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ABSTRACT Articular cartilage (AC) is essential for minimizing friction in the human knee, but its
healthy function is highly influenced by biomechanical factors such as weight bearing. Non-invasive
biomechanical and numerical simulations are widely used to study AC but often require complex and
costly numerical approximations. Machine learning (ML) provides a more efficient alternative and uses data
from these numerical methods for training. Hybrid ML models (HML) complemented by reduced-order
numerical models can achieve similar outcomes with minimal data input but may have problems with
generalizability across different scales. In this study, we present an extended HML framework (EHML)
for developing a multiscale surrogate model specifically tailored for knee cartilage simulations. Our
approach is based on integrating hybrid graph neural networks (GNNs) with tissue-scale data and aims
to achieve remarkable few-shot learning and potential zero-shot generalizability for large-scale analysis.
The main proposed idea is a physics-constrained data augmentation (DA) technique coupled with a set
of pre-processing and customization algorithms to bridge the scales. Specifically, we integrate feature
transformations, resampling, and cost-sensitive functions to manage the observed data imbalances, all within
a customized, memory-efficient training framework. Our rigorous testing using an advanced multi-physics
cartilage model demonstrates the viability of our approach. Comparative analyses underscore the significant
role of pre-processing and DA methods in enhancing generalizability and efficiency. They helped reduce
the normalized mean squared errors to 0.1 or less (compared to the ablated model with its error of 2 or
higher). Therefore, this work represents an important step towards addressing the challenges of limited
generalizability and efficiency of existing ML-based surrogate models and opens new possibilities for their
application in more complex simulations.

INDEX TERMS Biomechanics, cartilage, knee, finite element analysis, graph neural networks, machine
learning.

I. INTRODUCTION
Knee biomechanics and the critical underlying structure of
articular cartilage (AC), which facilitates lubrication between
the articulating bones [1], have been the subject of extensive
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research [2], [3], [4] due to the prevalence of cartilage damage
and the complex nature of the knee [5]. The increasing
incidence of such damage significantly affects both the older
and younger populations, especially due to biomechanical
factors such as obesity and physical inactivity, placing a
financial burden on the healthcare system [6]. Beyond the
complex biomechanical interactions between the knee and
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its substructures, the cartilage phases, such as the fibrillar
network and osmotic pressure, are strongly influenced by
damage [7], making them a focal of biomechanical and
orthopedic studies [8].

Physics-based and numerical algorithms, particularly finite
element (FE) analysis, have been recognized for their
usefulness in noninvasive and advanced biomechanical
analysis of knee and cartilage mixture modeling [9], [10],
[11]. These algorithms typically involve discretizing the
complex modeling domain into smaller, manageable ele-
ments, but at the expense of longer computational time,
making them inefficient for clinical use [12]. On the
other hand, data-driven algorithms such as machine learn-
ing (ML) offer potential for similar analyses by mining
biomedical datasets [13], [14], [15]. Nevertheless, the
scarcity of these datasets and the costly nature of model
training present challenges comparable to those of FE
methods [12].
An alternative approach is to use surrogate models that

employ samples of numerically generated data to train fast
ML models. Although these methods have shown promise in
cartilage and knee studies [16], [17], [18], [19], they are not
without limitations, particularly related to the cost of training
and dataset creation [12].We recently developed a hybridML
(HML) algorithm to address these challenges by integrating
a simplified numerical model that has been experimentally
demonstrated to facilitate accelerated few-shot learning of
cartilage biomechanics [20]. However, this method was
originally developed for single-scale studies and requires
significant improvements to enable surrogate modeling of
knee cartilage with all of its primary biomechanical phases
at multiple scales. This need forms the motivation for
our study.

In this paper, we introduce the extended HML (EHML)
framework, which aims to enable efficient and multiscale
surrogate modeling in the context of advanced cartilage
biomechanics. Our main contributions are compared with
the other related research in Section II and detailed in
Section III. In short, EHML first integrates the efficiency
of hybrid multi-fidelity modeling with a novel data aug-
mentation (DA) method that aims to enable zero-shot
generalization across scales while maintaining performance
comparable to that of single-scale multi-physics few-shot
learning. As discussed in Section IV, the training data
are highly complex, imbalanced, and biased, which affects
both the performance and the fairness of the evaluations.
To address these issues, we explore various techniques
including subgraph resampling, various loss functions, and
feature compression. Moreover, we developed a customized,
memory-efficient training loop to accommodate the increased
complexity. Section V concludes the study and highlights
the future implications of our contributions. For educational
purposes and to support further research in this area,
we have made the research data available as open source at
github.com/shayansss/ehml.

II. RELATED WORK
A. GENERALIZABLE SURROGATE MODELING
The generalization capabilities of ML-driven surrogate mod-
els, especially those dealing with different topologies, have
been evaluated in a few studies [21], [22]. They achieved this
by integrating theory-based or physics-constrained features
into these models. In particular, theoretically inspired feature
engineering was employed to transition a model from
structured to irregular mesh configurations [23], and a
domain-specific feature definition was used for the analysis
of truss structures, allowing adaptation to different topolo-
gies [24].More general alternatives are graph neural networks
(GNN) models that exploit relational inductive biases [25].
In particular, the message-passing implementation allows
aggregating local information from one scale to predict in the
other scale [25], [26].

However, training GNNs can be a significant challenge,
primarily due to the need for a large number of message-
passing blocks, which complicates training and can lead
to oversmoothing problems in deeper layers, where signals
become indistinguishable and ineffective [27]. A possible
solution is to keep the number of message passings small
by utilizing multi-level graph resolutions [28], [29], [30].
We hypothesize that the HML strategy could present an
alternative solution without the need for multi-level input
meshes. While message passings are reduced, it might not
affect accuracy as the hybrid paradigmmight distribute global
data; thus, there is no need for a large number of message
passings to incorporate these data. In addition, we implement
a custom memory-efficient training algorithm along with an
upstream autoencoder (AE), a method frequently employed
in ML for model order and noise reduction, to potentially
further improve our training.

B. AUGMENTED GRAPH LEARNING
DA techniques play a pivotal role when the available datasets
are small. Among the widely used methods, the Mixup
technique stands out, which interpolates new data through the
convex combination of sample pairs and has applications in
different fields such as natural language processing [31], [32]
and image analysis [33], [34] and graph-based modeling [35],
[36]. In particular, it is widely used in graph classification,
but less so in regression-based problems such as surrogate
modeling, for which our study provides a practical solution.

In terms of physics or engineering applications, DA has
often been implemented through generative models, noise
injection, and specific prepossessing transformations such
as rotations to integrate configuration dependencies into
tensors [37], [38], [39]. Moreover, problem-specific algo-
rithms have been developed, e.g., to augment datasets, e.g.,
by using pairwise feature differences, if applicable [40] or
the application of signal decomposition [41]. Additionally,
in certain multi-fidelity studies, low-fidelity (LF) training
sampleswere added to the training sets for augmentation [42].
Our research presents a novel DA specifically tailored to
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multiscale numerical problems where extensive training data
is not available.

C. HANDLING DATA IMBALANCE
Finally, we hypothesize that the multiscale cartilage data are
highly biased and imbalanced, similar to other biomedical
data [43]; therefore, it requires special treatments. We then
experiment with several data-preparation transformations
such as cubic and Yeo-Johnson transformations [44], [45],
which effectively stabilize the variance and reduce the
distribution asymmetry. This avoids the need to generate
uninformative representations focused on the simpler nodes
prior to training and evaluation.

Furthermore, in our surrogate-based ML problems,
we adapt techniques mainly used in graph classification
tasks to deal with data imbalance or data distortion [46],
[47], [48]. An example is subgraphing (i.e., resampling the
graph partition) with the sampling probability determined
either statically by the initial distribution of nodal features or
dynamically by the distribution of node errors during training.
Other examples include the implementation of maximal
loss, which focuses on the highest error percentages [49]
or weighted loss, where weights are assigned statically or
dynamically, as explained in [50] and [51].

III. METHODOLOGY
A. PRELIMINARIES
Representing first- and second-order tensors in bold,
we define X and x as position vectors before and after
deformation, respectively, applied to a model such as
cartilage. Furthermore, the deformation gradient tensor F can
be determined, which estimates the nonlinear deformation as

F =
∂u
∂X

+ I, (1)

where u = x−X is the deformation vector and I is the identity
tensor. This tensor can be used to determine the updated fibril
direction, e.g., for the fibril bundle I , to be determined as

nI =
FNI∥∥FNI

∥∥
2

. (2)

Here, NI and nI represent the initial and updated fibril
directions, respectively, and ∥•∥2 denotes the l2-norm of •.
Furthermore, the determinant of the deformation gradient,
i.e., J = detF estimates the volume ratio and can be used to
obtain changes in material fractions due to deformation and
fluid diffusion, i.e.

