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ABSTRACT Large-scale integration of renewable energy sources with their intermittent output is
introducing new challenges for system operators. The challenge arises from imperfect wind and solar
forecasts that lead to deviations in electricity production in real time. This has urged system operators to
explore new sources of flexibility including the water sector. Along with these advancements, municipalities
are becoming increasingly interested in coordinating water and energy systems in urban areas. This study
introduces a novel market-based mechanism for harnessing flexibility from an integrated water and power
system. The mechanism is formulated as a data-driven distribution robust chance-constrained program.
It coordinates the operation of flexible power generators and water pumps through affine policies, regulating
the participation of flexible assets in day-ahead and real-timemarket segments.Water flows are approximated
through a novel convex hull-based relaxation technique. This results in a second-order cone program
that allows the power system operator to leverage demand-side flexibility from the water network. The
fluctuating water demands, derived from direct consumption measurements, are considered to ensure
seamless integration with renewable energy sources. The water distribution network is explored for its
potential to offer flexibility services, such as demand response to the power network. The mechanism is
tested on a real case study in Alicante, Spain, to determine effective water-energy regulation policies and
identify potential cost savings.

INDEX TERMS Demand-side flexibility, distribution robust chance constraints, market-based mechanism,
water-energy coordination, wind-solar energy.

NOMENCLATURE
Abbreviations
ADMM Alternating direction method of multipliers.
CC Chance-constraint.
DA Day-ahead.
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DC − OPF Direct current optimal power flow.
DR Demand-response.
DRCC Distribution robust chance-constraint.
KW Kilowatt.
KWh Kilowatt-hour.
MAE Mean absolute error.
MCP Market-clearing price.
MISOCP Mixed-integer second-order cone program.
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PN Power network.
PV Photovoltaic.
PVC Polyvinyl chloride.
QCQP Quadratically-constrained

quadratic program.
RES Renewable energy sources.
RT Real-time.
SBSP Scenario-based stochastic programming.
SO System operator.
SOC Second-order cone.
SOCP Second-order cone program.
WN Water network.
Number sets
R Real numbers.
D Conventional power loads.
E Pressurized water pipes.
G Conventional generators.
J Water network junctions.
L Power lines.
N Power buses.
P Centrifugal variable speed pumps.
R Water reservoirs.
S Elevated water storage tanks.
T Number of time slots.
W Renewable power generators.
Z Number of random variables.
5 Ambiguity set.
Symbols
ℵi,j,t Relative rotational speed of pump (i, j) at

time t .
αe,t , βu,t Flexibility offered by generator e and

pump u at time t .
˘ Symbol denoting uncertainty-dependent

counterparts of the decision variables.
1href ,DA,1hDA Reference and actual pressure head gain

of pump (i, j) at time t in DA (Algorithm
1).

1href ,RT ,1hRT Reference and actual pressure head gain
of pump (i, j) at time t in RT (Algorithm
1).

1t Vector of random forecast errors at time
t .

δi,j,t Adjustment factor for change in power
consumption of pump (i, j) at time t .

ϵ Violation probability level for individual
DRCCs.

ϵ
′

Measure of confidence in the SOC refor-
mulation of DRCCs.

γt Aggregated forecast error of renewable
generators at time t .

EP Expectation operator under probability
distribution P.

P Worst-case distribution of uncertainty
selected from the ambiguity set5.

µ5 Mean vector of forecast errors.

ωi,t Forecast error of renewable generator i at
time t .

φT Transpose vector of ones.
6 Covariance matrix of forecast errors.
6t the t-th diagonal sub-matrix of the covari-

ance matrix 6 at time t .
τ Length of time step t .
θn,t Voltage angle of bus n at time t .
ℵi,j,ℵi,j Relative minimum and maximum rotational

speeds of pump (i, j).
f
n,m
, f n,m Lower and upper power flow limits through

line (n,m).

H end
s ,H

end
s User-selected minimum and maximum level

of storage tank s at the end of the simulation
(t = end).

PDl,t ,P
D
l,t Lower and upper bounds for conventional

load l at time t .

PGe ,P
G
e Lower and upper bounds for conventional

power generator e.

PWw,t ,P
W
w,t Lower and upper bounds for renewable

generator w at time t .
Q
i,j
,Qi,j Minimum and maximum flow through

pipe/pump (i, j) at time t .
ϒ Threshold percentage for termination condi-

tion of Algorithm 1.
ζ si,j,t , ζ

p
i,j,t Auxiliary variables for SOC relaxation of

friction head losses and pump energy con-
sumption.

As Cross-sectional area of storage tank s.
ai,j, bi,j, ci,j Hydraulic parameters of pump (i, j).
Bn,m Susceptance of power line (n,m).
CG
e Marginal production cost of generator e.

CAv
e ,C

Av
u Availability cost of generator e and pump u.

E0 Base voltage of the power system.
Fi,j Fixed part of Darcy-Weisbach equation for

pipe (i, j).
g, ρ, ηi,j Gravitational acceleration, density of water,

and efficiency of pump (i, j).
hj,t , hr,t , hs,t Pressure head in junction j, reservoir r and

storage tank s at time t .
mi,j,t Auxiliary variable for theMcCormick relax-

ation of bilinear term (i, j) at time t .
pDl,t Power demand of conventional load l at time

t .
pGe,t Power produced by generator e at time t .
pPu,t Power demand of pump load u at time t .
Pi,j,t Energy consumption of pump (i, j) at time t .
qLi,j,t , q

U
i,j,t Lower and upper water flow bounds for the

McCormick envelope.
r0i,j, r

1
i,j Parameters defining the convex envelope of

the friction head losses for pipe (i, j).
UD
l Bid of conventional load l.

UP
u Bid of pump load u.

xi,j, yi,j, zi,j Empirical parameters describing the energy
consumption of pump (i, j).
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dj,t Water demand in junction j at time t .
fn,m,t Power flow from bus n to bus m at time

t .
H0
j ,H j,H j Elevation, minimum and maximum

pressure head in junction j.
H0
s , h

0
s ,H s,H s Elevation and initial, minimum and

maximum level in storage tank s.
pWw,t Power produced by renewable generator

w at time t .
qi,j,t Water flow from node i to node j at

time t .

I. INTRODUCTION
Global energy demand is increasing, with projections up to
2040 indicating an annual economic growth rate of 3.4% and
an anticipated rise of approximately 30% [1]. Alongside this
demand surge, the integration of Renewable Energy Sources
(RES), such as wind and solar, in power networks is posing
challenges due to their variability and location-dependence,
complicating power flow control and network stability [2],
[3]. To address these challenges, SystemOperators (SO)must
develop cost-efficient approaches to manage the uncertainties
associated with the rise in RES, including exploring new
sources of flexibility. One potential source of flexibility is the
water sector.

The water sector constitutes a vital infrastructure that
accounts for approximately 4% of global electricity con-
sumption [1], [4]. Water and wastewater treatment plants,
which use 25-30% of total water-related energy consump-
tion [5], incur significant electricity costs, particularly in
pumping drinking water, which can represent up to 50%
of operational costs [6]. Given the environmental concerns,
escalating energy costs, and advancements in renewable
energy technologies, the integration of RES in power systems
is gaining momentum [7]. This shift is also being considered
by operators of water and electricity networks, although it
introduces uncertainty. Flexibility becomes crucial in this
context, referring to the ability of systems to adapt to
changing conditions and ensure reliable and efficient power
and water supply [8]. In the water sector, flexibility entails
sustaining operations during challenging scenarios by storing
water in intermediate reservoirs to ensure continuous water
supply despite fluctuations in energy or water sources.
In the power sector, flexibility involves adjusting load
and generation through methods such as flexible genera-
tion, Demand-response (DR), energy storage, and sector
integration [9], [10].
The competitive advantage of the Water Network (WN)

lies in its abundant flexibility capacity, which results from
over-sized asset capacities and large inertia resulting from
water reserves. Therefore, although the water network has
rather a small energy footprint, it has abundant flexibility
at its disposal which makes it an important candidate
for providing flexibility services to the power systems as
a DR provider [11]. From the water system viewpoint,

addressing the energy intensity of water distribution networks
is crucial for reducing their cost and environmental impact.
In this context, enhancing sector integration presents the
dual potential of furnishing flexibility to the Power Network
(PN) and fostering enhanced energy efficiency and resilience
within the WN. The coordination between water and power
networks is crucial for a dependable and sustainable supply
of resources under changing conditions and challenges.

