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ABSTRACT The paper develops a valuation based system for reasoning under uncertainty in the context
of threat assessment onboard an underwater vehicle. The focus is on threat posed by the nearby contacts,
while the vessel is navigating busy waters with warships, merchant ships and fishing vessels. A graphical
model of a valuation network is developed, representing the (uncertain) contextual prior knowledge and
received observations over the course of time. Two types of valuations are considered in this context:
(1) probability mass functions, assuming that all probabilistic values are known precisely; (2) credal sets (sets
of probabilities), when probabilistic values are specified only as the confidence intervals. The performance
of two valuation networks is presented, using a typical scenario-log, involving a varying number of different
types of contacts over time.

INDEX TERMS Machine reasoning, graphical models, valuation networks, maritime threat assessment.

I. INTRODUCTION
Reasoning and decision making using artificial intelligence
(AI) has many applications in naval military operations, both
above and under the water. Naval operations are particularly
complex due to hostility, unpredictability (due to uncertainty)
and the size of the ocean environment. Many countries
have placed importance in developing AI systems for naval
combat systems to achieve battle-space superiority. The role
of these systems is to help the human naval commanders to
process and comprehend the vast amounts of available data
in a timely, consistent and intelligent manner [1]. The data
typically appears in different forms, such as, the numerical
measurements from physical sensors, the natural language
statements from human operators and the contextual prior
or historical knowledge-base. AI systems provide methods
for fusion of all types of data to enhance tactical knowledge
and suggest the best course of action in a combination with
predictive capabilities [2]. This is important because crucial
decisions on a battlefield usually need to be taken under
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stressful conditions, which could also adversely affect the
human decision makers.

Early machine reasoning systems captured the knowledge
of human experts by a complex system of if-then rules
[3, Ch.9], but their main drawback was the inability to
handle uncertainty. Subsequently, Bayesian networks (BN)
[4], capable of reasoning under uncertainty, were developed
in mid-1980s. Several architectures [5] have been proposed
for exact computation of marginals of multivariate discrete
probability distributions in the context of BNs. One of
them was the Lauritzen-Spiegelhalter [6] architecture, which
determines the marginals of a multidimensional probability
density using the concept of local computation in join trees.
This architecture has been generalized by Lauritzen and
Jensen [7] so that it applies more generally to other uncer-
tainty representation frameworks, including the Dempster-
Shafer’s belief function theory (or evidential theory) [8].
Inspired by the work of Pearl, Lauritzen and Spiegelhalter,
Shenoy and Shafer proposed the valuation based system
(VBS) for computing marginals in join trees and established
the set of axioms that combination and marginalisation
(focusing) operations need to satisfy in order tomake the local
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computation concept applicable [9]. Reasoning networks
based on the Shenoy-Shafer architecture are referred to
as valuation networks. A slightly modified version of the
Shenoy-Shafer axiomatic formulation was developed by
Kohlas [10] with the resultingmathematical structure referred
to as the valuation algebra. The central component of a
valuation algebra is a valuation: a quantified representation
of an uncertain piece of information. The axioms of
valuation algebra are satisfied in practically all frameworks of
uncertainty modeling, e.g. probability theory [10], possibility
theory [11], Dempster-Shafer theory [10] and imprecise
probability theory [12], leading to the development and
application of the corresponding valuation networks [11],
[13], [14], [15].

This paper develops a valuation network (VN) for an
ongoing threat assessment onboard an underwater vehicle.
The focus is on threat posed by the nearby contacts, while
the vessel is navigating busy waters with warships, merchant
ships and fishing vessels. Two kinds of valuations are
considered in this context: (1) probability mass functions,
assuming that all probabilistic values are known precisely;
(2) credal sets (sets of probabilities), when probabilistic
values are specified only as the confidence intervals. The
performance of the two valuation networks is analysed,
using a typical scenario-log, involving a varying number of
different types of contacts over time.

