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ABSTRACT In a MicroGrid (MG) equipped with a Battery Energy Storage System (BESS), an Energy
Management System (EMS) plays a crucial role in predictive controlling BESS operations for optimal
power flow among uncertainties from renewable energy resources and heavy loads, such as solar pho-
tovoltaic systems and electric vehicles, respectively. State-of-the-art EMS designs have integrated Deep
Reinforcement Learning (DRL) for EMS development and Probabilistic Power Flow (PPF) for preventing
the violation of power system constraints while accounting for all uncertainties. However, using PPF to
handle uncertainties alongside training a single-agent DRL provides the optimal solution for addressing all
uncertain scenarios, but not the best solution for each scenario. Moreover, employing a single-agent DRL
yields a low performance in predictive controlling of BESS operations. To address these challenges, a multi-
agent DRL based on Deep Deterministic Policy Gradient (DDPG) is proposed. This method divides the roles
of each agent for predicting 24-hour-ahead actions in BESS control based on changing 24-hour-ahead MG
behavior every hour. Furthermore, MG parameters are randomly sampled to retain MG uncertainties instead
of relying on PPF for uncertainty mitigation. Consequently, multi-agent DDPG with random sampling can
directly learn from the MG environment and provide the best solution for each scenario. Simulation results
demonstrate that the proposed method can reduce training computational time by 92.84%, provide a higher
value of the summed mean of 24-hours-ahead reward by 1.50% to 28.37%, and achieve a lower mean daily
total related cost by 9.22% compared to applying the state-of-the-art method.

INDEX TERMS Battery energy storage, deep reinforcement learning, electric vehicle, microgrid, photo-
voltaics, predictive energy management.

LIST OF ABBREVIATION AND NOMENCLATURE
BAS Best Action Sequence.
BESS Battery Energy Storage System.
DAP Day-Ahead Profile.
DDPG Deep Deterministic Policy Gradient.
DPF Deterministic Power Flow.
DRL Deep Reinforcement Learning.
EMS Energy Management System.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vitor Monteiro .

EV Electric Vehicle.
FIT Feed-In-Tariff rate.
HAMG Hour-Ahead MG behavior.
HST Hottest-Spot Temperature.
MG MicroGrid.
MGO Microgrid Operator.
MRS Mean of the Reward Sequence.
PDF Probability Density Function.
PEM Predictive Energy Management.
PF Power Flow.
PPF Probabilistic Power Flow.
pu per unit.
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RER Renewable Energy Resource.
SoC State-of-Charge of BESS.
solar PV solar Photovoltaic.
TOU Time-Of-Use rate.
at Action of the agent.
Bnm Susceptance (pu) of the line connected

between the bus n and m.
CBESS
t BESS degradation cost ($) at hour t .

CBESS
Cap Capital cost ($) of BESS.

CBESS
SoCBESSt

BESS degradation cost ($) at SoCt .

CCO2
t Carbon emission cost ($) at hour t .

CExchanged
t Exchanged energy cost ($) at hour t .

CO2ratet Carbon capture rate ($/kWh) at hour t .
dEVi Traveling distance (km) of the EV i.
EBESSCap Capital BESS capacity (kWh).
EBESSt BESS energy (kWh) at hour t .
EEVi,cap Battery capacity (kWh) of the EV i.
FITt FIT rate ($/kWh) at hour t .
Gnm Conductance (pu) of the line connected

between the bus n and m.
HST Trmax Maximum HST of the transformer (◦C).
HST Trt HST of the transformer (◦C) at hour t .
Il,t Current magnitude (kA) of the line l at

hour t .
kEVi Type of the EV i.
m, n Positions of the bus in the MG.
N Number of buses in the MG.
PBESSrated Rated BESS power (kW).
PBESSt BESS power (kW) at hour t .
PMGt MG’s Active power (kW) at hour t .
Pgn, Pdn Generated active power (pu) and Demand

active power (pu) at the bus n.
PPVrated Solar PV’s rated output power (kW).
PPVt Solar PV’s power (kW) at hour t .
Qgn, Qdn Generated reactive power (pu) and Demand

reactive power (pu) at the bus n.
rdecay Decay rate of the agent training.
RCellt Radiation ratio of the solar radiation at

hour t .
Rt Reward of the agent at hour t .
St , St+1 Current and Next state of the agent.
STrt Transformer loading (kVA) at hour t .
SoCBESS

max Maximum SoC of the BESS.
SoCBESS

min Minimum SoC of the BESS.
SoCBESS

t SoC of BESS at hour t .
SoCEV

i,arr EV’s SoC at the arrival time.
SoCEV

i,dep EV’s SoC at the departure time.
tEVi,Ch Charging time of the EV i.
tEVi,dep, t

EV
i,arr Departure and Arrival times of the EV i.

tEVi,StartCh Starting charging time of the EV i.
tEVi,stay The hour of the EV’s stay at the house.
tEVi,StopCh Stopping charging time of the EV i.
T Ambt Ambient temperature (◦C) at hour t .

TCellSTC Temperature (◦C) on the solar cell at the
Standard Test Condition.

TCellt Temperature (◦C) on the solar cell at hour
t .

TNor Solar cell temperature at the nominal oper-
ating (◦C).

TOUt TOU rate ($/kWh) at hour t .
Vn,t Voltage magnitude (pu) of the bus n at hour

t .
xBESSt BESS control signal at hour t .
yt,x Constraint parameter x at hour t .
ymax
x , ymin

x Maximum andMinimumvalues of the con-
straint parameter x.

εEVi Consumption rate (kWh/km) of EV i.
δnm Angle bus voltage between the bus n and

m.
ηBESSch , ηBESSdis Charging and Discharging coefficients of

the BESS.
ηg Overall generation efficiency of the solar

PV system.
ρt Penalty value at hour t .
µ Self-discharge coefficient of BESS.
α0, α1, α2 Curve-fitting coefficients of the BESS.
αP Solar PV’s output power coefficient related

to the temperature (kW/◦C).
ϕBESSt Number of the BESS life cycle at hour t .
χt , χcer , χstd Solar radiation (W/m2) at hour t , the one at

a certain radiation point, and the one at the
Standard Test Condition.

I. INTRODUCTION
Carbon emission is a pervasive challenge that has been
emphasized by numerous governments. A significant con-
tributor to this predicament is the widespread use of Internal
Combustion Engine (ICE) vehicles in urban areas. Along
with the usage of ICE vehicles, most electricity generation
relies on fossil fuels. Notably, fossil fuels, particularly natural
gas and coal, account for approximately 60% of all electricity
generation [1], contributing to a substantial 25% of overall
GreenHouse Gas (GHG) emissions [2]. A strategic approach
to confine carbon and GHG emissions involves promoting
electricity generation from RERs, specifically solar PV sys-
tem, and the adoption of EVs as a substitute for traditional
ICE vehicles [3].
However, the integration of EVs and solar PVs in the

distribution system leads to the fluctuation of the power flow
due to the uncertain power generation of solar PVs and disor-
derly EV charging. This results in violating operating system
constraints, such as transformer overloading, undesired peak
loads, and violations of bus voltage and line current [4],
[5]. To address these issues, installing a BESS along with
a robust EMS is the most effective way to handle power
fluctuations in the distribution system integrated by EVs and
solar PVs. Therefore, the concept of using BESS is applied
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to small power systems to achieve self-sufficiency, enabling
them to manage power fluctuations. This concept is known as
a MG [4].

The design of EMS within MGs can be categorized into
two primary approaches, including a rule-based EMS and
an optimization-based EMS [6]. Several research studies
have applied rule-based EMS in a single MG and multi-
ple MGs. For example, Chakraborty et al. [7] developed
a complex rule-based EMS for grid-connected MGs with
solar PVs and BESSs, emphasizing reliability, real-time
operation, and cost optimization. Their research focused on
maximizing MGO profit through BESS control while min-
imizing real-time energy costs and ensuring power quality
regulation. Kyriakou et al. [8] employed a fuzzy logic system-
based rule-based EMS to control EV charging/discharging
and determine optimal power set-points for all MGs. The
objective was to minimize daily operation costs under fluc-
tuating electricity prices and related constraints. Moreover,
Kurukuru et al. [9], Jafari et al. [10] and Teo et al. [11]
presented a fuzzy logic control-based rule-based EMS to
manage energy in the MGs. However, the rule-based EMS
has been demonstrated to present its capability to handle the
complexity inherent in nonlinear control with low compu-
tational time for real-time control. While it can lessen the
computational time by employing the if-else concept or fuzzy
membership function, there is a potential risk of becoming
confined to a local optimum.

