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ABSTRACT Reconfigurable intelligent surface (RIS) is a promising technology for future 6G commu-
nications and has been used to enhance secrecy performance. However, the performance improvement is
restricted by the ‘‘double fading’’ effect of the reflection channel link. To address this issue, we introduce
an active RIS design, where the reflecting elements of RIS not only adjust the phase shift but also amplify
the reflected signal through the amplifier integrated into its elements. To obtain a satisfactory solution to the
non-convex problem resulting from this design, the penalty dual decomposition based alternating gradient
projection (PDDAPG) method is proposed. We compare the proposed algorithm with decoupling-fraction-
based alternating optimization (DFAO). Specifically, the complexity of the proposed algorithm grows
linearly with the number of reflective units in the RIS, while the complexity of the benchmark algorithm
increases with the power of 4.5 times the number of reflective units. To further address the quality of service
(QoS) constraints regarding the information rate requirements of users, we apply the fractional programming
(FP) method and the successive convex approximation (SCA) method to optimize the precoder of the base
station (BS) and the active beamformers of the phase shifts. The simulation results have demonstrated
the effectiveness of the proposed PDDAPG method. Moreover, the active RIS can effectively mitigate the
influence of ‘‘double fading’’ effects and achieve higher energy efficiency (EE) compared to passive RIS.

INDEX TERMS Reconfigurable intelligent surface (RIS), active RIS, penalty dual decomposition, secrecy
rate.

I. INTRODUCTION
Reconfigurable intelligent surface (RIS) is a two-dimensional
plane composed of many low-cost passive reflecting ele-
ments. An intelligent controller can adjust the amplitudes
or phase shifts of the incident signal of each reflection unit
through an independent control link to reflect the signal in the
required direction [1]. Through this method, RIS can reshape
the wireless communication environment, enhance the signal
power received by legitimate users, or reduce the signals of
eavesdroppers, thereby increasing the channel capacity of the
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entire wireless communication system and strengthening the
secrecy and confidentiality of signal transmission [2], [3], [4].

Physical layer security has also been an important issue
in recent years and a lot of research effort on RIS-
assisted secure communications has been dedicated to
the secrecy performance [5], [6], [7], [8] and secrecy
optimization enhancement [9], [10], [11]. Liang et al.
[5] investigated the secrecy performance of a RIS-aided
wireless communication system considering multiple legal
users and one eavesdropping user. Wei et al. [6] analyze
the secrecy performance of a RIS-aided communication
systemwithmultiple eavesdroppers. Kaveh et al. [7] explored
the role of RIS on enhancing the secure performance of
smart grid communications. Ghadi et al. [8] provided the
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performance analysis of physical layer security in presence
of the correlated channel model for legal-illegal user pairs.
In [11], the authors investigated the issue of secrecy rate in
RIS-assisted multiple-antenna wiretap channel (WTC) and
proposed an iterative method based on the block successive
maximization to enhance the secrecy rate by updating the
input covariance matrix and phase shifts. In [12], the authors
maximized the secrecy rate in a power-constrained RIS-
assisted multiple-input single-output (MISO) system, subject
to delay-limited quality-of-service (QoS) constraint, using an
iterative method and block coordinate ascent method.

Numerical results demonstrate that for systems with
strict delay requirements, large-sized RIS can alleviate the
degradation in secrecy rate performance. However, having
a large number of reflecting elements increases channel
estimation overhead and power consumption, making the
control of RIS more challenging. Therefore, the practical
application of passive RIS in wireless systems may be
limited. In addition, the reflected signal of RIS is transmitted
through two paths, i.e., the base station (BS)-RIS path and
RIS-User path. Due to this transmission mode, the signal
received by the user is affected by the ‘‘double fading’’
effect, resulting in a potential decrease in the channel gain
compared to the direct link [13]. To address this challenge,
the concept of active RIS has been proposed [14], [15].
Unlike traditional passive RIS, active RIS can amplify
the reflected signal through the amplifier integrated into
its reflecting elements. Moreover, compared to traditional
amplify-and-forward (AF) relays, active RIS utilizes low-
power reflection-type amplifiers to directly reflect signals
in full-duplex (FD) mode. This eliminates the need for
energy-intensive radio frequency (RF) chains and avoids
the ‘‘double fading’’ effect. Furthermore, AF under FD
mode requires reducing self-interference with high hardware
intricacy. In [14], the simulation results indicate that for
sum-rate maximization, active RIS outperforms passive RIS
under relatively high power conditions and with a moderate
number of RIS elements. Especially, in [10], the problem
of maximizing the sum rate in an active RIS-assisted
communications system is considered, and the transmit
beamforming of BS and the reflecting beamforming of RIS
are jointly optimized by an algorithm based on decoupling
fraction alternating optimization (DFAO) [16]. Noting that,
after extending the DFAO method in [10] to a multiuser
MISO secure communication system, the complexity of each
iteration increases with the 4.5 power of the number of
RIS tiles, which results in high CPU costs for large-scale
systems. Based on deep learning (DL) techniques and taking
the maximal transmission rate as the loss function, Zhang
et al. [26] learned to approximate the beamforming vector by
using a full-connected deep neural network (DNN). Hu et al.
[27] investigated the joint optimization of BS precoder and
beam selection via a deep Q-network (DQN) approach.

The algorithms used in the aforementioned literature either
directly approximate non-convex problems to convex ones

through convex-concave procedure (CCP) and then utilize
CVX to obtain suboptimal solutions [20], or employ model-
free reinforcement learning algorithms. Both approaches fail
to fully exploit the specific structure of the problem and are
prone to getting trapped in suboptimal local optima. In com-
parison, PDDAPG can leverage the specific network structure
aided by RIS for communication and provide closed-form
solutions for precoding gradients of both BS and RIS.
With appropriate step size selection, the PDDAPG algorithm
converges quickly. Moreover, PDDAPG can also serve as
an optimization kernel extension for the deep unfolding
model [29]. Deep unfolding employs deep neural networks
to approximate suboptimal step size selection, thereby
accelerating the convergence of the PDDAPG algorithm,
thus demonstrating promising application prospects for
PDDAPG.

As such, this paper proposes a novel active RIS-assisted
design aimed at enhancing secure wireless transmission in
multi-antenna systems. The main contributions of this paper
are summarized as follows:

1) We initially focus on maximizing the total achievable
secrecy rate for all users given a fixed base station
and active RIS power budget. To address this joint
design problem, we propose a low-complexity and
effective alternating gradient projection method based
on penalty dual decomposition and provide closed-
form expressions for exact gradients and projections.
Our proposed method can be proven to converge to
the critical point of the problem considered, which is
desirable for non-convex programs.

