm consis-
tently outperforms the ACP model, finding better solutions
in 11 instances. This improvement in solution quality is
significant, with the CG algorithm enhancing the quality
of the solutions obtained by up to 30% (instance 42.4).
Regarding the solution times, the CG algorithm demonstrates
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TABLE 10. ACP model and CG algorithm comparisons for group 5.

ACP model CG algorithm
# Obj Time (s) OptGap (%) Objca Timecg (s)  Objip Timewp (s)  Gapcg (%) Gap (%)
38.1 166,835 51 0.0 166,736.0 77.7 167,370 0.95 0.4 0.3
38.2 110,118 3,600 6.8 106,742.0 102.6 119,908 **3.497.45 11.0 8.2
38.3 177,603 3,600 324 149,052.0  100.8 162,438 *%3 49924 8.2 93
38.4 108,392 3,600 22.9 100,913.0 2494 110,678 2,154.78 8.8 2.1
39.1 125,646 542 0.0 124,488.0 64.5 128,365 108.57 3.0 2.1
39.2 78,985 3,600 8.4 78,526.2 1379 79,177 5.04 0.8 0.2
39.3 115,989 3,600 27.0 109,655.0 160.6 111,768 28.30 1.9 -3.8
394 78,472 3,600 17.2 77,394.1  286.9 78,236 12.42 1.1 -0.3
40.1 191,795 3,600 1.8 186,936.0 65.0 199,364 *%3 53498 6.2 3.8
40.2 119,610 3,600 15.9 113,502.0 112.5 124,181 2,202.23 8.6 3.7
40.3 183,177 3,600 29.9 164,177.0 128.3 173,690 **3.471.68 5.5 -5.5
40.4 135,452 3,600 30.6 108,521.0 180.6 114,771 264.69 5.4 -18.0
41.1 268,017 85 0.0 266,976.0 157.1 270,262 128.21 1.2 0.8
41.2 170,538 3,600 11.0 163,958.0 152.7 179,519 **3 44734 8.7 5.0
41.3 252,171 3,600 28.0 230,842.0 171.9 242,543 *#3428.15 4.8 -4.0
414 184,040 3,600 342 152,110.0 169.1 165,265 *%3.430.93 8.0 -11.4
421 193,504 387 0.0 189,702.0 106.3 198,472 733.22 44 2.5
42.2 132,113 3,600 10.3 128,001.0 139.0 135,644 783.21 5.6 2.6
42.3 202,547 3,600 32.8 175,598.0 136.5 187,660 **3463.53 6.4 -7.9
424 159,922 3,600 42.2 117,011.0 222.6 122,271 271.58 4.3 -30.8
43.1 149,895 3,600 2.1 142,015.0 108.5 154,155 *%3.491.50 7.9 2.8
43.2 89,316 3,600 6.5 88,905.3  181.6 90,249 8.85 1.5 1.0
43.3 143,532 3,600 30.1 131,939.0 256.0 139,678 2,671.27 5.5 -2.8
434 95,905 3,600 21.2 86,1909  204.0 89,331 44.68 3.5 -7.4
Avg - 3,044 17.1 - 153.0 - 1,695.12 5.1 2.7

* The optimal solution of the ACP*™" is integer. ** The CG algorithm has reached the time limit.

its efficiency by reaching the time limit in only nine
instances, compared to the ACP model in 20 instances.
On average, the CG algorithm significantly outperforms the
ACP model, finding solutions in 1,848 seconds compared
to the ACP model with 3,044 seconds. This represents a
2.7% improvement in solution quality. As seen in the results
per group, the CG algorithm takes advantage of the ACP
model when the size of the instances to be solved increases.
Table 11 provides an average comparison between the ACP
model and CG algorithm for all the instances. The first and
second columns denote the group and quantity of instances,
respectively. Subsequently, the third and fourth columns
present the average solution time and average optimality gap
for the ACP model solved using CPLEX. The fifth and sixth
columns show the average solution time and the average gap
of the CG algorithm compared with the best integer solution
obtained by the ACP model. As shown in Tables 6 to 10,
the solution provided by the CG algorithm is better if it is
negative.