In recent years, there has been significant research focus on
optimization-based EMS development using DRL. The DRL
can construct a well-trained Deep Neural Network to obtain
the best action for MG energy management. DRL training
relies on trial-and-error and does not depend on the popula-
tion concept, leading to lower computational times compared
to the application ofmetaheuristics [12], [13], [14]. Themeta-
heuristics are discovered in state-of-the-art research related to
EMS design in [15], [16], [17], [18], [19], [20], [21], and [22].
TheDRLwas applied in several researchworks related toMG
energy management. For a single-agent DRL, Goh et al. [23]
proposed using a single-agent DRL for dispatching the BESS
installed in a MG. This research work utilized a single-agent
based on Double Deep Q-learning Network and Policy Gradi-
ent with a novel reward function, termed a multistage reward
function. Harrold et al. [24] proposed a single-agent DRL
based on Rainbow Deep Q-Networks, a type of DRL, for
dispatching BESS installed in the MG. Simulation results
showed that Rainbow Deep Q-Networks outperforms actor-
critic and linear programmingmethods, resulting in increased
revenue due to solar PV generation, MG load, and Real-Time
Pricing. Yu et al. [25] introduced a single-agent DRL based
on DDPG for controlling BESS and heating, ventilation, and
air conditioning in smart homes, leading to reduced energy
costs for smart homes. Kolodziejczyk et al. [26] proposed
a single-agent based on adaptive DRL using a Q-learning
algorithm combined with a dense deep neural network for
real-time control of BESS integratedwith solar PV in theMG.

Kaewdornhan and Chatthaworn [14] presented a single-agent
DRL based on DDPG to obtain the optimal solution for BESS
control while minimizing costs associated with exchanged
energy, carbon emissions, and BESS degradation.

For a multi-agent DRL, Foruzan et al. [27] applied
multi-agent DRL based on Q-learning to formulate an opti-
mal energy management strategy without relying on prior
information. Each supplier or customer is modeled as a
single-agent to interact and share information for the col-
lective benefit of all agents. Guo et al. [12] had compared
different types of DRL, including DDPG, Deep Q-Network,
and Dueling Deep Q-learning Network, for EMS develop-
ment as a multi-agent DRL for power exchange management
between multiple MGs connected in a distribution sys-
tem. The numerical outcomes indicated that a multi-agent
DDPG could provide the lowest overall costs. Kaewdorn-
han et al. [13], [28] proposed a multi-agent DRL based on
DDPG for applying an optimal energy management in multi-
pleMGs considering the uncertainties of solar PV generation,
home demand, and EV charging demand. Salari et al. [29],
[30] introduced amulti-agent DRL based on fuzzyQ-learning
method to optimize EV charging integrated with solar PV
generation for multiple homes, resulting in cost savings.
Monfaredi et al. [31] proposed a multi-agent based on various
DRL types to optimize the energy management of multiple
energy carrier MGs in grid-connected mode. Each agent rep-
resents a single MG, collaborating with others to minimize
total emissions and operating costs. Huang et al. [32] applied
a multi-agent DRL based on various DRL types to meet the
requirements of the manufacturing system while reducing
operational costs for multiple MGs. All energy supplies,
represented as MGs, are treated as independent agents to
minimize associated costs.

In previous studies focusing on a single-agent DRL for
MG’s EMS design and optimal energy management, certain
limitations were identified. These studies typically did not
include power flow calculations while considering uncertain-
ties associated with RERs and EVs, raising concerns about
potential violations of MG system constraints. However,
in [14], a novel approach was introduced using a single-agent
DRL with the PPF to address power system constraints with
a high confidence level and handle uncertainties related to
RERs and EVs, offering an optimal solution for BESS con-
trol. Although this optimal solution can apply to all scenarios,
it may not be the best solution for each scenario. Additionally,
previous studies had not developed comprehensive models of
EV charging behavior that are utilized in the training pro-
cess of DRL. Meanwhile, research on multi-agent DRL has
focused on its application across multiple MGs to facilitate
interaction and coordination, effectively managing energy in
interconnected MG systems. However, the use of multi-agent
DRL within a single MG operator for BESS control or to
address predictive energy management challenges specific to
a single MG has not been extensively explored in the existing
literature.
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To address current challenges in the field, this paper pro-
poses a multi-agent DRL based on DDPG (referred to as
multi-agent DDPG), which has been identified as the most
effective DRL for MG’s EMS design in studies [12], [13],
[14], [28], to control BESS installed in a single MG. By the
multi-agent concept, we employ 24 agents (corresponding to
the number of hours in a day), each capable of predicting
BESS control actions 24 hours in advance. Furthermore,
a comprehensive EV chargingmodel is developed to facilitate
the training of the multi-agent DDPG. The training process
for the multi-agent DDPG directly utilizes random sam-
pling for scenario generation instead of employing PPF. This
enables themulti-agent DDPG to effectively learn uncertainty
scenarios directly from random sampling, leading to best
solutions for BESS control. The MG in this study represents
a low-voltage distribution system comprising 27 houses, each
equipped with rooftop solar PV panels and a single EV. The
objective is to minimize exchanged energy, BESS degrada-
tion, and carbon emission costs while considering operational
constraints of the power system. The main contributions of
this paper are summarized as follows:

1) This paper introduces a novel EMS for a low-voltage
distribution system developed as a MG. The novel EMS is
constructed by implementing multi-agent DDPG for day-
ahead energy management (PEM) in a single MGO, which
has not been explored in current state-of-the-art research.
The MG incorporates solar PV rooftops and EVs, defined
as alternative elements in accordance with the Thailand gov-
ernment’s plan. Furthermore, this research considers the real
behavior of EV usage generated by using a comprehensive
EV model that takes into account departure time, arrival
time, traveling distance, EV type, SoC of the EV’s battery,
rated power charging, and the TOU rate, which has not been
explored in previous research works, alongside the PEM
optimization.

2) The novel MG behavior is proposed and used for train-
ing the multi-agent DDPG of a single MGO. The 24-HAMG
is generated by random sampling and changes every hour,
resulting in 24 sets of 24-HAMG in a day. To enhance the
performance of theMGO’s decision-making in BESS control,
each agent in themulti-agent DDPG (24 agents) receives each
24-HAMG generated to predict the 24-hour-action in BESS
control. By dividing roles among agents, each agent can focus
more on discovering the best policy in BESS control when
importing each set of 24-HAMG. Therefore, although the 24-
HAMG changes every hour, implementing the multi-agent
DDPG can enhance the decision-making performance of the
MGO.

3) The proposed method, termed multi-agent DDPG (24
agents) with random sampling, is employed to address the
PEM problem. This method demonstrates the adaptability of
DDPG agents in handling uncertainties of 24-HAMGdirectly
without the need for PPF and offers the best solutions for
dispatching BESS. Implementing the PPF consumes a high
training time and does not provide the best solution for each
24-HAMG. Therefore, the proposed method is compared

with a single-agent DDPG utilizing PPF to demonstrate better
performance for PEM task in the MG.

This paper is organized as follows. Section II represents the
PEM architecture. Section III presents the PEM problem for-
mulation, while Section IV demonstrates the DDPG problem
formulation. Section V shows the methodology of this work.
Simulation results are presented in Section VI, while the
discussions are shown in Section VII. Finally, Section VIII
demonstrates the conclusions of this work.

II. PREDICTIVE ENERGY MANAGEMENT ARCHITECTURE
The energy management task can be categorized into two
types: Real-Time Energy Management and PEM. This paper
focuses on the PEM task, emphasizing the use of DDPG to
construct a well-trained Deep Neural Network. There are two
PEM frameworks discussed: a conventional PEM framework
referenced in [13] and [14], and a proposed PEM framework
presented in this study.

