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ABSTRACT Machine learning (ML) has been instrumental in solving complex problems and significantly
advancing different areas of our lives. Decision tree-based methods have gained significant popularity
among the diverse range of ML algorithms due to their simplicity and interpretability. This paper presents a
comprehensive overview of decision trees, including the core concepts, algorithms, applications, their early
development to the recent high-performing ensemble algorithms and their mathematical and algorithmic
representations, which are lacking in the literature and will be beneficial to ML researchers and industry
experts. Some of the algorithms include classification and regression tree (CART), Iterative Dichotomiser 3
(ID3), C4.5, C5.0, Chi-squared Automatic Interaction Detection (CHAID), conditional inference trees, and
other tree-based ensemble algorithms, such as random forest, gradient-boosted decision trees, and rotation
forest. Their utilisation in recent literature is also discussed, focusing on applications in medical diagnosis

and fraud detection.

INDEX TERMS Algorithms, CART, C4.5, C5.0, decision tree, ensemble learning, ID3, machine learning.

I. INTRODUCTION

Machine learning-based applications are revolutionising
various industries and sectors, including healthcare, finance,
and marketing [1], [2], [3], [4]. With the advancement of tech-
nology and the availability of large datasets, ML algorithms
have become increasingly powerful and accurate in making
predictions and informed decisions. These applications are
transforming how organisations operate and paving the way
for a more efficient and data-driven future.

Decision tree-based algorithms have been employed in
diverse applications, including but not limited to classifi-
cation, regression, and feature selection [5], [6], [7]. The
basic idea behind decision tree-based algorithms is that
they recursively partition the data into subsets based on the
values of different attributes until a stopping criterion is
met. This process results in a tree-like structure, where each
node represents a decision or a split based on a specific
attribute [8]. The algorithm determines the best attribute to
use for each split based on certain criteria, such as information
gain, gain ratio, and Gini index.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

Furthermore, decision trees are known for their inter-
pretability [9], [10]. The resulting tree structure allows users
to understand and interpret the decision-making process
easily. This is especially valuable in domains where trans-
parency and explainability are crucial, making it easier for
stakeholders to trust and validate the results. Another sig-
nificance of decision tree-based algorithms is their ability to
handle categorical and numerical data. Traditional statistical
methods often struggle with categorical variables, requiring
them to be converted into numerical values. Decision trees,
on the other hand, can directly handle both types of data,
eliminating the need for data preprocessing. This makes
decision tree-based algorithms more versatile and efficient in
a wide range of applications.

There are a few reviews of decision trees in the lit-
erature; for example, Che et al. [11] presented a review
of decision trees and ensemble classifiers with specific
applications to bioinformatics. The review focused on ID3,
CART, and ensemble methods such as bagging, boosting,
and stacked generalization. Cafiete-Sifuentes et al. [12]
reviewed multivariate decision trees (MDT) and compared
the performance of several MDT induction classifiers.
Anuradha and Gupta [13] presented a review of decision
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tree classifiers, focusing on a high-level description of key
concepts, such as node splitting and tree pruning. Meanwhile,
Costa and Pedreira [14] reviewed recent decision tree-based
classifier advances. The paper covered three main issues: how
decision trees fit the training data, their generalization, and
interpretability.

However, most of the existing surveys and reviews of
decision trees focus on their applications in specific domains
or a high-level overview of the decision tree concept. There-
fore, the current literature lacks a comprehensive overview of
decision tree algorithms, their early developments, succinct
mathematical formulations, and algorithmic representations
in a single peer-reviewed paper. Therefore, it is essential to
have a review that fills this gap in view of the continuous use
and prevalence of decision tree-based algorithms and their
application in today’s technological advancements. Hence,
in this study, we present a detailed review of decision tree-
based algorithms. Specifically, the paper aims to cover the
different decision tree algorithms, including ID3, C4.5, C5.0,
CART, conditional inference trees, and CHAID, together
with other tree-based ensemble algorithms, such as random
forest, rotation forest, and gradient boosting decision trees.
The paper aims to present their mathematical formulations
and algorithmic representations clearly and concisely.

The rest of the paper is structured as follows: Section II
presents a comprehensive overview of the decision tree,
covering key areas such as splitting criteria and tree
pruning methods. Section III discusses different decision
tree algorithms, their learning process, splitting criteria, and
mathematical formulations. Section IV reviews decision tree
applications in recent literature, including applications in
medical diagnosis and fraud detection. Section V discusses
key findings and future research directions, and Section VI
concludes the paper.

Il. OVERVIEW OF DECISION TREE
This section provides a comprehensive overview of decision
trees, focusing on the main building blocks and splitting
criteria. Decision trees, as a concept in ML, have a
history that dates back to the mid-20th century. Initial
decision tree studies were started by Charles J. Clopper and
Egon S. Pearson in 1934, who introduced the concept of
binary decision processes [15], [16]. However, the modern
implementation of decision trees in the context of ML started
decades later. Breiman [17] developed the CART algorithm in
1984, introducing concepts such as the Gini index and binary
splitting, which are now widespread in decision tree designs.
Quinlan [18] developed ID3, one of the first notable decision
tree algorithms, in 1986. Furthermore, Quinlan [19] enhanced
the ID3, introducing the C4.5 decision tree in 1993. These
developments and integration of decision trees into ensemble
methods like random forests and boosting algorithms have
solidified their place as fundamental algorithms in machine
learning.