2) Secondly, considering different QoS requirements,
we aim to maximize the total secrecy rate of the
system while ensuring a certain QoS allocation among
legitimate users. To achieve this, based on fractional
programming and closed-form solution of the capacity
gratitude of the eavesdropper, we propose a joint
transmit beamforming and reflect precod+ing scheme
to solve this problem.

3) Finally, we provide extensive simulation results
to demonstrate the effectiveness of the proposed
PDDAPG algorithm and the joint beamforming
and precoding scheme. Compared to other existing
methods, the proposed PDDAPG algorithm shows
significant improvements in enhancing secrecy rate
with significantly reduced computational complexity.
For instance, compared to the DFAO method [10],
the proposed PDDAPG method achieves a 21%
secrecy rate gain. Additionally, the proposed joint
beamforming and precoding scheme not only improves
the system’s secrecy rate but also effectively meets
the QoS requirements of each legitimate user. Lastly
but equally importantly, we demonstrate that proactive
RIS can effectively counteract the ‘‘double fading’’
effect and achieve higher secure energy efficiency (EE)
compared to passive RIS.
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FIGURE 1. An active RIS-assisted multiuser MISO communication system.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We investigate an active RIS-assisted multiuser MISO
system. As shown in Fig. 1, the system consists of a BS
equipped with M antennas, an active RIS with N elements,
a single-antenna eavesdropper (Eve), and K single-antenna
legitimate users (Bobs). The intelligent controller working
with the BS can dynamically modify the phase shift of each
reflecting element. Let K be defined as the set {1, · · · ,K },
M be defined as the set {1, · · · ,M}, and N be defined as
the set {1, · · · ,N }. These sets respectively represent the Bob
set, the BS antenna set, and the RIS reflecting element set.
The channels BS→RIS, RIS→Bobk , BS→Bobk , RIS→Eve,
and BS→Eve are represented as HBI ∈ CN×M , HIU,k ∈

C1×N , HBU,k ∈ C1×M , HIE ∈ C1×N , and HBE ∈

C1×M , respectively. We assume that the full channel state
information (CSI) of all channel links is known at the BS.
Note that in the case where Eve is another user in the system
but untrusted by Bobs, it is feasible to assume that HBE and
HIE are known [17]. Accordingly, the transmitted signal from
the BS can be expressed as

w =
∑
k∈K

xksk , (1)

where xk ∈ CM×1 is the beamforming vector for the Bobk , sk
denotes the desired signal for the Bobk and followsE[|sk |2] =
1, ∀k ∈ K. We define x ≜ [xT1 , xT2 , · · · , xTK ]

T
∈ CMK×1

to include the beamforming vector of all Bobs. The received
signals at Bobk and at Eve are given by

yk = (HBU,k +HIU,k8
HHBI)w+HIU,k8

Hnv + nk , (2)

ye = (HBE +HIE8HHBI)w+HIE8Hnv + ne, (3)

respectively, where ne ∼ CN (0, σ 2
e ) and nk ∼ CN (0, σ 2)

denote noise at Eve and Bobk , respectively. 8H ≜ diag(θ) ∈
CN×N is the reflection coefficient matrix of the active RIS,
where θ ≜ [θ1, θ2, · · · , θN ]T ∈ CN×1, θn = βnejϕn , ∀n ∈
N . Note that, ϕn ∈ [0, 2π ) and βn ∈ [0, βn,max] denote the
phase shift and the amplification factor of the n-th reflecting
element on the active RIS. In active RIS, due to the use of
reflection-type amplifiers, there is usually βn >1. Let nv ∼
CN (0, σ 2

v I) represent the thermal noise produced in the RIS
due to the presence of amplifiers. Different from passive RIS,
the impact of this thermal noise cannot be ignored [10].

The signal-to-interference-plus-noise ratio (SINR)
received at Bobk is calculated as follows

SINRk =
xHk H̃

H
B,kH̃B,kxk∑

i∈K,i̸=k
H̃B,kxi(H̃B,kxi)H + ∥HIU,k8H∥2σ 2

v + σ 2
,

(4)

where H̃B,k ≜ (HBU,k + HIU,k8
HHBI). The achiev-

able rate of the Bobk can be expressed as RBk (x, θ ) =
log2 (1+ SINRk).

The achievable rate of Eve attempt to eavesdrop on Bobk ’s
signal can be expressed as

REk (x, θ )

= log2

1+
xHk H̃

H
E H̃Exk∑

i∈K,i̸=k
H̃Exi(H̃Exi)H+∥HIE8H∥2σ 2

v +σ 2
e

 ,

(5)

where H̃E ≜ (HBE +HIE8HHBI).
Thus, the secrecy rate between the BS and the Bobk can be

expressed as

Rseck (x, θ ) =
[
RBk (x, θ )− REk (x, θ )

]
. (6)

B. PROBLEM FORMULATION
Our objective is to iteratively approximate the maximum sum
secrecy rate (SSR) by alternatively obtaining the optimal
passive beamformer x and the active RIS beamformingmatrix
8H . The optimization problem is formulated as

(P1) : max
x,θ

{
Rsec(x, θ ) ≜

∑
k∈K

Rseck (x, θ )

}
(7a)

s.t.
∑
k∈K
∥8HHBIxk∥2 + ∥8H

∥
2
Fσ 2

v ≤ P
max
A , (7b)

∥x∥2 ≤ Pmax
BS , (7c)

|θn| ≤ βn,max,∀n ∈ N , (7d)

wherePmax
A andPmax

BS represent themaximum reflect power
of RIS and the maximum transmit power at BS, respectively.
The total power consumption Pmax

= Pmax
A + Pmax

BS .

III. PDD-BASED SOLUTION WITHOUT QOS CONSTRAINTS
Iterating to the optimal solution is extremely intractable due
to the non-convex nature of both the objective function (P1)
and the constraints (7b). For the optimization problem similar
to the system composed of a multi-antenna BS, an active
RIS, andmultiple single-antenna users, [10] proposed an AO-
based algorithm using a closed-form DFAO method [16].
Noting that the main idea of the closed-form DFAO method
used in [10] is to first restate the objective function in
a sum-of-ratio form using the Lagrangian dual transform,
then apply the quadratic transform to the ratios, and finally
optimize each variable in a closed-form alternating manner.
This DFAO method has lower complexity but inferior
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optimization performance compared to the direct DFAO
method [16], resulting in poorer system performance in
general. Furthermore, the DFAO method in [10], whose
per-iteration complexity increases with the number of RIS
tiles to the power of 4.5, is impractical for large-scale
systems. Inspired by these shortcomings, we introduce a low-
complexity and effective PDDAPG method to obtain a fixed
solution for (P1).