The paper is organised as follows. A literature review
on threat assessment AI systems is presented in Sec. II.
Sec. III describes the problem, motivated by a typical
(but hypothetical) scenario-log of an underwater vehicle
navigating busy waters. Sec. IV presents the solution: a VN
for ongoing threat assessment in the presence of a large and
time-varying number of contacts. The numerical results are
presented in Sec. V and the conclusions are drawn in Sec. VI.

II. THREAT ASSESSMENT: PREVIOUS WORK
According to the JDL data fusion panel [3], higher-level
fusion comprises situation assessment and threat assessment.
While situation assessment refers to the comprehension
and interpretation of the current situation, threat assessment
projects the current situation to the future and in combination
with the adversary doctrine and objectives, predicts the risks
and consequences. In the last three decades, a vast volume of
research papers is devoted to threat modeling (in the military
context). Threat models are typically based on the classic
‘‘opportunity-capability-intent’’ paradigm [16]. For example,
a threat model in the context of an intruder approaching
a (static) military asset [17], is proportional to intruder’s
weapons range (capability) and its radial speed, and inversely
proportional to their mutual distance (intent, opportunity).

Fan et al. [18] suggest a time-varying tactical threat
modelling scheme where the key factors are the environment,
the strength of the opponent force (relative to the own
force), the distance between the two opposing forces and
the relative motion vector. Environmental factors include

the terrain, weather and visibility. A dynamic Bayesian
network (DBN) is suggested for sequential estimation of the
posterior probability of variable threat, which is modelled as
a Markov process. The conditional probabilities of this DBN
are assumed known precisely. Another interesting feature
of this article is that the posterior distribution of threat is
converted to a single scalar, referred to as a threat degree.
This scalar is computed as a weighted sum of threat level
probabilities, where the weights are proportional to the threat
level. In the example provided, the weight of the highest level
of threat is 100 times higher than theweight of the lowest level
of threat.

Threat model for underwater operations have been con-
sidered in [19], [20], and [21]. Reference [19] proposed a
threat model, represented by a directed acyclic graph and
solved using a Bayesian network. The threat in this model
is a combination of platform threat, platform (technical)
condition and underwater environment. Platform threat is
influenced by the existence of underwater mines, an adver-
sary submarine, and detection of enemy active sonar pings.
Platform condition is a combination of the engine status,
the platform load, existence and severity of a leakage and
the remaining energy level. Underwater environment depends
on ocean currents, ocean density, presence of underwater
obstacles (terrain). Reference [20] follows the similar ideas,
i.e. the threat depends on the platform operating status,
environmental conditions and the adversary confrontation
intent. Environmental conditions are a function of water
temperature, salinity and currents. The platform operating
status is modelled in a fairly complex manner. It depends on
the status of the propulsion system, communication system,
sensing systems (sonar, image sensor, GPS, INS, MRU,
etc), platform structural health (i.e. presence of leakage)
and the energy system. Finally, confrontation intent is
estimated based on the heading and velocity of the adversary.
Another fairly similar threat model for an underwater
battlefield is formulated in [21]. Threat corresponds to the
relative combat capability (potency) of our forces versus the
capability (potency) of the enemy. The combat capability is a
combination of the number of platforms, firepower (weapon
resources), the distance and relative motion between the
forces, and finally the environmental conditions (weather, sea
state). This model is also solved using a Bayesian network.

Threat models in the context of maritime security are
considered in [22] and [23]. In the model of [22], the threat
of an attack on maritime infrastructure is a combination
of events such as the vessel anomalous behaviour, the
organisation (or country) the vessel belongs to, and the
observed region intrusion. Reference [23] considers two
models. The first model is to determine if a ship is a threat.
This threat model consists of variables, such as, the ship type,
its speed, known or unknown identification, and whether it
is in the range of defending weapons. The second model
considers the threat that a ship can damage a friendly vessel.
Its variables are the potential of a collision, the distance
between them, and the weapons range. Reference [24] also
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considers a threat model in maritime environment, where
threat is influenced by target type, speed, capability behaviour
and position.