The learning procedure of decision trees involves a series
of steps where the data is split into homogenous subsets,
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FIGURE 1. A decision tree example.

as shown in Figure 1. The root node, which is the starting
point of the tree, represents the entire dataset. The algorithm
identifies the feature and the threshold that leads to the best
split based on a specific criterion [20]. The process continues
recursively, with each subset of the data being further split at
each child node. This continues until a stopping criterion is
reached, typically when the nodes are pure (i.e., all data points
in a node belong to the same class) or when a predefined
depth of the tree is reached. The nodes where the tree ends,
called leaf node or terminal node, represent the outcomes
or class labels. The decision to split at each node is made
using mathematical formulations such as information gain,
Gini impurity, or variance reduction.

Furthermore, the success of decision tree techniques
mainly depends on several factors contributing to their
performance, interpretability, and applicability to a wide
range of problems. These factors include data quality, tree
depth, splitting criteria, and tree pruning method. According
to Piramuthu [21], the effectiveness of decision trees is highly
dependent on the training data quality. Hence, it is necessary
to use clean or preprocessed data not containing missing
values and outliers, which can significantly enhance the
performance of the resulting models. Additionally, feature
selection and feature engineering are necessary because
inputting relevant and well-transformed features can lead to
more efficient and accurate splits.

A. SPLITTING RULES

The term splitting criteria, or splitting rules, describes the
methods used to determine where a tree should make a split
in its nodes, effectively deciding how to divide the dataset
into subsets based on different conditions [22], [23]. The
choice of splitting criterion is crucial as it directly impacts
the tree’s structure and, ultimately, its performance. Different
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decision tree algorithms use different criteria for this purpose,
including the following:

1) GINI INDEX

Gini Index, also called Gini Impurity, is a well-known split-
ting criterion used in the CART algorithm. It measures the
probability of a randomly chosen sample being incorrectly
classified if it was randomly labelled [24]. It is used to
evaluate the quality of a split in the tree and is calculated for
each potential split in the dataset. The Gini Index for a set can
be represented mathematically as:

n
Gini(S) =1 — Z p? (1)
i=1
where S, n, and p; represent a set of samples, the number
of unique classes in the set, and the proportion of the
samples in the set that belong to class 7, respectively. This
formula calculates the probability of incorrectly classifying
a randomly chosen element from the set S based on the
distribution of classes in it. The value of Gini Impurity
ranges from O (perfect purity) to 1 (maximal impurity)
[25]. When the algorithm evaluates where to split the data,
it calculates the Gini index for each potential split and
typically chooses the split that results in the lowest weighted
Gini Impurity for the resulting subsets.

2) INFORMATION GAIN

Information Gain (IG), a criterion used in ID3 and C4.5,
is based on the notion of entropy in information theory.
Entropy measures the unpredictability or randomness in a
set of data [26]. The IG technique searches for a split that
maximizes the difference in certainty or decreases uncertainty
before and after the split. It determines the effectiveness of an
attribute in splitting the training data into homogenous sets.
Meanwhile, the entropy (E) of a set S is given by the formula:

n
E(S) =~ pilogy(pi) 2
i=1
where 7 is the number of unique classes in the set, and p; is
the proportion of the samples in the set that belong to class i.
Therefore, the IG for a split on a dataset S with an attribute A
can be computed as follows:

15|
> TZE®S) 3)

IG = E(S) — X
ve Values(A)

where Values(A) are the different values that attribute A can
take, and S, is the subset of S for which attribute A has the
value v [27]. This formula calculates the change in entropy
from the original set S to the sets S, created after the split.

A higher IG indicates a more effective attribute for splitting
the data, as it results in more homogeneous subsets.

3) INFORMATION GAIN RATIO
The information gain ratio (IGR), an extension of information
gain, is a splitting criterion mainly used in the C4.5 decision
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tree to overcome the bias of information gain towards features
that have several distinct values by considering the number
and size of branches when choosing an attribute. The IGR
normalises the information gain by dividing it by the intrinsic
information or split information (SplitInfo) of the split. This
normalisation reduces the bias towards the multi-valued
attributes, resulting in more balanced and effective decision

trees [26], [27]. The IGR criterion is calculated as:
InformationGain(S, A)

IGR(S,A) = SplitInfo(S, A) @

4) CHI-SQUARE

The Chi-Square (x2) splitting criterion measures the inde-
pendence between an attribute and the class [28]. The X2
test assesses whether the distribution of sample observations
across different categories deviates significantly from what
would be expected if the categories were independent of the
class. Given an attribute A with different categories and a
target class C, the X2 can be computed as:

rok 2
2 O — Ej)
i=1 j=I
where r is the number of categories of the attribute A, k is the
number of classes, Oj; is the observed frequency in cell (i, )
that belong to class j), and Ej; is the expected frequency in cell
(i, ) under the null hypothesis of independence, calculated
__ (row_total; x column_total;) . 2 c g

as Ejj = otal samples . A high x~ value indicates
a significant association between the attribute and the class,
suggesting that the attribute is a good predictor for splitting
the dataset [29], [30]. This criterion is useful for categorical
data, and it identifies the most significant splits based on the
chi-square test of independence.