ρS
=

ρS
0

J
, and ρCOL

=
ρCOL
0

J
. (3)

Here, ρ denotes the material fraction, where the index
0 represents its initial value, while the superscripts S and
COL correspond to the solid and total collagen fractions,
respectively. Moreover, we can decompose the deformation
gradient into the rotation tensor R with orthogonality
RTR = I and the left stretch tensor V, which gives

another deformation metric that excludes rigid body rotation.
However, for computational reasons, wemay prefer to use the
left Cauchy-Green deformation tensor B as follows

B = FFT
= V2. (4)

Thus, the logarithmic strain ϵ, a commonly used metric of
deformation, can be defined by

ϵ = lnB. (5)

This tensor can also be restricted to a specific fibril direction
by

ϵI = log(λI ). (6)

Here λI =
√
nI · B · nI represents the fibril stretch. These

deformation metrics will be used in the constitutive equations
to determine the true stress tensor σ or one of its variants, such
as the Kirchhoff stress tensor τ = Jσ [52]. For theoretical
details of these equations, readers are referred to [53].

FE methods can simulate the cartilage biomechanics after
selecting a constitutive equation that defines the accuracy of
the model. ML can serve as a surrogate for such a cartilage
model trained on FE-generated data samples. In addition, for
few-shot learning, the HMLmethod presented in our previous
work [20] is also used here, which uses a simplified FEmodel
behind the ML model. The simplification can be achieved by
deliberately ignoring certain aspects of constitutive behavior.

Now, by restricting the ML approach to a message-passing
GNN where each node repeatedly aggregates edge represen-
tations and vice versa, we can learn the local behavior to be
used for multiscale modeling. This approach may be feasible
with the extensions described in the following section.

B. EFFICIENT AND GENERALIZABLE LEARNING
To ensure fair evaluation and enhance the training process,
our approach first centralizes and balances the dataset. This
can be achieved by employing the normalization and Yeo-
Johnson transform, and probably another complementary
nonlinear transformation after an initial analysis of the
dataset. By implementing cost-sensitive approaches and
resampling techniques, we ensure that the training process
pays more attention to the more complex nodes or less
common nodal values. A straightforward method is to apply
the maximal loss [49], which focuses on the highest node
error of 10%.

For more advanced methods, we first start by discretizing
the range of values into n equally-distanced bins along each
feature dimension. The next step is to calculate the frequency
fi of each bin i, which is the inverse of the size of the bin.
These calculated frequencies are then summed to one by
normalization, yielding the weight wi, which is assigned to
the values within the bin as follows

wi =
fi∑n
j=1 fj

. (7)

These static weights can then be used for applying
resampling (by sampling the subgraphs) or cost-sensitive
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methods (implemented by multiplying the weights with the
sample-wise errors in the regular l2 loss). This approach
emphasizes the rarer values in the dataset that may still exist
after the above-mentioned transformations. Alternatively,
weights can be determined dynamically by calculating the
normalized frequency of loss errors in the sameway, focusing
training on the most complex nodes.

For subgraphing [54], [55], [56], we define a subgraph
for each node before training by aggregating the indices
of adjacent nodes and edges depending on the number of
message passings. During training, a group of subgraphs is
first sampled, where except the central node (as illustrated in
Fig. 1), other nodes are masked in the loss function since their
semantics are affected by subgraphing. The above-mentioned
weights can now be viewed as resampling probabilities.
Likewise, this process can be carried out both statically and
dynamically.

Next, we describe the DA strategy that involves
physics-constrained nodal perturbation. In the context of the
conventional graph-basedMixupmethod, a new nodal feature
can be generated by interpolating two adjacent nodal features,
Ti and Tj, using a random variable K ∈ [0, 1], expressed as
KTi+(1−K )Tj. This approach allows us to randomly select a
temporal frame between recorded frames and then interpolate
each nodal representation from the representations of the
closest temporal frames. The use of this new inner time frame
can also be interpreted as a shift in the nodal representation
along the time dimension [57].

FIGURE 1. A one-hop subgraph node (in red) and its neighboring nodes
and edges (in blue) within an FE cartilage mesh. In this way, the central
(target) node of a subgraph still maintains the semantics.

Regarding geometric perturbations, our DA technique
used a similar approach but additionally guaranteed the
generation of valid geometries. This is achieved by first
randomly selecting an allowable connecting edge for each
node. As illustrated in Fig. 2, the selected edge dictates the
new position of the node and ensures that it does not modify
the boundary. Subsequently, the nodes are only allowed to
move along one of these allowed edges at a random location
between two connected nodes, which is used for a similar
linear interpolation of the new nodal features. Identifying

the allowable edges is straightforward in the basic geometry
utilized for DA, as explained in the following section.

FIGURE 2. An example of DA across distinct spatiotemporal dimensions,
constrained so that the nodal displacements are limited to allowable
directions that have no impact on the physics, e.g., by creating an invalid
shape boundary.

To complement our DA, it is also necessary to consider the
effects of configuration rotations between scales by randomly
rotating the corresponding features. With a random rotation
matrix R, any feature vector T1 (except one-hot vectors) is
rotated to T1R, whereas an arbitrary (symmetric) second-
order feature tensorT2 is rotated toRTT2R. By implementing
all these DA methods, new samples can be created, as dis-
played in Fig. 3. Despite the potential acceleration of GNN
training through our hybrid approach, as the LF solver
distributes boundary information, thereby reducing required
message passing [58], these transformations and extensions
could still introduce significant bottleneck performance.

FIGURE 3. Sample of a graph before and after DA. The validity of data
after augmentation can be verified by applying the inverse of
augmentation transformations.

In this context, we design a custom training accelera-
tion algorithm, as shown in Fig. 4. The trainer performs
pre-processing and early stopping mechanism [59] during
each training epoch. This is complemented by a subsequent
inner loop dedicated to training that incorporates an addi-
tional criterion for early stopping. Introducing new data
only when deemed necessary speeds up the training process.
However, due to this incremental learning strategy, there is a
possibility of overshooting. To counteract this, the learning
rate, denoted as α, shrinks tenfold after each epoch. It is then
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FIGURE 4. Main steps of our custom training loop involve incrementally pre-processing large sets of graphs
or subgraphs in each epoch. This is executed via an inner loop that processes each batch. This speeds up
training because pre-processing is performed on demand. Training efficiency is further enhanced through
the use of early-stop algorithms and learning rate schedulers that help reduce overshooting and overfitting.

gradually increased in the inner loop by

α = 10−iouter

[
αinit + min

(
iinner
Ninner

, 1
)
(αfinal − αinit)

]
. (8)

Here iinner represents the iteration number within the inner
loop and Ninner is the patience threshold for the nested loop.
The term iouter indicates the number of completed epochs
in which pre-processing is implemented. The parameters
αinit and αfinal are the initial and final values of the
learning rate set during the first epoch. If an overshoot is
detected, the algorithm returns to the last stored state, while
the training process is stopped if the learning rate drops
significantly. In this way, efficient experimental executions
become possible, even on CPUs.

C. SIMULATION EXPERIMENTS
We are developing a series of cartilage simulation tests to
investigate the role of DA and other extensions, particularly
with regard to efficient generalization while maintaining
appropriate biomechanical complexity. First, the high-fidelity
(HF) and LF constitutive equations are described for use in
the generation of subsequent multiscale datasets. The training
experiments and the evaluation strategy are then described in
detail.