To address the non-convex constraint in (7b), we apply
the PDD method introduced in [18]. The main idea of
the PDD method is to handle difficult coupled constraints
through Lagrangian relaxation, then perform block decom-
position on the resulting augmented Lagrangian function,
and finally implement relaxed equality constraints with
appropriate penalty parameters. Specifically, first, we define
h(x, θ ,Pmax

A , ς) ≜
∑
k∈K
∥8HHBIxk∥2+∥8H

∥
2
Fσ 2

v −P
max
A +ς .

Then the constraint (7b) is equivalent to h(x, θ ,Pmax
A , ς) = 0,

ς ⩾ 0. Next, we use the Lagrangian relaxation technique
to handle the coupled constraints h(x, θ ,Pmax

A , ς) = 0, and
correspondingly, we can obtain the augmented Lagrangian
function for (7a):

R̄secξ,ω (x, θ , ς) ≜ Rsec(x, θ )− ξh(x, θ ,Pmax
A , ς)

−
ω

2
h2(x, θ ,Pmax

A , ς), (8)

where ξ representing the Lagrangian multiplier associated
with the constraint h(x, θ ,Pmax

A , ς) = 0 and ω representing
the penalty parameter. The penalty parameter ω is used to
adjust the value of ξ at each iteration step to ensure the
constraints are satisfied. After ξ and ω are fixed, problem
(P1) is transformed to:

(P2) : max
x,θ ,ς

R̄secξ,ω (x, θ , ς) (9a)

s.t. ς ≥ 0, (7c), (7d). (9b)

We establish the feasible region for the variable x as X ,
which is defined as {x ∈ CMK×1, ∥x∥2 ≤ Pmax

BS }. Note
that for the active RIS, there is no need for θ to satisfy the
unit modulus constraint |θn| = 1. Thus, the feasible set for
the variable θ as 2, and is defined as {θ ∈ CN×1, |θn| ≤

βn,max,∀n ∈ N }. Due to the decoupling of optimization
variables in (P2), we use the APG method to search for the
stationary solution of (P2). The motivation behind the APG
method is that the projection of the feasible set for a single
variable can be expressed in closed form.

Below are the steps for applying the APG algorithm
to iteratively approximate the optimal solution of problem
(P2). Following Algorithm 1 in line 5, we commence our
movement from xn−1 by taking a step of size αn along its
gradient. We then project the resulting point (i.e., ẍn ≜
xn−1+αn∇xR̄secξ,ω (xn−1, θn−1, ςn−1)) ontoX , resulting in xn.
In the same way, the line 6 moves along the gradient of θn−1

by the step size τ n, and then projects the resulting point (i.e.,
θ̈
n

≜ θn−1 + τ n∇θ R̄secξ,ω (xn, θn−1, ςn−1)) onto 2 to obtain
θn. Following the update of x and θ in Algorithm 1, we turn

Algorithm 1Gradient Projection Algorithm for Solving (P2)
1: Input: x0, θ0, ς0, α0, τ 0, ξ, ω > 0, n← 0
2: Initialize x0 and θ0

3: repeat
4: n← n+ 1;
5: xn = 5X (ẍn ≜xn−1+αn∇xR̄secξ,ω (xn−1, θn−1, ςn−1));
6: θn = 52(θ̈

n
≜ θn−1 + τ n∇θ R̄secξ,ω (xn, θn−1, ςn−1));

7: ςn = max{0,Pmax
A −

∑
k∈K
∥diag(θn)HBIxnk∥

2
−

∥diag(θn)∥2Fσ 2
v };

8: until convergence;
9: Output: xn, θn, ςn

to the optimization of ς in line 7. When x and θ are fixed,
the optimal solution of (P2) is simply given, that is, ςn =
max{0,Pmax

A −
∑
k∈K
∥diag(θn)HBIxnk∥

2
− ∥diag(θn)∥2Fσ 2

v }.

Therefore, it is not necessary to project ς .
The next iterative values of αn and τ n can be acquired by

backtrackinglinesearchscheme in each iteration. Specifically,
we can set αn = αn−1ζ , so that

R̄secξ,ω (xn, θn−1, ςn−1) ≥ R̄secξ,ω (xn−1, θn−1, ςn−1)

+ 2R{(∇xR̄secξ,ω (xn−1, θn−1, ςn−1))H (xn − xn−1)}

−
1

αn−1ζ
∥xn − xn−1∥2, (10)

where ζ < 1. A similar strategy can be employed thereafter
to obtain τ n. Subsequently, we provide a comprehensive
explanation of the two primary operations performed in
Algorithm 1

1) Projection to sets X and 2: The projection of ẍn onto
set X is given by

5X (ẍn) =

√
Pmax
BS ẍn

max{
√
Pmax
BS , ∥ẍn∥}

. (11)

The projection of θ̈
n
= [θ̈n1 , θ̈n2 , . . . , θ̈nN ]

T onto set 2 is
given by 52(θ̈

n
) = [θ̄n1 , θ̄n2 , . . . , θ̄nN ]

T , where for each l ∈ N

θ̄nl =

{
(θ̈nl /|θ̈

n
l |)βl,max , if |θ̈nl | > βl,max

θ̈nl , otherwise.
(12)

2) Gradient of R̄secξ,ω (x, θ , ς) for (P2): The gradient of
R̄secξ,ω (x, θ , ς) with respect to x is defined as follows

∇xR̄secξ,ω (x, θ , ς) = [(∇x1R̄
sec
ξ,ω (x, θ , ς))T , (∇x2R̄

sec
ξ,ω (x, θ , ς))T ,

. . . , (∇xK R̄
sec
ξ,ω (x, θ , ς))T ]T , (13)

where

∇xk R̄
sec
ξ,ω (x, θ , ς) = ∇xkR

sec(x, θ )−
(
ξ + ωh(x, θ ,Pmax

A , ς)
)

HH
BI8

H8HHBIxk .

For convenience of expression, we define

Bk (x, θ ) =
∑

i∈K,i̸=k

H̃B,kxi(H̃B,kxi)H + ∥HIU,k8
H
∥
2σ 2

v + σ 2
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and

Ck (x, θ) =
∑

i∈K,i̸=k

H̃Exi(H̃Exi)H + ∥HIE8H
∥
2σ 2

v + σ 2
e .

The gradient of Rsec(x, θ ) with respect to xk is

∇xkR
sec(x, θ ) = ∇xkA1(x, θ )−∇xkA2(x, θ ), (14)

where ∇xkA1(x, θ ) and ∇xkA2(x, θ) are given by (15)
and (16), as shown at the bottom of the next page,
respectively.