A. CONVENTIONAL PEM FRAMEWORK
For the state-of-the-art studies, a single-agent DDPG with
PPF is applied to provide the optimal solution for BESS
control with a high confidence level regarding elements and
operation system constraints. The operation of this approach
is depicted in Fig. 1. Firstly, the agent undergoes thorough
training using the DDPG optimization process. The agent
receives comprehensive information from the main grid,
including TOU rates and carbon emission rates, to predict the
optimal action for each hour. Next, the action is transmitted
to the BESS to determine the charge/discharge BESS power.
If the discharge power from the BESS is insufficient to meet
the MG demand, the MG will supplement with power from
the transformer along with the BESS power. In certain sce-
narios where the MG experiences surplus power due to high
solar PV generation, the BESS will charge using part of the
surplus power and inject the remaining surplus power into
the transformer. Afterward, the PPF process will operate to
calculate the mean and standard deviation (Std.) of the system
parameters, such as the maximum/minimum bus voltage, and
the maximum line current. The scenarios for PPF calculation
are generated using the Nataf transformation theory, which
utilizes PDFs of all random variables in the analysis. Each
scenario is utilized to estimate the net power in each house
for preparation in the DPF based on unbalance PF calcula-
tions. After the DPF calculations are completed, the desired
system parameters are stored and utilized to estimate their
mean and standard deviation using a point estimationmethod.
Consequently, the number of DPF calculations corresponds
to the number of generated scenarios, a process known as
the PPF loop. Next, the estimated system parameters (Mean
and Std.) are sent to calculate the reward with a high con-
fidence level. The related parameters are transferred to the
agent again in the next step. Finally, the agent updates the
hour to provide the next action. The above process continues
until the final hour of the day is reached. By applying the
PPF, the Mean and Std of desired parameters are evaluated
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to provide feedback to the agent. These parameters are cal-
culated to encompass all possible uncertainties of random
variables within the MG. To this end, direct learning with
MG uncertainty is not feasible for the agent. Therefore, the
agent must learn to provide optimal solutions for BESS con-
trol that cover the Mean and Std of these parameters. The
optimal solution provided can be applied across all uncertain
scenarios encountered in the PEM task.

B. PROPOSED PEM FRAMEWORK
In the conventional PEM framework, the PPF restricts the
agent’s ability to learn about MG uncertainty directly. There-
fore, to enable direct learning with MG uncertainty, a random
sampling process is applied to generate scenarios. In the
absence of a tool to mitigate MG uncertainty, transitioning
from a single-agent to a multi-agent (24 agents) framework
enhances learning in MG uncertainty and improves the per-
formance of predictive BESS operation control. The proposed
PEM framework is shown in Fig. 2.
From Fig. 2, firstly, 24 agents are constructed based on the

DDPG structure, labeled as the 0th, 1st, . . . , 23rd, respectively.
The selected agent receives comprehensive 24-hour-ahean
information, such as TOU and carbon rates from the main
grid, which prepare them to determine and execute the best
course of action. Then, the agent will predict the best action
sequence (24-hour-ahead action) when recognizing the 24-
HAMG. For the 24-HAMG generation, the historical data
of the MG parameters, including solar radiation, ambient
temperature, appliance load, and EV charging demand, are
fitted to PDFs. Next, the PDF of each MG parameter is
utilized in random sampling to generate 24 sets of 24-hour-
ahead profiles for eachMG parameter. Each set has the initial
hour beginning from 0th to 23rd hour. The 24-hour-ahead
profiles of allMGparameters, starting at the same initial hour,
are stored together as a set for simulating MG behavior. This
set is referred to as a single 24-HAMG. Thus, the MG has
24 sets of 24-HAMGs. These sets are called a single DAP.
In this work, several DAPs are applied in training and testing
process of the agents. For a single DAP, the 24 agents (multi-
agent), labeled from 0th to 23rd, will be selected to predict
the action sequence for BESS control when each 24-HAMG
is imported. Each agent is selected based on the initial hour
of the imported 24-HAMG, and each agent is responsible
for predicting the BAS when provided with the imported
24-HAMG.

When the agent is selected to predict the BAS. In this work,
the 24-HAMG changes 24 times a day (every hour), defined
as the worst case in the PEM task. Thus, the first action of
the BAS is applied to the BESS model to evaluate the BESS
power, similar to the conventional PEM framework. Then, the
system parameters and transformer loading are estimated by
the DPF with unbalanced PF, while the BESS parameters are
calculated. Next, The related parameters are used to calculate
the reward. Subsequently, the related parameters are trans-
ferred to the agent to prepare for the next BAS prediction,
along with updating the 24-HAMG. This process continues

FIGURE 1. Conventional PEM framework.

FIGURE 2. Proposed PEM framework.

until the 24-HAMG reaches the final set, and it operates
similarly in every generated DAP.

Therefore, multi-agent DDPG constructed can be applied
in the PEM task of the MG through the proposed
PEM framework. Moreover, the multi-agent can directly
learn about the uncertain DAP generated without the
need for PPF, leading to lower computational require-
ments and providing the best solution for each uncetian
scenario.

III. PEM PROBLEM FORMULATION
To construct the PEM optimization problem, the considered
objective functions and related constraints are formulated.
Moreover, the daily optimization problem is represented in
this section.

A. OBJECTIVE FUNCTIONS
Three objective functions are minimized in this paper, includ-
ing the exchanged energy cost, BESS degradation cost, and
the carbon emission cost.
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1) EXCHANGED ENERGY COST
Since the MG is set as a grid-connected mode, the energy
exchanged between the MG and the main grid can reflect
to the electricity cost/revenue. The equation of this objective
function can be formulated as follows [13]:

CExchanged
t =

{
TOUt · PMGt ; PMGt ≥ 0
FITt · PMGt ; PMGt < 0

(1)

There are two conditions in this objective function: if PMGt
is greater than or equal to 0 kW, the MG is receiving power
from the main grid, leading to a positive cost occurrence.
In contrast, if PMGt is less than 0 kW, the MG is injecting
power into the main grid, resulting in revenue occurrence
from the injected energy, which, in the context of cost, is a
negative value.

2) BESS DEGRADATION COST
The BESS degradation cost is an essential factor that can
reflect the proper operation of the BESS. Adding this objec-
tive function to the optimization process can prevent the
disorganized control of the BESS by the agent DDPG, leading
to a decreasing loss-of-life of the BESS. The BESS degrada-
tion cost can be represented as follows [33]:

CBESS
t =

{
CBESS
SoCBESSt

− CBESS
SoCBESSt−1

; PBESSt > 0

0; PBESSt ≤ 0
(2)

CBESS
SoCBESSt

=
CBESS
Cap

ϕBESSt
(3)

ϕBESSt = α0 × (1 − SoCBESS
t )−α1 × exp

(
α2 × SoCBESS

t

)
(4)

From the equation (2), two conditions are used to estimate
the BESS degradation cost: if PBESSt is more than 0 kW, the
BESS is discharging, leading to a positive cost occurrence.
In contract, if PBESSt is less than or equal to 0 kW, charging
model of the BESS is operating, resulting in the cost equal to
0. Therefore, the BESS degradation cost is calculated when
the BESS mode is in discharge mode.

3) CARBON EMISSION COST
Due to the increasing carbon emissions in the electricity gen-
eration sector, the carbon emission cost is applied in several
research studies related toMG energy management. This cost
can prevent disorganized-drawn power from the main grid.
In this paper, the carbon emission cost will be calculated
when theMG absorbs power from themain grid becausemost
electricity generation from the main grid uses fossil fuels,
which can produce carbon emissions. The objective function
can be calculated as follows [13]:

CCO2
t =

{
CO2ratet · PMGt ; PMGt ≥ 0
0; PMGt <0

(5)

There are two conditions for CCO2
t calculation: if the PMGt

is greater than or equal to 0 kW, the MG is absorbing power

from the main grid, leading to a positive cost occurrence,
otherwise, the cost will equal 0.

B. CONSTRAINTS
To provide solutions within a feasible space, related con-
straints are added to the optimization problem. In this work,
constraints related to the system operation, BESS operation,
and transformer operation are considered.

1) SYSTEM OPERATION CONSTRAINT
To control power flow in the MG properly, the agent has to
provide the solution to balance the power within the MG.
Thus, the power balance equations in the context of active
and reactive power balance are taken in the optimization
process. The power balance equations can be formulated as
follows [13]:

Pgn − Pdn =

N∑
m=1

VnVm (Gnm cos δnm + Bnm sin δnm) (6)

Qgn − Qdn =

N∑
m=1

VnVm (Gnm sin δnm + Bnm cos δnm) (7)

The bus voltage and line current limits are concerned in this
work to prevent voltage and current violations. These limits
can be performed as follows [34]:

0.9 pu ≤ Vn,t ≤ 1.1 pu (8)∣∣Il,t ∣∣ ≤ 0.35 kA (9)

Since the MG is tested in Thailand, the standard operation
of the Provincial Electricity Authority (PEA) supervising the
low-voltage distribution system is employed. Thus, Vn,t is
limited at [0.9, 1.1] pu and Il,t is limited which does not
exceed 0.35 kA [34].

2) BESS OPERATION CONSTRAINT
To meet the BESS operation security, the BESS is controlled
under its operation limit. There are the fundamental limits
that are set as the BESS operation limits: the SoC and BESS
power. These variables can be formulated as follows [13]:

SoCBESS
t = (1 − µ) SoCBESS

t−1 −
EBESSt

EBESSCap

(10)

EBESSt =

{
PBESSt ηBESSch ; PBESSt ≤ 0
PBESSt /ηBESSdis ; PBESSt > 0

(11)

The EBESSt is calculated by using equation (11), which has
two conditions: if the PBESSt is less than or equal to 0 kW
(charging), the first condition will be used to calculate EBESSt .
In contrast, if the PBESSt is more than 0 kW (discharging), the
second condition will be applied to calculate EBESSt .