B. TREE PRUNING METHODS

1) PRE-PRUNING

Pre-pruning or early stopping techniques are used to effec-
tively limit the size of the tree and reduce the possibility
of overfitting [31], [32]. The main benefit of pre-pruning
is its simplicity and the reduction in computational cost
due to the construction of smaller trees. However, setting
the pre-pruning parameters too aggressively may lead to
underfitting. Meanwhile, this strategy halts the tree’s growth
according to predefined criteria, such as maximum depth,
minimum number of instances in a node, minimum informa-
tion gain, and maximum number of leaf nodes [33].

2) POST-PRUNING

Post-pruning, also called backward pruning, is a technique
used to trim down a fully grown tree to improve its
generalization capabilities. Unlike pre-pruning, which stops
the tree from fully growing, post-pruning allows the tree
to first grow to its full size and then prunes it back [34].
Common post-pruning techniques include reduced error
pruning, pessimistic error pruning, error-based pruning,
minimum error pruning, and cost complexity pruning [33].
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Post-pruning primarily removes sections of the tree that
contribute little to predicting the target variable. It often
requires a separate validation dataset to assess the impact of
pruning [35]. This dataset tests the tree’s performance as it
undergoes pruning.

C. INTERPRETABILITY OF DECISION TREES

Decision trees are known for their inherent interpretability,
making them valuable in various domains where understand-
ing the decision-making process is crucial [14], [36]. Unlike
many other ML algorithms that produce black-box models,
decision trees offer transparency by representing the decision
process as a sequence of simple, intuitive rules. Specifically,
each node in a decision tree corresponds to a feature and a
decision threshold, and the path from the root to a leaf node
represents a series of decisions based on the feature values.
This clear structure allows stakeholders to easily comprehend
and interpret how the model arrives at its predictions.

Furthermore, while complex models such as deep neural
networks and ensemble methods may achieve high accuracy,
their black-box nature makes it challenging to understand
how they arrive at their predictions [37], [38]. In contrast,
decision trees provide a visual representation of the decision-
making process, allowing stakeholders to trace each decision
back to specific features and thresholds. For instance, in a
medical diagnosis application, a decision tree model may
reveal which symptoms or risk factors are most influential
in predicting a particular disease. This transparency enables
domain experts to validate the model’s decisions and identify
potential biases or errors, thereby improving trust in the
model’s predictions.

Additionally, decision trees can facilitate feature selection
and variable importance analysis, aiding in feature engineer-
ing and model refinement [39], [40], [41]. By examining
the splits in the tree and the associated feature importance
scores, practitioners can identify the most influential features
in the prediction process. This information can guide data
preprocessing efforts and inform decisions about feature
inclusion or exclusion in the model, leading to more efficient
and interpretable models.

1Il. DECISION TREE ALGORITHMS
A. ITERATIVE DICHOTOMISER 3
The ID3 decision tree was first introduced in 1986 by
Quinlan [18]. It is particularly noted for its simplicity
and effectiveness in solving classification problems. The
algorithm follows a top-down, greedy search approach
through the given dataset to construct a decision tree. It begins
with the entire dataset and divides it into subsets based on the
attribute that maximizes the Information Gain (Equation 3),
intending to efficiently classify the instances at each node of
the tree. The ID3 is described in Algorithm 1.

The algorithm iterates through every unused attribute and
calculates the Information Gain for a dataset split by the
attribute’s possible values. The attribute with the highest
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Algorithm 1 ID3 Decision Tree Algorithm
Require: Training data set D = {(x1,y1), (x2,¥2), ...,
(Xms ym)}
Ensure: Decision tree 7.
1: function ID3(D)
2: if D is empty then return a terminal node with
default class cqefauir
end if
if all instances in D have same class label y then
return a terminal node with class y

5: end if

6: if the attribute set J is empty then return a terminal
node with the prevalent class in D

7: end if

8: Select the feature f that best splits the data using
information gain.

9: Create a decision node for f.

10 for each value b; of f do

11: Create a branch for b;.

12: Let D; be the subset of D where x; = b;.

13: Recursively build the subtree for D;.

14: Attach the subtree to the branch for b;.

15: end for

16: return the decision node.

17: end function

Information Gain is chosen to make the decision at the node,
and the dataset is partitioned accordingly. This process is
repeated recursively for each partitioned subset until one
of the stopping criteria is met, such as when no further
information can be gained, all instances in a subset belong to
the same class, or there are no more attributes left to consider.
Lastly, the ID3’s limitations include its inability to directly
handle continuous variables and overfitting.

B. 4.5 AND C5.0

Quinlan [19] proposed the C4.5 in 1993 as an extension of the
ID3 algorithm and is designed to handle both continuous and
discrete attributes. It introduces the concept of information
gain ratio, described in Equation 4, to select the best attribute
to split the dataset at each node, aiming to overcome the
bias towards attributes with more levels found in the original
Information Gain criterion used by ID3.

C5.0 is an improvement over C4.5, also proposed by Quin-
lan [42], designed to be faster and more memory efficient.
It introduces several enhancements, such as advanced pruning
methods and the ability to handle more complex types of
data. C5.0 maintains the use of the information gain ratio for
selecting attributes but optimises the algorithm’s execution
and the resulting decision tree’s size.