On average, no significant differences are observed in
group 1. However, as the size of the instances to be
solved increases, the solution quality and computational time
differences increase. The CG algorithm achieves reductions
of 93%, 89%, 79%, and 37% in the solution time compared
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to the ACP model for groups 2, 3, 4, and 5, respectively.
Regarding solution quality, the average gap between the
solutions obtained by the CG algorithm and ACP model
is less than 1% in groups 1, 2, and 3. This suggests that,
on average, the quality of the solutions obtained by the
CG algorithm is nearly equivalent to that obtained by the
ACP model. For groups 4 and 5, the CG algorithm finds
better solutions than those obtained by the ACP model. The
computation times are significantly lower, particularly for the
most challenging groups. In addition, better-quality solutions
are possible, which is promising for solving even larger
instances, such as real cases.

We also address real case-solving instances for locating
surveillance security cameras in Valparaiso, Chile. Those
results are discussed in section V.

V. THE CASE OF VALPARAISO, CHILE

Valparaiso is a city port in Chile, the capital of the province
and the Region of Valparaiso. It is the seat of the Chilean
legislature and home of the Chilean Navy. Valparaiso has
a population of approximately 300,000 and is considered a
world heritage site. It is known for its steep funiculars and
colorful houses on the hills. In 2003, the historic quarter of
Valparaiso was declared a UNESCO World Heritage Site.
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TABLE 11. ACP model and CG algorithm comparisons per group.

ACP model CG algorithm

Group Instances Avg Time (s) Avg OptGap (%) Avg Time (s) Avg Gapce (%) Avg Gap (%)
Group 1 28 5.0 0.00 4.1 0.6 0.1

Group 2 60 250.0 0.72 12.2 1.6 0.2

Group 3 24 1,942.7 9.45 119.6 33 0.5

Group 4 36 2,221.6 11.53 408.0 35 -0.6

Group 5 24 3,044.4 17.14 1,848.1 5.1 -2.7

Avg - 1,248.9 6.4 364.89 25 -0.3

Our focus is on the critical task of locating cameras to
establish surveillance coverage across the city. This implies
defining geographical demand points that require effective
coverage. Our goal is to improve the placement of cameras to
enhance the effectiveness of the surveillance systems. We will
consider the installation cost, coverage distance, and viewing
angle to optimize the placement of the cameras. This will
contribute to the safety and security of the city.

A. THE CASE OF VALPARAISO INSTANCES GENERATION
A unique set of 1,000 demand points has been created
throughout the city. Each demand point represents a geo-
graphic location that needs to be covered by at least
one surveillance camera. Fig. 6 shows the demand points
distribution in Valparaiso.

The potential locations of the facility are part of the demand
point set. If a facility is placed at a demand point, it must
be covered by a camera belonging to the other facility. The
selection of this potential facility subset is random, ensuring
that all demand points could be covered from at least one
facility location. We use the scheme presented in Table 4
to create instances that incorporate cases where all demand
points are potential locations.

Table 12 details the 12 instances for Valparaiso city.
The first column details the instance number identification,
while the second column indicates the number of demand
points, which is the same for all. The third column shows
the number of potential facility locations available. The
fourth column lists the number of available server types. The
fifth column displays the number of server configurations
available, considering 30°, 45°, 60° and 90° for the case with
four configurations, including 120° and 180° for the case with
six configurations.

The objective is to cover all demand points while minimiz-
ing the cost of locating facilities and installing servers. All
costs are in dollars. As each server type covers a fixed area,
decreasing the covering angle increases the covering distance,
maintaining the area covered. Therefore, each server type has
a fixed installation cost at a larger covering angle (and shorter
distance), which increases as the angle decreases (allowing it
to reach larger distances). The cost increase is proportional to
the increase in coverage distance.
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TABLE 12. Description of Valparaiso instances.