The gradient of R̄secξ,ω (x, θ , ς) with respect to θ is

∇θ R̄secξ,ω (x, θ , ς) = ∇θRsec(x, θ )−
(
ξ + ωh(x, θ ,Pmax

A , ς)
)

×

(∑
k∈K

vecd
(
8HHBIxkxHk H

H
BI

)
+ θσ 2

v

)
.

(17)

The gradient of Rsec(x, θ ) with respect to θ is

∇θRsec(x, θ ) =
∑
k∈K
∇θA1k(x, θ )−

∑
k∈K
∇θA2k(x, θ ),

(18)

where

∇θA1k(x, θ ) =
∇θM1k(x, θ )

(1+ xHk H̃
H
B,kH̃B,kxk/Bk (x, θ )) ln 2

, (19)

∇θA2k(x, θ )
∇θM2k(x, θ)

(1+ xHk H̃
H
E H̃Exk/Ck (x, θ )) ln 2

. (20)

∇θM1k(x, θ ) and ∇θM2k(x, θ ) are given by (21) and (22),
as shown at the bottom of the next page.

After Algorithm 1 converges, we update ξ and ω, and
we can see that ω is increased. In Algorithm 2, the
PDDAGP method for finding the stationary solution of (P2)
is described.

Algorithm 2 PDDAGP Algorithm

1: Input: x0, θ0, ς0, α0, τ 0, ξ, ω > 0, η < 1
2: repeat
3: Solve problem (P2) utilizing Algorithm 1;
4: x∗ = xn, θ∗ = θn, ς∗ = ςn;
5: ξ ← ξ + ωh(x∗, θ∗,Pmax

A , ς∗);
6: ω← ω/η;
7: until convergence;
8: Output: x∗, θ∗

IV. FRACTIONAL PROGRAMMING SOLUTION WITH QOS
CONSTRAINTS
Subject to the power constraints at the BS and the active RIS
and QoS constraints, the original problem of maximizing the
sum rate can be formulated as follows:

P̃0 : max
x,8

Rsum(x, 8) =
K∑
k=1

{RBk (x, θ )− REk (x, θ )}

Algorithm 3 Proposed Joint Transmit Beamforming and
Reflect Precoding Scheme With QoS Constraints
Require: Channels HBI, HBU,k , and HIU,k , ∀k ∈

{1, · · · ,K }.
Ensure: Optimized basestation(BS) beamforming vector

x, optimized RIS precoding matrix of active RIS 8, and
optimized secure-rate Rseck .

1: Randomly initialize x and 8;
2: while no convergence of Rseck do
3: Update ρ by (29);
4: Update ϖ by (30);
5: Update w by solving (31);
6: Update 8 by solving (33);
7: Update Rseck by (6);
8: end while
9: return Optimized x, 8, and Rseck .

s.t. C1 : ∥x∥2 ≤ Pmax
BS ,

C2 :

K∑
k=1

∥∥∥8HHBIxk
∥∥∥2 + ∥∥∥8H

∥∥∥2
F

σ 2
v ≤ P

max
A ,

C3 : RBk (x, θ ) ≥ ηk ,

C4 : REk (x, θ ) ≤ ηe,k (23)

There are 2K non-convex sum-of-logarithms and fractions
need to be dealed with. First we cope with the former K ones
with FP technique as the following Lemma.
Lemma 1 (Relaxed Problem For Secure Sum-Rate Max-

imization With Qos Constraints:) With adding the slack
variables ρ := [ρ1, · · · , ρK ] ∈ RK

+ and ϖ :=

[ϖ1, · · · , ϖK ] ∈ CK , the high nonconvex primal problem
P̃0 in (23) can be relaxed but with the same local optimal
solutions as follows

P̃1 : max
x,8H ,ρ,ϖ

R′sum(x, 8
H , ρ, ϖ ) =

K∑
k=1

ln (1+ ρk)

−

K∑
k=1

ρk +

K∑
k=1

g(x, 8H , ρk , ϖk )− REk (x, θ ),

s.t. C1 : ∥x∥2 ≤ Pmax
BS ,

C2 :

K∑
k=1

∥∥∥8HHBIxk
∥∥∥2 + ∥∥∥8H

∥∥∥2
F

σ 2
v ≤ P

max
A ,

C3 : RBk (x, θ ) ≥ ηk ,

C4 : REk (x, θ ) ≤ ηe,k (24)

where function g(x, 8H , ρk , ϖk ) is defined as

g(x, 8H , ρk , ϖk ) = 2
√

(1+ ρk)R
{
ϖ ∗k H̃B,kxk

}
− |ϖk |

2

 K∑
j=1

∣∣H̃B,kxj
∣∣2 + ∥∥HIU,k8

∥∥2σ 2
v + σ 2

 . (25)

Proof: The original proof based on Lagrange dual theory
can be found in [16].
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Then we cope with the other K non-convex sum-of-
logarithms and fractions in REk (x, θ ) based on difference of
convex (DC) framework [28], and obtain

P̃2 : max
x,8H ,ρ,ϖ

R′sum(x, 8
H , ρ, ϖ ) =

K∑
k=1

ln (1+ ρk)−

K∑
k=1

ρk

+

K∑
k=1

g(x, 8H , ρk , ϖk )− (∇xkA2(x, θ ))
H (x − xn)

− (∇θM2k(x, θ ))H (θ − θn),

s.t. C1 : ∥x∥2 ≤ Pmax
BS ,

C2 :

K∑
k=1

∥∥∥8HHBIxk
∥∥∥2 + ∥∥∥8H

∥∥∥2
F

σ 2
v ≤ P

max
A ,

C3 : RBk (x, θ) ≥ ηk ,

C4 : REk (x, θ) ≤ ηe,k (26)

Now we need to deal with nonconvex QoS constraints C3
and C4 via the following successive convex approximation
(SCA) lemmas.
Lemma 2: if

C̃3 : 2Re{H̃B,kxk} − ∥H̃B,kxnk∥
2
≥

(∥H̃B,k∥
2Pmax

BS +
∥∥HIU,k8

∥∥2σ 2
v + σ )(1− 2−ηk ). (27)

is satisfied, we have C3 : RBk (x, θ ) ≥ ηk .
Proof: Please see Appendix A.

Lemma 3: if C4 : REk (x, θ ) ≤ ηe,k is satisfied, we have

C̃4 : ∥H̃Exk∥2 ≤ (
∑
i̸=k

{2Re{H̃Exi} − ∥H̃Exni ∥
2
}

+ ∥HIE8∥2σ 2
v + σe)(2ηe,k − 1). (28)

Proof: Please see Appendix B.

Based on Lemma 2 and 3, thus, we have

P̃3 : max
x

R
{
2bHx

}
− xHAw− (∇xkA2(x, θ ))

H

(x − xn),

s.t. C1 : ∥x∥2 ≤ Pmax
BS ,

C2 : xH4w ≤ Pmax
m ,

C̃3 : (27),

C̃4 : (28).