C. CLASSIFICATION AND REGRESSION TREES

The CART decision tree was proposed in 1984 by
Breiman [43]. Unlike C4.5, CART creates binary trees
irrespective of the type of target variables. It uses different
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splitting criteria for classification and regression tasks. For
classification tasks, it uses the Gini index (Equation 1) as a
measure to create splits [44], [45]. Meanwhile, it employs
variance as the splitting criterion in regression tasks [46],
[47]. The variance reduction for a set S when split on attribute
A is calculated as:

[Sieft |

VR = V(S) — ( S| V(Siefr)
|Sright| .
+ |S| V(Srlght)) (6)

where V(S) is the variance of the target variable in set S,
and Sip and Syign are the subsets of S after the split on
attribute A. In both cases, the goal is to choose the split that
maximizes the respective measure (Gini impurity reduction
for classification and variance reduction for regression),
leading to the most homogenous subsets possible. The CART
algorithm is described in Algorithm 2.

Algorithm 2 CART Algorithm
Require: D = {(x1, 1), (2, ¥2), . .., Qom, Ym)}-
Ensure: Decision tree 7.
1: function CART(D)
2: if D is empty then return a terminal node with
default value or class caefauir
end if
if all instances in D have the same class label y then
return a terminal node with class y
end if
if the feature set F is empty then return a leaf node
with the average value of y in D

7: end if
8: Select the best feature f and split point s that

minimize the cost function.

9: Create a decision node for f and s.

10: Partition the data set D into two subsets D; and
D5 based on the split.

11: Recursively build the subtree for D and D».

12: Attach the subtrees to the decision node.

13: return the decision node.

14: end function

D. CHI-SQUARED AUTOMATIC INTERACTION DETECTION
The CHAID algorithm, developed by Kass [48], performs
multi-level splits when computing classification trees. It is
particularly robust in the detection of interaction between
variables. CHAID can handle more than two categories
for each variable, and it uses the Chi-Square (Xz) test
of independence as its splitting criterion [49], [50]. This
statistical test is applied to assess the relationship between
categorical variables. For a given attribute A with differ-
ent categories and a target class C, the x? statistic is
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computed as:

rok 2
=22 ™
o Eij
i=1 j=1
where r is the number of categories of the attribute A, k is
the number of different classes in the target variable C, O;
is the observed frequency in the i category of attribute A and
the j” class of C, and Ejj is the expected frequency in the same
cell under the null hypothesis of independence, calculated as

1i x colimn_total; ) . .
Ej = (mw—t%?alxscgnf;';ens 194 ‘The attribute with the highest

x? statistic is selected for splitting at each node. A higher x?2
value indicates a stronger association between the attribute
and the target variable, suggesting that the attribute is a good
predictor for splitting the dataset. Algorithm 3 details the
working process of the CHAID algorithm.

Algorithm 3 CHAID Algorithm

ReqUire: D = {(xl 1) yl)’ (-x2a yz)a LR ] (-x}'rh )’m)}~
Ensure: Decision tree 7.
1: function CHAID(D)

2: if D is empty then return a terminal node with
default class cqefauir

3: end if

4 if all instances in D have the same class label y then
return a terminal node with class y

5: end if

6: if the feature set F is empty then return a terminal

node with the most prevalent class in D
7: end if

8: Calculate the chi-squared statistic for each feature
and its possible values.
9: Select the feature and value with the highest chi-
squared value.
10: Create a decision node for the selected feature and
value.
11: Partition the data set D based on the selected feature
and value.
12: for each subset D; of D do
13: Recursively build the subtree for D;.
14: Attach the subtree to the decision node.
15: end for
16: return the decision node.

17: end function

E. CONDITIONAL INFERENCE TREES

The conditional inference trees, developed by Hothorn et al.
[51], is a non-parametric class of decision trees that use
statistical tests to determine splits, reducing bias and variance
and providing a more statistically sound approach. It is
mostly useful when solving complex, non-linear relationships
that exist between the predictor variables and the response
variable [52], [53]. Assuming S is a node in the tree, with m
examples and d features. Let X be the subset of d features at
node §, and Y be the corresponding response values. Let X;
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be the j-th feature in X;. Then, the algorithm can be defined
as:

1) For each feature X; in X, calculate the p-value of a
statistical test for the null hypothesis that there is no
relationship between X; and Y.

2) Choose the feature X} and split point #; that maximize
the statistical significance, based on the p-values of the
tests.

3) Split the node into two child nodes S and S», where
S1 contains examples with Xz < #; and S, contains
examples with Xj, > #.

4) Recursively repeat steps 1-3 to every child node until a
stopping criterion is reached.

F. RANDOM FOREST

the random forest, described in Algorithm 4, is an ensemble
of decision trees [54], [55]. It improves upon the basic
decision tree algorithm by reducing overfitting. Each tree in
the forest is built from a sample drawn with replacement
(i.e., bootstrap sample) from the input data [56]. The basic
idea behind this algorithm is to generate a set of trees
using different subsets of the input samples and features and
then combine their outputs to obtain a final prediction. The
Random Forest algorithm uses two main techniques to reduce
overfitting and improve accuracy:

« Bootstrap Sampling: By sampling the data with replace-
ment, the algorithm generates multiple training sets
that are slightly different from each other. This type
of sampling ensures reduced variance and prevents
overfitting.