1) MULTI-FIDELITY CONSTITUTIVE MODELING
Following our previous HML surrogate modeling tech-
nique [20], we can use a multiphasic model that incorporates
all relevant governing equations such as the equilibrium
equation, the continuity equation and Darcy’s law [52],

[60], [61], for HF modeling. Conversely, for solid LF
modeling, a single-phase model is used, which focuses on the
fundamental solid mechanical properties and omits cartilage
phases along with associated equations such as the continuity
equation to speed up simulation. However, in this instance,
in addition to our prior HF model, we also consider the
fibrillar contribution, leading to the following HF stress
formulation [62], [63], [64]

σHF
= σCOL

+ σMAT
− σGAG

− PI, (9)

where P represents the fluid pressure within the cartilage’s
porous structure. The superscripts COL, MAT, and GAG
denote the stress contributions from the fibrillar collagen
network, the non-fibrillar extracellular matrix, and the
osmotic pressure (induced by the electrostatic forces of
entrapped glycosaminoglycans), as determined by [64], [65],
[66], [67], [68], [69], and [7]:

σCOL
=

φS
0

J

9∑
I=1

max
(
ρICλI ϵI (E1 + E2ϵI ), 0

)
mI , (10)

σMAT
= φS

0Gm
1 − ρCOL

0

J

[
B − J2/3I

+
ln J
2

(
1
3

+
J + φS

0

J − φS
0

−
φS
0 J ln J

(J − φS
0 )

2

)
I
]
, (11)

σGAG
= α1J−α2I. (12)

Here, mI is the structural tensor, i.e. the dyadic product
of the updated fibril direction with itself, α1 and α2 are
material constants that govern the exponential function of the
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osmotic pressure formula, Gm is a material constant of the
modified neo-Hookean model, E1 and E2 are constants that
control the nonlinearity of fibrils, and ρIC denotes the volume
fraction of the associated fibril bundle. Seven isotropic
fibril directions are assumed to exist at each point, but two
others are organized anisotropically by the so-called arcade
organization [67], in which the fibrils align parallel to the split
lines of the cartilage surface and rotate perpendicular to the
subchondral bones.

The typically depth-dependent material parameters are
adopted from our calibrated 2D model [70], which is extend-
able to a 3D simulation [4] using first-order brick elements
with pore pressure FEs for solution approximation in Abaqus
soil consolidation analysis [71]. Initial conditions, which are
influenced by pre-existing tissue stresses and are therefore
unknown, are estimated through an optimization process
that compares pre-stressed conditions with experimental
observations [72]. This is implemented by a Python script
in Abaqus and Fortran subroutines for constitutive equations,
as detailed in [4], [70], and [12]. After the initial conditions
are established, subsequent HF analyses are performed using
the mechanical and biochemical boundary conditions.

As for the LF analysis, Hook’s law was adopted in our
previous work [20], which assumes single-phase elastic and
isotropic behavior. Accordingly, using the Young’s modulus
E and Poisson’s ratio ν, the corresponding elastic Kirchhoff
stress tensor becomes [52]

τEL
= J

1 + ν

E

(
ϵ +

ν

1 − 2ν
trϵI

)
. (13)

This time, to obtain the LF stress, we also apply a simple
viscosity level by using the material constants K, G and T
to include the temporal response (without direct inclusion of
fluid variation), as supported by Abaqus [71], [73], [74], i.e.

σLF
t =

1
jt

[
τEL
t −

K
3T

(∫ t

0
tr(τEL

t−s)e
−s/T ds

)
I

−
G
T

(∫ t

0
F̄t F̄−1

t−s

(
τEL
t−s

)D
F̄−T
t−sF̄

T
t e

−s/T ds
)D]

.

(14)

Here we use time subscripts to distinguish parameters at
different time frames, while superscript D represents the
deviatoric parts of the stress tensors and F̄ = J−1/3F
is the distortion part. The first term of this equation represents
the instantaneous elastic response, while the other terms
decay the solution by the introduced distortion gradients
to account for configuration rotation. With the discretized
integrals, the solution can also be approximated using
a regular quasi-static Abaqus step and its linear (purely
displacement-based) brick FEs.

Finally, by applying the mechanical boundary conditions
used in HF analyses, the LF simulations can be executed
with (14), adapting the material parameters of [75]. We there-
fore set G = 0.744, K = 0.978, T = 13.3 sec, and
ν = 0.47, whereas the elasticity is set to a large value of

E = 37.8MPa to improve numerical convergence and also to
better distribute the boundary information within the model,
thereby improving the message passing in our hybrid GNN
implementation.

2) MULTISCALE DATASET GENERATION
We first generate 50 training samples from modeling of a
7.5 × 7.5 × 1.9mm3 cubic mesh (modeling cartilage) and
a semi-elliptic mesh (modeling a meniscus of an indenter
shape) with maximum and minimum radii of 2 and 0.5mm,
respectively. The dataset is divided into three equal subsets
for training, validation, and in-distribution evaluation. These
data need to be augmented by our DA technique, for
which we can either define the allowed edges manually
or do it automatically by first collecting the indices of all
connected edges for each node and then ordering them by
their number. This method ensures that nodes with fewer
connections (e.g., corner nodes) are not allowed to move
during DA, which means that all their connection edges are
considered disallowed. Conversely, the inner nodes with the
most connections can treat all their connections as allowable
edges, allowing nodal movements on any of them during
the DA. In general, it is assumed that edges connected to
lower-rank nodes are allowed to ensure that the boundaries
remain unaffected during DA.

To sample the input variables of the FE models, we use
uniform distributions U . Accordingly, the indenter com-
presses the tissue with axial displacements U (0, 0.6mm)
applied to a reference point coupled to the planar surface
or indenter mesh. Likewise, linear displacements paral-
lel to the flat surface of the indenter are imposed by
U (0.5, 0.5mm), while the rotational displacements are
imposed by U (−0.1, 0.1 rad). In addition, the bottom of the
cubic mesh is fully constrained to mimic the subchondral
bones. However, these only generate a training dataset to be
augmented, while the out-of-distribution evaluation is carried
out with the open-knee [76] tibiofemoral joint (as displayed in
Fig. 5). Application to the human data is legalized as indicated
in the source [77].
In the large-scale analysis, we use the boundary conditions

similar to our previous study [20]. The only exception is
our assumption that no fluid diffusion occurs at the surface.
We are aware that this, combined with firm assumptions
about the geometry and material behavior of the indenter,
can have (at least) an impact on the accuracy of boundary
modeling. However, this approach allows us to efficiently
collect small datasets while incorporating constitutive com-
plexity for subsequent surrogate modeling assessment.

We simulate the effects of humanweights on the knee using
a uniform distribution U (−1000, 0N), while the simulation
time is sampled from U (0.001, 100 sec) in all simulations
on both scales. We further randomize the resulting strain
rates by randomly weighting the applied loads and boundary
conditions. Four equally distanced weighting multipliers are
then created from U (0, 1) and interpolated over the entire
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FIGURE 5. Main steps of data generation for training and evaluations.

time range using a scaled cubic spline interpolator [78]
to minimize extreme changes. With these inputs, we first
carry out the HF simulations and at the same time store
the time points of the recorded frames. These points are
used to synchronize the interpolated output frames of the
calculated LF data. The HF outputs, which represent the
stress contributions of cartilage phases, are considered nodal
targets. The mesh topology, primary fibril orientations, and
the LF stress-strain results are used to encode input graph
features as implemented in our previous work [20].
More specifically, the weight is modeled as a concentrated

load on the femur. While this approach does not consider
non-uniform weight distribution, it still provides a reasonable
approximation of human weight during standing. Previously
calibrated and validated constitutive models are applied, and
simulations are run until the most possible convergence is
achieved within a reasonable runtime, making it suitable for
experimentation. A limited number of small-scale training
samples are used to mimic data scarcity in biomechanical
analyses. Although these factors might affect the biome-
chanical accuracy, we adopted conditions similar to those
used in previous studies to minimize inaccuracies. More
application-oriented and accurate analyses are left for future
studies (as, here, we simplify modeling while retaining the
biomechanical complexity).

Finally, due to the high computational costs of knee simula-
tions, only six samples outside the distribution aremanaged to
be randomly generated to estimate surrogate generalizability.
To speed up the simulation process, in Abaqus we assign
an arbitrarily high threshold for the maximum variation
in fluid pressure during each increment. This approach is
occasionally used in similar large-scale cartilage studies, see,
e.g., [79].

3) TRAINING AND EVALUATION
Once the datasets are collected, they are prepared for training
by first finding the hyperparameters for normalization and
applying theYeo-Johnson transformations, which are approx-
imated using training data samples. During training, our
on-the-fly pre-processing system creates graphs containing
all temporal frames using the nodal and target features as well
as the Euclidean nodal distance and its value as edge features.
Next, temporal sampling is done by randomly selecting
one or two frames – either close together or interpolated
– with also 2 and 5 message passing blocks, respectively.
Furthermore, we apply DA to these graph frames and also

include the relative time intervals as an additional node
feature. A large graph batch is then assembled for training
purposes, combining these graphs through disjoint unions of
100 sampled graph frames. Then, while the edge features are
only prepared by the normalization transformation, the other
features are fully transformed for training or inference.