Researchers have worked to improve pressurized water
networks in cities by reducing water usage [12], managing
infrastructure [13], lowering pressure [14], and cutting energy
costs. Literature has investigated the energy footprint in the
urban water cycle, ranging from 0.21 to 4.07 kWh/m3 [15].
The amount varies based on factors such as location, water
source, climate, and treatment methods. Similar efforts have
been undertaken in power networks to optimize electricity
transmission and distribution systems and enhance overall
efficiency. These include, implementing smart grids and
demand response mechanisms [16], integrating RES [17],
reducing energy losses [18], improving grid stability
and resilience [19], forecasting and managing electricity
loads [20], and ensuring power quality and voltage regula-
tion [21]. The above studies aim to address resource use effi-
ciency, mitigate operational costs, and promote sustainability
within their respective infrastructures. However, research
concerning the development of coordination mechanisms for
integrated power and water networks remains limited. Such
an integrated approach holds great significance for achieving
even greater economic efficiency and optimizing resource
utilization across interconnected urban systems.

Models and technologies have been proposed to explore
synergies between the water and energy sectors. Hydraulic
tanks have been identified as efficient devices for water and
energy storage [22], while pumps and turbines offer further
opportunities for synergy [23], [24]. Moreover, consistent
water flow and minimal pump operation can reduce energy
consumption in pressurized water networks [25]. However,
modelling integrated power and water networks presents
considerable challenges because of the non-convex nature of
both power and water physics. Focusing on the WN only,
the model developed by [26] is a Mixed-integer Second-order
Cone Program (MISOCP) designed for energy-optimal pump
scheduling and water flow, demonstrating the capacity to
enhance energy efficiency within the water sector. A follow-
up work in [27] demonstrated the potential for using water
supply networks for harvesting renewable energy. However,
these models assumed fixed electricity prices and overlooked
the dynamics of the PN, thus failing to account for the impacts
that the water network’s operation may have on the PN and
vice versa.

Integrated energy and water modelling can be challenging
due to the non-linear and non-convex nature of both power
and water flows as well as the non-linear operating profile
of water pumps. In this regard, [28] formulates an integrated
power and water coordination mechanism as a non-convex
Quadratically-constrained Quadratic Program (QCQP). The
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model optimizes controllable assets across both networks.
They propose a distributed optimal solution approach for the
optimal water-power flow problem based on the alternating
directionmethod of multipliers (ADMM). In [29], the authors
introduced a quasi-convex hull relaxation technique for
the optimal water-power flow problem and developed a
coordination mechanism for demand-side management in the
PN. They demonstrated that grid flexibility could benefit
from controllable water pump loads. However, these models
did not consider the inherent uncertainties in power and water
networks, such as uncertainties associated with power and
water demands, as well as RES generation.

Thework in [30] proposed a chance-constrained power and
water coordination mechanism that incorporates pumps as
flexible loads in the PN. Their study accounts for demand
uncertainties (such as power loads and water demands)
but not supply uncertainties (such as RES generation).
The probabilistic chance constraints (CC) are approximated
using the scenario-based stochastic programming (SBSP)
approach. This approach requires a large number of scenarios
to achieve a good representation of the uncertainty, which
can be computationally intensive to simulate. In a follow-up
work [31], the authors derived the analytical reformulation
of the CC for the integrated power-water flow problem.
While this approach is computationally tractable, it requires
assumptions on the underlying probability distribution which
is often unknown.

The work presented in [32] introduces an adaptive
robust water pumping problem aimed at managing power
demand uncertainty while providing voltage support and
frequency regulation. Their findings suggest that the adaptive
robust approach, when compared to the conventional robust
approach, is less conservative. However, a notable drawback
is its reliance on known uncertainty distributions, which
may not be known in practice. Additionally, the sequential
formulation utilized to solve the adaptive robust optimization
problem fails to capture the trade-offs between the cost of
pump scheduling in the Day-ahead (DA) market and the
profits from frequency regulation services in the Real-time
(RT) market. Another limitation of the works presented
in [30], [31], and [32] is the use of a linear function
to model pump power consumption, which is suitable
for fixed-speed pumps. However, fixed-speed pumps are
constrained to a limited range of operating points, thereby
limiting their flexibility when compared to variable-speed
pumps. In cases where variable-speed pumps are employed,
such as in [33], they are modelled using piecewise linear
approximations. Researchers acknowledge that this approach
tends to introduce computational complexity, especially in
large-scale systems.

The aforementioned studies aim to optimize controllable
assets in both power and water networks but often fall
short of capturing their dynamics and uncertainties. These
studies frequently overlook electricity market dynamics,
assuming fixed prices and neglecting crucial aspects such as
DA and RT market segments. Therefore, a comprehensive

formulation and modelling approach is necessary to study
decision-making in integrated power and water networks,
incorporating their dynamics in both DA and RT markets.
These two segments of the power market offer the adequate
price signals that are crucial for a DR program, such as the
WN, to perform a successful market-based energy arbitrage.
The intended problem formulation should account for the
physical characteristics of both networks and the financial
considerations associated with operating the two sectors.
As such, it should provide decision solutions with techno-
economic interpretations, resolving operational challenges
arising from short-term uncertainties.

This study proposes a novel market-based coordination
mechanism for integrated power and water networks, con-
sidering short-term scheduling and operation. We assume
that flexibility is sourced by flexible generators and variable-
speed pumps (operating as flexible loads). The proposed
model seeks to maximize utility in the power sector while
maintaining flexibility to address potential power imbalances
in RT. At the same time, it seeks to ensure the reliable
operation of the WN. We consider wind and solar power
forecasts as the sources of uncertainty. The problem is
formulated as a Data-driven Distribution Robust Chance-
constrained program (DRCC). Convex approximations and
affine control policies are employed for computational
traceability, resulting in a Second-order Cone Program
(SOCP). The innovation lies in formulating a DRCC
program for integrated power and water networks with
uncertainty in RES generation. As a sequel to our previous
work [34], an improved relaxation technique is proposed for
friction head losses and pump energy consumption functions.
In addition, we develop a novel iterative solution algorithm
to capture the dynamics of variable speed pumps. The
model identifies synergies between interdependent power
and water networks and suggests a market participation
mechanism for flexible water pumps in the power system.
This study provides valuable insights for utility operators
and practitioners during the planning and operation phases
of power and water networks. The contributions of the paper
can be summarized as follows:

1) Proposes a novel market-based coordination mecha-
nism for procuring flexibility from the water network.
This mechanism allows for effectively procuring flex-
ibility from the water system to contain imbalances
caused by imperfect wind and solar forecasts in the
power network.

2) Formulates the problem as a novel augmented
distribution-robust chance-constrained market clearing
problem, operating within a centralized and fully
competitive market set-up.

3) Introduces a novel convex relaxation technique and
iterative solution algorithm to convexity water network
hydraulic constraints to enhance problem tractability.

The rest of the paper is organized as follows. Section II
presents the problem formulation. Section III discusses the
solution methodology. Section IV introduces the case study.
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SectionV discusses the numerical results. SectionVI presents
the conclusions and the future work.

II. MATERIAL AND METHODS
A. MODELLING ASSUMPTIONS
The WN is described as a directed graph comprising nodes
I and edges E , with nodes categorized as junctions (j ∈ J ),
reservoirs (r ∈ R), or elevated storage tanks (s ∈ S), such
that I = J ∪R∪S. Reservoirs are considered infinite water
sources, while tanks have finite volumes. Compensation or
head tanks, serving as storage units for both water and
energy, offer a means of water storage. As a result, water
can be pumped into these tanks during specific intervals and
subsequently discharged, harnessing gravitational potential
energy, at later times. The WN edges represent water pipes
and variable speed pumps (i, j) ∈ P with P ⊂ E .

On the power side, a PN is considered, comprising power
lines L and nodes N with uncontrollable loads l ∈ D,
controllable pump loads u ∈ P , conventional power
generating units e ∈ G, and RES w ∈ W . The study
assumes that water pumps, along with storage tanks, act as
flexible loads in the PN. Moreover, power generators can
function as flexible assets by adjusting power production
within operational limits. In this context, flexibility is defined
as the capability of adjusting generation or consumption
levels in response to changes in RES availability. Given
our focus on flexible power generators, such as gas-fired
power plants, we do not consider the ramp-up and down
limits of these generators in our analysis. These flexible units
can adjust their operations, allowing them to provide the
necessary support to the grid without being constrained by
ramp rates.

The PN modelling approach adopts a linearized DC Opti-
mal Power Flow (DC-OPF) formulation, assuming voltage
magnitudes close to 1 per unit, neglecting power losses, and
considering small resistance compared to reactance. It must
be noted that the linearized DC-OPF formulation of the
power system is sub-optimal. However, we believe that our
approach has significant merits for the following reasons.
Firstly, the reactive power consumption of electric motors
is not priced in the current electricity market structure [35].
Therefore, our focus is on active power, aligning with the
objectives of this study and current economic considerations.
Secondly, including nonlinear reactive power constraints
would make the problem significantly more challenging,
both mathematically and computationally [36]. Since we
aim to investigate the potential of an integrated water and
power network in managing uncertainty in renewable power
generation within an electricity market setup, we believe our
power network modelling approach is sufficiently accurate
for the current study.