Although P̃3 is nonconvex for the whole optimization
problem, if fixing three of x, 8H , ρ, ϖ , the original problem
relaxed to be a convex subproblem, and we can optimize
x, 8H , ρ, ϖ in an alternative way as follows.

A. UPDATING ρ

By setting ∂R′sum
∂ρk
= 0, we obtain

ρ
opt
k =

ξ2k + ξk

√
ξ2k + 4

2
, ∀k ∈ {1, · · · ,K }, (29)

where ξk = ℜ
{
ϖ ∗k H̃B,kxk

}
.

B. UPDATING ϖ

By solving ∂R′sum
∂ϖk
= 0, we have

ϖ
opt
k =

√
(1+ ρk)H̃B,kxk∑K

j=1

∣∣H̃B,kxj
∣∣2 + ∥∥HIU,k8

∥∥2σ 2
v + σ 2

,

∀k ∈ {1, · · · ,K }.

C. FIXING OTHER VARIABLES, OPTIMIZING X
To simplify the notations, we first introduce the following
definitions:

bHk =
√

(1+ ρk)ϖ
∗
k H̃B,k , b =

[
bT1 , bT2 , · · · , bTN

]T
,

(30a)

∇xkA1(x, θ ) =
H̃H

B,kH̃B,kxk/Bk (x, θ )

(1+ xHk H̃
H
B,kH̃B,kxk/Bk (x, θ )) ln 2

−

∑
m∈K,m̸=k

H̃H
B,mH̃B,mxk (xHm H̃

H
B,mH̃B,mxm)/(Bm(x, θ ))2

(1+ xHm H̃
H
B,mH̃B,mxm/Bm(x, θ )) ln 2

. (15)

∇xkA2(x, θ ) =
H̃H

E H̃Exk/Ck (x, θ )

(1+ xHk H̃
H
E H̃Exk/Ck (x, θ )) ln 2

−

∑
m∈K,m̸=k

H̃H
E H̃Exk (xHm H̃

H
E H̃Exm)/(Cm(x, θ))2

(1+ xHm H̃
H
E H̃Exm/Cm(x, θ )) ln 2

. (16)

∇θM1k(x, θ) =
vecd(HH

IU,kH̃B,kxkxHk H
H
BI)

Bk (x, θ )

−

∑
i∈K,i̸=k

vecd(HH
IU,kH̃B,kxixHi H

H
BI)x

H
k H̃

H
B,kH̃B,kxk + vecd(HH

IU,kHIU,k8
H )σ 2

v x
H
k H̃

H
B,kH̃B,kxk

Bk (x, θ)2
. (21)

∇θM2k(x, θ) =
vecd(HH

IEH̃ExkxHk H
H
BI)

Ck (x, θ )
−

∑
i∈K,i̸=k

vecd(HH
IEH̃ExixHi H

H
BI)x

H
k H̃

H
E H̃Exk + vecd(HH

IEHIE8H )σ 2
v x

H
k H̃

H
E H̃Exk

Ck (x, θ)2
.

(22)
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A= IK⊗
K∑
k=1

|ϖk |
2H̃H

B,kH̃B,k ,

4= IK ⊗
(
HBI

H8H8HHBI

)
, (30b)

Pmax
m = Pmax

A − ∥8∥2Fσ 2
v . (30c)

Then, for fixed RIS precoding matrix 8 and auxiliary
variables ρ and ϖ , problem P̃2 in (26) can be reformulated
as follows

P̃4 : max
x

R
{
2bHx

}
− xHAw − (∇xkA2(x, θ ))

H

× (x − xn),

s.t. C1 : ∥x∥2 ≤ Pmax
BS ,

C2 : xH4w ≤ Pmax
m ,

C3 : RBk (x, θ ) ≥ ηk ,

C4 : REk (x, θ ) ≤ ηe,k . (31)

which belong to traditional QCQP problems, and can be
efficiently solved using mathematical optimization tools such
as CVX.

D. FIXING OTHER VARIABLES, OPTIMIZING θ

For the simplicity of optimizing θ , the combining channel
H̃B,k is equivalent to the following form:

H̃B,k = HBU,k +HIU,k8
HHBI

= HBU,k + θHdiag
(
HIU,k

)
HBI. (32)

Utilizing (32), the problem P̃2 in (26) with respect to θ can
be reformulated as follows:

P̃5 : max
θ

R
{
2θHυ

}
− θH�θ − (∇θM2k(x, θ ))H

× (θ − θn),

s.t. C2 : θ
H5θ ≤ Pmax

A ,

C3 : RBk (x, θ ) ≥ ηk ,

C4 : REk (x, θ ) ≤ ηe,k . (33)

wherein

υ =

K∑
k=1

√
(1+ ρk)diag

(
ϖ ∗k HIU,k

)
HBIxk

−

K∑
k=1

|ϖk |
2diag

(
HIU,k

)
HBI

K∑
j=1

xjxHj HH
BU,k ,

(34a)

� =

K∑
k=1

|ϖk |
2diag

(
HIU,k

)
diag

(
HIU,k

H
)

σ 2
v+

K∑
k=1

|ϖk |
2

K∑
j=1

diag
(
HIU,k

)
HBIxjxHj HBI

Hdiag(HBI

HH
IU,k ), (34b)

5 =

K∑
k=1

diag
(
HBIHH

IU,k

) (
diag

(
HBIHH

IU,k

))H
+ σ 2

v IN .

(34c)

Although QoS constraints C3 and C4 can be reformulated
into more conservative but convex constraints with respect
to θ , it will result in high computational complexity of
the whole algorithm. Therefore, we are shifting towards a
low-complexity operation, focusing on optimizing the x sub-
problem to meet QoS constraints, while optimizing θ to
enhance overall security rate. Omitting the satisfactory of C3
and C4 in updating θ , we have

P̃6 : max
θ

R
{
2θHυ

}
− θH�θ − (∇θM2k(x, θ ))H (θ − θn),

s.t. C2 : θ
H5θ ≤ Pmax

A , (35)

Based on Lagrange dual theory, θopt can be obtained by
finding the optimal Lagrange multiplier and is listed by

θopt = (�+ µ5)−1υ, (36)

where µ denotes the Lagrange multiplier, which follows the
classcal KKT conditions and can be efficiently calculated via
Newton method.

In summary, Algorithm 3 focuses on tacking algorithmic
challenges of the sum-rate maximization problem P̃0 in (23),
which aims to address the most basic issue, i.e., the joint
design the BS beamforming and the active RIS precoding.
Since the considered channels G, hk , and fk are arbitrary,
regardless of the specific CSI, the proposed algorithm works
as a feasible solution to improve the performance gain
of active RISs in communication systems. Besides, since
the proposed algorithm decouples different variables to be
optimized, this algorithm has a good expansibility, which
can serve as a framework for the possible algorithmic
improvements in future works, such as addressing non-ideal
CSI and reducing computational complexity.

