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ABSTRACT Creating floor plan layouts for houses, offices, hotels, or videogame levels is time-consuming.
In several applications, the process starts with a bubble diagram or graph derived from a client’s requirements,
which is then used as a basis for drawing a blueprint to continue the design process. That process requires a
tool to preserve consistency between design models and diminish the design time. Hence, we have developed
a Unity plugin to graphically represent a building layout using nodes and edges for rooms and doors that
also allow defining the size and aspect ratio of spaces. This abstract representation is then automatically
converted into a blueprint and optimized for explicit constraints (doors, size, and ratio) and implicit ones
(tightness, convexity) by applying stochastic hill-climbing or steepest ascent hill-climbing algorithms. Then,
the user can edit that blueprint further. As a final result, the tool generates a navigable 3D representation of
the floor plan for the user to explore and go back to edit it if necessary. Results show that both algorithms
are computing efficient enough to apply them interactively in the tool while providing functional building
layouts. This work can assist established designers or enable building layout tools to be used by non-experts,
such as potential homebuyers wishing to communicate a desired layout to an architect or hobbyist game
designers working on their first videogame.

INDEX TERMS Mixed-initiative procedural context generation, computer-aided design, videogame-level
editor.

I. INTRODUCTION

Creating floor plan layouts have several applications for the
architecture and Videogame industry for the designing and
creation of houses, offices, hotels, and videogame levels
instances [1].

The design and implementation of layouts are labor-
intensive decision-making processes, and external variables
must be considered, such as climate, neighborhood, and
material [2]. Each phase involves critical decision-making,
where seemingly trivial choices can significantly affect
the outcome [3]. From the arrangement of spaces in a
built structure to the configuration of levels in a virtual
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environment, creativity, and strategic vision converge with
the need to find pragmatic and functional solutions.

In the design process, the influence of external variables
that introduce additional complexity levels must be consid-
ered [4]. Aspects such as climate emerge as fundamental
factors that determine decisions from the selection of materi-
als to spatial distribution. The surrounding environment and
the particularities of the terrain are also crucial elements
that give shape and direction to the design. In this context,
the choice of material constitutes a critical dimension
that influences each process stage. In selecting structural
components for physical constructions [5] and choosing
visual and mechanical elements for video game levels [6],
materiality is revealed as a factor that transcends the mere
aesthetic to influence functionality, durability, and user
experience substantially.
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FIGURE 1. Abstract process of building floor plan design. The image is schematic and referential.

On the other hand, video game-level design tasks do
not require external participants to accomplish their main
task [7]. Similarly, single-player casual games may need
hundreds or thousands of intricately designed levels with
escalating difficulties corresponding to player skill advance-
ments [8]. For example, the automatic floor plan creation
usually starts with a bubble diagram or data and graph derived
from clients’ or owners’ requirements [1], [9] to draw a
blueprint and continue the design process. In the architectural
design process, the “floor-plan design” stage is between
the “‘schematic design” and the “design development”
phases [10]. Generative layout tools can enhance established
digital design phases [9]. Automated approaches allow
testing ideas and iteratively generating design options that
would be challenging to achieve with manual workflows.
In that context, Figure la depicts the process of designing
small pieces for a building layout, Figure 1b shows how to
organize building layout pieces for a building design, and
Figure 1c presents a generated building design option.

Regarding videogame-level design, handmade and pro-
cedural methods are two distinct approaches for the level
design, each offering unique advantages in creating engaging
and diverse game environments. Handmade level design
involves the manual, artistic creation of game levels by skilled
designers [11].

On the other hand, the procedural-level design relies on
algorithms and code to generate game levels automatically,
offering the advantage of scalability and replayability, as lev-
els can be created on the fly, adapting to player preferences
and providing a different experience each time [12]. In recent
research on procedural-content generation, genetic algo-
rithms have been applied to evolve cellular automata rules
for creating playable mazes in maze-running games [13].
In the same context, reinforcement learning can be applied
to train level-designing agents as an approach to procedural
content generation in games [14]. Finally, a mixed-initiative
procedural content generator plugin for the Unity3D game
engine, the Biome Generation Tool (BGT) [15], uses an
Evolutionary Algorithm (EA) to succeed in assisting the
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development of biomes, generating products of acceptable
quality while reducing the designer’s workload.