In our experiments, we first address the application of
various loss functions and subgraph resampling, which are
described in detail in the following section. Furthermore,
we introduce a slight Gaussian noise (with a standard
deviation of 0.01) to the node features and explore the utility
of an AE with a single compression layer. We will report
the compression ratio (CR), which indicates the proportion
of the size of the input node features to the dimensionality of
the latent layers. Then, by setting the primary and secondary
patience values to 2 and 100, respectively, training begins
with a learning rate of 0.1 and ends when it falls below 10−5.
For experiments with resampling, we set the hyperparameters
to collect 1 000 subgraphs per batch, using 50 bins in dynamic
resampling and 2 bins in static resampling to mitigate the
curse of dimensionality. Other hyperparameters remain the
same as the ones in our previous work [20].

Evaluation metrics include mean squared errors (MSEs)
and pointwise MSEs (PMSEs) introduced in our previous
work [80] for transformed targets, allowing a fair comparison
of all outputs. In fact, the original feature distributions are
very imbalanced because most of the data revolves around
a certain common value, as will be shown in the next
section, which can negatively impact both learning and
evaluation. Pre-processing transformations align the ranges
of feature values to comparable normalized or even uniform
distributions, with cubic transformations further refining
error sensitivity to small output errors. Given the high cost
and inherent approximations in numerical analysis, we aim
for a margin error similar to the errors recorded in our
previous work [20], i.e., between 0.1 and 0.001.
For test evaluation, the in-distribution batch size is

100 graphs, while for out-of-distribution evaluation, it is
limited to 5 to accommodate memory limitations for
large-scale analyses. This adjustment may randomly affect
assessment results under certain conditions. However, our
analysis focuses primarily on general trends across a variety
of conditions rather than individual sample errors. More-
over, our model assumptions – including hyperparameters,
training settings, and configurations for numerical analysis
– could be further diversified, particularly for smaller
batches, to improve biomechanical fidelity. However, our
experimental setup is specifically designed to efficiently
assess extensions while achieving sufficiently small errors.
Therefore, this is not considered a significant limitation.

IV. RESULTS AND DISCUSSION
This study addresses a significant challenge in surrogate
modeling, with a particular emphasis on knee cartilage
modeling, namely zero-shot learning across different scales.
To improve few-shot learning with small-scale training
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TABLE 1. Means and standard deviations of runtimes in minutes for each
group of numerical models. Relative runtime differences between 15 and
38 were recorded for different fidelities. Furthermore, while the runtimes
of the large-scale models were still simplified to collect some evaluation
samples, they were 2 to 6 times slower than their small-scale
counterparts, justifying the use of multiscale surrogate models.

datasets, we used our previously developed HML frame-
work [20]. This framework integrated an upstream, sim-
plified FE model into the surrogate structure. A key
feature of our hybrid model is its ability to distribute
non-local data across the LF model, reducing the need
to employ resource-intensive GNN architectures. This
approach, combined with a memory-efficient training loop,
enables optimized and efficient ML training and inference
processes.

Specifically, rotational and Mixup-based DA, constrained
by physics, were employed along with other extensions.
A hybrid approach was implemented, utilizing simpler
models without regularization. The effects of the extended
version were also minimized to compare it with the basic
HML model (without extensions). While the modeling
conditions and parameterization have been described, readers
interested in further details are encouraged to consult the
open-source research code and its documentation.

In the next section, we focus on describing the runtimes of
the numerical analyses, which represent the main bottleneck
of this study. This bottleneck is particularly detailed because
our numerical analyses involved a sophisticated cartilage
model that includes fibrils and other phases. We will demon-
strate the computational efficiency achieved by limiting
training to small-scale analysis while the evaluations are
carried out on a limited selection of randomly generated
large-scale samples. We then present an empirical evaluation
of the extensions we added to our HML framework. It was
conducted at two different scales and is in alignment with the
multiscale aspect of this research. The section ends with a
discussion on the inherent limitations of our study and future
research directions.

A. COMPUTATIONAL GAIN
A series of cartilage simulations at both tissue and
tibiofemoral scales were performed with a standard setting
(using a Core i5 CPU) and at various fidelities, as listed
in Table 1. Due to the use of a more complex cartilage
model, a more significant decrease in runtime was recorded
compared to our previous study [20].
Training of the experiments was then implemented on

a GPU within a few hours, which is particularly efficient
compared to the hours to days of training typical for regular
GNN-based surrogates [81]. In parallel, pre-processing was
also carried out on a CPU. However, both training and
pre-processing could have been executed sequentially on a
single standard CPU.

B. TISSUE-SCALE SIMULATION
A series of data preparation transformations were applied
to address the imbalance and skewness in the nodal data of
the inputs and outputs, which is consistent with our original
hypothesis about such data characteristics, as illustrated in
Fig. 6. These transformations were performed on the ablated
pipeline both individually and in combination before the
training phase. The effectiveness of these transformations
is obvious, if handled improperly, it could have resulted in
biased training with misleading evaluation [82].

The normalization transformation successfully reduced
data imbalance but was less effective in correcting the
skewness presented in the data. On the other hand,
the Yeo-Johnson transformation significantly reduced data
skewness, particularly for input features. Combined with
normalization, this showed promise in terms of normalizing
the dataset and reducing skewness. Despite these improve-
ments, the imbalance remained, mostly close to zero, likely
indicating unaffected cartilage areas. The addition of a cubic
transformation alongside these methods appeared to further
refine the dataset. The combined transformation not only
eliminated the remaining imbalances but also resulted in a
more evenly distributed dataset. This could prevent training
and evaluation from being excessively controlled by the
majority of simple, unaffected nodes.

Next, the surrogate models were trained through a set of
different loss functions and resampling strategies with or
without upstream AEs, as shown in Figs. 7 and 8. In the
appendix, the test errors were also averaged and listed in
Tables 2 and 3. It was noted that in most cases a single
graph batch generated in the first epoch and trained iteratively
through an inner loop was sufficient to significantly reduce
errors to the desired value range. However, for models with
lower CR and increased complexity, using more training
batches could be beneficial, but at the expense of more time-
consuming preprocessing.

Our results showed no obvious improvement by applying
AE, which is probably due to the lack of hyperparameter
search. Interestingly, traditional loss functions performed
better, especially in complex models (with the lower CR
and higher number of message-passings). It is important
to recognize that these improvements do not necessarily
correspond to improved generalization abilities, for which
out-of-distribution evaluation (on large-scale samples) will
be discussed. Overall, the similar range of converged results
between all cases strengthens our hypothesis that HML
enables the use of simpler, more efficient models. Further
simplifying the architecture does not necessarily mean better
generalization [83], but accelerates training [84].

C. KNEE-SCALE SIMULATION
Figure 9 shows a detailed analysis of out-of-distribution
MSEs, further detailed in Tables 4 to 11 in the appendix.
Due to memory limitations, a limited batch size was used
for the knee-scale simulation. This could lead to some
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FIGURE 6. Comparison of the effects of various transformations applied individually to each nodal input and output feature dimension, while they are
summarized here for visualization. The transformations helped achieve a more standardized normalized distribution when used individually and a more
uniform distribution when combined. Such data preparation is critical because it addresses the problem that average evaluation errors are unduly
influenced by a majority of simpler nodes rather than a minority of complex nodes, which are typically located in boundary areas with the largest values.
These are areas in which the cartilage is exposed to concentrated effects of applied loads and deformations, especially at high loading rates, e.g., at the
contact surfaces.

bias in the recorded errors due to the variability of the
sampling distribution. Nevertheless, a clear trend can be seen
in the data collected if the outliers are ignored. As before,
the use of AEs did not result in significant performance
improvements, whereas DA had a remarkably positive effect
by training on more diverse mesh configurations. Comparing
all implementations, we find that the augmented models
using a weighted loss approach consistently have the smallest
MSEs with significantly lower variance.

We further investigated the performance of our proposed
graph-based DA method by analyzing the averaged PMSEs,
as shown in Fig. 10. We discovered that the standard loss
function l2 resulted in the highest error rates, whereas using
weighted losses significantly reduced these errors, making
them almost negligible in comparison. While the maximal
loss approach may be beneficial in simpler surrogate models,
it requires a considerably large amount training batches.
Furthermore, methods based on subgraph resampling were
not better than those employing weighting strategies, which
may be due to the need for hyperparameter optimization.
Dynamic variants of these techniques, requiring minimal
tuning, demonstrated improved performance compared to
their static equivalents when combined with DA. Regardless
of the technique used to resolve data imbalances, the
inclusion of our DA consistently resulted in a significant
reduction in errors, further validating its usefulness.