The model focuses on wind and solar power production as
the sources of uncertainty. Wind and solar forecast scenarios
are obtained from the forecasting tool RESGen [37] as
depicted in Figure 1. Based on several generated scenarios,

FIGURE 1. Wind and solar data obtained from RESGen. The shaded area
captures varying wind and solar power forecast scenarios. The point
forecast is depicted by the black line.

uncertainty is represented using a moment-based ambiguity
set. This set characterizes the uncertainty arising from
forecast errors in DA wind and solar power predictions.
Following previous studies [38], [39], the forecast errors
are assumed to follow an unknown multivariate probability
distribution. To encompass the overall system uncertainty,
a vector of random variables1 = [ω1,1, ω2,1, . . . , ωi,t ] ∈ RZ

is defined, where i and t represent specific space and time
dimensions. The moment-based ambiguity set 5 contains
all probability distributions described by known parameters,
namely the mean (µ5) and covariance (65) of the forecast
errors:

5 = P ∈ 50(RZ ) : EP[1] = µ5, EP[11T ] = 65.

The expectation with respect to the probability distribution
is denoted by EP, and the transpose operator is represented
by T . It is assumed that the mean is zero and the covariance
matrix can be estimated from empirical data of wind and solar
forecast errors. The total deviation from the DA forecast of
wind turbines and Photovoltaic (PV) panels at a given time is
determined by the dot product of the unit vector φT and the
forecast error vector1t , where a non-negative value indicates
a shortage of RES during RT operation compared to the DA
point forecast.

In this study, we have opted for the DRCC approach
because of its specific advantages over SBSO. Firstly, the
DRCC approach does not require assumptions about the
underlying probability distribution, making it suitable for
cases where errors from imperfect forecasting algorithms
may lack a specific probability distribution. Secondly, the
DRCC approach is computationally more efficient than
scenario-based stochastic programming. The main differ-
ences between SBSO andDRCC lie in uncertaintymodelling,
solution approach, and computational burden. SBSO relies on
identifying the underlying probability distribution of random
variables, such as wind and solar forecasts, and involves
solving numerous scenarios projected from the identified
probability distribution using techniques like Monte Carlo
simulation or scenario trees. This process can become
computationally expensive as uncertain factors increase or
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scenarios become more complex, especially when variables
are interdependent or in dynamic optimization cases.

In contrast, DRCC defines an uncertainty set encompass-
ing possible random variable realizations and optimizes an
objective considering the worst-case realization within this
set, leading to a solution that satisfies constraints with a
certain probability. The computational complexity of DRCC
depends on the chosen uncertainty set and the specific
optimization algorithm. Although DRCC may yield more
conservative solutions, it outperforms SBSO in computa-
tional efficiency for large problems with many random
variables, complex scenarios, poorly defined uncertainty,
or when risk assessment is not intended. For detailed
comparisons of SBSO and DRCC for different problems and
system sizes, we refer to [40], [41], and [42].

B. MATHEMATICAL FORMULATION OF THE PROBLEM
The proposed DRCC program is formulated as follows (1)-
(21). The objective function (1) follows a min-max structure,
minimizing the total social cost of the power system
while drawing uncertainty from the worst-case probability
distribution. As such, the problem also maximizes the
expected social cost that could occur due to worst-case
uncertainty realization.

MinMax
0,P∈5

EP

[ ∑
t∈T

(∑
e∈G

CG
e (p

G
e,t )−

∑
l∈D

UD
l p

D
l,t −

∑
u∈P

UP
u p

P
u,t

)]
(1)

s.t. hr,t = H0
r,t r ∈ R, t ∈ T (2)∑

i∈NinJ

qi,j,t −
∑

k∈NoutJ

qj,k,t = dj,t j ∈ J , t ∈ T (3)

hs,t − h0s =
τ

As

( ∑
i∈Nins

qi,s,t −
∑

j∈Nout s

qs,j,t

)
s ∈ S, t = 1

(4)

hs,t − hs,t−1 =
τ

As

( ∑
i∈Nins

qi,s,t −
∑

j∈Nout s

qs,j,t

)
s ∈ S, t > 1 (5)

hi,t − hj,t = Fi,j(qi,j,t )2 (i, j) ∈ E, t ∈ T (6)

hj,t − hi,t = ai,jq2i,j,t + bi,jqi,j,t + ci,j (i, j) ∈ P, t ∈ T
(7)

Pi,j,t =
gρτ
ηi,j

(hj,t − hi,t )qi,j,t (i, j) ∈ P, t ∈ T (8)

minP
P∈5

[H j + H
0
j ≤ hj,t ≤ H j + H0

j ] ≥ (1− ϵ)

j ∈ J , t ∈ T (9)

minP
P∈5

[H s + H
0
s ≤ hs,t ≤ H s + H0

s ] ≥ (1− ϵ)

s ∈ S, t ∈ T (10)

minP
P∈5

[H end
s ≤ hs,t ≤ H

end
s ] ≥ (1− ϵ) s ∈ S, t = end

(11)

minP
P∈5

[Q
i,j
≤ qi,j,t ≤ Qi,j] ≥ (1− ϵ) (i, j) ∈ E, t ∈ T

(12)

minP
P∈5

[Q
i,j
≤ qi,j,t ≤ Qi,j] ≥ (1− ϵ) (i, j) ∈ P, t ∈ T

(13)

PDl,t ≤ p
D
l,t ≤ P

D
l,t l ∈ D, t ∈ T (14)

PWw,t ≤ p
W
w,t ≤ P

W
w,t w ∈W, t ∈ T (15)∑

e∈ψGn

pGe,t +
∑

w∈ψWn

pWw,t =
∑
l∈ψDn

pDl,t

+

∑
u∈ψPn

pPu,t +
∑
m∈�n

fn,m,t n ∈ N , t ∈ T (16)

fn,m,t = E2
0Bn,m(θn,t − θm,t ) (n,m) ∈ L, t ∈ T (17)

θn,t = 0 n = ref , t ∈ T (18)

pPu,t = Pi,j,t u ∈ ψP
i,j, (i, j) ∈ P, t ∈ T (19)

minP
P∈5

[PGe ≤ p
G
e,t ≤ P

G
e ] ≥ (1− ϵ) e ∈ G, t ∈ T (20)

minP
P∈5

[f
n,m
≤ fn,m,t ≤ f n,m] ≥ (1− ϵ) (n,m) ∈ L, t ∈ T

(21)

0=hi,t ,hr,t ,qi,j,t ,hs,t ,Pi,j,t ,pDl,t ,p
W
w,t ,p

G
e,t ,p

P
u,t ,fn,m,t ,θn,t is the set of opti-

misation decision variables. Objective (1) minimizes the total
expected social cost of the power system. Parameters UD

l ,
UP
u , and CGe represent the estimated bids of conventional

load l, pump load u, and the marginal production cost of
generator e, respectively. The objective function excludes
power generation from wind and solar power producers as it
assumes zeromarginal production cost for RES.Additionally,
water pump bids UP

u are set at the maximum auction price
(i.e., price cap or the bid with the highest price) to ensure full
dispatch of pump loads for water supply-demand matching at
all times.

Constraints (2)-(13) delineate the WN. Constraint (2)
enforces a fixed head at the reservoir, where variable hr,t
denotes the pressure head at reservoir r at time t . The flow
balance in the network is maintained through constraint (3),
which ensures that at any junction j and time t , the total
inflow minus the total outflow equals the water demand,
denoted by the variable dj,t . The variable qi,j,t represents
the water flow from node i to node j at time t . The tank
level equations are described by constraints (4) and (5),
governing the change in the level of storage tank s over
time t represented by the variable hs,t . The parameters τ
and As are the time step and cross-sectional area of the tank,
respectively. Constraint (6) accounts for the pipe friction head
loss in the network. The variables hi,t and hj,t represent the
pressure head at nodes i and node j at time t , respectively.
Parameter Fi,j is the fixed, flow-independent part of the
Darcy-Weisbach equation. Pump hydraulic head gain is
captured by constraint (7), where parameters ai,j, bi,j, and ci,j
describe the hydraulic behaviour of pump (i, j). Constraint (8)
defines the pump energy consumption (Pi,j,t ) as a function
of pump head gain and flow rate. Parameters ρ, g, and
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ηi,j, denote the density of water, gravitational acceleration,
and efficiency of pump (i, j), respectively. Constraints (9),
(10), and (11) define the pressure head limits and minimum
and maximum tank levels. Parameters H0

j , H j, H j, H s and
H s provide elevation, head, and tank level upper and lower
limits. Parameters H end

s and H end
s provide the desired minimum

and maximum tank level at the end of the time horizon.
Constraints (12) and (13) define the pipe and pump flow
limits. Parameters Q

i,j
and Qi,j represent the minimum and

maximum flow through a pipe or pump (i, j).
Constraints (14) to (21) delineate the PN. Con-

straints (14) and (15) establish the limits for load and RES
generation. They ensure that the power produced by wind
or solar farms (pWw,t ), and the electricity demand from loads
(pDl,t ) are within the specified bounds at each time period t .
The parameters P