Fairly detailed threat models for tactical engagements,
based on ‘‘opportunity-capability-intent’’ paradigm, were
considered in [15], [25], and [26]. Capability typically
involves the size and weapon lethality of the opponent’s
force, combined with manoeuvrability and imminence. Intent
here stands for hostile intent, and is a function of allegiance,
geopolitical situation, and the patterns of (past) behaviours.
Finally, opportunity is a function of the current environmental
conditions (e.g. weather), social acceptance of a conflict,
a degree of surprise, and similar conditions. Following
the described principles, a threat model for underwater
communication cables was analysed in [27].

III. PROBLEM DESCRIPTION
The objective is to develop a machine reasoning system for
ongoing threat assessment onboard an underwater vehicle.
The assumption is that the ownship platform status and
underwater environment are favorable. Hence, the focus is
on threats posed by the nearby contacts, while the vessel is
navigating busy waters with warships, merchant ships and
fishing vessels.

A typical scenario-log, as a motivation for this work,
is presented in Table 1. Seven contacts are reported in
this log during the observation interval. The left column in
the table represents the discrete-time when the information,
specified in the right column, is received. The actual time
intervals between these discrete-time events are arbitrary. The
numerical values for a range (distance) to the targets in the
scenario-log are chosen without any operational meaning.
The explanation of abbreviations used in the log are:

• AIS stands for automatic identification system and
represents a maritime communication device onboard a
vessel that can send and receive identifying information
(including position) about itself. The lack of AIS signal
indicates an unusual event, because all merchant ships
and larger fishing vessels are required to broadcast AIS
information.

• UM stands for an observed unusual manoeuvre by a
contact.

• SL stands for a shipping lane. Shipping lanes are routes
that ships regularly take across the sea.

The origin of received information can be a human
operator or a physical sensor (e.g. sonar, optical sensor, laser
rangefinder). The received information is uncertain, which is
sometimes emphasised in the scenario-log by the use ofwords
such as possible, approximately, likely and similar. Of the
seven contacts reported in the log in Table 1, only one, contact
C-2 (detected at discrete-time k = 2) is a real threat. This
becomes evident, as the time progresses.

In the next section, we will develop a graphical model of
threat as a valuation network. The output of this network
should be the level of threat, expressed as a probability, that is,
a decimal number between 0 (no threat) and 1 (the maximum

TABLE 1. A typical log-scenario while navigating busy waters.

threat). The scenario-log in Table 1 will subsequently be
applied to this valuation network, reflecting the level of threat
as a function of time.

IV. VALUATION NETWORK FOR ONGOING THREAT
ASSESSMENT
A. VALUATION NETWORKS: A BRIEF REVIEW
This review is based on [15] and [28]. Inference problems
are modelled by a network of interrelated entities, called
variables. Let V be the set of all variables in the network.
Each variable can take values in a discrete-state space, called
the frame. The frame of variable X ∈ V is denoted 2X . The
(uncertain) relationships between variables are represented
by the functions called valuations. Let the set of all valuations
in a network be denoted by 8. A valuation ϕ ∈ 8 specifies
the relationship between a subset of variables, referred to as
its domain d(ϕ) ⊆ V. Operation d : 8 → 2V, where 2V is
the power set of V, is referred to as the labeling operation.