In the context of the BESS operation limits, the SoCBESS
t

and PBESSt are limited within the BESS operation security as
follows [13]:

SoCBESS
min ≤ SoCBESS

t ≤ SoCBESS
max (12)
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∣∣∣PBESSt

∣∣∣ ≤ PBESSrated (13)

3) TRANSFORMER OPERATION CONSTRAINT
A distribution transformer is the essential element in the MG
and has to work in the proper operation zone to reduce the
transformer’s loss of life. The HST is a critical parameter in
forecasting the transformer’s loss of life [35]. It is determined
based on the transformer loading (kVA) and the ambient tem-
perature (◦C).When the transformer is worked to overloading
and the ambient temperature rises, there is a notable increase
in the HST. Therefore, relying solely on transformer loading
(kVA) defined as the transformer constraint may not suffice
to ensure the transformer’s loss of life. Consequently, HST
emerges as a more reliable indicator for safeguarding the
transformer’s loss of life. The HST can be mathematically
formulated as follows:

HST Trt = f
(
STrt ,T Ambt

)
(14)

HST Trt ≤ HST Trmax (15)

The f (·) is the HST’s calculation function, it is shown
in [35].

C. DAILY OPTIMIZATION PROBLEM
When the agent recognizes 24-HAMG imported, the agent
forecasts the 24-hour-ahead actions for BESS control to
minimize the total cost within the same timeframe, akin to
solving a daily optimization problem. The formulation for
minimizing the daily total cost is presented as follows:

min
PBESS0→23

23∑
t=0

(
CExchanged
t + CBESS

t + CCO2
t

)
(16)

where related constraints, including equations (6)-(9) and
equations (12)-(15), are considered alongside the minimiza-
tion process.

IV. DDPG PROBLEM FORMULATION
In this paper, conventional and proposed methods based on
DDPG optimization are employed to solve the PEM problem.
Therefore, these problem aremapped into the DDPG problem
formulation, which are presented in this section.

A. CONVENTIONAL PROBLEM FORMULATION
In the conventional problem, a single-agent DDPG interacts
with the MG environment on an hourly basis, with all system
parameters provided by the PPF. This approach yields an
optimal solution for each hour, which can be applied to the
PEM task. To implement this concept, the daily optimization
problem is transferred into an hourly DDPG problem. Subse-
quently, the sum of all hourly costs yields the daily total cost,
mirroring the structure of a daily optimization problem. The
hourly DDPG problem involves four key variables: current
state, action, reward, and next state. These variables can be

formulated as follows:

St,PPF = SPPF (t) =



STrt,PPF
PMGt,PPF
PBESSt,PPF
SoCBESS

t,PPF
TOUt
FITt
CO2ratet
t


(17)

at,PPF =

[
xBESSt,PPF

]
;xBESSt,PPF ∈ [−1, 1] (18)

PBESSt,PPF = at,PPF · PBESSrated (19)

Rt,PPF = −

(
CExchanged
t,PPF + CBESS

t,PPF + CCO2
t,PPF + ρt,PPF

)
(20)

ρt,PPF = ω

Ny∑
x=1

ln

(∣∣ymax
x − yPPFt,x

∣∣+ ∣∣ymin
x − yPPFt,x

∣∣
ymax
x − ymin

x

)
(21)

St+1,PPF = SPPF (t + 1) (22)

where the current state, action, reward, and next state at hour
t are represented as St,PPF , at,PPF , Rt,PPF , and St+1,PPF ,
respectively. The parameters determined as the current state
and the next state are normalized within the boundary [−1,
1]. Moreover, the variable subscripted by PPF are the vari-
able estimated from the PPF process. In the context of the
at,PPF , it is set within [−1,1], which can be shown that if
the at,PPF is provided within [−1,0), the BESS is charged
withPBESSt,PPF calculated by equation (19). Otherwise, the BESS
is discharged with PBESSt,PPF . For the Rt,PPF , the negative sum
of the relevant objective functions is mapped to the Rt,PPF ,
incorporating any associated the penalty ρt,PPF .

The ρt,PPF can be calculated by using equation (21), which
is defined as a violating index in the optimization task. If the
violation occurs due to improper BESS control, the ρt,PPF
will become the large positive value with the penalty coeffi-
cient ω, resulting in the reward having the negative infinity
value. Otherwise, the ρt,PPF will be 0. Therefore, the agent
will try to control the BESS for dealing with the ρt,PPF
along with the related cost minimization, leading to providing
the highest reward value. Furthermore, yPPFx,i is the related
constraint parameter x at hour t , evaluated by the PPF.

B. PROPOSED PROBLEM FORMULATION
In the proposed problem,a multi-agents is allowed in direct
learning with the MG environment without employing the
PPF for MG uncertainty mitigation. The 24-HAMGs are
generated through random sampling from PDFs of random
variables. Additionally, each agent plays a distinct role in
predicting the 24-hour-ahead actions for BESS control based
on the initial hour of the imported 24-HAMG.However, when
each agent is constructed according to the DDPG optimiza-
tion, the formulation of the DDPG variables remains similar
to the conventional problem but has an index p to indicate
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each agent and the hour t that progresses according to the
time of the imported 24-HAMG. The DDPG variables of the
proposed problem are formulated as follows:

St,p = Sp (t) =



STrt,p
PMGt,p
PBESSt,p
SoCBESS

t,p
TOUt
FITt
CO2ratet
t


(23)

at,p =

[
xBESSt,p

]
; xBESSt,p ∈ [−1, 1] (24)

PBESSt,p = at,p · PBESSrated (25)

Rt,p = −

(
CExchanged
t,p + CBESS

t,p + CCO2
t,p + ρt,p

)
(26)

St+1,p = Sp (t + 1) (27)

where the current state, action, reward, and next state of the
agent p are labeled as St,p, at,p, Rt,p, and St+1,p, respectively.
The penalty factor ρt,p is calculated using equation (21) and
the parameters determined as the current state and the next
state are normalized within the boundary [−1, 1], similar to
the conventional problem. However, the system parameters,
defined as state variables, are estimated based on the 24-
HAMG generated through a random sampling process. As a
result, these parameters have varying values in each training
iteration. These parameters have uncertainty levels higher
than those estimated from the PPF process, resulting in an
advantage for the direct learning of the agent p.

V. METHODOLOGY
To compare the training and testing processes of the con-
ventional and proposed methods, this section outlines the
procedures for constructing distribution models of random
variables and conducting random sampling from these mod-
els. Additionally, the training and testing processes of both
the conventional and proposed methods are described and
compared.

A. DISTRIBUTION MODEL CONSTRUCTION
1) SOLAR PV GENERATION
To estimate the hourly solar PV’s output power, hourly solar
radiation (W/m2) and hourly ambient temperature (◦C) are
sampled from the fitted PDFs to calculate the output power.
The generation model for estimating the solar PV’s output
power can be represented as follows [13]:

PPVt = ηgPPVratedR
Cell
t

[
1 + αP

(
TCellt − TCellSTC

)]
(28)

RCellt =


χ2
t / (χcerχstd ) χt < χcer

χt/χstd χcer ≤ χt ≤ χstd

1 χt > χstd

(29)

TCellt = T Ambt + RCellt

(
TNor − 20

)
(30)

The given detail indicates that there are two primary variables
that vary each hour, including χt and T Ambt . To avoid fixed
hourly values for χt and T Ambt , historical data of χt and
T Ambt are fitted into a beta PDF [36], [37] and a normal
PDF [36], respectively, to construct their PDFs for hourly
random sampling. The formulation of the aforementioned
PDFs can be shown as follows:

f (χ ) = χα−1(1 − χ )β
0(α + β)

0(α) + 0(β)
(31)

f (T ) =
1

σn
√
2π

exp
(

−
(T − µn)2

2σ 2
n

)
(32)

where the radiation’s (χ) beta PDF is represented as f (χ )
with the random variable (α) and control deviation (β), while
the gamma function is denoted as 0(·). For the ambient
temperature’s (T ) normal PDF, it is presented as f (T ) with the
mean (µn) and standard deviation (σn), while the exponential
function is represented as exp (·).

2) APPLIANCE LOAD
To potentially cover the household’s appliance load within
the MG, historical data related to appliance load is fitted to
a PDF for sampling and estimating the hourly household’s
baseload. Commonly, the normal PDF is utilized to fit the
PDF of the household’s appliance load [36], similar to the
ambient temperature.