D
l,t and PDl,t represent the upper and lower

limits for electricity demand, respectively, while P
W
w,t and

PWw,t represent the limits for wind or solar power generation.
Constraint (16) represents the power balance in the network.
It ensures that the total power generated by generators and
RES, along with the electricity demand from loads and
power consumed by water pumps (pPu,t ), is balanced with
the power flow in the transmission lines fn,m,t at each time
period t . Constraint (17) defines the power flow from bus n
to bus m at time t . The variable fn,m,t represents the power
flow between nodes n and m. Parameter Bn,m represents the
susceptance of the transmission line connecting these nodes
and E0 represents the base voltage magnitude, assumed to
be close to one per unit. Constraint (18) enforces a fixed
voltage angle at the slack node. The variable θn,t represents
the voltage angle at bus n at time t . Constraint (19) couples
the pump power consumption Pi,j,t from constraint (8) with
the pump load on the PN pPu,t . Constraint (20) defines the
limits for conventional generation. It ensures that the power
output from conventional generators (pGe,t ) remains within the
specified upper and lower bounds given by parameters P

G
e,t

and PGe,t . Constraint (21) defines the power flow limit through
the transmission lines. It ensures that the power flow between
nodes n and m remains within the specified upper and lower
bounds f n,m and f

n,m
. Note that inequalities (9)-(13), (20),

and (21) are modelled as DRCCs. This implies that at the
optimal solution, the probability of meeting each constraint
is modelled to have a confidence level of at least (1)-ϵ).
The DRCC program (1)-(21) is currently computationally

intractable. Firstly, it contains an unknown and potentially
infinite number of variables and constraints due to its
probabilistic nature. Secondly, it involves nonlinear and
non-convex constraints (6), (7), and (8). Regarding infinite
dimensionality, by utilizing affine control policies, convex
approximations, and duality theory, DRCC problems can be
analytically reformulated as deterministic convex problems
across various ambiguity sets [43]. Regarding nonlinear
water network constraints, several studies have employed
linearization and convex relaxation techniques. Convex
models can provide a simplified yet accurate representation of
the behaviour of complex systems under certain conditions,

which is why they are widely used in engineering and systems
analysis [44]. Their key advantages include simplicity,
stability analysis, and fast simulation. References [29], [33],
and [45] employed linearization terms for common water
pressurized system parameters, including head losses in
pipelines, pressure head increases of pumps, and pump power
consumption functions. These studies confirmed the accuracy
and computational efficiency of the convex relaxation and
linearization methods. In this study, we develop a novel
solution algorithm leveraging linearizations and convex
relaxations specifically tailored to model the water network
within the DRCC framework. We believe this novel method
accurately captures the dynamics of the water system.

The analytical reformulation of DRCCs is discussed in
Section II-C. The linearization and convex relaxation of non-
convex constraints are presented in Section II-D. The final
problem formulation and solution procedure are discussed in
Section III.

C. ANALYTICAL REFORMULATION OF PROBABILISTIC
DRCCS
In the first step towards computational tractability, we adopt
recourse actions to represent the behaviour of flexible assets,
characterizing their response in RT as affine functions of
uncertainty. Specifically, as linear functions of aggregated
wind and solar forecast errors. The RT response is calculated
in the expectation for the worst-case distribution of RES
forecast errors EP in the ambiguity set 5. The recourse
actions are modelled via linear decision rules using the
random vector 1 ∈ RZ . The market operator is requesting
these recourse actions to regulate the flexibility response in
the coupled power and water network. This includes flexible
generators, water pumps and associated power and water
flows. We focus on the stochastic water flow variable as
an example to demonstrate the concept of affine response
to uncertainty. Water flow through pipes can be adjusted
in response to uncertainty realization in RT. We model this
behaviour as follows:

q̃i,j,t = qi,j,t + (φT1t )q̆i,j,t (i, j) ∈ (E ∪ P), t ∈ T . (22)

In (22), q̃i,j,t represents the total stochastic water flow
through pipe or pump (i, j) at time t . It comprises two
components: the nominal water flow qi,j,t and the uncertainty-
dependent water flow q̆i,j,t . The latter denotes the participa-
tion factor of water flow (i, j) in compensating for the total
wind and solar power mismatch φT1t at time t .

Assuming an affine response to uncertainty and zero
mean forecast error, we analytically reformulate the
DRCCs as Second-Order Cone (SOC) constraints fol-
lowing the approach described in [46]. Let us define
(φT1t )q̆:=

√
1−ϵ
ϵ
||q̆

∑ 1/2
||2, which for the sake of brevity we

write as ϵ′γt q̆ where ϵ′:=

√
1−ϵ
ϵ

and q̆γt :=||q̆
∑ 1/2

||2. Then
constraint (12) can be reformulated with the following SOC
constraints:

Q
i,j
− qi,j,t ≤ ϵ′q̆γt (i, j) ∈ (E ∪ P), t ∈ T (23)
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FIGURE 2. Convex approximations of the hydraulic system.
(a) Darcy-Weisbach equation: solid line for true curve, dashed line for the
linear segment, shaded area for the feasible domain. (b) Variable speed
pump: solid lines for the actual curve, dashed lines for linear
approximation, and shaded region for the feasible domain.

Qi,j − qi,j,t ≥ ϵ
′q̆γt (i, j) ∈ (E ∪ P), t ∈ T . (24)

A similar procedure is adopted to reformulate the other
probabilistic DRCCs of the program (1)-(21). The analytical
reformulation of DRCCs enables a representation of the
infinite-dimensional probabilistic problem into an equivalent
deterministic problem. However, this approach does not
suffice to make the problem computationally tractable.
The problem still contains nonlinear and non-convex con-
straints (6), (7), and (8). A novel procedure to convexify these
constraints is explained in Section II-D.

D. CONVEX RELAXATION OF HYDRAULIC CONSTRAINTS
Friction head losses in water pipes are commonly described
using the non-convex Darcy-Weisbach equation (6). This
is an equality constraint which models head losses as
a quadratic function of the flow rate. To address this
non-convexity, we follow the approach presented by [29]
where constraint (6) is reformulated as the intersection
of a convex function and a linear function such that
Fi,jq̃2i,j,t≤h̃i,t−h̃j,t≤r

0
i,j+r

1
i,jq̃i,j,t . This reformulation enables us to

model the feasible region, enclosed between the resulting
convex set, as shown in Figure 2a. Under the assumption
of affine response to uncertainty, we describe this convex
set by defining uncertainty-dependent and independent
counterparts as follows:

hi,t − hj,t ≥ Fi,jq2i,j,t (i, j) ∈ E, t ∈ T (25)

hi,t − hj,t ≤ r0i,j + r
1
i,jqi,j,t (i, j) ∈ E, t ∈ T (26)

φT1t (h̆i,t − h̆j,t ) ≥ (φT1t )Fi,j2qi,j,t q̆i,j,t
+ (φT1t )2Fi,jq̆2i,j,t (i, j) ∈ E, t ∈ T

(27)

h̆i,t − h̆j,t ≤ r1i,jq̆i,j,t (i, j) ∈ E, t ∈ T . (28)

Parameters r0i,j and r1i,j denote the y-intercept and slope
of the linear function, respectively. Notably, inequality (27)
introduces new bilinear and quadratic terms. To enhance
the convexity of (27), a novel hybrid method is proposed.