The relationship among the variables in the set D = d(ϕ)
is specified by assigning beliefs (expressed by numerical
values) to the elements of the frame ofD. This frame, denoted
2D, represents a set of possible configurations ofD. Suppose
the frame of variable X ∈ D is 2X . Then, the frame of D
is given by 2D

△
= ×{2X : X ∈ D}, where × denotes the

Cartesian product.
Example: Consider a valuation ϕ expressing the relation-

ship between two variables, i.e. d(ϕ) = D = {X1,X2}.
The frames of X1 and X2 are 2X1 = {x11, x12} and
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2X2 = {x21, x22, x23}, respectively. Then 2D = {(x11, x21),
(x11, x22), (x11, x23), (x12, x21), (x12, x22), (x12, x23)} consists
of six configurations. Suppose the relationship can be
specified by an uncertain implication rule, such as: X1 =

x11 ⇒ X2 = x22, with confidence 0.8. One way to express
this relationship, using probability theory, is by valuation ϕ
which assigns probability mass of 0.8 to the configuration
(x11, x22), while the probability mass of 1 − 0.8 = 0.2 is
spread equally over the remaining five configurations. ■
There are two basic operations with valuations.
• Combination ⊗. If ϕ1, ϕ2 ∈ 8 are two valuations,
then the combined valuation ϕ1 ⊗ ϕ2 represents the
aggregated knowledge from ϕ1 and ϕ2.

• Marginalization ↓. If ϕ ∈ 8 and C ⊆ d(ϕ), then the
marginalized valuation ϕ↓C represents the knowledge
obtained by focusing ϕ from d(ϕ) to C.

Given a finite set of valuations 8 = {ϕ1, . . . , ϕr },
inference refers to marginalization (focusing) of all available
knowledge, expressed by the joint valuation ⊗8 =

ϕ1⊗· · ·⊗ϕr , to a subset of variablesDo
⊆ V, called decision

variables. The straightforward approach to inference would
be to compute the joint valuation first and then to marginalize
it to Do. Unfortunately, this would be cumbersome in
practice even for a small scale valuation network because
the domain size increases with each combination, whereas
the complexity grows exponentially with the domain size.
By imposing certain axioms for the operations of labeling,
combination, andmarginalization [9], [14], [29], it is possible
to compute the marginal (⊗8)↓D

o
on local domains, without

the need to explicitly compute the joint valuation. The list of
axioms is given in [10]. The concept of local computations
is carried out by the fusion algorithm, which eliminates
sequentially all variables X ∈ V \ Do which are of no
interest to the inference problem [14], [15], [29]. The fusion
algorithm is applied over a structure called the binary joint
tree (BJT), where all combinations are carried on pairs of
valuations, that is on a binary basis (two-by-two). Finally,
marginals are computed by means of a message-passing
scheme among the nodes of the BJT. Full details of software
implementation of a generic valuation network can be found
in [14], [15], and [29].

Uncertainty in valuations 8 can be expressed by different
formalisms. The most obvious choice would be to adopt the
formalism of probability theory and express the valuations as
the probability mass functions (PMFs). Due to the scarcity
of training data and the reliance on (subjective) expert
knowledge, however, the precise probability values may be
unavailable or unreliable. In this case the alternatives could be
the formalisms of Dempster-Shafer theory (i.e. the evidential
VN) [15], [27] and the formalism of imprecise probability
theory [30] (the credal VN [12]). In this paper we omit the
former (the evidential VN), because its output is less specific
(and hence less useful) than the output of the corresponding
credal VN [12]. Thus we focus on two frameworks for
uncertainty modeling: (1) the (traditional) probabilistic
framework [10], where valuations are represented by PMFs

and (2) the (imprecise) set-probabilistic or credal framework
[12], [30], where valuations are represented by the sets
of PMFs, specified as coherent probability intervals on
singletons [30], [31].
The relationship between valuation networks and other

approaches to reasoning under uncertainty are discussed in
Appendix of [12]. Valuation networks are the most general
approach. For example, the dependence of variables in a
Bayesian network can be equivalently represented by a
valuation network, but vice versa does not hold.

B. A VALUATION BASED GRAPHICAL MODEL OF THREAT
We focus on a threat model which considers only the (time-
varying) number of maritime contacts and the geopolitical
climate. The model, expressed by the VN in Figs. 1 and 2,
reflects the context and the information contained in the
log-scenario of Table 1. Ownship status and underwater
environment are assumed favorable and hence will not be
included in the model, although this could be added easily,
if required.