Instance Demand Candidate Server Server
points Locations types configurations
Valp-1 1,000 200 2 4
Valp-2 1,000 200 2 6
Valp-3 1,000 200 4 4
Valp-4 1,000 200 4 6
Valp-5 1,000 500 2 4
Valp-6 1,000 500 2 6
Valp-7 1,000 500 4 4
Valp-8 1,000 500 4 6
Valp-9 1,000 1,000 2 4
Valp-10 1,000 1,000 2 6
Valp-11 1,000 1,000 4 4
Valp-12 1,000 1,000 4 6

B. VALPARAISO RESULTS

We compare the solutions of the Valparaiso case by directly
solving each instance with the ACP model and the CG
algorithm. The results for the case study of Valparaiso are
presented in Table 13 considering the 1-hour time limit.
The information is presented using the same notation in
Section IV-C. However, the first column now reports the
number of variables for the ACP model (Vars) and the number
of columns generated for the CG algorithm (Cols). This
measure helps to understand the problem size in terms of the
number of variables. Remember that the generated columns
in the CG algorithm are variables for the ACPRMP,

The average OptGap reaching is 46% for the ACP model,
while for the CG, it is 20.3%, considering the time limit. Note
that Tcg is solved for an average of 798 seconds, using the
remaining time of 3,600 seconds to obtain a feasible solution
through ACPMP. Comparing Gapcg with OptGap across all
instances reveals consistently lower values favoring the CG
algorithm.

The results reveal distinct trends. Considering the 200 can-
didate locations, instances from Valp-1 to Valp-4 exhibit
no significant differences. On average, the CG algorithm
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FIGURE 6. Demand points of Valparaiso city.

TABLE 13. ACP model and CG algorithm comparisons for Valparaiso instances.

ACP model CG algorithm
# Vars Obj Time (s) OptGap (%) Cols  Objcg Timecg (s) Objip Timerp (s) Gapcg (%) Gap (%)
Valp-1 12,200 536,970 3,600 14.4 5,080 474,066.9 354.6 542,828 3,245 12.7 1.1
Valp-2 14,200 542,383 3,600  20.3 5,179 472,680.0 312.5 546,916 3,288 13.6 0.8
Valp-3 24,200 381,426 3,600 34.0 5,068 298,570.0 320.3 367,800 3,280 18.8 -3.7
Valp-4 28,200 378,590 3,600 36.2 4,955 297,892.0 356.9 374,367 3,243 20.4 -1.1
Valp-5 30,500 580,494 3,600 44.0 6,762 415,564.3 543.0 520,950 3,057 20.2 -11.4
Valp-6 35,500 590,214 3,600  50.2 6,958 414,020.0 661.9 523,147 2,938 20.9 -12.8
Valp-7 60,500 393,569 3,600  46.7 7,353 281,724.0 851.0 364,358 2,749 22.7 -8.0
Valp-8 70,500 437,533 3,600 55.4 7,291 280,929.0 838.8 359,727 2,761 21.9 -21.6
Valp-9 61,000 625,763 3,600 56.3 8,133 396,877.0 1,117.3 505,168 2,483 21.4 -23.9
Valp-10 71,000 842,232 3,600  69.2 8,328 395,851.0 1,140.1 503,389 2,460 21.4 -67.3
Valp-11 121,000 486,528 3,600  59.0 9,681 273,591.0 1,492.5 361,172 2,108 24.2 -34.7
Valp-12 141,000 522,290 3,600  66.5 9,977 272,815.0 1,589.2 364,178 2,011 25.1 -43.4
Avg - - 3,600 46.0 - - 798.2 - 2,802 20.3 -18.8