« Feature Randomization: Randomly selecting a subset of
features for each tree ensures the algorithm decorrelates
the trees and reduces the chance of selecting the same
“best” feature for every tree. This improves the diversity
and accuracy of the trees.

Algorithm 4 Random Forest Algorithm

I: fort=1toT do > Generate T trees

2: Randomly sample » instances from D with replace-
ment

3: Randomly select m attributes from the total p
attributes (where m < p)

4: Build a decision tree i, based on the sampled

instances and attributes

: end for

: end for

To make predictions for a new instance x:

. if classification task then

fx) = argmaxc% ZLI I{h(x) = ¢}

vote across trees

10: else if regression task then

11: fx) = % ZZT: 1 ht(x) > Average of tree predictions

12: end if

13: end if

> Majority
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G. GRADIENT BOOSTED DECISION TREES
Gradient Boosted Decision Trees (GBDT) is an ensemble
learning method that combines multiple decision trees to
create a powerful predictive model [57]. Unlike Random
Forest, which builds independent trees in parallel, GBDT uses
a sequential approach to build trees that correct the errors
of the previous trees [58], [59]. It uses gradient descent to
minimize errors. Assuming 7 is the number of trees, A, (x) is
the prediction of the ¢-th tree, F;—_1(x) is the current model’s
predictions for x, and L(y, F;—1(x)) is the loss function, the
GBDT algorithm works as follows:

1) Initialize the model with a constant value (e.g., the

mean of the target variable).

2) Fort=1toT:

a) Compute the negative gradient of the loss
function with respect to the current model’s
predictions for each instance in the training data.

b) Fit a decision tree to the negative gradient values,
using the input data as features and the negative
gradient values as target variables.

c¢) Update the model by adding the new tree,
weighted by a learning rate n, to the current
model.

3) Make a prediction for a new instance by summing the
predictions from the various trees:

a) For a regression task, the final prediction is the
sum of the predictions of all the trees, i.e., f(x) is
given by:

T
F) =2 nh(x) ®)
t=1

where 7 is the learning rate.

b) For a classification task, the final prediction is
the probability of the positive class, computed by
applying a sigmoid function to the sum of the
predictions of all the trees.

1
- 9
f) R Ty )

where 7 is the learning rate and e is the Euler’s
number.

H. ROTATION FOREST

Rotation forest is a type of decision tree ensemble where each
tree is trained on the principal components of a randomly
selected subset of features [60], [61]. The core idea behind
this algorithm is to train each classifier in the ensemble on
a version of the training data that has been transformed to
maintain the correlation between the features and introduce
diversity among the classifiers. This is achieved through the
following steps:

1) For each classifier to be trained, partition the set of
features F into k subsets. The partitioning can be
random but is done in such a way that each subset
contains a different part of the features.
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TABLE 1. Summary of decision tree algorithms.

Algorithm Overview Advantages Disadvantages

1D3 A simple, greedy algorithm using  Easy to understand and im-  Prone to overfitting; not for
Information Gain as the rule. Ideal ~ plement. continuous variables.
for categorical data.

C4.5 Extends ID3, improves handling of ~ Handles both continuous and ~ More complex than ID3;
continuous data, and introduces tree  categorical data; uses pruning  slower with large data.
pruning. to reduce overfitting.

C5.0 Evolution of C4.5, focuses on ef-  Efficient with large datasets; Can overfit without proper
ficiency and scalability, uses Infor-  generates smaller trees. pruning; less interpretable.
mation Gain Ratio.

CART Uses Gini index for classification  Versatile for both classifica- Can overfit; needs careful
and variance reduction for regres-  tion and regression; simpli-  tuning and pruning.
sion, makes binary splits. fies the model.

CHAID Employs Chi-square test for multi-  Good for categorical dataand ~ Can produce large trees; sen-

level splits, identifies variable inter-
actions.

detecting interactions. sitive to data changes.

Conditional Inference  Uses statistical tests for splitting to  Provides a statistically rig- Computationally intensive;
Trees minimize bias, suitable for categor-  orous approach; less biased less intuitive than simpler
ical variables. towards variables with many  models.
categories.
Random Forest An ensemble of trees using bagging  Reduces overfitting; handles  Less interpretable; higher

to reduce overfitting and improve
accuracy.

high dimensionality well. computational costs.

Gradient Boosted De-
cision Trees

Builds trees sequentially to correct
errors, using variance reduction cri-
teria.

Prone to overfitting; requires
careful tuning.

High accuracy; effective with
various data types.

Rotation Forest Enhances model diversity by rotat-
ing the feature space using PCA

before building each tree.

Improves accuracy by pro- Increased computational
moting diversity. complexity; challenging
tuning.

2) For each subset of features, apply PCA to obtain the
principal components. This step transforms the original
feature space into a new space that captures the variance
in the data more effectively.

3) Combine the principal components from all subsets to
form a new set of features for training the classifier.
This effectively rotates the axis of the feature space,
hence the name Rotation Forest.