3) EV CHARGING DEMAND
One of this paper’s contributions is to simulate the com-
prehensive charging behavior of the household’s EV in the
optimization process. Therefore, the EV usage is modeled
using multi-variable construction consisting of the departure
time, arrival time, traveling distance, EV type, SoC of the
EV’s battery, rated power charging, and TOU rate. Each EV
charging scheduling in the MG can be shown in Fig. 3 and
evaluated in the following steps:
Step 1: The departure (tEVi,dep) and arrival (tEVi,arr ) times of

the EV i are sampled from the fitted normal PDF, as referred
to [38]. Therefore, the hour of the EV’s stay at the house
(tEVi,stay) is presented as follows:

tEVi,stay ∈

[
tEVi,arr , t

EV
i,dep

]
(33)

Step 2: The type (kEVi ) and traveling distance (dEVi ) of the
EV i are sampled to label the EV type and EV travel. The EV
types are randomly sampled using the survey data, as referred
to [39], while the traveling distance is sampled from the fitted
lognormal PDF, as referred to [38]. The lognormal PDF can
be formulated as follows:

f (dEVi ) =
1

dEVi σLn
√
2π

exp

(
−
(ln dEVi − µLn)2

2σ 2
Ln

)
(34)

where the lognormal PDF function of the dEVi is represented
as f (dEVi ) with the mean (µLn) and standard deviation (σLn).
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From the kEVi sampling, it makes to know the EV battery’s
capacity and consumption rate, while knowing dEVi can esti-
mate the EV’s SoC at the arrival time SoCEV

i,arr . If the EV
battery’s capacity (EEVi,cap) and consumption rate (εEVi ) are
determined, the SoCEV

i,arr will be evaluated as follows:

SoCEV
i,arr = SoCEV

i,dep − dEVi · εEVi (35)

where the EV’s SoC of the EV i at the departure time
(SoCEV

i,dep) is set as the maximum SoC (SoCEV
max).

Step 3:The starting time and stopping time for the charging
of the EV i are labeled as the tEVi,StartCh and tEVi,StopCh, respec-
tively. The interval for EV charging is restricted to the time
interval that intersects between the EV’s stay at the house
period (tEVi,arr to t

EV
i,dep) and the off-peak TOU period. To this

end, the interval time for EV charging will begin the tEVi,StartCh
to the tEVi,StopCh, but not beginning the tEVi,arr to the tEVi,dep. This
is the common behavior of the EV user who charges the EV
within the off-peak TOU period. Thus, the hourly charging of
the EV i denoted as tEVi,Ch can be formulated as follows:

tEVi,Ch ∈

[
tEVi,StartCh, t

EV
i,StopCh

]
=

[
tEVi,arr , t

EV
i,dep

]
∩ ∀tTOUoff−peak

(36)

Step 4: Set the charging time of the EV i (tEVi,Ch) equal to
tEVi,StartCh.
Step 5: The EV’s battery is charged with the rated power

of the charger at tEVi,Ch.
Step 6: Update the SoC of the EV’s battery at tEVi,Ch. The

used SoC formulation is referred to [28].
Step 7: The tEVi,Ch is regulated. If the t

EV
i,Ch does not reach the

tEVi,StopCh or the SoCEV
i,ch is less than SoCEV

max, the t
EV
i,Ch will be

updated. Otherwise, the EV charging will be stopped.
From the above process, it can provide hourly power

charging of the EV i in the MG. Therefore, each EV
charging scheduling can be obtained by using the proposed
process.

B. TRAINING AND TESTING PROCESS OF CONVENTIONAL
METHOD
A single-agent DDPG with PPF, applied in [13] and [14] to
optimally control the BESS installed theMG, is defined as the
conventional method in this paper. The DDPG optimization
concept involves four networks: actor, critic, target actor,
and target critic networks. The actor performs continuous
action prediction to control BESS, while the critic predicts the
Q-value of each state, defined as the index in an action evalu-
ation. The general Q-value formulation includes a discount
factor to regulate the Q-value, preventing it from reaching
infinity. If the action provides a higher reward, its Q-value
is also higher. For the target networks, they are constructed
to increase the convergence rate in the learning process of
the actor and critic. Since DDPG learning relies on a trial-
and-error process, learning rates are utilized to update the
weights of the actor and critic networks, while soft updates
are employed to update the weights of the target networks.
Experiences from the environment interaction, consisting of

FIGURE 3. EV charging demand model.

state, action, reward, and next state, are grouped into a tuple
and stored in the buffer memory. These experiences are sam-
pled following the determined batch size for updatingweights
of all networks.

As DDPG is a model-free data-driven method, the actor’s
weight update using gradient concepts are applied to deter-
mine the appropriate direction for updating. Moreover, the
concepts of exploitation and exploration are utilized to
enhance the performance of the agent’s learning. The agent
will choose actions with high Q-values at that state by fol-
lowing the best policy discovered up to that time, which
represents the exploitation concept, while it must explore
possible actions to potentially provide actions with higher
Q-values by adding a random Gaussian noise to actions, this
process is defined as the exploration concept. The exploration
concept is formulated as follows [12]:

aj = abestPolicyj + G(0, σ 2
j ) (37)

σj = exp
(
−j× rdecay

)
; j = [1, 2, . . . ,H × iter] (38)

where abestPolicyj is the action with high Q-values at that state
by following the best policy discovered up to that time, while
aj is the action added by the noise. G(0, σ 2

j ) is a random
Gaussian noise with a mean equal to zero and a standard
deviation equal to σj. rdecay is a decay rate determined fol-
lowing the time slot H (24 hours) for BESS control and
the training iteration iter . The value of σj is decreased as
the training iteration increases according to the determined
value of rdecay. Thus, the rdecay must be properly determined
to decrease the impact of exploration before reaching the
maximum training iteration, showing more detail according
to [12].

From the DDPG optimization concept, the operation of
a single-agent DDPG with PPF is set, and the training and
testing processes are demonstrated as follows:
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1) TRAINING PROCESS OF CONVENTIONAL METHOD
The training process of the conventional method can be
depicted in Fig. 4 and operated in the following steps:
Step 1: The parameters of a single-agent DDPG are set,

such as the number of hidden layers of all networks, activate
function, learning rate, soft update factor, discount factor,
decay rate, buffer memory size, batch size, and training
iteration.
Step 2: The agent predicts the action at the initial hour to

control BESS.
Step 3: When the action is taken into the BESS model,

the BESS power (kW) is estimated to inject/absorb power
into/from the MG.
Step 4: To evaluate the mean and standard deviation of

system parameters or desired power flow parameters, the PPF
is utilized to run. The PDFs of the solar radiation, ambient
temperature, and appliance load, are imported to generate the
PPF scenarios. Moreover, the hourly EV charging profiles
for 10,000 vehicles are created following the Fig. 3. The
profiles are fitted into a normal PDF based on a monte carlo
simulation concept [39] and the above PDF is imported to
generate the PPF scenarios along with the PDFs of other
random variables.

By the PPF concept, the scenarios are generated based
on the Nataf Transformation with Point Estimation Method
(NTPEM), according to [39]. If the numbers of the input
variables and point estimation are n and m, respectively, the
number of PPF scenarios will be (m− 1) n+1 per hour. In this
paper, the number of input variables (random variables) is 4,
and the number of points for estimation is 5. Therefore, the
number of PPF scenarios per hour is 17. Consequently, the
PPF will execute the DPF 17 times per hour, which is referred
to as the PPF loop.
Step 5: While running the DPF each time, the desired

parameters are stored and used to estimate their mean and
standard deviation.
Step 6: Once the mean of the desired parameters are

provided by the PPF, they are imported into the relevant
objective function to compute the associated costs. In the
conventional method, achieving a high confidence level to
prevent violations is crucial for penalty calculation. This is
achieved by utilizing the mean and standard deviation of the
parameters in the penalty calculation. Commonly, a 95% con-
fidence level is utilized in preventing violations of the power
system [39]. Each parameter is considered both the mean
(yµt,x) and standard deviation (yσt,x). If the y

PPF
t,x is the related

constraint parameter x at the hour t , yPPFt,x will be formulated
yµt,x +2yσt,x for considering the maximum violation and yµt,x −

2yσt,x for considering the minimum violation. Thus, a larger
penalty value increases the likelihood of occurrence, making
it more challenging for the agent to find an optimal solution.
Subsequently, the calculated costs and penalties are mapped
to the hourly reward.
Step 7: The hour is regulated. If the hour does not reach

24 hours, the desired-related parameters are mapped to the

FIGURE 4. Training process of conventional method.