E. APPROXIMATION IN DISCRETE PHASE SHIFT CASE
Denote Fdps as the practical case where the low-resolution
phase of θ is discrete, i.e.,

Fdps ≜
{
θ

∣∣∣θn ∈ {1, ej 2πL , · · · , ej
2π(L−1)

L

}}
, (37a)

where L indicates that Fdps contains L discrete phase shifts.
When Fdps, the common solution to address the non-convex
constraint of discrete space is approximation projection [21].
Specifically, we can first relax Fdps to continuous phase shift
case, and obtain the optimal solution θopt by solving (35).
Then, following the proximity principle, we can simply
project the solved θopt to the elements in Fdps by a
approximation projection, written as

̸ θ sub= argmin
φ∈Fdps

∣∣ ̸ θopt − ̸ φ∣∣ , (38a)

2opt
= diag(exp(jarg(θ sub)), (38b)

aopt = diag(exp(−jarg(θ sub))θ sub, (38c)

where θ sub denotes the approximated sub-optimal solution to
the phase shift θ . Thus, we can finally obtain the sub-optimal
solution 2sub

∈ Fdps to the subproblem (35).

VOLUME 12, 2024 87103



B. Gao et al.: Secrecy Rate Maximization for Active RIS Assisted MIMO Systems

V. FRAMEWORK SUPPLEMENTS
In this section, we first provide practical implications of
proposed methods in Subsection V-A. Then, we analyze the
convergency and computational complexity of the proposed
algorithms in Subsection V-B.

A. PRACTICAL IMPLICATIONS AND FEASIBILITY OF
IMPLEMENTATION
From theoretical analysis to optimization models and
hardware implementation, the deployment and application
prospects of passive RIS have been studied and confirmed
by numerous researchers. Particularly in scenarios where
direct paths are absent, passive RIS indeed exhibits superior
performance and practical value by compensating for the
challenges posed by the lack of direct links through RIS
reflection. However, once direct paths exist, the application of
passive RIS can trigger multiplicative fading effects, limiting
its ability to enhance performance. This is where the value
of active RIS becomes evident: by adding reflection-type
amplifier hardware on top of passive RIS, implemented
through such methods as current-inverting converters [23],
asymmetric current mirrors [24], or some integrated cir-
cuits [25], active RIS systems significantly improve system
performance metrics including signal-to-noise ratio (SNR),
throughput, and energy efficiency.

B. CONVERGENCE AND COMPLEXITY OF THE
DEVELOPED SOLUTION
1) PROOF OF CONVERGENCE
The proof approach for Algorithm 2 is analogous to that
in [18], and we summarize it as follows. Firstly, after ξ

and ω are fixed, Algorithm 1 produces a strictly ascending
sequence of target values, denoted as R̄secξ,ω (x, θ , ς). As the
feasible domain is bounded, the monotonically increasing
sequence converges asymptotically to the limit point of (9a)
with a certain accuracy ϵ and ∥ξ k+1 − ξ k∥ is bounded.
Therefore, according to the update of the Lagrangemultiplier,
it implies that

√
h2(x, θ ,Pmax

A , ς) = 1
ω
∥ξ k+1 − ξ k∥ → 0 as

1
ω
→ 0. The key to this proof lies in demonstrating that the

target sequence R̄secξ,ω (x, θ , ς) generated by Algorithm 1 is
strictly increasing and bounded. By ensuring the boundedness
of the sequence, we can verify the convergence of the dual
update and ultimately obtain the optimal solution.

2) COMPLEXITY ANALYSIS
Clearly, the analysis of the complexity of Algorithm 2 is
significantly influenced by the complexity of Algorithm 1.
Therefore, we first examine the complexity of ∇xR̄secξ,ω

(x, θ , ς) inAlgorithm 1. The complexity of ∇xR̄secξ,ω (x, θ , ς)
is mainly related to ∇xkR

sec(x, θ ). The computational
complexity of HB,k and HE is both O(NM ). Therefore,
according to (14), (15) and (16), it can be concluded
that the complexity of ∇xkR

sec(x, θ ), is O(K (KM + N )).
From (14), we can see that the complexity of computing
∇xk R̄

sec
ξ,ω (x, θ , ς) is O(K (KM + N )), and the complexity of

computing∇xR̄secξ,ω (x, θ , ς) isO(K 2(KM+N )). Ignoring the
negligible terms αn and 5X (·), the per-iteration complexity
of step 5 in Algorithm 1 is O(KNM + K 2(KM + N )).

Next, we calculate the complexity of ∇θ R̄secξ,ω (x, θ , ς).
From (18), (19) and (20), it can be concluded that the
complexity of ∇θRsec(x, θ ) is O(K 2NM ). This makes
the complexity of ∇θ R̄secξ,ω (x, θ , ς) to be O(K 2NM ). The
complexity associated with the values of τ n and 52(·) is
relatively small, so it can be ignored. Therefore, step 6 in
Algorithm 1 has the same complexity as ∇θ R̄secξ,ω (x, θ , ς).
Compared with xn(step 5) and θn(step 6), the complexity of
step 7 can be ignored. According to the above discussion,
the total complexity per-iteration for Algorithm 1 can be
represented as O(K 2NM + K 2(KM + N )). This means that
the overall complexity of Algorithm 2 per-iteration is

O(K 2NM + K 2(KM + N )). (39)

However, in a practical active RIS-assisted multiuser
MISO system, N ≫ max{K ,M}. The overall per-iteration
complexity ofAlgorithm 2 can be approximatelyO(K 2NM ),
which is linearly related to the number of RIS tiles.

The computational complexity of Algorithm 3 is mainly
related to alternatively optimizing four variables ρ, ϖ ,
w, and 9 via (29), (30), (31), and (33), respectively.
Specifically, the computational complexity of computing
ρ and ϖ are O (KM) and O

(
K 2M + KN

)
, respectively.

Both w and 9 need to solve a standard convex QCQP
problem. Thus, the computational complexity of updating
w and 9 areO

(
log2

(
1
/
ε
)√

MK + 2 (1+MK )M3K 3
)
and

O
(
log2

(
1
/
ε
)√

N + 1 (1+ 2N )N 3
)
, respectively. As such,

the whole computational complexity ofAlgorithm 3 is upper
bounded by O

(
log2

(
1
/
ε
)
Io
(
M4.5K 4.5

+ N 4.5
))
, wherein ε

and Io represent the given accuracy tolerance the number
of iterations required by Algorithm 3 for convergence,
respectively.