In summary, creating layouts is a process that unifies
technical skills, artistic intuition, and the ability to adapt to
external variables. Although demanding and prolonged, this
process allows the generation of virtual spaces that configure
different digital products. Research has shown that different
approaches, such as fully generated content, mixed initia-
tives, and automatization, contribute positively to this main
area.

A. PROBLEM STATEMENT, GOAL AND CONTRIBUTIONS
Given the current usefulness and experiences of using
procedural content generation in building layout generation
and existing non-exhaustive optimization algorithms, the
main goal of this article is to answer the following research
questions.

RQ1 [Applying non-exhaustive algorithms for building
layout generation] Can we apply non-exhaustive
algorithms for building layout generation? Our exper-
iments look to test and validate the effectiveness of
applying non-exhaustive algorithms for building layout
generation.

RQ2 [Efficient-enough of non-exhaustive algorithms] Can
non-exhaustive algorithms for building layout gen-
eration be efficient? Assuming the effectiveness of
applying non-exhaustive algorithms, we want to verify
their efficiency in performing those tasks.

There are several tools for bridging the gap between
professionals from various fields and their clients. We can
also find tools of this kind in other areas [16] such as 3D
modeling [17] for the digitization and preservation of spaces,
or animation for interactive software [18] in other fields.
However, an automated tool for integrating architectural
experience and knowledge of different disciplines, preserving
the consistency between design models during the design
process, is highly needed. Two main approaches have been
used: generative machine learning techniques [19], [20], and
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TABLE 1. Non-exhaustive list and description of optimization algorithms considered.

Algorithm

Description

Hill-climbing

An algorithm that starts with an initial solution and then
iteratively makes minor changes based on a neighborhood
function to evaluate and improve the current solution quality

Simulated annealing

An algorithm that attempts to avoid local optima in a
problem by, in each state, allowing downhill moves

with a small probability

Tabu search

An algorithm that attempts to avoid local optima
in a problem by, in each state, allowing downhill moves

with a small probability

Metropolis Algorithm

An iterative optimization algorithm that stochastically
explores the solution space by accepting or rejecting
new solutions based on their fitness and a temperature

Evolutionary Algorithm

a combination of domain knowledge and experience with
optimization methods [21].

The main contribution of this article is an optimization
algorithm, using a custom fitness function, integrated into
a tool as a plugin of Unity 3D game engine, a videogame
development tool, using traditional architectural design
items and artificial intelligence assistance. We also present
experiments showcasing its performance.

Our solution is part of the tool code named Level Building
Sidekick that applies optimization algorithms over a graph
of rooms, in which each node has size constraints without a
contour to define the building shape. The objective of our tool
is a configuration that respects both the size constraints and
the adjacency of the rooms represented by the graph edges.

This article is structured as follows: Section II details
the main concepts and tools regarding the architecture
and videogame-level design. Section III describes our tool
proposal’s main functions and modules. Section I'V details the
primary relevant results of applying our solution. Section VI
gives this research’s main conclusions and future work.

Il. BACKGROUND

Architectural floor plans (blueprints, spatial layouts, and
interior spatial arrangements) refer to the bi-dimensional
spatial arrangement to choose internal building plans [22].
Typically, designers organize a space (a room, a building,
a whole city) by capturing the key spatial characteristics in
an initial sketch to produce spatial arrangements, floor plans,
and technical drawings.