This approach combines a McCormick relaxation technique
applied to the bilinear term qi,j,t q̆i,j,t and a Second-Order
Cone (SOC) relaxation applied to the quadratic term q̆2i,j,t .
In this context, we define the following parameters: qLi,j,t and
q̆Li,j,t represent the estimated lower bounds of variables qi,j,t
and q̆i,j,t respectively; qUi,j,t and q̆

U
i,j,t represent the estimated

upper bounds of variables qi,j,t and q̆i,j,t respectively. The
auxiliary variable mi,j,t describes the McCormick envelope.
To simplify the quadratic term, we replace q̆2i,j,t with the
auxiliary variable ζ si,j,t and introduce one additional Second
Order Cone (SOC) constraint (32). This reformulation
results in a tractable representation of constraint (27)
for (i, j) ∈ E, t ∈ T as follows:

φT1t (h̆i,t − h̆j,t )

≥ (φT1t )Fi,j2mi,j,t + (φT1t )2Fi,jγi,j,t (29)

mi,j,t ≥ max{(qLi,j,t q̆i,j,t + qi,j,t q̆
L
i,j,t − q

L
i,j,t q̆

L
i,j,t ),

(qUi,j,t q̆i,j,t + qi,j,t q̆
U
i,j,t − q

U
i,j,t q̆

U
i,j,t } (30)

mi,j,t ≤ min{(qUi,j,t q̆i,j,t + qi,j,t q̆
L
i,j,t − q

U
i,j,t q̆

L
i,j,t ),

(qLi,j,t q̆i,j,t + qi,j,t q̆
U
i,j,t − q

L
i,j,t q̆

U
i,j,t )} (31)

q̆2i,j,t ≤ ζ
s
i,j,t . (32)

Next, we focus on approximating the pump hydraulic
curve (7). Variable speed pumps are commonly characterized
by quadratic functions of the flow rate, representing the
pressure head gain of pump (i, j) at time t . Constraint (7)
poses computational challenges as it is nonlinear and non-
convex. Moreover, the hydraulic behaviour of a variable-
speed pump is significantly affected by its operating speed.
The first pump affinity law states that the flow rate of
a pump is directly proportional to its rotational speed,
while the head it generates is proportional to the square
of the rotational speed. Consequently, a factor denoted as
ℵi,j,t≤ℵi,j,t≤ℵi,j,t is used to adjust the hydraulic curve as follows:
h̃j−h̃i=ai,jq̃2i,j+ℵi,j,tbi,jq̃i,j+ℵ

2
i,j,tci,j. Here, ℵi,j,t is the relative speed,

defined as the ratio between the actual operational speed
and the nominal pump speed. Parameters ℵi,j,t and ℵi,j,t
correspond to the lower and upper bounds of this ratio,
establishing the feasible pump operating region. Adopting a
comparable strategy as in [29] and [30], the upper and lower
pump’s hydraulic functions are approximated through a linear
model such that ℵ2i,j,tci,j+ℵi,j,tb′i,jq̃i,j≤h̃j−h̃i≤ℵ

2
i,j,tci,j+ℵi,j,tb

′
i,jq̃i,j as

shown in Figure 2b. By expanding the linear pump’s
hydraulic functions to both their nominal and uncertainty-
dependent parts, we derive constraints (33)-(36) as
follows:

hj,t − hi,t ≤ ℵ
2
i,j,tc

′
i,j + ℵi,j,tb

′
i,jqi,j,t (i, j) ∈ P, t ∈ T (33)

hj,t − hi,t ≥ ℵ2i,j,tc
′
i,j + ℵi,j,tb

′
i,jqi,j,t (i, j) ∈ P, t ∈ T (34)

hj,t − hi,t + φT1t (h̆j,t − h̆i,t )

≤ ℵ
2
i,j,tc

′
i,j + ℵi,j,tb

′
i,j(qi,j,t + φ

T1t q̆i,j,t ) (i, j)

∈ P, t ∈ T (35)
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FIGURE 3. Convex approximations of pump power consumption. (a) The
feasible hydraulic region with three operating points at different speeds
and fixed flow rate. (b) Convex approximation of energy consumption
curve for the three different operating speeds: real power curve (solid),
linear cut (dashed), feasible region (grey).

hj,t − hi,t + φT1t (h̆j,t − h̆i,t )

≥ ℵ
2
i,j,tc

′
i,j + ℵi,j,tb

′
i,j(qi,j,t + φ

T1t q̆i,j,t ) (i, j)

∈ P, t ∈ T . (36)

The values of b′i,j, c
′
i,j, ℵi,j,t , and ℵi,j,t are reliant on the

distinctive attributes of the chosen water pump (i, j) and
can be computed based on pump characteristic curves and
technical data sheets.

Next, we focus on approximating the pump power
consumption expression. The power needed to operate the
electric motor of a variable-speed pump is modelled as a
function of pump flow and pressure head gain, as given in
equation (8), which is non-convex. Further, it is known that
the power required by a variable speed pump is proportional
to the cube of the pump operating speed. Let us consider a
variable speed pump which must deliver a specific water flow
qi,j to the system. Depending on the pump operating speed,
this flow can be supplied at different pressures (hj − hi) as
shown in Figure 3a.

For known pump operating speed, equation (8) can
be expressed as a concave quadratic function of the
flow rate of the form P̃i,j,t=ℵi,j,txi,jq̃2i,j,t+ℵ

2
i,j,tyi,jq̃i,j,t+ℵ

3
i,j,t zi,j.

Following the convex hull relaxation approach as above,
this is modelled as the intersection of a concave func-
tion and a linear function such that ℵ2i,j,ty′i,jq̃i,j,t+ℵ3i,j,t z′i,j
≤P̃i,j,t ≤ℵi,j,txi,jq̃2i,j,t+ℵ

2
i,j,tyi,jq̃i,j,t+ℵ

3
i,j,t zi,j as shown in Figure 3b.

By expanding this expression to describe both uncertainty-
dependent and independent terms, we obtain constraints (37)-
(40) as follows:

Pi,j,t ≤ ℵi,j,txi,jq2i,j,t
+ ℵ

2
i,j,tyi,jqi,j,t + ℵ

3
i,j,tzi,j (i, j) ∈ P, t ∈ T (37)

Pi,j,t ≥ ℵ2i,j,ty
′
i,jqi,j,t + ℵ

3
i,j,tz
′
i,j (i, j) ∈ P, t ∈ T (38)

P̆i,j,t ≤ ℵ̆i,j,t2xi,jq̆i,j,tqi,j,t
+ (φT1t )ℵ̆i,j,txi,jq̆2i,j,t + ℵ̆

2
i,j,tyi,jq̆i,j,t (i, j)

∈ P, t ∈ T (39)

P̆i,j,t ≥ ℵ̆2i,j,ty
′
i,jq̆i,j,t (i, j) ∈ P, t ∈ T . (40)

The empirical parameters xi,j, yi,j, y′i,j, zi,j, z
′
i,j, associated

with water pump (i, j), are determined from technical data
sheets, leveraging the specific attributes of the pump. Factor
ℵ̆i,j,t denotes the ratio between the uncertainty-dependent
operational speed and the nominal pump speed. It is evident
that constraint (39) involves bilinear and quadratic compo-
nents and is therefore still non-convex. Extending the novel
hybrid methodology outlined above, McCormick relaxation
is employed to linearize the bilinear term qi,j,t q̆i,j,t . The
quadratic term q̆2i,j,t is approximated using SOC relaxation,
resulting in a convex representation of constraint (39) for
(i, j) ∈ P, t ∈ T as follows:

P̆i,j,t ≤ ℵ̆i,j,t2xi,jmi,j,t + (φT1t )ℵ̆i,j,txi,jζi,j,t + ℵ̆2i,j,tyi,jq̆i,j,t
(41)

mi,j,t ≥ max{(qLi,j,t q̆i,j,t + qi,j,t q̆
L
i,j,t − q

L
i,j,t q̆

L
i,j,t ),

(qUi,j,t q̆i,j,t + qi,j,t q̆
U
i,j,t − q

U
i,j,t q̆

U
i,j,t )} (42)

mi,j,t ≤ min{(qUi,j,t q̆i,j,t + qi,j,t q̆
L
i,j,t − q

U
i,j,t q̆

L
i,j,t ),

(qLi,j,t q̆i,j,t + qi,j,t q̆
U
i,j,t − q

L
i,j,t q̆

U
i,j,t )} (43)

q̆2i,j,t ≤ ζ
p
i,j,t . (44)

Parameters qLi,j,t , q̆Li,j,t , qUi,j,t and q̆Ui,j,t represent the
estimated upper and lower bounds of variables qi,j,t and q̆i,j,t
respectively;mi,j,t and ζ

p
i,j,t serve as auxiliary variables within

the McCormick relaxation and SOC relaxation, respectively.

III. SOLUTION APPROACH
A. DRCC PROGRAM REFORMULATION
The complete reformulation of the program is presented
herein, assuming an affine response to uncertainty and
utilizing the analytical reformulation of DRCCs and the
convex relaxations and approximations outlined in Sec-
tion II-C and II-D. Under the assumption of zero mean
forecast error, the optimisation problem simplifies to a
minimization problem. This is because, within the ambiguity
set, any probability distribution will lead to the same worst-
case expectation. Therefore, the worst-case distribution is
determined solely by its covariance. The reformulated DRCC
problem takes the following form.