DDPG variables. Subsequently, the weights of all networks
will be updated, providing further detail on the weight updat-
ing process as outlined in [12], along with the hour updating.
Otherwise, the iteration (iter.) will be checked. If the iteration
does not reach the maximum iteration (Max. iter.), it will
be updated, and the hour will be reset to the initial hour.
Otherwise, the weights of all networks will be saved, and the
process will be stopped.

2) TESTING PROCESS OF CONVENTIONAL METHOD
From the training process, it provides a well-trained single
agent. To obtain the hourly-optimal action for BESS control-
ling, the well-trained agent is tested which can be depicted in
Fig. 5.

Firstly, load the well-trained agent and provide the optimal
action to estimate BESS power at the initial hour. Next, the
current-hourly PPF scenario is imported to run PPF. The
estimation of the mean and standard deviation of the desired
parameters is operated in the following step. Subsequently,
the calculated-related parameters are mapped into the DDPG
variables. Then, the hour will be checked. If the hour is
not equal to 24, it will be updated, and the next action will
be predicted for BESS control in the next hour. Otherwise,
the hourly-optimal action is saved, and the process stops.
This process enables the acquisition of hourly-optimal action,
which is then utilized to verify the performance of the con-
ventional method.
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In the process of the performance verification, 1,000 DAPs
and the verification process are generated to verify the
hourly-optimal action obtained by the conventional method,
which is shown in Fig. 6 and operated in the following steps:
Step 1: 1,000 DAPs are generated to use in the verification

process. For a single DAP generation, the 24-hour-ahead
profiles of solar radiation, ambient temperature, and appli-
ance load are generated by using random sampling from
their PDFs, while the 24-hour-ahead profile of EV charging
demand is generated using the process in Fig. 3. These are
generated 24 sets per a random variable, each having the
initial hour beginning the 0th hour until the 23th hour. The
24-hour-ahead profile of all MG parameters that begins at
the same initial hour is imported into the MG environment to
simulate a single 24-HAMG. Therefore, 24 sets of 24-HAMG
are generated, and these sets collectively form a single DAP.
All DAPs are generated using the described process.
Step 2: Select the optimal action sequence following the

hour sequence of the imported 24-HAMG.
Step 3: Take the action to the BESS model to estimate the

BESS power. The action taken is a single action at the current
hour within the selected action sequence.
Step 4: The PF-based unbalance is run to estimate the

desired parameters.
Step 5: Related parameters are used to calculate the hourly

reward.
Step 6: The hour will be checked. If the hour does not equal

to 24 hours, the hour will be updated and the next action will
be selected from the selected action sequence based on the
updated hour. Otherwise, the reward at the initial hour of the
imported 24-HAMG is stored, called the first reward.
Step 7: The number of 24-HAMG will be regulated. If the

number of 24-HAMG does not reach 24, the next 24-HAMG
will be imported. Then, the hour will be reset as the initial
hour of the next 24-HAMG to control BESS for the next
24-HAMG. Otherwise, the reward at the initial hour of all
24-HAMGs saved in the sixth step is stored, called the first
reward set.
Step 8: The number of DAPs will be checked. If it does

not equal to 1,000, the DAP will be updated to the next
DAP. Subsequently, the hour will be reset as the initial hour
of the first 24-HAMG of the next DAP. Otherwise, the first
reward set stored in the seventh step is saved to utilize as the
performance index and then stops.

C. TRAINING AND TESTING PROCESS OF THE PROPOSED
METHOD
In the context of the proposed method, a multi-agent DDPG
with random sampling is proposed. Through the random sam-
pling process, uncertain scenarios are generated during the
agent’s training, causing the MG behavior to vary from hour
to hour and across training iterations. This process effectively
covers all uncertain scenarios, obviating the need for a fore-
casting model. Given the high uncertainty of MG behavior,
a single agent may struggle to remember all uncertain scenar-
ios. Therefore, a multi-agent concept is employed to address

FIGURE 5. Hourly optimal action saving process of conventional method.

FIGURE 6. Hourly optimal action verification of conventional method.

this challenge. Consequently, a multi-agent DDPG with ran-
dom sampling can effectively control the BESS under all
uncertain scenarios. Despite the 24-HAMG changing every
hour, the proposed method can optimize BESS control to
achieve the best solution. With this assumption, the well-
trained multi-agent provided by the proposed method can be
applied to the PEM task. The training and testing processes
of the proposed method are represented in the following
sub-subsections.
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1) TRAINING PROCESS OF PROPOSED METHOD
The training process can be depicted in Fig. 7 and explained
in the following steps:
Step 1: Construct 24 agents and set the DDPG parameters

of each agent similar to setting the agent in the conventional
method.
Step 2: All agents are labeled following the hours in a day,

resulting in a total of 24 agents. Next, the agent labeled with
the initial hour is selected for training first. Since each agent
is responsible for controlling the BESS over a day (24 hours)
to minimize the daily total cost, the training for this agent
begins at the initial hour and continues until reaching the 24th

hour.
Step 3: The selected agent will predict the action to control

BESS. Then, the BESS model will receive it to estimate the
BESS power.
Step 4: For the PF process, solar radiation, ambient tem-

perature, and appliance load are sampled from their PDFs
based on the current hour of the selected agent’s training. This
is to determine solar PV power, and appliance load at the
current hour. Moreover, the hourly EV charging demand is
generated by using the process in Fig. 3. Then, the hourly EV
charging demand is only imported the demand at the current
hour to the MG. From the above process, it can determine the
hourly power of related elements in the MG to prepare the PF
running.
Step 5:When the PF running is finished, the desired power

flow parameters are estimated. Then, the reward adding the
penalty is calculated.
Step 6: The number of the hour for the selected agent’s

training will be checked. If it does not reach 24, related
parameters are mapped into the DDPG parameters. Subse-
quently, the weights of all networks of the agent will be
updated along with the hour to prepare the state for the
next action prediction of the agent. Otherwise, the iteration
(iter.) for training will be regulated. If it does not reach the
maximum iteration (Max. iter.), the iteration will be updated
and the current hour will be reset to the initial hour to train
the agent again. Otherwise, the agent’s weights are saved for
use in the testing process.
Step 7: The number of agents will be checked. If it does

not equal its maximum number, the initial hour for training
is updated to the labeled number of the updated agent. Other-
wise, the training process will be stopped.

From the above process, the result is 24 well-trained
agents. Thus, these well-trained agents exhibit good adapt-
ability in dealing with uncertain situations because they are
directly learned from occurring uncertainties in the MG,
leading to obtaining the best actions for BESS control. The
verification process for these agents is shown in the testing
phase.

2) TESTING PROCESS OF PROPOSED METHOD
To verify the performance of 24 well-trained agents obtained
by the training process, the testing process is designed tomeet

FIGURE 7. Training process of proposed method.

this aim. The process can be shown in Fig. 8 and explained in
the following steps:
Step 1: Generate 1,000 DPAs to test the performance of

all well-trained agents similar to the DAP generation of the
conventional method.
Step 2: Load 24 well-trained agents to prepare for BESS

controlling.
Step 3: Select the labeled agent following the initial hour

of the imported 24-HAMG in the current DAP.
Step 4: The selected agent predicts the action to estimate

the BESS power. Then, the BESS is injected/absorbed the
power into/from the MG according to the BESS power value.
Step 5: The PF operation begins when the data sampled

within the current hour from the 24-HAMG is imported into
the MG. This imported data is then utilized to estimate the
power consumption of all relevant elements within the MG
system.
Step 6: The hourly reward adding the penalty is calculated.

Then, the number of hours will be regulated. If it does not
reach 24, related parameters will be mapped into the DDPG
variables and the hour will be updated. Therefore, the agent
will receive the state at the updated hour to predict the next
action. Otherwise, the reward at the initial hour of the 24-
HAMG, referred to as the first reward, is stored.
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Step 7: The number of 24-HAMG will be checked. If it
does not equal to 24, the 24-HAMG will be updated as the
next 24-HAMG. Then, the hour will be reset to the initial hour
of the next 24-HAMG, resulting in the next agent selection.
Otherwise, all first rewards saved in the sixth step are stored
as a set, called the first reward set.
Step 8: The number of DAPs will be regulated. If it does

not equal to 1,000, the DAP will be updated to the next DAP.
Subsequently, the hour will be reset as the initial of the first
24-HAMG of the updated DAP. Otherwise, the first reward
sets stored in the seventh step are saved to utilize as the
performance index and then stop.