D. LIMITATIONS AND FUTURE WORK
Here we need to report multiple limitations in our experi-
ments. First, the specificity of the subgraphing implementa-
tion represents a potential limitation. In particular, we limit
resampling to each training epoch rather than each step
to avoid performance bottlenecks. Although this technique

was effective in our specific tests, it still has room for
further optimization and acceleration [85]. Second, although
we successfully modeled the surrogate of the HF cartilage
multiphasic behavior, the numerical modeling and the applied
boundary conditions were specifically tailored to circumvent
the challenges of generating costly HF assessment data.
While this is a restrictive limitation, it still allowed us to
generate datasets of advanced biomechanical simulations for
our experiments, effective for our particular assessments.

In the future, we can design and determine various
strategies to create efficient and informative training datasets
for more advanced simulations accelerated using the EHML
technique. Sample-by-sample validation of the trained sur-
rogate model may not be generalizable to unseen data,
especially as expensive large-scale analysis may exclude
HF test samples. While employing a more diverse testing
and evaluation strategy could be a feasible solution, ideally
we may need extensive in vitro or in vivo tests to assess
generalizability. These go far beyond the scope of this
research, which focused on efficiently evaluating the benefits
of the EHML method. Nevertheless, such biomechanical
experiments are essential for the evaluation of more sensitive
and application-oriented studies.

V. CONCLUSION
In this research, we proposed and empirically experimented
the EHML technique, extending our previous HML [20]
to enable efficient training of multiscale surrogate mod-
eling in advanced cartilage biomechanics. The first major
enhancement of EHML involves the integration of all primary
tissue phases, including the fibril component, into surrogate
modeling. We then present a novel DA method that generates
new graphs with nodal perturbation while preserving the
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FIGURE 7. Comparing validation (mean-squared) errors vs. epochs for surrogates with AE.
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FIGURE 8. Comparing validation (mean-squared) errors vs. epochs for surrogates without AE.
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FIGURE 9. Averaged knee-scale (out-of-distribution) test errors for different models trained with different resampling and loss function
implementations.

TABLE 2. In-distribution MSE of the small-scale model with message passings: 2.

shape of the model. In this way, we could approximate the
element configuration of the large-scale model from small-

scale data, enabling zero-shot generalization. Additionally,
our results revealed significant data imbalances and biases,
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FIGURE 10. Averaged pointwise knee-scale (out-of-distribution) errors when testing samples for different surrogates trained with various
resampling and loss functions. Models are particularly compared by ablating important data augmentation blocks, among others, showing the most
significant influence.
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TABLE 3. In-distribution MSE of the small-scale model with message passings: 5.

TABLE 4. Out-of-distribution MSE of the full model with CR 4 and number of message passings 2.

TABLE 5. Out-of-distribution MSE of the full model with CR 4 and number of message passings 5.

TABLE 6. Out-of-distribution MSE of the full model with CR 2 and number of message passings 2.

TABLE 7. Out-of-distribution MSE of the full model with CR 2 and number of message passings 5.

TABLE 8. Out-of-distribution MSE of the full model with CR 1 and number of message passings 2.

which we addressed through a combination of subgraph
resampling and various loss functions. While this increases
the complexity of the pre-processing and training stages,
it was effectively handled by our custom, memory-efficient
training loop.

In addition, the trained surrogate models were able to
demonstrate sufficient accuracy even with significantly sim-
plified architectures. These simplifications include reducing
the number of message-passing steps and time frames.

Additional efforts to further improve our method included
implementing upstream AE. However, this did not bring
any substantial improvement. In contrast, our other improve-
ments, especially DA, have markedly improved the scal-
ability and generalizability of the surrogates, successfully
bridging the scales. With the increasing acceptance of
similar multiscale models in biomechanics, we hope that our
open-source method provides a new template for efficient
implementation in related studies.
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TABLE 9. Out-of-distribution MSE of the full model with CR 1 and number of message passings 5.

TABLE 10. Out-of-distribution MSE of the full model with CR 0.5 and number of message passings 2.

TABLE 11. Out-of-distribution MSE of the full model with CR 0.5 and number of message passings 5.

APPENDIX
DETAILS OF EVALUATION ERRORS
Tables 2 and 3 describe in-distribution errors, while Tables 4
to 11 detail out-of-distribution errors.

REFERENCES
[1] X. L. Lu and V. C. Mow, ‘‘Biomechanics of articular cartilage and

determination of material properties,’’ Med. Sci. Sports Exerc., vol. 40,
no. 2, pp. 193–199, 2008, doi: 10.1249/mss.0b013e31815cb1fc.

[2] S. B. Kwon, H.-S. Han, M. C. Lee, H. C. Kim, Y. Ku, and D. H. Ro,
‘‘Machine learning-based automatic classification of knee osteoarthri-
tis severity using gait data and radiographic images,’’ IEEE Access,
vol. 8, pp. 120597–120603, 2020, doi: 10.1109/ACCESS.2020.3006335.
https://doi.org/10.1109/ACCESS.2020.3006335

[3] T. M. Said, A. M. Khateeb, and A. M. Gody, ‘‘Development
of a theoretical microwave model to predict the dielectric
properties of articular cartilage tissues,’’ IEEE Access, vol. 9,
pp. 161030–161037, 2021, doi: 10.1109/ACCESS.2021.3132691.
https://doi.org/10.1109/ACCESS.2021.3132691

[4] S. S. Sajjadinia, B. Carpentieri, and G. A. Holzapfel, ‘‘Large-scale finite
element modeling of pre-stress in articular cartilage,’’ in Computer Meth-
ods in Biomechanics and Biomedical Engineering II. Cham, Switzerland:
Springer, 2024, pp. 105–112, doi: 10.1007/978-3-031-55315-8_12.

[5] J. P. Goldblatt and J. C. Richmond, ‘‘Anatomy and biomechanics of
the knee,’’ Operative Techn. Sports Med., vol. 11, no. 3, pp. 172–186,
Jul. 2003, doi: 10.1053/otsm.2003.35911.

[6] J. Puig-Junoy and A. Ruiz Zamora, ‘‘Socio-economic costs of
osteoarthritis: A systematic review of cost-of-illness studies,’’ Seminars
Arthritis Rheumatism, vol. 44, no. 5, pp. 531–541, Apr. 2015, doi:
10.1016/j.semarthrit.2014.10.012.

[7] S. S. Sajjadinia, M. Haghpanahi, and M. Razi, ‘‘Computational simulation
of the multiphasic degeneration of the bone-cartilage unit during
osteoarthritis via indentation and unconfined compression tests,’’ Proc.
Inst. Mech. Engineers, Part H, J. Eng. Med., vol. 233, no. 9, pp. 871–882,
Sep. 2019, doi: 10.1177/0954411919854011.

[8] V. Klika, E. A. Gaffney, Y.-C. Chen, and C. P. Brown, ‘‘An
overview of multiphase cartilage mechanical modelling and its role
in understanding function and pathology,’’ J. Mech. Behav. Biomed.
Mater., vol. 62, pp. 139–157, Sep. 2016, doi: 10.1016/j.jmbbm.
2016.04.032.

[9] D. Shriram, G. Yamako, E. Chosa, and K. Subburaj, ‘‘Biomechanical
evaluation of isotropic and shell-core composite meniscal implants for
total meniscus replacement: A nonlinear finite element study,’’ IEEE
Access, vol. 7, pp. 140084–140101, 2019, doi: 10.1109/ACCESS.2019.
2943689.

[10] F. P. Nikolopoulos, E. I. Zacharaki, D. Stanev, and K. Moustakas,
‘‘Personalized knee geometry modeling based on multi-atlas segmentation
and mesh refinement,’’ IEEE Access, vol. 8, pp. 56766–56781, 2020, doi:
10.1109/ACCESS.2020.2982061.

[11] S. S. Sajjadinia and M. Haghpanahi, ‘‘A parametric study on the
mechanical role of fibrillar rotations in an articular cartilage finite
element model,’’ Scientia Iranica, vol. 1, no. 3, pp. 1–15, May 2020, doi:
10.24200/sci.2020.51785.2362.

[12] S. Sajjadinia, B. Carpentieri, and G. Holzapfel, ‘‘Hybrid data-driven and
numerical modeling of articular cartilage,’’ in Big Data Analysis and
Artificial Intelligence for Medical Sciences. Hoboken, NJ, USA: Wiley,
2024, pp. 181–203, doi: 10.1002/9781119846567.ch9.