Min
4,P∈5

∑
t∈T

[(∑
e∈G

CG
e (p

G
e,t )−

∑
l∈D

UD
l p

D
l,t −

∑
u∈P

UP
u p

P
u,t

)
+

∑
e∈G

CAv
e αe,t +

∑
u∈ψP

CAv
u βu,t

]
(45)

s.t. h̆r,t = 0 r ∈ R, t ∈ T (46)∑
i∈NinJ

q̆i,j,t −
∑

k∈NoutJ

q̆j,k,t = 0 j ∈ J , t ∈ T (47)

h̆s,t =
τ

As

( ∑
i∈Nins

q̆i,s,t −
∑

j∈Nout s

q̆s,j,t

)
s ∈ S, t = 1

(48)
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h̆s,t − h̆s,t−1 =
τ

As

( ∑
i∈Nins

q̆i,s,t −
∑

j∈Nout s

q̆s,j,t

)
s ∈ S, t > 1 (49)

h̆j,t − h̆i,t ≥ Fi,j2mi,j,t + ϵ′γtFi,jζ si,j,t (i, j) ∈ E, t ∈ T
(50)

hj,t − hi,t + ϵ′γt (h̆j,t − h̆i,t ) ≤ ℵ
2
i,j,tci,j

− ℵi,j,tb′i,j(qi,j,t + ϵ
′γt q̆i,j,t ) (i, j) ∈ P, t ∈ T (51)

hj,t − hi,t + ϵ′γt (h̆j,t − h̆i,t ) ≥ ℵ2i,j,tci,j
− ℵi,j,tb

′
i,j(qi,j,t + ϵ

′γt q̆i,j,t ) (i, j) ∈ P, t ∈ T (52)

P̆i,j,t ≤ ℵ̆i,j,t2xi,jmi,j,t + ϵ′γtℵi,j,txi,jζi,j,t
+ ℵ̆

2
i,j,tyi,jq̆i,j,t (i, j) ∈ P, t ∈ T (53)

H j + H
0
j ≤ hj,t ≤ H j + H0

j j ∈ (J ∪ S), t ∈ T (54)

H end
s ≤ hs,t ≤ H

end
s s ∈ S, t = end (55)

Q
i,j
≤ qi,j,t ≤ Qi,j (i, j) ∈ (E ∪ P), t ∈ T (56)

ϵ′γt h̆j,t ≥ −hj,t + H j + H
0
j j ∈ (J ∪ S), t ∈ T (57)

ϵ′γt h̆j,t ≤ −hj,t + H j + H0
j j ∈ (J ∪ S), t ∈ T (58)

ϵ′γt h̆s,t ≥ −hs,t + H end
s s ∈ S, t = end (59)

ϵ′γt h̆s,t ≤ hs,t + H
end
s s ∈ S, t = end (60)∑

e∈G
p̆Ge,t −

∑
u∈P

p̆Pu,t = 1 t ∈ T (61)

∑
e∈ψGn

p̆Ge,t −
∑
u∈ψPn

p̆Pu,t −
∑
m∈�n

f̆n,m,t = 0 n

∈ N , t ∈ T (62)

PGe ≤ p
G
e,t ≤ P

G
e e ∈ G, t ∈ T (63)

pGe,t + ϵ
′γt p̆Ge,t ≤ P

G
e e ∈ G, t ∈ T (64)

pGe,t + ϵ
′γt p̆Ge,t ≥ P

G
e e ∈ G, t ∈ T (65)

f
n,m
≤ fn,m,t ≤ f n,m (n,m) ∈ L, t ∈ T (66)

fn,m,t + ϵ′γt [E2
0Bn,m(θ̆n,t − θ̆m,t )] ≤ f n,m (n,m)

∈ L, t ∈ T (67)

fn,m,t + ϵ′γt [E2
0Bn,m(θ̆n,t − θ̆m,t )] ≥ f n,m (n,m)

∈ L, t ∈ T (68)

θ̆n,t = 0 n = ref , t ∈ T (69)

p̆Pu,t = P̆i,j,t + δi,j,t q̆i,j,t u ∈ ψPi,j , (i, j) ∈ P, t ∈ T
(70)

αe,t ≥

∥∥∥p̆e,t61/2
t

∥∥∥
2
e ∈ G, t ∈ T (71)

βu,t ≥

∥∥∥p̆Pu,t61/2
t

∥∥∥
2
u ∈ ψP, t ∈ T (72)

(2)− (5), (14)− (19), (23)− (26), (28)

(30)− (34), (37), (38), (40), (42)− (44) (73)

Here 4= pDl,t , pGe,t , p̆Ge,t , pWw,t , pPu,t , p̆Pu,t , θn,t , θ̆n,t , fn,m,t , f̆n,m,t , hi,t ,
h̆i,t , hr,t , qi,j,t , q̆i,j,t , hs,t , h̆s,t , Pi,j,t , P̆i,j,t , mi,j,t , ζ si,j,t , ζ

p
i,j,t , αe,t , βu,t

is the set of nominal and uncertainty-dependent optimisation
decision variables. In (45), CAv

e is the availability cost for

flexible generators andCAv
u for pumps. Availability cost refers

to the expense incurred by the market operator to make
sure that flexible generators or pumps are prepared to adjust
their operations near RT. In this research, we assume that
the availability cost serves as the sole pricing mechanism
governing deploying flexibility. As such, it represents the
main source of income for flexible generators and water
pumps during RT operations. Introducing availability costs
results in an augmented DA market clearing problem,
in which the cost of flexibility utilization in RT is externalized
from the DA social welfare. Variable αe,t and βu,t represent
the absolute amount of flexibility offered by generators e
and pumps u at time t , respectively. Notably, constraint (47)
ensures that uncertainty-dependent water flow differences
must be equal to zero. Constraints (61) and (62) ensure
that under uncertainty, total RES mismatches are fully
compensated, and changes in generation and pump load at
a node must match changes in power flow across connected
lines. Constraint (70) sets the uncertainty-dependent pump
power load on the PN equal to the uncertainty-dependent
pump power consumption plus a correction factor δi,j,t q̆i,j,t .
Constraints (71) and (72) enforce that the absolute amount of
flexibility offered by generators and pumps must be larger or
equal to the L2-Norm of the vector of uncertainty-dependent
generation and pump power loadmultiplied by the square root
of the covariance matrix.

B. ITERATIVE SOLUTION ALGORITHM
Assuming known DA and RT pump operating speeds,
program (45)-(73) is convex and therefore computationally
tractable. However, the optimal pump operating speed
is currently unknown and must be determined through
optimisation. We propose to solve the convex optimisation
problem iteratively, by adjusting the pump relative speedℵi,j,t
and ℵ̆i,j,t until a predefined termination condition is met. The
proposed algorithm leverages known pump properties and
affinity laws with the convex relaxation and approximations
developed in this study. Algorithm 1 summarizes the overall
solution procedure. The algorithm begins by initializing
the iteration counter (it), the objective value placeholder
(objit−1) and arrays ℵ, ℵ̆, and δ of dimensions P, T . Within
each iteration, it solves program (45)-(73) to determine
decision vectors q, q̆, h, q̆. For each time step t and pump
i, j, it computes the values of 1href ,DA, 1hDA, 1href ,RT ,
and 1hRT representing the reference and actual pressure
head gain in DA and RT, respectively. The relative pump
operating speed in DA (ℵi,j,t ), and RT (ℵ̆i,j,t ) is calculated
based on pump affinity laws. The relative speeds are used
to update the pump hydraulic feasibility cuts (37), (38),
(40) and (53) in the next iteration. The factor δi,j,t is used
to map the estimated pressure head gain to the minimum
change in pump power consumption in RT in (70). Then,
the algorithm checks for convergence based on the relative
percentage difference in the objective value (obj) compared
to the previous iteration (objit−1). If the percentage difference
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Algorithm 1 Iterative Solution of DRCC Program
it ← 0
objit−1← 0
Initialize arrays: ℵ, ℵ̆ and δ of size (P, T )
while true do
Solve (45)-(73):
obj, q, q̆, h, q̆← solution of (45)-(73)
for t in T do
for i, j in P do
1href ,DA← b′i,j · qi,j,t + c

′
i,j

1hDA← hj,t − hi,t
1href ,RT ← b′i,j(qi,j,t +6

1/2
t · q̆i,j,t )+ c

′
i,j

1hRT ← hj,t − hi,t +6
1/2
t (h̆j,t − h̆i,t )

ℵi,j,t ←

√
1hDA
1href ,DA

ℵ̆i,j,t ←

√
1hRT
1href ,RT

δi,j,t ←
gρτ
ηi,j
1hRT

end for
end for
if

∣∣objit−1−obj∣∣
|objit−1+ obj|

2

· 100 ≤ ϒ then

Break: Optimal solution found
end if
it ← it + 1
objit−1← obj

end while

FIGURE 4. Schematic overview of the proposed coordination mechanism.

is below a given threshold (ϒ), the algorithm terminates,
leading to the solution of the DRCC program.

C. SOFTWARE DESCRIPTION
The general overview of the coordination mechanism and
the internal process of the software is shown in Figure 4.
The model requires input data including hourly solar and
wind power generation forecasts, along with representative
infrastructure data for water and power networks. This
includes details of the pressurised water system such as
network topology, reservoirs, tanks, consumption nodes,
water demand profile and pipeline parameters. PN data
includes network topology, generation capacity, load profile,
power line parameters, and market-related factors such as

FIGURE 5. Top view of the municipality highlighting the complete water
distribution network.

bidding curves. Uncertainty is quantified using a set of
imperfect solar and wind power forecasts. Based on observed
forecast errors, mean and covariance are computed for the
next day and used to build the ambiguity set for the DRCC
program. Utilizing the collected data, the DRCC program
is solved iteratively via Algorithm 1. The objective function
maximizes social welfare while reserving enough flexibility
in the network to compensate for possible power imbalances
in RT resulting from the worst-case uncertainty realization.
The results provide insights into hydraulic response, power
dispatch, flexibility allocation policies, and Market Clearing
Prices (MCPs).