A. MIXED-INITIATIVE

Designers and computer scientists are collaborating to find
fresh approaches to automating the generation of spatial
solutions. The two main reasons for that collaboration
are [22]: firstly, the growth of computing power, accessibility
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An optimization algorithm inspired by the process
of natural selection, where a population of potential
solutions evolves over successive generations through
crossover, mutation, and selection

of training data sets, and availability of machine learning
research permit increasing their applications and reliabil-
ity [23], and secondly, the emerging application by designers
of machine learning research results in creatively designing
structures, cities, and floor plans, among others.

Procedural content generation (PCG) is the programmatic
creation of game content utilizing a pseudo-random or
random procedure that produces an unpredictably wide
range of potential gameplay locations. Textures, objects,
and storylines have been created using procedural content
generation (PCG) algorithms [24].

Mixed-initiative interaction is when a human user and a
machine take the initiative to help solve a problem [25].
In mixed-initiative PCG systems, human users and computing
systems “‘take the initiative’’; human designers and software
can co-create content [26]. Tools can range a wide spectrum,
from almost automatic with very sparse human input to
mostly human-authored content with minor tweaks from the
Al Several of these tools have been built for videogame
development [15], [27], [28], [29].

Different optimization algorithms exist in Al to find
the best solution for a given problem, like hill-climbing,
simulated annealing [30], and tabu search. Table 1 describes
those algorithms.

Even though simulated annealing and tabu search can
usually find better solutions in search spaces with local
optima, hill-climbing usually converges faster [31], [32].
We will apply hill-climbing in this interactive tool.

B. UNITY GAME ENGINE

Video game engines play a fundamental role in the devel-
opment of interactive software, and among them, Unity has
emerged as a leading choice in the industry [33]. Unity
is a multiplatform engine, enabling developers to create
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FIGURE 2. Workflow: a) The user places nodes in a graph, representing rooms, annotated with the desired width and height. Then, connections to
adjacent rooms are made. b) The system uses a deterministic heuristic function to construct an initial layout from the user information. c) The system
optimizes this layout to maximize the fitness function. d) The layout is exported to a navigable 3D representation.

interactive products for computers, consoles, mobile devices,
and more. This approach significantly reduces the time and
effort required compared to developing specifically for each
technology [34]. Furthermore, it allows solutions developed
on this engine to be seamlessly transferred across various
platforms. The Unity game engine is versatile and robust,
attracting teams from diverse areas such as animation [35]
and simulation [36], despite their differing primary objectives
from game development. Unity is one of the most prevalent
engines in the video game industry [37]. Unity’s philosophy
revolves around modularity [33], facilitating external devel-
opers to seamlessly integrate new tools into the engine [38].
This approach also fosters a vibrant community around
the engine [27]. Developing solutions using technologies
like Unity Engine enables us to leverage its advantages
and capabilities, seamlessly translating them into our own
solutions.

Ill. SOLUTION PROPOSAL

As a module of the Level Building Sidekick! (LBS)
system, we propose a mixed-initiative interaction tool to
apply optimization algorithm solutions to produce spatial

! Available under a CC BY-NC-SA license at https://github.com/ISILab-

Utalca/LevelBuildingSidekick along with the implementation described in
this article.
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arrangements for floor plans automatically. The module is
written entirely in C# and integrated into the Unity plugin.
This tool is aimed at assisting videogame level designers.
We have also used it for generating museum gallery layouts in
the Maule Virtual Museum [39] and envision it could be used
for drafting house layouts by customers, to communicate their
ideas to architectural firms in a better way.

The workflow of our solution, shown in Figure 2, starts
representing interconnected nodes in graphs, where each
node abstractly represents the basic information of a room
within the overall design scheme. This information includes
the initial position of the room, width, height, and connections
with other rooms (arcs in the graph).

This initial representation of nodes and connections is
transformed using the basic information described previously
into a representation of zones or sectors based on a
grid or tile system. Each zone is differentiated from the
others with a unique color, corresponding to The different
rooms in this step. The sectors only have an initial
layout.