[13] M. Antico, F. Sasazawa, Y. Takeda, A. T. Jaiprakash, M.-L. Wille,
A. K. Pandey, R. Crawford, G. Carneiro, and D. Fontanarosa,
‘‘Bayesian CNN for segmentation uncertainty inference on 4D
ultrasound images of the femoral cartilage for guidance in robotic
knee arthroscopy,’’ IEEE Access, vol. 8, pp. 223961–223975, 2020, doi:
10.1109/ACCESS.2020.3044355.

[14] M. R. Karim, J. Jiao, T. Döhmen, M. Cochez, O. Beyan,
D. Rebholz-Schuhmann, and S. Decker, ‘‘DeepKneeExplainer:
Explainable knee osteoarthritis diagnosis from radiographs and magnetic
resonance imaging,’’ IEEE Access, vol. 9, pp. 39757–39780, 2021, doi:
10.1109/ACCESS.2021.3062493.

[15] A. Rehman, A. Raza, F. S. Alamri, B. Alghofaily, and T. Saba, ‘‘Transfer
learning-based smart features engineering for osteoarthritis diagnosis from
knee X-ray images,’’ IEEE Access, vol. 11, pp. 71326–71338, 2023, doi:
10.1109/ACCESS.2023.3294542.

[16] G. Paiva, S. Bhashyam, G. Thiagarajan, R. Derakhshani, and T. Guess,
‘‘A data-driven surrogate model to connect scales between multi-
domain biomechanics simulations,’’ in Proc. Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc., Aug. 2012, pp. 3077–3080, doi: 10.1109/EMBC.2012.
6346614.

[17] V. Arbabi, B. Pouran, G. Campoli, H. Weinans, and A. A. Zadpoor,
‘‘Determination of the mechanical and physical properties of cartilage
by coupling poroelastic-based finite element models of indentation with
artificial neural networks,’’ J. Biomechanics, vol. 49, no. 5, pp. 631–637,
Mar. 2016, doi: 10.1016/j.jbiomech.2015.12.014.

86316 VOLUME 12, 2024

http://dx.doi.org/10.1249/mss.0b013e31815cb1fc
http://dx.doi.org/10.1109/ACCESS.2020.3006335
http://dx.doi.org/10.1109/ACCESS.2021.3132691
http://dx.doi.org/10.1007/978-3-031-55315-8_12
http://dx.doi.org/10.1053/otsm.2003.35911
http://dx.doi.org/10.1016/j.semarthrit.2014.10.012
http://dx.doi.org/10.1177/0954411919854011
http://dx.doi.org/10.1016/j.jmbbm.2016.04.032
http://dx.doi.org/10.1016/j.jmbbm.2016.04.032
http://dx.doi.org/10.1109/ACCESS.2019.2943689
http://dx.doi.org/10.1109/ACCESS.2019.2943689
http://dx.doi.org/10.1109/ACCESS.2020.2982061
http://dx.doi.org/10.24200/sci.2020.51785.2362
http://dx.doi.org/10.1002/9781119846567.ch9
http://dx.doi.org/10.1109/ACCESS.2020.3044355
http://dx.doi.org/10.1109/ACCESS.2021.3062493
http://dx.doi.org/10.1109/ACCESS.2023.3294542
http://dx.doi.org/10.1109/EMBC.2012.6346614
http://dx.doi.org/10.1109/EMBC.2012.6346614
http://dx.doi.org/10.1016/j.jbiomech.2015.12.014


S. S. Sajjadinia et al.: Bridging Diverse Physics and Scales of Knee Cartilage

[18] V. Arbabi, B. Pouran, H.Weinans, and A. A. Zadpoor, ‘‘Combined inverse-
forward artificial neural networks for fast and accurate estimation of
the diffusion coefficients of cartilage based on multi-physics models,’’
J. Biomechanics, vol. 49, no. 13, pp. 2799–2805, Sep. 2016, doi:
10.1016/j.jbiomech.2016.06.019.

[19] F. S. Egli, R. C. Straube, A. Mielke, and T. Ricken, ‘‘Surrogate modeling
of a nonlinear, biphasic model of articular cartilage with artificial neural
networks,’’ PAMM, vol. 21, no. 1, Dec. 2021, Art. no. e202100188, doi:
10.1002/pamm.202100188.

[20] S. S. Sajjadinia, B. Carpentieri, D. Shriram, and G. A. Holzapfel,
‘‘Multi-fidelity surrogate modeling through hybrid machine learning
for biomechanical and finite element analysis of soft tissues,’’
Comput. Biol. Med., vol. 148, Sep. 2022, Art. no. 105699, doi:
10.1016/j.compbiomed.2022.105699.

[21] S. Taghizadeh, F. D. Witherden, and S. S. Girimaji, ‘‘Turbulence
closure modeling with data-driven techniques: Physical compatibility and
consistency considerations,’’ New J. Phys., vol. 22, no. 9, Sep. 2020,
Art. no. 093023, doi: 10.1088/1367-2630/abadb3.

[22] J. G. Hoffer, A. B. Ofner, F. M. Rohrhofer, M. Lovrić, R. Kern,
S. Lindstaedt, and B. C. Geiger, ‘‘Theory-inspired machine learning—
Towards a synergy between knowledge and data,’’ Weld. World, vol. 66,
no. 7, pp. 1291–1304, Jul. 2022, doi: 10.1007/s40194-022-01270-z.

[23] H. Gao, L. Sun, and J.-X. Wang, ‘‘PhyGeoNet: Physics-informed
geometry-adaptive convolutional neural networks for solving parameter-
ized steady-state PDEs on irregular domain,’’ J. Comput. Phys., vol. 428,
Mar. 2021, Art. no. 110079, doi: 10.1016/j.jcp.2020.110079.

[24] M. Nourbakhsh, J. Irizarry, and J. Haymaker, ‘‘Generalizable
surrogate model features to approximate stress in 3D trusses,’’
Eng. Appl. Artif. Intell., vol. 71, pp. 15–27, May 2018, doi:
10.1016/j.engappai.2018.01.006.

[25] P.W. Battaglia et al., ‘‘Relational inductive biases, deep learning, and graph
networks,’’ 2018, arXiv:1806.01261.

[26] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and
P. W. Battaglia, ‘‘Learning to simulate complex physics with graph
networks,’’ 2020, arXiv:2002.09405.

[27] X. Zhang, Y. Xu, W. He, W. Guo, and L. Cui, ‘‘A comprehensive review
of the oversmoothing in graph neural networks,’’ in Computer Supported
Cooperative Work and Social Computing, 2024, pp. 451–465.

[28] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart,
and A. Anandkumar, ‘‘Multipole graph neural operator for parametric
partial differential equations,’’ 2020, arXiv:2006.09535.

[29] M. Fortunato, T. Pfaff, P. Wirnsberger, A. Pritzel, and P. Battaglia,
‘‘MultiScale MeshGraphNets,’’ 2022, arXiv:2210.00612.

[30] Y. Cao, M. Chai, M. Li, and C. Jiang, ‘‘Efficient learning of mesh-based
physical simulation with bi-stride multi-scale graph neural network,’’ in
Proc. 40th Int. Conf. Mach. Learn., vol. 202, 2023, pp. 3541–3558.

[31] H. Guo, ‘‘Nonlinear mixup: Out-of-manifold data augmentation for text
classification,’’ in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 4,
pp. 4044–4051.

[32] A. Jindal, A. Ghosh Chowdhury, A. Didolkar, D. Jin, R. Sawhney, and
R. R. Shah, ‘‘Augmenting NLPmodels using latent feature interpolations,’’
in Proc. 28th Int. Conf. Comput. Linguistics, Dec. 2020, pp. 6931–6936,
doi: 10.18653/v1/2020.coling-main.611.

[33] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, ‘‘Mixup: Beyond
empirical risk minimization,’’ 2017, arXiv:1710.09412.

[34] H. Guo, Y. Mao, and R. Zhang, ‘‘Mixup as locally linear out-of-
manifold regularization,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 3714–3722.

[35] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, ‘‘Mixup for node and
graph classification,’’ in Proc. Web Conf., Apr. 2021, pp. 3663–3674, doi:
10.1145/3442381.3449796.

[36] X. Han, Z. Jiang, N. Liu, and X. Hu, ‘‘G-mixup: Graph data augmentation
for graph classification,’’ 2022, arXiv:2202.07179.