VI. SIMULATION RESULTS
In this section, the performance of the proposed PDDAPG
method is evaluated. The BS and RIS are positioned at
coordinates (0 m, -60 m) and (300 m, 10 m), respectively. K
Bobs are randomly distributed within a circular area centered
at (300m, 0m) with a radius of 50m. Eve is randomly located
within a circular region centered at (400 m, 0 m) with a radius
of 5 m. Similar to [10], the large-scale path loss is PL =
10−3.73(dlink)−a, where a represents the path-loss exponent
and dlink denotes the distance between two devices. The
channels are comprised of both large-scale fading and small-
scale fading, with the latter following a Rician distribution.
We set aBE, aBI, aIU, aIE, and aBU to represent the path-
loss exponents of BS-Eve link, BS-RIS link, RIS-Bob link,
RIS-Eve link, and BS-Bob link respectively. By carefully
selecting the position of the RIS, the links related to the RIS
may experience path loss close to free space [19]. Therefore,
we set the path loss exponent of the links related to the RIS to
aBI = aIU = aIE = 2.2. Unless specified otherwise, in this
section we set aBU = 3.8, aBE = 3.5, M = 4, N = 64,
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K = 2, ζ = 0.5, Pmax
= 20 dBm, Pmax

A = 0.01 × Pmax,
Pmax
BS = 0.99 × Pmax. The maximum achievable amplitude

is βn,max = 100,∀n ∈ N . In Algorithm 2, we start with
ω = 0.001 and increase it to ω ← ω/η where η = 0.8.
Furthermore, we assume that σ 2

e = −100 dBW, σ 2
v = σ 2

=

BN0, the system bandwidth is B = 20 MHz and the noise
power spectral density N0 = −174 dBm/Hz.
In this paper, the secure spectrum efficiency is defined

as the achievable sum rate in (23), and the secure energy
efficiency is defined as the ratio between the achievable sum
rate and the total power consumption, i.e

Secure EE =
Rsum(x, 8)

P
(40)

with P = ξ
∑K

k=1 ∥x∥
2
+ ϕ(

K∑
k=1

∥∥8HHBIxk
∥∥2 +∥∥8H

∥∥2
F σ 2

v )+KWu+WBS +NWPS + LWPA, where ξ and ϖ

denote the energy transmission parameters. Wu, WBS , WPS ,
and WPA represent the consumed power at users, BS, phase
shift circuit and power amplifier of RIS, respectively.

Next, we present the simulation results to evaluate the
performance of the proposed PDDAPG method in an active
RIS-assisted multiuser MISO system, and compare the
proposed method with the following existing methods:
• The algorithm based on DFAO in [10] is extended to
the active RIS-assisted multiuserMISO system (denoted
as FP (active RIS) [10]). Specifically, we handle the∑
k∈K

REk (x, θ ) part of (7a) using the first-order Taylor

expansion and define A2(x, θ ) =
∑
k∈K

A2k(x, θ ) =∑
k∈K

REk (x, θ). Then, the objective function (7a) of the

optimization problem (P1) can be converted to

R̂sec(x, θ ) ≜

[∑
k∈K

RBk (x, θ )− f (x, θ , xt , θ t )

]+
,

(41)

where f (x, θ , xt , θ t ) represents the first-order Taylor
expansion of A2(x, θ ) expressed as

f (x, θ , xt , θ t ) = A2(xt , θ t )+ (∇xA2(xt , θ t ))H (x− xt )

+

∑
k∈K

(∇θA2k(xt , θ t ))H (θ − θ t ),

(42)

and xt , θ t represents the optimal values of x and θ in the
t-th iteration.

∇xA2(x, θ ) = [(∇x1A2(x, θ ))
T , (∇x2A2(x, θ))

T , . . . ,

(∇xKA2(x, θ ))
T ]T .

∇xkA2(x, θ ) and∇θA2k(x, θ ) are given by (16) and (20)
respectively. We can find that the optimization variables
x and θ in (24) can be decoupled using the DFAO
method in [10], and then the non-convex problem can be
transformed into two convex subproblems using the AO

FIGURE 2. Convergence results of PDDAGP method under different step
sizes.

FIGURE 3. Average system sum secrecy rate versus the total power
consumption Pmax.

FIGURE 4. Average system sum secrecy rate versus the number of RIS
elements N.

algorithm for solving. It should be noted that these two
subproblems are standard quadratic constraint quadratic
programming (QCQP) problems and can be solved using
the toolbox CVX [20].

Fig. 2 shows the convergence results of Algorithm 2 with
different step size initial values (α0

= τ 0). From Fig. 2,
it can be clearly observed that there is little difference in
the final converged secrecy rates obtained with different step
sizes of initial values. The different step size initial values
mainly affect the convergence speed of Algorithm 2. Noting
that, for fixed values of ξ and ω, when |R̄secξ,ω (xn, θn, ςn) −
R̄secξ,ω (xn−1, θn−1, ςn−1)|/R̄secξ,ω (xn−1, θn−1, ςn−1) is less
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FIGURE 5. Average run time comparison between the proposed PDDAPG and the AO algorithms.

FIGURE 6. The comparison of achievable secrecy rates between users with QoS constraints and
those without QoS constraints.

than or equal to the tolerance value (ϵ = 10−3),
R̄secξ,ω (x, θ , ς) is considered to have converged. After
this, we update ξ and ω. Finally, when |Rsec(xn, θn) −
R̄secξ,ω (xn, θn, ςn)|/R̄secξ,ω (xn, θn, ςn) ≤ ϵ, Algorithm 2 is
considered to have converged. Noting that the objective of
Algorithm 1 is to maximize R̄secξ,ω (x, θ , ς), so for fixed ξ and
ω, R̄secξ,ω (x, θ , ς) monotonically increases.

Fig. 3 shows the relationship between the average system
sum secrecy rate and the total power consumption Pmax

given N = 64. The figure shows that as total power con-
sumption Pmax increases, the system sum secrecy rate under
each scheme increases. Compared with DFAO algorithm,
PDDAPG method achieves a higher gain of secrecy rate.
For example, when Pmax

= 20 dBm, the average system
sum secrecy rate of DFAO method and PDDAPG method are
15.63 bits/s/Hz and 18.91 bits/s/Hz respectively. This means
that compared with DFAO method, the proposed approach
enhances the secrecy rate by approximately 21%. Moreover,
the active RIS demonstrates significantly higher performance
improvement than the passive RIS.