The valuation network for threat from the nearby contacts
is shown in Fig. 1. This network is a hypergraph, in which
circles represent variables, whereas diamonds are valuations.
Variable Ci, represents the threat from contact i =

1, 2, . . . ,mk , wheremk ≥ 0 is the current number of detected
contacts. In the absence of any contacts (i.e. if mk = 0),
the threat level is determined by prior information, expressed
by the variable G. This prior takes into account the factors
such as the geographical region and the political climate. The
overall threat from all contacts and the prior is represented
by variable T (threat). This is our decision variable, i.e.
Do

= {T}. Valuation ϕ0 is an expression of how T is related to
Ci, i = 1, . . . ,mk and G. Let variables Ci and variable G be
binary, with the (identical) frame2 = {0, 1}. By convention,
Ci = 1 denotes the truth, that is, the event that contact
Ci, is a threat, while Ci = 0 is the opposite. Similarly,
G= 0 indicates no threat, based on the current geopolitical
situation. Valuation ϕi, i = 1, . . . ,mk , is a quantified belief
about variable Ci being true. Depending on the adopted
uncertainty framework, this belief will be expressed by a
PMF in the probabilistic framework, or a credal set in the
set probabilistic framework. In order to ensure variable T
is also binary, for ϕ0 we adopt a logical disjuction,1 i.e.
OR operation:

ϕ0 : T = G ∨ C1 ∨ C2 ∨ · · · ∨ Cmk . (1)

We can assign a level of confidence α0, or a confidence
interval [α0, α0] to the relationship expressed by (1). Note
that the potential existence of non-detected contacts can be
included in G.

Next we expand the valuation ϕi, expressing the belief
about variable Ci, for i = 1, . . . ,mk . Fig. 2 shows the

1The alternative is an additive operation for ϕ0, as in [15]. This, however,
would be cumbersome, because the size of the frame of variable T would be
mk + 2, and hence time-varying.
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FIGURE 1. Model of threat from all nearby contacts.

FIGURE 2. Model of threat from a single contact Ci , where i = 1, . . . , m.

corresponding valuation network, while Table 2 presents a
description of variables. The critical distances for variable Ri
(range) are adopted as follows. The critical distance (i) for a
distinction between Ri = 0 and Ri = 1 is 15 km; (ii) for
a distinction between Ri = 1 and Ri = 2 is 5 km. The
transitions are fuzzified.

Let us now specify the (uncertain) relationships expressed
by valuations in the model of Fig. 2. The confidence in the
specification of valuations will be expressed by: (1) precise
probabilities, which will represent the ‘‘ground truth’’, and
(2) interval probabilities (confidence intervals), expressing
epistemic uncertainty. In the former case, inference will be
performed using a probabilistic VN [10], while in the latter
case, using a credal VN [12].
Valuation ϕi1 states that contact Ci poses a treat only if it is

both hostile (i.e. it has a hostile intent) and it has a potential

TABLE 2. Variables of the threat model for contact Ci , i = 1, . . . , m.

to cause harm. Thus:

ϕi1 : Ci = Pi ∧ Hi, with confidence αi1 ∈ [αi1, αi1]. (2)

We assume valuation ϕ2i is expressed by a conditional
probability table (CPT), consisting of

ϕi2 : Pr{Pi = i|Wi = j,Ri = ℓ} = pijℓ ∈ [p
ijℓ
, pijℓ] (3)

for i ∈ {0, 1}, j ∈ {0, 1} and ℓ ∈ {0, 1, 2}. This table models
the belief that contact i has a potential to cause harm (Pi),
for different combinations of values of Wi and Ri. Clearly,
a smaller range and a warship type contact, increase this
potential.