[37] G. Dong, J. C. Wong, L. Lestandi, J. Mikula, G. Vastola, M. H. Jhon,
M. H. Dao, U. Kizhakkinan, C. S. Ford, and D. W. Rosen, ‘‘A part-scale,
feature-based surrogate model for residual stresses in the laser powder
bed fusion process,’’ J. Mater. Process. Technol., vol. 304, Jun. 2022,
Art. no. 117541, doi: 10.1016/j.jmatprotec.2022.117541.

[38] A.Mumuni and F.Mumuni, ‘‘Data augmentation: A comprehensive survey
of modern approaches,’’ Array, vol. 16, Dec. 2022, Art. no. 100258, doi:
10.1016/j.array.2022.100258.

[39] H. Lam Cheung, P. Uvdal, and M. Mirkhalaf, ‘‘Augmentation of scarce
data—A new approach for deep-learning modeling of composites,’’ 2023,
arXiv:2311.14557.

[40] X. Zhao, Z. Gong, J. Zhang, W. Yao, and X. Chen, ‘‘A surrogate model
with data augmentation and deep transfer learning for temperature field
prediction of heat source layout,’’ Structural Multidisciplinary Optim.,
vol. 64, no. 4, pp. 2287–2306, Oct. 2021, doi: 10.1007/s00158-021-02983-
3.

[41] S. S. Parida, S. Bose, and G. Apostolakis, ‘‘Earthquake data augmentation
using wavelet transform for training deep learning based surrogate models
of nonlinear structures,’’ Structures, vol. 55, pp. 638–649, Sep. 2023, doi:
10.1016/j.istruc.2023.05.122.

[42] V. Sella, J. Pham, A. Chaudhuri, and K. E. Willcox, ‘‘Projection-based
multifidelity linear regression for data-poor applications,’’ in Proc. AIAA
SciTech Forum, 2023, p. 0916.

[43] M. Rauschenberger and R. Baeza-Yates, ‘‘How to handle health-related
small imbalanced data in machine learning?’’ I-COM, vol. 19, no. 3,
pp. 215–226, Jan. 2021, doi: 10.1515/icom-2020-0018.

[44] S. Bhattacharya, V. Rajan, and H. Shrivastava, ‘‘ICU mortality prediction:
A classification algorithm for imbalanced datasets,’’ in Proc. AAAI Conf.
Artif. Intell., 2017, vol. 31, no. 1, pp. 1–16.

[45] I.-K. Yeo, ‘‘A new family of power transformations to improve normality
or symmetry,’’ Biometrika, vol. 87, no. 4, pp. 954–959, Dec. 2000, doi:
10.1093/biomet/87.4.954.

[46] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
‘‘Cluster-GCN: An efficient algorithm for training deep and large graph
convolutional networks,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining. New York, NY, USA: Association for Computing
Machinery, Jul. 2019, pp. 257–266, doi: 10.1145/3292500.3330925.

[47] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, ‘‘Graph-
SAINT: Graph sampling based inductive learning method,’’ in Proc. Int.
Conf. Learn. Represent., 2020, pp. 1–13.

[48] Y. Wang, Y. Zhao, N. Shah, and T. Derr, ‘‘Imbalanced graph clas-
sification via graph-of-graph neural networks,’’ in Proc. 31st ACM
Int. Conf. Inf. Knowl. Manage., Oct. 2022, pp. 2067–2076, doi:
10.1145/3511808.3557356.

[49] S. Shalev-Shwartz and Y.Wexler, ‘‘Minimizing themaximal loss: How and
why,’’ in Proc. 33rd Int. Conf. Mach. Learn., vol. 48, 2016, pp. 793–801.

[50] M. Steininger, K. Kobs, P. Davidson, A. Krause, and A. Hotho, ‘‘Density-
based weighting for imbalanced regression,’’Mach. Learn., vol. 110, no. 8,
pp. 2187–2211, Aug. 2021, doi: 10.1007/s10994-021-06023-5.

[51] K. R. M. Fernando and C. P. Tsokos, ‘‘Dynamically weighted balanced
loss: Class imbalanced learning and confidence calibration of deep
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 7, pp. 2940–2951, Jul. 2022, doi: 10.1109/TNNLS.2020.3047335.
https://doi.org/10.1109/TNNLS.2020.3047335

[52] G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for
Engineering. Hoboken, NJ, USA: Wiley, 2000.

[53] M. Marino, ‘‘Constitutive modeling of soft tissues,’’ in Encyclopedia of
Biomedical Engineering. Amsterdam, The Netherlands: Elsevier, 2019,
pp. 81–110.

[54] Y. You, T. Chen, Y. Sui, T. Chen, Z.Wang, and Y. Shen, ‘‘Graph contrastive
learning with augmentations,’’ 2020, arXiv:2010.13902.

[55] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, ‘‘InfoGraph: Unsupervised
and semi-supervised graph-level representation learning via mutual
information maximization,’’ 2019, arXiv:1908.01000.

[56] P. Velič ković, W. Fedus, W. L. Hamilton, P. Lia, Y. Bengio, and R. Devon
Hjelm, ‘‘Deep graph infomax,’’ 2018, arXiv:1809.10341.

[57] C. Oh, S. Han, and J. Jeong, ‘‘Time-series data augmentation based on
interpolation,’’ Proc. Comput. Sci., vol. 175, pp. 64–71, Sep. 2020, doi:
10.1016/j.procs.2020.07.012.

[58] K. Um, R. Brand, Y. Fei, P. Holl, and N. Thuerey, ‘‘Solver-in-the-loop:
Learning from differentiable physics to interact with iterative PDE-
solvers,’’ 2020, arXiv:2007.00016.

[59] L. Prechelt, ‘‘Early stopping—But when?’’ in Neural Networks: Tricks of
the Trade, 2nd ed. Springer, 2012, pp. 53–67.

[60] K. Terzaghi, Theoretical Soil Mechanics. Hoboken, NJ, USA:Wiley, 1943.
[61] F. Dullien,PorousMedia: Fluid Transport and Pore Structure. Amsterdam,

The Netherlands: Elsevier, 1979.
[62] V. C. Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, ‘‘Biphasic

creep and stress relaxation of articular cartilage in compression: Theory
and experiments,’’ J. Biomechanical Eng., vol. 102, no. 1, pp. 73–84,
Feb. 1980, doi: 10.1115/1.3138202.

VOLUME 12, 2024 86317

http://dx.doi.org/10.1016/j.jbiomech.2016.06.019
http://dx.doi.org/10.1002/pamm.202100188
http://dx.doi.org/10.1016/j.compbiomed.2022.105699
http://dx.doi.org/10.1088/1367-2630/abadb3
http://dx.doi.org/10.1007/s40194-022-01270-z
http://dx.doi.org/10.1016/j.jcp.2020.110079
http://dx.doi.org/10.1016/j.engappai.2018.01.006
http://dx.doi.org/10.18653/v1/2020.coling-main.611
http://dx.doi.org/10.1145/3442381.3449796
http://dx.doi.org/10.1016/j.jmatprotec.2022.117541
http://dx.doi.org/10.1016/j.array.2022.100258
http://dx.doi.org/10.1007/s00158-021-02983-3
http://dx.doi.org/10.1007/s00158-021-02983-3
http://dx.doi.org/10.1016/j.istruc.2023.05.122
http://dx.doi.org/10.1515/icom-2020-0018
http://dx.doi.org/10.1093/biomet/87.4.954
http://dx.doi.org/10.1145/3292500.3330925
http://dx.doi.org/10.1145/3511808.3557356
http://dx.doi.org/10.1007/s10994-021-06023-5
http://dx.doi.org/10.1109/TNNLS.2020.3047335
http://dx.doi.org/10.1016/j.procs.2020.07.012
http://dx.doi.org/10.1115/1.3138202


S. S. Sajjadinia et al.: Bridging Diverse Physics and Scales of Knee Cartilage

[63] S. M. Klisch, ‘‘Internally constrained mixtures of elastic continua,’’
Math. Mech. Solids, vol. 4, no. 4, pp. 481–498, Dec. 1999, doi:
10.1177/108128659900400405.

[64] W. Wilson, C. C. van Donkelaar, B. van Rietbergen, and R. Huiskes,
‘‘A fibril-reinforced poroviscoelastic swelling model for articular carti-
lage,’’ J. Biomechanics, vol. 38, no. 6, pp. 1195–1204, Jun. 2005, doi:
10.1016/j.jbiomech.2004.07.003.

[65] M. D. Buschmann and A. J. Grodzinsky, ‘‘A molecular model of
proteoglycan-associated electrostatic forces in cartilage mechanics,’’
J. Biomechanical Eng., vol. 117, no. 2, pp. 179–192, May 1995, doi:
10.1115/1.2796000.