4) Train each base classifier on the transformed dataset.
Different classifiers can be used, but decision trees are
commonly applied.

Given a dataset D with n features, the algorithm par-
titions the feature set F into k non-overlapping subsets
F1, Fa, ..., Fi.Foreach subset F;, PCA is applied to derive a
set of principal components PC;, capturing the main variance
directions of the features in F;. The transformation for a
subset F; can be represented as:

T; = PCA(F)) (10)
where 7T; is the transformation matrix obtained from PCA on
subset F;. The new feature set for training the j”’ classifier, D;,
is obtained by applying the transformation 7; to each subset
F; and concatenating the results:

k
D; = @ Ti(F;)

i=1

(1)

where @ denotes the concatenation of the transformed
feature subsets. The ensemble’s final output is typically the
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majority vote (for classification tasks) of the predictions from
all base classifiers.

A summary of the different tree-based algorithms is
tabulated in Table 1, including their advantages and
disadvantages.

IV. DECISION TREE APPLICATIONS IN RECENT
LITERATURE

Decision trees have gained significant attention in recent
literature. This section discusses some popular applications
of decision trees in fields such as healthcare and finance.

A. MEDICAL DIAGNOSIS

Healthcare is one of the prominent areas where decision trees
have found extensive use. Researchers have utilized decision
trees to predict disease diagnosis, treatment outcomes, and
patient prognosis. Decision trees are effective in identifying
patterns and relationships in medical data, leading to more
accurate diagnoses and personalized treatment plans. For
example, decision trees have been used to predict the
likelihood of a patient developing a specific disease based
on their medical history and lifestyle factors [11], [62], [63].
This information can then be used to implement preventive
measures and interventions, ultimately improving patient
outcomes and reducing healthcare costs.

Pathak and Arul Valan [64] proposed a heart disease
prediction model using a decision tree. The model was
built using a fuzzy rule-based technique combined with a
decision tree, achieving an accuracy of 88% when trained
on the Cleveland heart disease dataset obtained from the
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University of California Irvine (UCI) machine learning
repository. Similarly, Maji and Arora [65] conducted a study
on heart disease prediction using a different dataset from
the UCI machine learning repository. The study employed
the C4.5 decision tree and a hybrid decision tree made of
C4.5 and artificial neural network (ANN), where the former
achieved an accuracy of 76.66% and the latter 78.14%. The
study demonstrated the robustness of hybridising decision
trees with neural networks.

Ahmad et al. [66] studied the performance of several
algorithms using different heart disease datasets, including
Cleveland, Switzerland, and Long Beach. The algorithms
studied include random forest, decision tree, support vector
machine (SVM), k-nearest neighbor (KNN), linear discrim-
inant analysis, and gradient boosting classifier. The study
employed sequential feature selection (SFS) to obtain the
most significant features, which were then used to train the
models. The study concluded that the random forest-SFS
and decision tree-SFS achieved the best accuracy. For the
Cleveland dataset, the random forest and decision tree
obtained accuracies of 100.

In [67], the authors identified the C4.5 and random forest
as potentially robust algorithms for detecting chronic kidney
disease (CKD) stages. The study employed a CKD dataset
from the UCI machine learning repository, comprising
25 features and 400 samples. The results indicated that the
C4.5 achieved an accuracy of 85.5%, outperforming the
random forest, which achieved an accuracy of 78.25%.

Decision tree-based methods have also been employed to
diagnose COVID-19. Ahmad et al. [66] proposed a deep
learning-based decision tree model to detect COVID-19 using
chest X-ray images. The approach consists of three decision
trees trained using deep learning architectures, including
a convolutional neural network (CNN). One tree classifies
the images as normal or abnormal, another tree detects
tuberculosis indicators in the abnormal images, and the
last detects COVID-19. The approach achieved an average
accuracy of 95%. Ghiasi and Zendehboudi [68] proposed a
decision tree-based ensemble classifier for detecting breast
cancer. The study used the well-known Wisconsin Breast
Cancer dataset and aimed to build a robust breast cancer
detection framework using the random forest and extra
trees classifier (ET). The approach resulted in an accuracy
of 100%.

Mienye and Sun [69] studied the performance of ML
algorithms for heart disease prediction. The study utilized
the following algorithms: decision tree, XGBoost, ran-
dom forest, logistic regression, and naive Bayes. Firstly,
the authors employed the Synthetic Minority Oversam-
pling Technique-Edited Nearest Neighbor (SMOTE-ENN)
to resample the data and solve the imbalance class prob-
lem. Also, the recursive feature elimination technique was
employed to identify the most significant attributes to
further enhance the classification performance of the models.
The results showed that the decision tree, random forest,
and XGBoost achieved an accuracy of 87.7%, 93%, and
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95.6%, respectively, with the XGBoost obtaining the highest
accuracy.

Meanwhile, Adler et al. [70] developed a Glaucoma
detection method using the random forest ensemble classifier.
The study evaluated the performance of ensemble pruning
on the imbalanced glaucoma dataset. The ensemble pruning
techniques include pruning by prediction accuracy (using
the Brier Score strategy), pruning by uncertainty-weighted
accuracy (UWA), and pruning by diversity (using the Double-
Fault measure). The experimental results indicated that the
RF model reached an area under the receiver operating
characteristic curve (AUC) of 0.98 for the Brier and
double-fault pruning techniques.