Below are the structural rooms after applying the Hill-
Climbing algorithm with its respective optimizers, seeking
to have the primary conditions described in the graph of
nodes, such as the correct distribution, that all the rooms are
connected by at least one door panel, and that these respect
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FIGURE 3. In red is the progression of the steepest ascent approach, and in blue is the progression of each run of the
stochastic approach. The y-axis is normalized relative to the maximum and minimum fitness results.

the shapes initially described based on their height and
width.

Finally, 3D generation methods are applied that use the
information from the plot map to generate a 3D inhabitant
usable in an experience of this type.

IV. EXPERIMENTS AND RESULTS

Considering Figure 2, the nodes’ initial position, width, and
height in the graph are extracted to generate a new 2D
representation based on a tile map. Tiles are created according
to the width and height values of each node. The process
begins with the node with the most connections to the other
rooms and continues with its neighbors, generating a queue
ordered by the number of connections for each node. The
process selects the first node from this queue, transforms
it into a group of tiles, and calculates the corresponding
neighbors. This process aims to prioritize the placement of
nodes with more connections, assuming those nodes will be
more relevant in the subsequent steps. When there are no
more neighbor nodes to transform, the process is considered
complete unless the representation contains two or more
disconnected graphs. In that case, the system searches for the
node with the most connections among all the nodes that have
not been transformed yet and continues with the previously
described process.

Hill-climbing requires an initial base state corresponding
to the tile map. Additionally, it utilizes a fitness function
to determine the map’s value, a neighborhood function
responsible for generating map variations, and a selection
function that determines how a new solution is selected.

The optimization process is iterative. The initial tile
representation is evaluated using different features, each
with a specific orientation and influence weight. These
weights determine how much each feature affects the final
value or evaluation of the representation. After this stage,
a neighborhood of maps or ‘“children” of the original
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map that exhibit variations is generated. Two modifications
generate these variations: wall movements and complete
room shifts. The first process involves selecting a wall (row or
column of tiles) among all possible walls in the representation
and expanding or contracting it by one unit of distance. The
second process involves shifting a room’s tiles by one unit
of distance. The objective of these processes is to generate
versions that are similar to the original map without deviating
too far from it.

Once the neighborhood has been generated, all the maps
are evaluated similarly to the first element. Subsequently,
the elements are compared using different selection methods.
Steepest ascent hill-climbing selects the highest value neigh-
bor. In contrast, stochastic hill-climbing evaluates neighbors
in random order and selects the first one that is better than
the current one. After selection, the selected representation
is used for the next iteration and as a starting point for
generating new variations or a new neighborhood.

Fitness = 0.4A + 0.15X + 0.35® + 0.1A )

The fitness function is shown in equation 1. The weights
for the features were determined empirically. The features
are:

Adjacency (A): This function searches for the nearest tiles
among the rooms marked as connected in the graph.
It evaluates the tile distance between them, assigning a
high value when they are close and gradually decreasing
as they move apart. The distance is calculated by
summing the inverse of the distance between the rooms
and dividing it by the number of connections.

Area (X): This function compares how different the width
and height values of the current tile map are compared
to the initial values provided in the previous node graph
representation. If the current size is less than half or over
1.5 times the desired value, it assigns a fitness of 0.
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TABLE 2. Problem size, Minimum (Min), Maximum (Max), Average(f), and standard deviation (c) fitnesses f.

# Rooms | # Connectivity | Min Fitness | Max Fitness | f Fitness | o(f) Fitness
Layout 1 11 11 0.469 0.520 0.518 0.001
Layout 2 8 9 0.470 0.537 0.532 0.002
Layout 3 12 12 0.439 0.515 0.509 0.005
Layout 4 11 13 0.412 0.519 0.516 0.003
Layout 5 12 13 0.379 0.500 0.491 0.010
Layout 6 25 28 0.385 0.487 0.477 0.006
Layout 7 10 10 0.424 0.524 0.522 0.001
Layout 8 11 11 0.415 0.519 0.515 0.005
Layout 9 12 15 0.416 0.516 0.513 0.001
Layout 10 10 9 0.433 0.522 0.520 0.001

Empty space (®): This function compares the number of
tiles in a room with the corresponding rectangle
area, taking into account its furthest height and width
positions. It evaluates configurations that minimize the
number of intermediate empty spaces.