VI. SIMULATION RESULTS
A. ASSUMPTION AND CASE STUDY
In this work, a novel EMS is proposed for a PEM task in a
single MG, with careful consideration of high uncertainty.
To construct the MG environment and the EMS based on
DDPG, they are coded using the Python language in the
Spyder program. The Pandapower library is applied to cal-
culate PPF and unbalanced PF, while the TensorFlow library
is employed to construct and train all networks of the agent.
Moreover, the computer’s specifications include an Intel(R)
Core(TM) i7-8700 CPU clocked at 3.20GHz, coupled with
16.0GB of RAM. The simulated structures of the MG envi-
ronment are explained in this subsection to provide clarity.
Additionally, the DDPG parameters for training and testing,
as well as defined case studies, are demonstrated in this
subsection.

1) MG ENVIRONMENT
To construct the MG environment tested, a low-voltage
(230V) distribution system in Udon Thani, Thailand, of a
Provincial Electricity Authority (PEA) is utilized as the MG,
which is the MG2 in [13]. The MG is set as a grid-connected
mode which is connected to a 22kV main grid through a
distribution transformer. The transformer specification is set
according to [5]. Furthermore, according to the IEEE stan-
dard, the maximum allowable HST for transformers in a
distribution system is set at 110 ◦C [35]. The MG consists of
27 houses, each defined as a smart house. Each house features
an electric appliance load, a 5 kW-rated solar PV rooftop,
and a single EV with a 3.3 kW-rated charger. For the hourly
evaluation of the appliance load, residential load profiles
consuming less than 150 kWh from summermonths over four
years, spanning fromMarch to June from 2017 to 2020 under
the supervision of the PEA [40], are utilized as historical
data. These profiles are used to fit hourly PDFs for estimating
and sampling the hourly appliance load, allowing for the
estimation of the hourly appliance load for each house. For
the evaluation of the hourly solar PV generation, the hourly
solar radiation and hourly ambient temperature from summer
months over three years from 2015 to 2017 under the super-
vision of Department of Alternative Energy Development
and Efficiency in Thailand [41] and the Thai Meteorological

FIGURE 8. Testing process of proposed method.

Department [42], respectively, are applied to fit the hourly
PDFs. The constructed PDFs can be sampled to calculate the
hourly solar PV power. The distributions of the hourly values
of appliance load, solar radiation, and ambient temperature
can be displayed and explained in [13].

In the context of EV vehicle specifications, the popular EV
type, usage proportion of EV in each type, EV consumption
rate, EV battery capacity, and efficiency for EV charging are
used according to [39]. Furthermore, the parameters of PDFs
related to the departure time, the arrival time, and the traveling
distance are referred to [5].

The BESS is installed at the back of the transformer and
controlled by the EMS. A vanadium redox flow battery,
defined as a commercial BESS and a large BESS is selected
as the BESS in the MG because it can be designed to meet the
desired power and energy requirements easily. Additionally,
it has low maintenance costs and low loss of life [43]. In this
work, its specification is determined according to [14].

For the cost rate for evaluating related objective functions,
the TOU rate at 22kV for buying energy [44] and the FIT rate
for selling energy of the distribution system modified as the
MG [45] are used to calculate the hourly exchanged energy
cost. Moreover, the carbon emission rate for calculating the
carbon emission cost is determined according to [13]. For
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TABLE 1. DDPG parameters determination.

TABLE 2. Training parameters determination.

TABLE 3. Training computational time.

calculating the BESS degradation cost, the BESS capital cost
is determined according to [14].

2) DDPG PARAMETERS FOR TRAINING AND TESTING
To compare the performance of the conventional and pro-
posed methods, the DDPG parameters of both are set in a
similar manner. The DDPG parameters of the agent can be
shown in Table 1.

In the training parameters, with the inclusion of the
multi-agent approach in the proposedmethod, certain training
parameters are defined differently, as represented in Table 2.
For example, in the conventional method with a single-agent,
the training iteration is set at 12,000. In contrast, it is defined
as 500 per agent in the proposed method, resulting in a total
of 12,000 iterations equal to the training iteration of the
conventional method. This leads to a comparison of training
computational times between the proposed and conventional
methods. Moreover, the decay rate for training is properly
determined based on the training iteration to reduce explo-
ration before saving the agent’s weights for testing. Thus,
the decay rates per agent are determined as 0.0001 in the
conventional training and 0.002 in the proposed training,
respectively. For other related training parameters, they are
similarly set, as shown in Table 2.

3) CASE STUDY
Two case studies are constructed for comparison in this work,
including:

• A single agent DDPG with PPF, defined the conven-
tional method, is applied to control the BESS operation
in the MG. By the PPF usage, the high confidence level
is applied to provide the hourly-optimal solution.

• A multi-agent DDPG with random sampling, defined as
the proposed method, is utilized to control the BESS
operation in the MG. Without using the PPF, 24 well-
trained agents are constructed to learn the MG behavior
directly. These agents have a good ability to find the
hourly-best solution for changed situations in the MG,
but not the hourly-optimal solution.

B. TRAINING COMPUTATIONAL TIME
In the context of training computational time, it is represented
in Table 3. This indicates that the conventional method spends
more computational time than the proposed method. This
situation results from the PPF being applied for estimating
the mean and standard deviation of desired parameters, lead-
ing to a computational loop in the hourly training of the
agent. In contrast, the hourly training process in the proposed
method has a single PF loop in the hourly training of the
agent, resulting in a lower computational burden. According
to Table 3, the proposed method can decrease the training
computational time by about 92% compared to the time
obtained by the conventional method.

C. PEM PERFORMANCE
For the PEM performance, the actions provided by both
conventional and proposed methods must properly control
the BESS under changing DAPs with high uncertainties in
solar PV generation, appliance load within the house, and
EV charging. In the conventional method, the hourly-optimal
action and the hourly-optimal SoC of the BESS obtained by
a single well-trained agent using the process in Fig. 5 can be
represented in Fig. 9 and Fig. 10, respectively.
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TABLE 4. Summation of MRS provided by each method.

By applying the PPF in the testing process to provide the
hourly-optimal action, the hourly mean of the desired power
flow and BESS parameters mapped to the agent’s hourly state
variable have the same value in every testing iteration due to
the hourly mean estimation of the PPF. This causes the actor
of a single well-trained agent to predict the hourly-optimal
action with the same values in every iteration. Consequently,
the hourly-optimal action maintains the same values in every
testing iteration when applying the PPF, as shown in Fig. 9.

From Fig. 9, The BESS is mostly charged from 7:00 to
21:00, as observed during this period with negative action
values, leading to an increasing SoC in this period as rep-
resented in Fig. 10. Conversely, the BESS is discharged from
22:00 to 6:00. The reason for initiating discharging at 22:00
is that EV users will begin charging their batteries at this
time, as 22:00 marks the start of the off-peak rate period of
the TOU. Consequently, the BESS needs to be discharged to
alleviate the burden on the transformer loading. The BESS
discharge operations continue until reaching 6:00, resulting
in a decreasing SoC during this period, which does not exceed
the SoC limitation, as shown in red lines of Fig. 10.
Furthermore, the hourly-optimal action obtained by the

conventional method involves long-period charging of the
BESS. This results from a high confidence level consideration
when applying the PPF. After 22:00, preventing undesired
peak loads and considering a high confidence level are imple-
mented due to heavy EV charging. Thus, the BESS needs to
store energy for an extended period to use in heavy discharg-
ing after 22:00 due to EV charging, with a 95% confidence

FIGURE 9. Hourly-optimal action of conventional method.

FIGURE 10. Hourly-optimal SoC of BESS of conventional method.

level consideration. Consequently, this leads to long-period
charging for the BESS. While these solutions can prevent
power system violations with a 95% confidence level, they
result in higher costs, particularly from the drawn energy
cost from the main grid to charge the BESS and the BESS
degradation cost from heavy discharging.

From the training results of the proposed method, 24 well-
trained agents are trained with random sampling instead
of considering a high confidence level using PPF. Conse-
quently, all hourly-state variables of the agent are changed
in every testing iteration. The hourly action in each test-
ing scenario does not have the same value. Therefore, the
hourly-best action provided by the proposed method can-
not be presented as a figure, but it can be shown through
the reward performance, which is explained in the next
result.