Additionally, Mienye et al. [71] employed decision tree,
SVM, and logistic regression for CKD detection. The
selected algorithms were also used as the base learners
in the AdaBoost ensemble. The study reported accuracies
of 94% and 100% for the decision tree and AdaBoost
classifier that used a decision tree as a based learner. The
study demonstrated the robustness of using a decision tree
in the AdaBoost over the SVM and logistic regression.
Furthermore, Mienye and Sun [72] studied the impact of
cost-sensitive ML in medical diagnosis using the following
algorithms: decision tree, random forest, and XGBoost.
Cost-sensitive learning involves modifying the algorithm to
focus on the minority class samples, thereby enhancing the
model’s performance on the minority class, which in most
applications is of higher importance than the majority class.
When applied for detecting cervical cancer, the cost-sensitive
random forest obtained the highest classification accuracy of
98.8%, outperforming the other cost-sensitive and standard
algorithms.

Furthermore, Khan et al. [73] proposed an ensemble
approach called optimal trees ensemble (OTE) and applied
it to diverse classification problems, including hepatitis
and Pakinson’s disease detection, achieving error rates of
0.1230 and 0.0861, respectively. The error rates, which
translate to 87.7% and 91.4% accuracy, imply the proposed
OTE outperformed other baseline models, including KNN,
LDA, and random forest. Table 2 summarizes the discussed
studies on medical diagnosis, indicating how decision trees
have been employed in the medical domain, achieving
excellent classification performance.

B. FINANCE

Decision trees have also been widely employed in the field
of finance. By analysing historical data and identifying
relevant variables, decision trees can accurately predict the
creditworthiness of individuals. This information is crucial
for banks and lending institutions in determining the risk
associated with granting loans [74], [75]. Furthermore,
decision trees have been used to detect fraudulent activities
in financial transactions by examining transactional data and
identifying suspicious patterns, helping to prevent financial
losses.
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TABLE 2. Summary of the medical diagnosis studies.

Reference Year Algorithm Application Accuracy(%)
Adler et al. [70] 2016 Random forest ensemble pruning Glaucoma -
Maji and Arora [65] 2018 C4.5 Heart Disease 76.66
Maji and Arora [65] 2018 Hybrid DT of C4.5 and ANN Heart Disease 78.14

Khan et al. [73] 2019 Optimal trees ensemble Hepatitis 87.7
Khan et al. [73] 2019 Optimal trees ensemble Pakinson’s disease 914
Pathak et al. [64] 2020 C4.5 Decision Tree Heart Disease 88.0
Yoo et al. [66] 2020 Deep learning-based Decision Tree COVID-19 95.0
Mienye et al. [71] 2021 AdaBoost-DT Chronic Kidney Disease 100
Ilyas et al. [67] 2021 C4.5 Chronic Kidney Disease 85.5
Ilyas et al. [67] 2021 Random forest Chronic Kidney Disease 78.25
Ghiasi and Zendehboudi [68] 2021 Random forest and ET Breast Cancer 100
Mienye and Sun [72] 2021 Cost-sensitive random forest Cervical Cancer 98.8
Mienye and Sun [69] 2021 XGBoost Heart Disease 95.6
Ahmad et al. [66] 2022 Random forest Heart Disease 100
Ahmad et al. [66] 2022 CART Heart Disease 100

Yao et al. [76] studied credit risk within an enterprise
setting. The study proposed a decision tree-based ensemble
classifier that uses the SMOTE and AdaBoost algorithms.
The proposed model was aimed at identifying enterprise
credit risk by incorporating supply chain information. Other
benchmark models were built using KNN, logistic regression,
SVM, and random forest. The study indicated that the
proposed decision tree ensemble achieved the best and most
stable performance, obtaining an AUC of 0.902.

Liu et al. [77] developed an approach for financial
institutions to effectively predict credit risk and enhance prof-
itability. The proposed approach uses the gradient-boosting
decision tree. While the GBDT was efficient in predicting the
credit risk, it lacked sufficient interpretability. Therefore, the
study introduced an enhanced method called tree-based aug-
mented GBDT, which uses a step-wise feature augmentation
framework. The proposed approach achieved a classification
accuracy of 93.78%, outperforming the standard GBDT and
displaying robust interpretability.

Alam et al. [78] studied the imbalance class problem in
credit risk prediction. The study employed different credit
risk datasets, including the German credit approval dataset,
the Taiwan dataset, and the European credit card clients
dataset. The gradient-boosted decision tree model combined
with the k-means SMOTE technique achieved accuracies
of 84.6%, 89%, and 87.1% on the German, Taiwan, and
European clients datasets, respectively.

Hancock and Khoshgoftaar [79] employed gradient-
boosted decision tree-based algorithms for detecting health
insurance fraud. This is an important ML application as
healthcare fraud is capable of denying patients the needed
medical attention. In this study, the authors employed claims
data to train the various classifiers, including categorical
boosting (CatBoost), achieving an AUC of 0.775, outper-
forming other ML algorithms. The study went further to
demonstrate the model’s performance after introducing a
new variable called Healthcare provider state, leading to the
CatBoost obtaining an AUC of 0.882.