[66] G. A. Ateshian, N. O. Chahine, I. M. Basalo, and C. T. Hung, ‘‘The corre-
spondence between equilibrium biphasic and triphasic material properties
in mixture models of articular cartilage,’’ J. Biomechanics, vol. 37, no. 3,
pp. 391–400, Mar. 2004, doi: 10.1016/S0021-9290(03)00252-5.

[67] W.Wilson, C. C. van Donkelaar, B. van Rietbergen, K. Ito, and R. Huiskes,
‘‘Stresses in the local collagen network of articular cartilage: A porovis-
coelastic fibril-reinforced finite element study,’’ J. Biomechanics, vol. 37,
no. 3, pp. 357–366, Mar. 2004, doi: 10.1016/s0021-9290(03)00267-7.

[68] W. Wilson, J. M. Huyghe, and C. C. van Donkelaar, ‘‘Depth-dependent
compressive equilibrium properties of articular cartilage explained by its
composition,’’ Biomechanics Model. Mechanobiology, vol. 6, nos. 1–2,
pp. 43–53, Jan. 2007, doi: 10.1007/s10237-006-0044-z.

[69] M. E. Stender, C. B. Raub, K. A. Yamauchi, R. Shirazi, P. Vena, R. L. Sah,
S. J. Hazelwood, and S. M. Klisch, ‘‘Integrating qPLM and biomechanical
test data with an anisotropic fiber distribution model and predictions
of TGF-β1 and IGF-1 regulation of articular cartilage fiber modulus,’’
Biomechanics Model. Mechanobiology, vol. 12, no. 6, pp. 1073–1088,
Nov. 2013, doi: 10.1007/s10237-012-0463-y.

[70] S. S. Sajjadinia, B. Carpentieri, and G. A. Holzapfel, ‘‘A backward pre-
stressing algorithm for efficient finite element implementation of in vivo
material and geometrical parameters into fibril-reinforced mixture models
of articular cartilage,’’ J. Mech. Behav. Biomed.Mater., vol. 114, Feb. 2021,
Art. no. 104203, doi: 10.1016/j.jmbbm.2020.104203.

[71] Abaqus. (2021). Dassault Systemes. [Online]. Available:
https://www.simulia.com

[72] X.Wang, T. S. E. Eriksson, T. Ricken, and D.M. Pierce, ‘‘On incorporating
osmotic prestretch/prestress in image-driven finite element simulations
of cartilage,’’ J. Mech. Behav. Biomed. Mater., vol. 86, pp. 409–422,
Oct. 2018, doi: 10.1016/j.jmbbm.2018.06.014.

[73] J. C. Simo, ‘‘On a fully three-dimensional finite-strain viscoelastic damage
model: Formulation and computational aspects,’’ Comput. Methods Appl.
Mech. Eng., vol. 60, no. 2, pp. 153–173, Feb. 1987.

[74] B. Fazekas and T. J. Goda, ‘‘Determination of the hyper-viscoelastic
model parameters of open-cell polymer foams and rubber-like materials
with high accuracy,’’ Mater. Des., vol. 156, pp. 596–608, Oct. 2018, doi:
10.1016/j.matdes.2018.07.010.

[75] K. E. Keenan, S. Pal, D. P. Lindsey, T. F. Besier, and G. S. Beaupre,
‘‘A viscoelastic constitutive model can accurately represent entire creep
indentation tests of human patella cartilage,’’ J. Appl. Biomechanics,
vol. 29, no. 3, pp. 292–302, Jun. 2013, doi: 10.1123/jab.29.3.292.

[76] A. Erdemir, ‘‘Open knee: Open source modeling and simulation in knee
biomechanics,’’ J. Knee Surgery, vol. 29, no. 2, pp. 107–116, Oct. 2015,
doi: 10.1055/s-0035-1564600.

[77] SIMTK. (2023). Open Knee: A Three-dimensional Finite Element
Representation of the Knee Joint. Accessed: Apr. 23, 2023. [Online].
Available: https://simtk.org/home/openknee

[78] C. DeBoor, ‘‘A practical guide to splines,’’Appl.Math. Sci., vol. 78, p. 392,
1978.

[79] M. E. Mononen, A. Paz, M. K. Liukkonen, and M. J. Turunen,
‘‘Atlas-based finite element analyses with simpler constitutive models
predict personalized progression of knee osteoarthritis: Data from the
osteoarthritis initiative,’’ Sci. Rep., vol. 13, no. 1, p. 8888, Jun. 2023, doi:
10.1038/s41598-023-35832-y.

[80] S. Sajjadinia, B. Carpentieri, and G. Holzapfel, ‘‘A pointwise evaluation
metric to visualize errors in machine learning surrogate models,’’ in Proc.
CECNet, vol. 345, 2021, pp. 26–34.

[81] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia,
‘‘Learning mesh-based simulation with graph networks,’’ 2020,
arXiv:2010.03409.

[82] S. Rezvani and X. Wang, ‘‘A broad review on class imbalance learning
techniques,’’ Appl. Soft Comput., vol. 143, Aug. 2023, Art. no. 110415,
doi: 10.1016/j.asoc.2023.110415.

[83] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
‘‘Sensitivity and generalization in neural networks: An empirical study,’’
2018, arXiv:1802.08760.

[84] M. Tan and Q. V. Le, ‘‘EfficientNetV2: Smaller models and faster
training,’’ 2021, arXiv:2104.00298.

[85] Z. Xue, Y. Yang, and R. Marculescu, ‘‘SUGAR: Efficient subgraph-level
training via resource-aware graph partitioning,’’ IEEE Trans. Comput.,
vol. 72, no. 11, pp. 1–11, Oct. 2023, doi: 10.1109/TC.2023.3288755.

SEYED SHAYAN SAJJADINIA is currently pur-
suing the Ph.D. degree in computer science
at the Faculty of Engineering, Free University
of Bozen-Bolzano, with a focus on biomedical
engineering and computational mechanics. He is
also a Senior Data Scientist at CAEmate S.R.L.,
Italy, contributing to the development of the indus-
trial digital twins. His current research interests
include integration of data science and numerical
modeling, particularly using deep learning and

finite element analysis, in computer simulations.

BRUNO CARPENTIERI received the Laurea
degree in applied mathematics from Bari Univer-
sity, in 1997, and the Ph.D. degree in computer
science, Toulouse, France. He also worked as
a Post-Doctoral Researcher at the University of
Graz, an Assistant Professor at the University of
Groningen, and a Reader at Nottingham Trent
University. Since May 2017, he has been an
Associate Professor of applied mathematics at the
Faculty of Engineering, Free University of Bozen-

Bolzano. His main research interests include numerical linear algebra and
high-performance computing.

GERHARD A. HOLZAPFEL is currently a Profes-
sor and the Head of the Institute of Biomechanics,
Graz University of Technology. He is also an
Adjunct Professor at the Norwegian University of
Science and Technology and a Visiting Professor
at the University of Glasgow. He has made
significant contributions in both computational
and experimental biomechanics, with a focus on
soft biological tissues. He has received numer-
ous awards and honors for his work such as

the 2021 William Prager Medal and the 2021 Warner T. Koiter Medal, and
he was listed in ‘The World’s Most Influential Scientific Minds: 2014’ by
Thomson Reuters. He is also the Co-Founder and the Co-Editor-in-Chief of
the journal of Biomechanics and Modeling in Mechanobiology.

Open Access funding provided by ‘Libera Università di Bolzano’ within the CRUI CARE Agreement

86318 VOLUME 12, 2024

http://dx.doi.org/10.1177/108128659900400405
http://dx.doi.org/10.1016/j.jbiomech.2004.07.003
http://dx.doi.org/10.1115/1.2796000
http://dx.doi.org/10.1016/S0021-9290(03)00252-5
http://dx.doi.org/10.1016/s0021-9290(03)00267-7
http://dx.doi.org/10.1007/s10237-006-0044-z
http://dx.doi.org/10.1007/s10237-012-0463-y
http://dx.doi.org/10.1016/j.jmbbm.2020.104203
http://dx.doi.org/10.1016/j.jmbbm.2018.06.014
http://dx.doi.org/10.1016/j.matdes.2018.07.010
http://dx.doi.org/10.1123/jab.29.3.292
http://dx.doi.org/10.1055/s-0035-1564600
http://dx.doi.org/10.1038/s41598-023-35832-y
http://dx.doi.org/10.1016/j.asoc.2023.110415
http://dx.doi.org/10.1109/TC.2023.3288755