Valuation ϕi3 specifies how variable Hi depends on Wi
and Bi. This relationship is represented by logical AND
operation:

ϕi3 : Hi=Wi ∧ Bi, with confidence αi3 ∈ [αi3, αi3]. (4)

Clearly, unusual behaviour indicates a hostile contact. The
rationale for including variable Wi in (4) is that, if the contact
is not of type ‘‘warship’’, then it is neutral and hence not
hostile.

The unusual (disorderly) behaviour of a contact Bi is
indicated by SLi, AISi or UMi. Hence, we express ϕi4 using
the logical disjunction:

ϕi4 : Bi = SLi ∨ AISi ∨ UMi, with conf. αi4 ∈ [αi4, αi4].

(5)

The remaining valuations in the VN of Fig. 1 are input
valuations. For example, allegiance information may be
received from other sources (e.g. by an optical sensor),
as illustrated by the statement received at k = 17 in the log of
Table 1. This input is represented by ϕi5. Similarly ϕi6, ϕi7,
ϕi8, ϕi9 and ϕi10 are input valuations for variables Ri, Wi, SLi,
AISi and UMi, respectively. Initially, before any of the input
valuations are known, we can set them to equal the neutral
element of the corresponding combination rule (in this way
they express ignorance).

C. REPRESENTATION OF ‘‘OR’’, ‘‘AND’’ AND CPT
VALUATIONS
This section explains a computer representation of valuations
expressed by OR, AND and CPT.

Valuation OR appears in (1) and (5). We will explain its
representation using a simple example involving three binary
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variables: X, Y and Z. The case with more variables is a
straightforward extension of this example. Thus, consider a
valuation expressed by:

φ : Z = X ∨ Y with confidence α ∈ [α, α]. (6)

The domain of this valuation is d(φ) = {X,Y,Z} = D,
while its frame is the Cartesian product 2D = 2X ×

2Y × 2Z . All eight configurations of 2D are listed in
Table 3: the configuration number is in column 1, while
the configuration itself is a triple specified by columns 2,
3 and 4. Column five is the probability mass assigned to
each configuration, assuming that confidence α is a precisely
known value. In order to explain this column, note that
there are four configurations (number 1, 4, 6 and 8) with
the property Z = X∨Y satisfied. The probability mass α is
equally (uniformly) distributed among them, and thus they
are allocated probability mass α/4. The remaining (1− α) is
equally distributed across the other four configurations (i.e.
2, 3, 5 and 7). Column six in Table 3 specifies the probability
mass intervals assigned to each configuration of 2D. The
probability intervals satisfy the conditions of coherence [30,
Sec.2.7], [12, App. B].

TABLE 3. Computer representation of OR valuation φ of (6).

Valuation AND appears in (2) and (4). In order to explain
its representation, consider a valuation expressed by:

ψ : Z = X ∧ Y with confidence β ∈ [β, β]. (7)

Table 4 lists the configurations and probability masses
(precise and interval valued) according to (7). There are
four configurations (number 1, 3, 5 and 8) which satisfy the
logical AND operation Z = X ∧ Y. The probability mass β is
equally distributed among them, and thus they are allocated
probability mass β/4. The remaining (1 − β) is equally
distributed across the other four configurations (i.e. 2, 4, 6 and
7). The probability mass intervals are given in column six of
Table 4.
Valuation ϕi2 of (4) is specified by a CPT, given in Table 5.

The probability masses assigned to each configuration in
column five express the domain knowledge that a smaller
range (i..e a large value of R) and the warship type (i.e. W =

1) result in a higher probability that P = 1 (i.e. in a higher
potential). For example, consider configuration 1: W = 0
(not a warship), R = 0 (large range), P = 0 (no potential) is
assigned probability mass 1, divided by 6 for normalisation.
Configuration 12 encodes the opposite situation (W = 1, R
= 2 and P = 1), and is also assigned the highest probability

TABLE 4. Computer representation of AND valuation, see(7).

TABLE 5. Computer representation of valuation ϕi2, see (3).

mass. In practice probability masses in column five may be
difficult to know precisely, and thus in column six we specify
them as coherent intervals [p

ijℓ
, pijℓ].