The reward sequence of each 24-HAMG estimated using
1,000 DPAs, derived from the testing process and defined
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FIGURE 11. The MRS of each 24-HAMG estimated using 1000 DPAs; (a) initial hour from 7:00 to 12.00, (b) initial hour from 13:00 to 18.00, (c) initial hour
from 19:00 to 0.00 and (d) initial hour from 1.00 to 6.00.

in Section V Subsections B and C, is served as the perfor-
mance index in the PEM task. The hourly-optimal action
obtained by the conventional method is used to provide the
reward sequence of each 24-HAMG, and then it is stored
to average as the MRS for each 24-HAMG, as shown in
the blue line in Fig. 11. In contract, the orange line in
Fig. 11 is represented as the MRS of each 24-HAMG when
applying 24 well-trained agents constructed by the proposed
method. Thus, all MRS can be represented in Fig. 11(a) to
Fig. 11(d). From Fig. 11, the hourly-optimal action obtained
by the conventional method and the 24 well-trained agents
provided by the proposed method can properly control the
BESS, as noticed from the MRS not having a large neg-
ative value. This indicates that the penalty added to the
reward equals 0, which serves as evidence reflecting that the
related constraints are not violated. Moreover, the MRS of

the proposed method tends to have a higher value than that
of the conventional method during the period from 7:00 to
21:00. In contrast, during the period from 22:00 to 6:00, the
MRS of the conventional method tends to have higher values.
To clarify, the summation of each MRS can be presented
in Table 4. The table indicates that the summation of each
MRS provided by the proposed method is higher than that
obtained by the conventional method by 1.50% to 28.37%.
Therefore, the proposed method demonstrates superior per-
formance in the context of the day-ahead PEM task compared
to the conventional method.

D. EXCHANGED ENERGY DISTRIBUTION
From the testing process, 24 sets of 24-HAMG in each
DAP are applied to test the performance of optimization
methods. The desired parameters at the initial hour of each
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FIGURE 12. Drawn energy of MG in peak rate period of TOU.

FIGURE 13. Drawn energy of MG in off-peak rate period of TOU.

24-HAMG are saved before the 24-HAMG is updated as
the next 24-HAMG. For the PEM task in this work, the
24-HAMG is changed energy hour in a day, defined as the
worst case of the PEM. To this end, the action at the ini-
tial hour of the 24-HAMG is the real action that is taken
into the BESS to control before the 24-HAMG is updated.
Therefore, the MG parameters at the initial hour of the 24-
HAMG are the MG parameters that really occurred, not
simulated. These parameters are saved to define as the per-
formance indexes. By having 24 sets of 24-HAMG per DAP,
the exchanged power is saved as 24 values per DAP, form-
ing the exchanged power sequence. This results in having
1,000 exchanged power sequences according to the number
of DAPs tested.

For 1,000 exchanged power sequences, each sequence is
split into the drawn power sequence during both the peak
rate period and the off-peak rate period of TOU, which are
defined as the MG’s power absorption from the main grid.

FIGURE 14. Injected energy of MG.

FIGURE 15. Daily total cost distribution.

Additionally, each sequence is split into the injected power
sequence, which theMG exports power to themain grid. Con-
sequently, there will be 1,000 sets of drawn power sequences,
along with 1,000 sets of injected power sequences. When the
summations of all drawn power sequences during both the
peak rate period and the off-peak rate period of TOU are
calculated, respectively, they yield the drawn energy for both
the peak rate period and the off-peak rate period of TOU.
This process results in having 1,000 values for both drawn
energy in peak and off-peak periods. Moreover, the injected
power sequence will be subjected to the same process. The
distributions of these energies can be represented in Fig. 12,
Fig. 13, and Fig. 14, respectively.

The drawn energy from the main grid, as shown in Fig. 12,
exhibits a clearer tendency to be lower during peak rate
periods when the proposed method is applied compared to
when the conventional method is employed. Additionally,
in the context of energy drawn during off-peak rate periods

VOLUME 12, 2024 95087



N. Kaewdornhan, R. Chatthaworn: PEM for Microgrid Using Multi-Agent DDPG With Random Sampling

TABLE 5. The mean and standard deviation of daily total cost.

as according to Fig. 13, there is a tendency for it to be
higher when implementing the proposed method compared to
when using the conventional method. Therefore, the proposed
method demonstrates greater intelligence in importing energy
from the main grid than the conventional method. Conse-
quently, the exchanged energy cost tends to be lower when
the proposed method is implemented, thus guaranteeing its
performance.

Moreover, in the context of the injected energy into the
main grid, the proposed method can control the BESS to
provide a tendency for the injected energy to be higher com-
pared to the conventional method, as depicted in Fig. 14.
Therefore, the revenue of theMG from injecting energy to the
main grid has a higher tendency when the proposed method is
applied.

E. DAILY TOTAL COST DISTRIBUTION
In the previous subsection, the reward at the initial hour
of each 24-HAMG is saved similarly to the drawn/injected
power, called the first reward. Thus, there are 1,000 sets
of the first reward resulting from the actual BESS con-
trol. In Section VI Subsection C, the reward is verified
without the penalty value. Therefore, each first reward can
be shown as the hourly total cost. To this end, there are
1,000 sets of the hourly total cost. Then, when each hourly
total cost is summed, it is defined as a daily total cost,
which is determined as one of the performance indexes.
Thus, there are 1,000 values of the daily total cost. The
distribution of the daily total cost can be represented
in Fig. 15.

From Fig. 15, the daily total cost has a lower tendency
when the proposed method is implemented compared to
the conventional method. This indicates that the proposed
method can manage energy within the MG with a better
performance than the conventional method. To clarify in the
context of a figure, the mean and standard deviation of the
daily total cost obtained by the conventional and proposed
methods can be represented in Table 5.

In Table 5, the standard deviation of daily total costs
obtained by the proposed method is lower than that pro-
vided by the conventional method. This indicates that the
proposed method can provide a distribution of the daily total
cost with less disorganization compared to the conventional
method. Moreover, the mean of the daily total cost obtained
by the proposed method is 9.22% lower than that obtained
by the conventional method. Therefore, the proposed method
demonstrates good performance in BESS controlling with
lower related costs.

VII. DISCUSSIONS
To verify the performance of the conventional and pro-
posed methods, the training and testing processes are oper-
ated to achieve this goal. When applying the PPF in the
conventional method, the training process incurs a high
computational burden due to the PPF loop for estimat-
ing the mean and standard deviation of related parameters.
In contrast, the training process of the proposed method
does not involve a PPF loop, thereby effectively mitigating
this issue.

By unmitigated uncertainties of MG parameters through
random sampling processes instead of relying on PPF, the
DDPG agent can directly learn from the MG environment
and provide the best solution in each scenario. Furthermore,
transitioning from a single-agent DDPG to a multi-agent
DDPG framework allows the multi-agent to allocate roles
for predicting 24-hour-ahead actions in BESS control based
on changing 24-HAMGs for every hour. As a result, during
the testing process, the proposed method demonstrates better
performance in BESS control, resulting in a higher summa-
tion of the MRS of each 24-HAMG, along with enhanced
intelligence in importing/exporting energy to/from the main
grid compared to that obtained by a single-agent DDPG
with PPF. Additionally, the daily total costs achieved by the
proposed method exhibit a lower mean value and narrower
distribution range compared to those obtained by the con-
ventional method. This confirms that the proposed method
leads to lower cost attainment and higher accuracy in cost
prediction for the MGO.

VIII. CONCLUSION
A novel EMS utilizing a multi-agent DDPG with random
sampling is proposed for the PEM task within a single
low-voltage MG installing a single BESS and considering
uncertainties of solar PV generation, appliance load, and
EV charging demand. Each agent is assigned the task of
predicting the best action for BESS control 24 hours ahead,
based on the values of random variables such as solar PV
generation, appliance load, and EV charging demand within
the same timeframe. Additionally, the 24-hour-ahead values
of random variables change every hour throughout the day,
generating from random sampling process and representing
the worst-case scenario for the PEM task. Consequently, there
are 24 agents (corresponding to the number of hours in a
day) tasked with predicting 24-hour-ahead action for BESS
control based on the updated 24-hour-ahead MG behavior
values throughout the day. Through this concept, the PEM
task can be applied in combination with multi-agent DDPG.
There are three objective functions minimized in this work,
including exchanged energy cost, BESS degradation cost,
and carbon emission cost. Moreover, MG parameters, such
as bus voltage, line current, hottest-spot temperature of the
transformer, and power and SoC of the BESS are considered
as the constraints in the PEM task.

Simulation results demonstrate that unmitigated uncertain-
ties of random variables using random sampling processes

95088 VOLUME 12, 2024



N. Kaewdornhan, R. Chatthaworn: PEM for Microgrid Using Multi-Agent DDPG With Random Sampling

instead of utilizing PPF, and transitioning from a single-agent
to a multi-agent framework, facilitate direct learning of
MG uncertainty for the DDPG agent when performing the
PEM task. Consequently, the proposed method leads to
enhanced performance of the EMS with reduced training
time, an increased trend of rewards, a decreased trend of daily
costs, and improved intelligence in energy import/export
operations from/to themain grid. In future work, the proposed
method may be implemented in the PEM task of multi-MG.
This can transition a conventional power system into a smart
grid.
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