IV. CASE STUDY
We illustrate the applicability of our approach through a case
study in Spain, specifically focused on a real WN located
in Alicante Province within the South-Eastern region. The
population is 1270 inhabitants supplied by 900 connections.
The network spans 14.61 km of pipes, with 9.5% having
diameters below 60 mm and 90.5% ranging from 60 to
150 mm. The pipe composition includes fibre cement
(38.2%), PVC (13.0%), and polyethylene (48.8%). The
infrastructure comprises a reservoir at an elevation of 293 m
and a compensation tank with a diameter of 13.4 m located
at an elevation of 432.31 m. The tank’s water level fluctuates
between 0.5 and 3.9 m. The network layout is presented in
Figure 5.
The municipality’s daily consumption stands at 718.54

m3, and no leakage is accounted for in this model.
Furthermore, adhering to the conditions of our problem,
there are no instances of unsupplied demands within the
municipality (amounting to 0%). Pump energy consump-
tion is 264.15 kWh/day, while the reservoir contributes
535.75 kWh/day. Both total user demand and hourly modula-
tion coefficients remain constant throughout the year. In our
model, we simplify the network by excludingmunicipal pipes
located downstream of the compensation tank, leaving five
nodes connected by four main pipes. As the downstream
connections are gravity-fed, this simplification does not
impact the system’s hydraulic behaviour. The PN is based on
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FIGURE 6. Power network (left) and water network (right) depicting
orange lines as power lines, black bars as power buses, conventional and
renewable generators with respective icons, blue arrows as water pipes,
empty blue dots as junctions, filled blue dots as water demand points,
and reservoir, tank, and pump with respective icons.

a modified 6-Bus System introduced in [47]. It incorporates
four conventional generators, one small wind turbine with a
maximum power output of 150 kW, and a community solar
farm with a maximum power output of 100 kW. The network
comprises four conventional loads and one pump load with
a maximum power requirement of 50 kW. Different nodes
are connected through 11 power lines, with the reference
bus situated at node 5. An overview of the coupled power
and water network is given in Figure 6. A set of 1000 wind
and 1000 solar forecast scenarios is used to estimate the
covariance matrix of wind and solar forecast errors, following
the methodology in [37]. The violation probability ϵ is fixed
at a value of 0.25 for all DRCCs. The availability cost is set to
0.05 AC/KW for conventional generators (i.e., CAv

e ) and 0.005
AC/kW for water pumps (i.e., CAv

u ).

V. RESULTS AND DISCUSSION
All simulations are implemented in Julia v1.5.3, modelled
with JuMP v0.21.6, and solved with Mosek v1.2.1. The
problem is solved with an average CPU time of 0.27 seconds
and 6 iterations, using a laptop with 32GB RAM with a
Processor Intel(R) Xeon(R) 6 Core(s) running at 2.80GHz.

A. NUMERICAL RESULTS
The results show how the power and water network
would respond to different schedules and probabilities. The
optimised DA power dispatch schedule is shown in Figure 7,
achieved by coordinating power and water networks.

Results show that aggregate load varies throughout the
day with two major peaks around noon and in the evening
around 8 PM. A significant portion of the load is fulfilled by
conventional generators, with the remaining fraction sourced
fromwind and solar. RES generation is subject to fluctuations
across the 24-hour span, with a relatively larger share of RES
available between 9 AM and 2 PM as well as between 8 PM
and 12 PM. The pump load constitutes a small percentage of
the overall load and remains comparably constant throughout
the day. The MCPs, calculated through the dual variable
associated with the power balance constraint (16), vary
between a minimum of 0.10 AC/KWh between 4 and 6 AM,
and a maximum of 0.13 AC/KWh between 6 and 7 PM.

FIGURE 7. Scheduled DA power dispatch: conventional power loads (blue
area), pump loads (yellow area), conventional generation (black line), and
market clearing price (red dashed line).

FIGURE 8. Scheduled DA water flows: water demand (blue line), pump
flow (yellow line), tank volume (black dashed line), flow surplus (green
area) and flow deficit (orange area).

Changes in MCP are driven by the bidding parameters, the
availability of RES, and the aggregated load on the PN.

Figure 8 presents the DA schedule for the WN. The water
demand exhibits significant variations throughout the day,
with a minimum of 8 m3/h between 3 and 4 AM, and a
maximum of 52 m3/h at 8 AM. The pump supplies water to
the system, while the water flow fluctuates between 25 m3/h
(1 - 3 AM) and 36m3/h (7 AM). During specific intervals, the
pump provides more water than the actual municipal demand,
leading to a surplus of water that is stored in the compensation
tank. Consequently, the tank’s volume increases. Conversely,
when the pumps supply less water than demanded, a deficit
arises, causing the sourcing of water from the tank, which
results in diminishing the tank’s volume. The storage tank’s
volume varies between a maximum of 300 m3 at 5 AM and
a minimum of approximately 222 m3 at 10 PM, remaining
within the feasible limits defined by the specific tank
dimensions. The dynamic fluctuations in tank volume show
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FIGURE 9. Allocation of flexibility reserves: conventional generators
(grey) and water pumps (green) are assigned flexibility reserves. The red
line represents the worst-case RES deviation in RT, while the blue line
illustrates the dynamic pump flow adjustments in response to uncertainty.

a negative correlation with MCPs. When MCPs are low,
the storage tank volume is high, and vice versa. This trend
aligns with instances of a comparatively low aggregated load
on the PN and high availability of RES. These findings
underscore the effectiveness of smart water system operation
in its capacity as a DR provider, emphasizing its potential to
enhance economic efficiency.

Next to the DA schedule, flexible generators and water
pumps are assigned dynamic flexibility policies during the
RT stage. These policies compensate for unforeseen RES
deviations under worst-case conditions. This ensures enough
flexibility reserves, necessary for maintaining stability in
both power and water networks during RT. As depicted
in Figure 9, the distribution of these flexibility reserves
is illustrated with generators shown in grey and pumps
in green. The heights of the bars show the size of
flexibility contributed to each asset. Positive generation
reserves denote increased power production, while positive
pump reserves signify curtailed power consumption. The
aggregate flexibility from generators and pumps must align
with the RES power deviation depicted by the red line.
This ensures a complete compensation of power deviations.
Results show that generators contribute a substantial portion
of the RES deviation, ranging from 73% (9 AM - 1 PM)
to 100% of the total RES mismatch from 1 to 7 AM and
4 to 7 PM. Pump-driven flexibility, constrained by pump
size and hydraulic limitations, is comparatively lower, but
still significant. From 1 to 6 AM and 4 to 7 PM, the water
pump increases its flow (blue line), consequently increasing
energy consumption. Conversely, from 9 AM to 1 PM
and 8 to 12 PM, the pump reduces its flow and thus, its
power consumption. These outcomes unveil a time-sensitive
bidirectional response pattern in water pumps. Logically,
during the time intervals of 1 to 6 AM and 4 to 7 PM, the
increased water flow results in additional water being stored
in the compensation tank. This surplus water is subsequently

FIGURE 10. Model sensitivity across scenarios with varied availability
costs.

used to enable load reduction by the pump during alternate
periods. This mechanism enables the water system to adapt
its operations, providing RT flexibility while maintaining the
security of the water supply.

B. SENSITIVITY ANALYSIS
To gain deeper insight into the model’s behaviour, a one-
factor-at-a-time sensitivity analysis is conducted. We exam-
ine the influence of altering different parameters on the
optimal solution. Specifically, the analysis focuses on varying
availability costs, varying constraint violation probability
level ϵ, and varying hydraulic conditions. Figure 10 illustrates
the model’s sensitivity to varying availability costs (i.e.,
CAv
e for flexible generators and CAv

u for pumps) ranging
from 0.005 to 0.05 AC/KW. For instance, in scenario G5P50,
the availability cost is 0.005 AC/KW for generators (G) and
0.05 AC/KW for pumps (P). The model is evaluated across
multiple metrics: objective function value (upper left), social
welfare (lower left), generator revenue (upper right), and
pump energy cost (lower right). Results show a reduction
in the objective function value as the availability costs
of flexible generators increase. Social welfare, defined as
the difference between the benefit of consumption and the
cost of production, maintains a constant pattern across all
scenarios. Nevertheless, it shows a higher value in scenarios
G5P5, G25P5, and G50P5. Generator revenue, defined as
the sum of the revenue from DA electricity sales and
RT flexibility services, displays a positive correlation with
increasing generator availability costs. This suggests that
generators are required to engage in RT flexibility services
under all scenarios, indicating that the flexibility capacity
of water pumps alone is insufficient to compensate for the
RES mismatch entirely. Finally, instances of lower pump
availability costs correspond to lower pump energy expenses,
defined as the cost of purchasing energy in DA minus the
revenue from flexibility service in RT. This suggests potential
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FIGURE 11. Model sensitivity to different violation probability levels.

cost savings for theWNwhen providing flexibility at reduced
cost rates. Though the model shows sensitivity to various
availability costs, it is based on the specific economic and
physical parameters of the system under study. These findings
should not be generalised but approached as specific to the
particular case.