V. NUMERICAL RESULTS
A. PROBABILISTIC VN
This section shows the results obtained by running the
log-scenario in Table 1 through the probabilistic VN [10]
(where valuations are represented by PMFs). The combina-
tion operation in this case is the point-wise multiplication of
PMFs, see [12]. The following confidence parameters were
used: α0 = 1.0, αi1 = 1.0, α3i = 0.95, αi4 = 0.95, for all
contacts i = 1, 2, . . . ,mk . The resulting threat level (i.e. the
probability Pr{T = 1}) as a function of time is presented in
Fig. 3 with the blue solid line. Initially, at time index k = 0,
there are no contacts and hence variable T is determined only
by variable G.We have adopted input valuation ϕG (see Fig. 1)
as a PMF, expressed as [Pr{G = 0}, Pr{G = 1}] =

[0.95, 0.05]. Hence the threat level at k = 0 equals 0.05.
At k = 1, a new contact C-1 is declared. At this point

of time, no additional information on this contact is known,
hence we set input valuations ϕi5, ϕi6, ϕi7, ϕi8, ϕi9 and ϕi10
to the neutral element of the probabilistic VN: the uniform
PMF of the respective variable. This results in the probability
of contact C-1 threat, i.e. Pr{C1 = 1} = 0.3, and the (overall)
threat level of Pr{T = 1} = 0.34 (see Fig. 3).
Based on the information received at k = 2, we set

ϕ1,7 to a PMF [Pr{W = 0}, Pr{W = 1}] =

[0.7, 0.3], expressing thus the uncertainty related to the
statement ‘‘possible merchant ship’’. Valuation ϕ1,8 is based
on a categorical statement about the SL agreement, and hence

86836 VOLUME 12, 2024



B. Ristic et al.: Valuation Network for Ongoing Assessment of Threat to an Underwater Vehicle

FIGURE 3. Threat level as a function of time, obtained using the Probabilistic Valuation Network. Input is the log-scenario of Table 1;
output (blue solid line) is the probability Pr {T = 1}. Other lines (C-1, . . . , C-7) indicate the probabilities that individual contacts are a
threat.

represented by the PMF [Pr{SL = 0}, Pr{SL = 1}] =

[1, 0]. As a consequence, the contact threat Pr{C1 = 1}
drops to 0.17 and the (overall) threat levels reduces to 0.21.
At k = 3 the threat level drops even further, to Pr{T = 1} =

0.06, because now we have a categorical statement that C-1
is not a warship, that is, the input valuation ϕ1,7 is a PMF
[Pr{W = 0}, Pr{W = 1}] = [1.0, 0.0].
Contact C-2 is declared at k = 4. At this point of time,

no additional information about C-2 is available, and by
default Pr{C2 = 1} = 0.3, which increases the (overall)
threat level to 0.35. This contact is a genuine threat and
this is soon reflected by the output of the VN. For example,
at k = 6, when we receive the information that C-2 is a
possible warship with noAIS, the threat level for the first time
grows above 0.5. Because of C-2’s long range, the threat level
oscillates about 0.5, until k = 17, when it is reported at the
range of 15 km (which is the critical distance when variable
R changes from 0 to 1) and confirmed hostile. At that point
of time, the threat level grows to 0.68. As C-2 is approaching
the ownship, the threat level grows and at k = 21 it is above
0.9. It stays close to 1.0 until k = 29, when the reported
range exceeds the critical distance of 15 km.AsC-2 ismoving
away, its threat level drops and at k = 32 it reduces to
Pr{C2 = 1} = 0.36, while the overall threat at this tame
equals Pr{T = 1} = 0.47.