enhances the solution quality obtained by the ACP model
by 0.7%, with improvements of 3.7%. More significant
differences in solution quality are observed for instances from
Valp-5 to Valp-8, with 500 candidate locations, where the CG
algorithm achieves an average improvement of 13.5% of the
gap. Significant differences are observed for instances Valp-9
to Valp-12, where all demand points are candidate locations.
The CG algorithm improves the gap by an average of 42.3%.
The result obtained in one of the most challenging instances
(Valp-10) shows that the CG algorithm has asignificant
advantage over the ACP model, enhancing the best solution
by 67.3%.
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As shown in the table 13, for all instances, the number
of variables in the ACP model is considerably higher than
the number of columns generated by the CG algorithm.
This significant reduction in the number of variables leads
to smaller and easier models to solve. Consequently, this
reduction translates into faster solution times, improving
solution quality within the time limit. This demonstrates the
efficiency and effectiveness of the CG approach in optimizing
large-scale problems by decomposing the ACP model and
improving the computational performance.

Fig. 7 presents the map of Valparaiso with the obtained
solution, for instance Valp-10, where the CG algorithm
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FIGURE 7. Best solution found by CG algorithm for Valp-10 instance (67.3% improvement compared to ACP model).
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obtains the best performance compared to the ACP model.
Valp-10 comprises 1,000 demand points, 1,000 locations for
facilities, two server types, and six server configurations.

VI. CONCLUSION AND FUTURE WORK

We present a formulation for the ACP, an extension of the
SCP, which adopts an angular covering structure instead
of a radial covering of 360° as in the original SCP. This
problem addresses the location of facilities and installation
of servers to establish an angular covering that considers
different configurations (angles) and server types. As shown
in Fig. 5, this angular coverage structure reduces the total
location costs and considerably decreases the area covered.

A column generation (CG) algorithm is proposed to solve
the ACP. The CG algorithm reduces solution times to obtain
optimal solutions or improves the quality of the best integer
solution obtained by the ACP model up to the time limit,
particularly for larger instances.

We solve 172 instances for the ACP, generated from
43 sets of demand points derived from the established CVRP
instances. Tables 6 and 7 show that the CG algorithm
can obtain optimal solutions, improving the solution times
compared with directly solving the ACP model with CPLEX.
Tables 8, 9, and 9 indicate that as the size of the instances
increases, the CG algorithm takes advantage of finding better
solutions than the ACP model. The improvement in the
quality of the best solutions obtained by the model reaches
up to 30%.

We implement and solve real-size instances: the case of
locating surveillance cameras in Valparaiso. We elaborate
instances varying several parameters, such as the number of
candidate facilities, server configurations, and server types
based on 1,000 demand points in the city. As shown in
Table 13, the CG algorithm performs best in solving these
instances, improving the solution quality by up to 67%
compared with the best solution obtained by the ACP model.

Based on evaluating the performance of the CG algorithm
across all the instances solved, we identify opportunities to
enhance the solution process as the instance size increases.
Our results indicate that the CG approach remains scalable
and can obtain better results for even larger instances.
Several algorithmic enhancements can improve its effi-
ciency, including improving the initial feasible solution,
solving subproblems heuristically instead of optimally with
a commercial solver to reduce computational times, and
incorporating a column administration process to delete
or combine columns. These improvements optimize the
algorithm performance and scalability.

There are two possible avenues for future research. First,
there is a need to enhance the quality of the obtained solu-
tions, ensuring optimal solutions, particularly for large-scale
instances, and implementing methodologies such as Branch
and Price. Second, there is a requirement to improve the
computational time required to find near-optimal solutions,
which can be addressed through a matheuristic approach.
Moreover, this angular covering structure can be extended
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by incorporating more real-world factors, such as double
coverage maximization, connectivity of located facilities,
stochastic demand, and capacity. Additionally, the angular
covering framework can be adapted for application in other
networks, including Internet and communication networks,
to enhance their coverage and connectivity efficiency.
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