Fig. 4 shows the relationship between the average system
sum secrecy rate and the number of RIS elements N . From
the figure, it can be seen that with the increase of N , the
secrecy rate under each scheme also increases. We also notice
that in the active RIS-assisted system, the secrecy rate of
PDDAPG method is higher than that of DFAO algorithm
when N is greater than 25, and the greater the N , the
more obvious the performance difference between the two

algorithms. For instance, whenN is increased from 25 to 100,
the average secrecy rate realized by the PDDAPG method is
increased from 14.33 bits/s/Hz to 21.94 bits/s/Hz (increase of
7.61 bps/Hz), and the average secrecy rate realized by DFAO
method are increased from 14.33 bits/s/Hz to 15.78 bits/s/Hz
(increase of 1.45 bits/s/Hz). It should be noted that in a
practical system, N is hundreds, if not thousands [21]. Thus,
in the active RIS-assisted system, PDDAPG method has
better performance.

Fig. 5 shows the average run time comparison between the
proposed PDDAPGmethod and the DFAOmethod. In Fig. 5,
with the increase of N , the average run time under each
scheme also increases. From Fig. 5 (a), it can be seen that
different step size initial values have little impact on the
average run time of the PDDAPG method. When the step
size initial value is 0.01 (i.e., α0

= τ 0 = 0.01), the
average run time of the PDDAPG method can be reduced by
approximately 76% compared to the DFAO algorithm. From
Fig. 5 (b), it can be observed that different initial values of
x and θ also have no significant impact on the average run
time of the PDDAPG algorithm. In conclusion, our proposed
PDDAPG method is not sensitive to step size and initial
points.

Fig. 6 depicts the impact of QoS and without QoS on
the achievable secrecy rates for each Bob. As anticipated,
the overall secrecy rates of the system increase with the
increase of Pmax. This is because as Pmax increases, Bob’s
received SINR improves, thereby enhancing performance.
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FIGURE 7. Secure EE comparison between active RIS and passive RIS.

FIGURE 8. Secure EE comparison between continuous and discrete
phase shift Cases.

Additionally, Compared to Fig. 6 (b), it can be observed
that our proposed joint beamforming and precoding scheme
results as illustrated in from Fig. 6 (a) achieves comparable
secrecy rates for each Bob, ensuring fairness among users.
This is attributed to the introduction of QoS constraints,
which guarantees that the minimum secrecy rate for each Bob
meets a certain level.

Fig. 7 illustrates the relationship between the secure EE and
the total power consumption Pmax of active RIS and passive
RIS. From Fig. 7, it can be seen that the secure EE of active
RIS increases by approximately 102% compared to passive
RIS. Additionally, we also observed that as the total power
consumption Pmax increases, the secure EE first reaches a
peak and then gradually decreases. This phenomenon can be
explained by the fact that when Pmax is relatively low, the rate
of increase in secure EE is higher than the rate of increase
in Pmax.

Fig. 8 shows that in the passive RIS scenario, the curves
for ‘‘Continuous phase shift’’, ‘‘2-bit phase shift’’ and
‘‘1-bit phase shift’’ are very close. However, under the active
RIS scenario, the 2-bit and 1-bit cases experience slight
performance degradation. This is mainly because in the active
RIS scenario, optimizing the amplitude plays a crucial role
in improving secure energy efficiency. This suggests that
relying solely on angle projection can lead to deviations
from the optimal solution. In contrast, in the passive RIS
scenario, where RIS elements have a constant amplitude of 1,

FIGURE 9. Secure EE comparison between continuous and discrete
phase shift Cases.

the conversion from continuous phase shift to discrete phase
shift introduces relatively small errors and results in lower
performance degradation.

From Fig. 9, it can be observed that users deployed with
active RIS achieve the highest secure rate at a coordinate
position of 300 meters, which corresponds to the radius
closest to the active RIS. This indicates that users at this
distance radius can receive strong signals reflected by the
active RIS. In contrast, users with passive RIS show lower
sensitivity to coordinates. Although the highest secure rate
is achieved at a coordinate of 350 meters, the performance
improvement relative to other coordinates is moderate.

VII. CONCLUSION
In this paper, an active RIS-assisted multiuser MISO secure
communication system is studied. We propose a PDDAPG
method to solve the problem of SSR maximization. The
simulation results show that the proposed PDDAGP method
achieves a 21% increase in secrecy rate compared to the
benchmark algorithm. Additionally, the active RIS-assisted
scheme demonstrates better results in terms of secrecy rate.
We also prove that the complexity of each iteration of the
PDDGP method grows linearly with the number of reflecting
elements at RIS. This complexity is much lower than existing
methods, making it easy to apply in practice. To further
satisfy different QoS requirements, a method based on FP
and DC methods is proposed. The FP method reformulates
the nonconvex capacity of legal users into a convex form,
while the DC method addresses the nonconvex capacity of
the eavesdropper through first-order Taylor approximations.

APPENDIX A PROOF OF LEMMA 2
For notational simplicity, we rewrite C3 as

∣∣H̃B,kxk
∣∣2 ≥ (

∑K

j=1

∣∣H̃B,kxj
∣∣2

+
∥∥HIU,k8

∥∥2σ 2
v + σ 2)(1− 2−ηk ),

(43)
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Via Cauchy-Schwarz Inequality, we have∑K

j=1

∣∣H̃B,kxj
∣∣2 ≤ ∣∣H̃B,k

∣∣2 K∑
j=1

∣∣xj∣∣ ≤ ∣∣H̃B,k
∣∣2 K∑

j=1

Pmax

(44)

Substitute (44) into (43, we have (27).
(43) still is nonconvex, we can utilize the Taylor approxi-

mation to reformulate the left term of (43)

∥H̃B,kxk∥2 ≤ 2Re{H̃B,kxk} − ∥H̃B,kxnk∥
2, (45)

then combining (43) we have

2Re{H̃B,kxk} − ∥H̃B,kxnk∥
2
≥

(∥H̃B,k∥
2Pmax

BS +
∥∥HIU,k8

∥∥2σ 2
v + σ )(1− 2−ηk ). (46)

which completes the proof.

APPENDIX B PROOF OF LEMMA 3
Following the proof strategy of Lemma 2, we first reformulate
C4 as

∥H̃Exk∥2 ≤ (
∑
i̸=k

{∥H̃Exi∥2} + ∥HIE8∥2σ 2
v + σe)(2ηe,k − 1)

(47)

By utilizing the Taylor approximation to reformulate the right
first term of (47), we have

∥H̃Exi∥2 ≤ {2Re{H̃Exi} − ∥H̃Exni ∥
2
}, (48)

where xni is the n-th iterative point. Combining (47), we have

∥H̃Exk∥2 ≤ (
∑
i̸=k

{2Re{H̃Exi} − ∥H̃Exni ∥
2
}

+ ∥HIE8∥2σ 2
v + σe)× (2ηe,k − 1), (49)

which completes the proof.
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