Contacts other than C-2, do not pose a threat during
the observation period of the log-scenario. As it can be
seen from Fig. 3, their contribution to the overall threat
level is significant only initially, when they are detected

and reported. As soon as the new information, indicating
their harmlessness, becomes available, their respective threat
levels drop and consequently their contributions to the overall
threat level become negligible. Indeed, note that the blue line
(the overall threat T) in Fig. 3 is mainly correlated with the
yellow line (the threat level of contact C-2), especially after
k = 17.

B. CREDAL VN
Credal valuation network was developed to carry out
reasoning with valuations specified as credal sets, defined
by coherent probability intervals on singletons [12]. The
following confidence intervals were used: α0 ∈ [1.0 −

δ1, 1.0], αi1 ∈ [1 − δ1, 1.0], α3i ∈ [0.95 − δ1, 0.95 + δ1],
αi4 ∈ [0.95 − δ1, 0.95 + δ1], for all contacts i = 1, 2, . . . , 7,
with δ1 = 0.005. Furthermore, the probabilities assigned
to the pieces of received information in Table 1, are also
expressed as intervals. For example, ‘‘possible’’, ‘‘likely’’ and
‘‘confirmed’’ are expressed with probability intervals [0.7 −

δ2, 0.7+δ2], [0.8−δ2, 0.8+δ2], and [1−δ2, 1], respectively,
with δ2 = 0.001. Finally, Pr{G = 1} ∈ [0.05−δ2, 0.05+δ2].
The theory and a practical implementation of the Credal

VN are presented in [12]. The combination operation is
the minimum (for lower probability) and the maximum (for
the upper probability) of point-wise multiplication over all
possible PMFs defined by the probability intervals. One
important feature of the developed Credal VN for treat
assessment deals with the implementation of the valuation
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FIGURE 4. Threat level as a function of time, obtained using the Credal Valuation Network. Input is the log-scenario of Table 1; output is
the probability interval for Pr {T = 1}. The red line is the same as Pr {T = 1} in Fig. 3.

ϕ0 in Fig. 1. In order to speed up the computation and
improve the accuracy of optimisation (i.e. minimisation and
maximisation), this valuation is implemented by a pairwise
OR operation over the sequence of the current number (mk )
of contacts.

Fig. 4 shows the output of the developed Credal VN: the
orange and the green lines represent the resulting upper and
lower probabilities, respectively. The blue line is shown only
for comparison - it indicates the output of the Probabilistic
VN (i.e. this is a copy of the blue line in Fig. 3). Credal
Valuation Networks are used when the probabilities, assigned
to prior knowledge and/or received information, are available
only as the confidence intervals, rather than the precise
values. In this sense, we can think of the output of the
Probabilistic VN as the ‘‘ground truth’’, obtained in the
absence of epistemic uncertainty (i.e. when all probabilistic
values are known exactly). Fig. 4 shows that the output
probabilistic interval, obtained in the presence of epistemic
uncertainty using the Credal VN, includes at all time steps
k = 0, 1, 2, · · · the ‘‘ground truth’’ value of Pr{T = 1}.
The Creadal VN is thus confirmed as a generalisation of
the Probabilistic VN, capable of handling accurately the
epistemic uncertainty involved in problem specification.

VI. CONCLUSION
The paper developed a valuation network for real-time threat
assessment onboard an underwater vehicle. The focus was on
the threat level posed by nearby contacts, while the ownship
status and underwater environment were assumed favorable.

Some noteworthy characteristics of the developed VN are:
its structure and the level of complexity are motivated by the
typical log-scenario in Table 1; it combines the threat levels
of individual contacts to a single score; the scale of the VN
is dynamic, as the number of nearby contacts varies with
time. Two types of valuation networks were implemented
and compared: (i) a Probabilistic VN, which assumes that all
probabilities, expressing the uncertainty in prior knowledge
and received information, are known as exact values; (ii) a
Credal VN, which is able to perform reasoning using
probability (confidence) intervals, rather than the precise
values. The performance of the two implementations of
the proposed VN have been demonstrated using a typical
scenario log of an underwater vehicle navigating busy waters.
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