Next, we examine the model sensitivity to different choices
of the parameter ϵ, which determines the level of violation
probability associated with CC. Figure 11 illustrates the
change in the objective function value across varying values
of ϵ. Notably, the objective function value increases from
555 AC/day to 576 AC/day as the violation probability level
rises (Figure 11). This suggests that when a higher constraint
violation probability is allowed, the system can incur lower
costs associatedwith flexibility and thus achieve higher social
welfare. In practice, higher constraint violation probability
means that the SO has a higher degree of freedom in choosing
the best schedule for the DA stage. However, this trade-off
leads to a reduction in the system’s confidence in dealing with
uncertainty in RT, referred to as robustness. A point already
established in [25] is that as one approached the maximum
injected flow level into a pressurised water distribution
network, the energy efficiency improved. However, this
was accompanied by an increased likelihood of failing to
deliver water at the specified threshold pressure (25 m)
and encountering unsupplied demands. The results show the
substantial impact of the parameter ϵ on the optimal solution.
Therefore, its selection should be done carefully, in relation
to the specific context of the application and the precise needs
of the end-user.

Finally, we investigate the model sensitivity to different
hydraulic heads. We define three distinct scenarios in which
the static pressure head is varied. The static head is defined
as the elevation difference between the reservoir and the
compensation tank. The static head is progressively increased
from 140 m (representing the real case) to 200 m and 250 m,
denoted as scenarios H140, H200, and H250, respectively.
Figure 12 shows alterations in the model response concerning

FIGURE 12. Sensitivity of Model to different Hydraulic Conditions. The
top graph shows the flexibility allocation on the primary axis and the
change in flow rate in RT on the secondary y-axis. The bottom graph
illustrates the relative pump operating speed in DA and RT.

flexibility provision under varying hydraulic heads (top) and
shifts in relative pump operating speeds between DA and RT
(bottom). The results indicate that although the flexibility
provided by the generators and water pumps is affected by
different hydraulic heads, the overall trend over time remains
stable in all scenarios. The higher the static head, the greater
the pump’s flexibility. The increase in flexibility potential
is because of changes in pump operating speed associated
with different hydraulic heads. Relative pump speed (ℵi,j)
increases from an average of 0.65 in scenario H140 to an
average of 0.9 in scenario H250. As the pump’s operating
speed increases, its feasible operational range shifts vertically
(see Figure 3), thereby influencing the pump’s ability to adapt
water flow during RT operations, and therefore its energy
consumption. Results suggest that different hydraulic heads
have a significant influence on the pump operating conditions
and resulting capacity to deliver flexibility. Hence, selecting
an appropriate variable speed pump is critical to ensuring an
optimal degree of operational flexibility.

To assess the implications of implementing the second-
order cone reformulation for water flows, we examine the
Mean Absolute Error (MAE) resulting from the convex
relaxation applied to constraints describing friction head
losses in DA (25) and RT (27), as well as constraints related to
pump energy consumption in DA (37) and RT (39). TheMAE
quantifies the slack resulting from the convex relaxations.
It measures the average absolute difference between the
outcomes of the original non-convex constraint and the
relaxed constraint. This offers insight into the gap between the
optimal solution of the non-convex problem and the solution
obtained through convex relaxation. Importantly, MAE is
expressed in the original units of the constraint, thereby
preserving its inherent physical interpretation. The MAE is
examined for different availability costs and hydraulic head
scenarios as previously defined.
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TABLE 1. Mean Absolute Error (MAE) introduced by second-order cone
formulation of water flows under different availability costs and hydraulic
heads.

The results, presented in Table 1, show variations in
the MAE across different constraints, availability costs
and hydraulic head scenarios. Notably, the MAE remains
consistently low, indicating that the slack introduced by the
convex relaxations stays within acceptable limits. Across
varying availability cost scenarios, the MAE for all con-
straints decreases as the availability cost of the pump (P)
increases. Conversely, when the pump provides greater
flexibility due to lower availability costs, the MAE also
increases, aligning with the model’s assumptions. This
pattern suggests that higher availability costs lead to a more
accurate approximation.

Across different hydraulic head scenarios, constraints
(25) and (37), which correspond to DA constraints, demon-
strate a declining trend in MAE values with increasing
hydraulic head. Differently, constraints (27) and (39), cor-
responding to RT operation, show an opposite trend. As the
hydraulic head increases, the MAE increases as well. This
trend is logical since a higher hydraulic head corresponds
to greater pump flexibility potential, as shown in Figure 12,
leading to a larger MAE in these constraints. The overall
performance underscores the reliability of the employed
methodology in approximating water flow constraints across
various conditions. The observed low MAE values collec-
tively indicate that the model’s predictions closely match
actual constraint values, thus strengthening its potential
for practical applications across scenarios characterized by
varying availability costs and hydraulic head settings.

C. REFLECTION
The sensitivity analysis provided valuable insights into the
model’s behaviour under diverse conditions. It highlighted
the significant influence of flexible generator availability
costs on economic performance, while the impact of pump
availability costs was relatively minor. However, it’s notable
that water pumps offer less flexibility compared to generators
due to the small scale of the water network. Expanding the
water network could potentially increase flexibility and its
economic impact on the power system. Exploring varying
constraint violation probability levels (ϵ) revealed a trade-
off between cost reduction and system robustness, similar
to findings in [39] and [46]. These underscore the impor-

tance of balancing cost efficiency with system resilience
by carefully considering constraint violation probabilities.
Additionally, sensitivity analysis to different hydraulic con-
ditions emphasized the influence of static pressure heads on
flexibility provision and pump operations. This highlights
the importance of selecting appropriate pump configurations
to optimize operational flexibility under varying hydraulic
conditions. Furthermore, the assessment of MAE resulting
from convex relaxation indicated the reliability of the
methodology in approximating non-convex constraints across
various scenarios. However, these findings are specific to
the system’s characteristics, necessitating further analysis of
different water network infrastructures for generalization.

Finally, it is worth mentioning that the scalability of the
proposed approach has not been examined. However, we note
that the proposed mathematical programming problem is
a SOCP. One important advantage of SOCPs is their
computational efficiency compared to non-convex programs.
For SOCPs, the globally optimal solution can be computed
in polynomial time for a wide range of problem types and
sizes, as discussed in [48]. Our previous work [34] further
supports this notion. We investigated a similar problem in
a relatively larger system, using an IEEE 24-bus reliability
test system and a water network with 20 nodes. Our results
demonstrated that these types of convex problems can be
solved efficiently at this scale. However, when modelling
larger systems, the error introduced by convex relaxations
may increase. Therefore, conducting additional analysis on
even larger systems would further strengthen these findings,
providing opportunities for future research.

VI. CONCLUSION
This study presents a novel market-based mechanism for
the integrated scheduling of power and water networks.
The model is formulated as a distribution robust chance-
constrained optimisation problem. It optimises flexible
resources to make up for imperfect renewable energy
forecasts. The approach maximises utility in the power
sector and compensates for power deviations in real-time
while ensuring a stable water supply to the community.
Simultaneously, it seeks to enhance the storage of water (and
energy) in the head and/or compensation tanks. We introduce
a novel relaxation technique to handle the non-convexity
arising from the WN constraints. Further, we propose a novel
iterative solution algorithm to estimate the variable speed
pump behaviour. This method simplifies the study of water
networks for more efficient modelling and optimisation of
power and water networks. Adopting a look-ahead strategy,
this approach leads to a network-aware and resilient day-
ahead scheduling solution for power and water networks.
Notably, the outcomes underscore the successful harnessing
ofWN flexibility by the power system. As such, the proposed
coordination mechanism enhances the overall utility and
system-wide resilience without impacting water end-users.
This tool helps utility managers and practitioners plan and
operate power and water networks more effectively. In future
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work, we will investigate the scalability of our approach by
testing it on larger power and water network sizes and finer
time resolutions. Further, we aim to investigate optimal pump
selection, optimal tank sizing, and integrated power andwater
network investment planning. Additionally, we will investi-
gate the flexibility of other water infrastructural components,
such as pumps-as-turbines (PATs) and desalination plants.
Finally, we will investigate the impact of different uncertainty
sources such as stochastic power loads and water demands.
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