Wong et al. [80] conducted a comparative study of ML
algorithms for credit risk prediction. The study focused on
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decision tree, random forest, KNN, logistic regression, and
naive Bayes classifiers. The aim of the study was to assess
which classifier would achieve the highest performance in
terms of accuracy and other metrics. The experimental results
indicated that the decision tree and random forest achieved
an accuracy of 92.11% and 94.57%, with the random
forest outperforming the other classifiers, demonstrating the
robustness of tree-based ensemble classifiers.

Seera et al. [81] employed a decision tree for credit
card fraud detection, using credit card transaction records
in Malaysia, obtaining a classification accuracy of 99.96%.
Rawat et al. [82] studied the performance of four classifiers
on credit credit card fraud detection. The classifiers include
logistic regression, RF, KNN, and AdaBoost. The various
models achieved classification accuracies of 99%. Similarly,
Adhegaonkar et al. [83] employed decision tree, random
forest, logistic regression, and SVM for credit card fraud
detection. The experimental results showed that the decision
tree obtained an accuracy of 84.9%. However, the random
forest obtained the best performance with an accuracy of
85.2%. A summary of the reviewed papers is tabulated in
Table 3.

V. DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS
Decision trees have proven to be effective in various domains,
including healthcare and finance. However, like any other
algorithm, decision trees have their limitations and areas for
improvement. In this section, we will explore some potential
future research directions in decision trees that can enhance
their performance and address their limitations.

Firstly, the handling of missing data is a crucial area of
potential improvement for decision trees. Currently, decision
trees either ignore instances with missing values or use
surrogate splits to make predictions [86], [87]. However,
these approaches may not always be optimal and can
lead to biased or inaccurate results. Future research could
focus on developing more sophisticated methods to handle
missing data in decision trees, such as advanced imputation
techniques or incorporating uncertainty estimation.
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TABLE 3. Summary of the credit risk and fraud detection studies.

Reference Year Algorithm Application Accuracy(%)
Nadim et al. [84] 2019 Random forest Credit card fraud detection 98.6
Makki et al. [85] 2019 C5.0 Credit Card Fraud Detection 96.0
Wong et al. [80] 2020 Random forest Credit Risk Prediction 94.6
Wong et al. [80] 2020 Decision tree Credit Risk Prediction 92.1
Alam et al. [78] 2020 GDBT and k-means SMOTE Credit Risk Prediction (German dataset) 84.6
Alam et al. [78] 2020 GDBT and k-means SMOTE Credit Risk Prediction (Taiwan dataset) 89.0
Alam et al. [78] 2020 GDBT and k-means SMOTE Credit card fraud detection 87.1
Seera et al. [81] 2021 CART Credit card fraud detection 99.9

Hancock et al. [79] 2021 CatBoost Healthcare Insurance Fraud -
Yao et al. [76] 2022 Decision tree ensemble with SMOTE Enterprise credit risk -
Liu et al. [77] 2022 Augmented GBDT Credit risk prediction 93.8
Seera et al. [81] 2024 AdaBoost Credit card fraud detection 99.0
Adhegaonkar et al. [83] 2024 Random forest Credit card fraud detection 85.2

Another future research direction will be enhancing the
ability of decision trees to handle high-dimensional data [88],
[89], [90]. Decision trees can struggle when faced with
datasets that have a large number of features, as the tree
structure becomes complex and prone to overfitting. Future
research could explore techniques to improve the scalability
and efficiency of decision trees in high-dimensional settings,
such as feature selection methods or dimensionality reduction
techniques.

Furthermore, while decision trees are known for their inter-
pretability compared to other machine learning algorithms,
they can still be difficult to understand and explain, especially
when they become large and complex. Future research could
investigate methods to simplify decision trees and make them
more understandable to non-experts, such as rule extraction
algorithms or visualisation techniques. Additionally, decision
trees are sensitive to outliers and can easily be influenced by
noisy data, leading to inaccurate predictions [91]. It might be
worth examining the robustness of decision trees to outliers
and noisy data and exploring methods to make decision trees
more robust to outliers and noise, such as outlier detection
techniques or robust splitting criteria.

Lastly, the application of decision trees in emerging
fields and domains is a potential future research direction.
Decision trees have been extensively studied and applied
in traditional domains such as healthcare, finance, and
marketing. However, there are numerous emerging fields
where decision trees can potentially make a significant
impact. For example, decision trees could be applied in
the field of autonomous vehicles to aid in decision-making
processes or in the field of natural language processing
to improve sentiment analysis and text classification tasks.
Future research could explore the potential applications of
decision trees in these emerging fields and investigate their
effectiveness in solving complex problems.

VI. CONCLUSION

Decision trees have shown great potential and effectiveness
in various fields. Their ability to analyse complex data and
identify patterns and relationships makes them valuable in the
field of machine learning. This paper presented an overview
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of the decision trees, including their early development to
the recent high-performing tree-based ensemble methods.
The article covers the main decision tree algorithms, such as
CART, ID3, C4.5, C5.0, CHAID, and conditional inference
trees. Their applications in medical diagnosis, credit risk, and
fraud detection were reviewed. This study will be beneficial
to ML practitioners and researchers trying to understand
decision trees and the widely used tree-based algorithms.
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