Room Cut (A): For each room, this function selects the first
tile, finds its neighbors, and continues summing the
number of unique tiles that can be found. When there
are no more neighbors, it stops and compares this count
with the total number of tiles in the room. If the number
of tiles per room equals that room’s total number, the
room is 100% connected without any divided spaces.
The fewer divided rooms in the layout, the lower the
assigned value.

Each of these features contributes to determining the
overall value of the tile map in the optimization process. For
the layout to be considered “legal” meaning all rooms are
connected as they should, and the room sizes are not too far
from the desired values, the fitness value must be at least 0.5.

We developed 10 test layouts of varying room counts and
sizes to run the experiments. Each layout was then created
in the tool in the form of a graph organized by hand using
as a guide the approximate position and distribution that
the designer desired for the schema. The graph layout is
then converted to a basic schema layout from where the
optimization process begins. The optimization process is
performed with hill-climbing to compare the results of the
steepest ascent vs. a stochastic approach. For the steepest
ascent approach, we executed 1 run per layout as it is
a deterministic process, while for the stochastic approach,
we made 10 runs for each layout.

A sample run can be seen in Figure 3. We can see that,
on average, the fitness obtained by the stochastic method is
around the same as the steepest ascent approach, but in most
runs, the maximum fitness reached was with the stochastic
hillclimbing. Moreover, the steepest ascent hill-climbing
takes over twice as long as the stochastic approach. Although
the stochastic approach is faster and can reach higher fitness
values, contrary to the steepest ascent, it is not stable in its
evolution. It has the chance of getting trapped in lower local
maxima. Different outputs of the stochastic hill-climbing for
a single initial layout can be seen in Figure 4.
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Table 2 shows the starting and final evaluations for each
test layout: the minimum fitness, which is the fitness before
the optimization process, and the maximum fitness reached
among all optimization runs considering both the steepest
ascent and stochastic approach, the average and standard
deviation fitnesses.

Figure 5 depicts execution examples of the steepest ascent
and stochastic approach progression regarding fitness and
required time. We can appreciate that the stochastic approach
executions reach high fitness results faster than the steepest
ascent. The last figure also shows that the steepest ascent does
not reach the top fitness of some stochastic execution.

V. DISCUSSION

Stochastic hill-climbing achieves similar fitness results,
standing out by reaching maximum values in most execu-
tions. From a practical standpoint, the stochastic approach
emerges as a more efficient option in terms of runtime,
capable of attaining high fitness values. However, it presents
a higher risk of getting trapped in lower local maxima.

The generalization of these results to other contexts
involving automatic spatial design generation will depend
on the specific characteristics of the domain and design
approach. These findings may influence future research in
spatial design generation, motivating the development of
more specialized tools that leverage the efficiency of the
stochastic approach.

Considering the obtained results, both research questions,
RQI and RQ2, we can explicitly answer that we can apply
non-exhaustive optimization algorithm solutions for building
layout generation without efficiency issues. In this context,
we have presented a building layout generation tool that aids
users in defining an abstract representation of a desired floor
plan, translates it to a 2D tile-based layout, optimizes it, and
finally exports a navigable 3D representation.

A similar tool has been proposed for generating residential
building layouts [21]. The authors reported a runtime for the
optimization process of 35 seconds for a layout comprised of
14 rooms and 16 connections. For comparison, our layout #6
has 25 rooms and 28 connections, and layout #9 has 12 rooms
and 15 connections. All stochastic runs in both layouts finish
in less than 30 seconds. In 15 seconds, most of them are
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FIGURE 4. Stochastic hill-climbing, starting from the same initial graph and layout, produces a different configuration in each run. Four different runs

are shown on the right side of this figure.
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FIGURE 5. Steepest ascent (red) and stochastic (blues) approaches execution examples. The y-axis is normalized relative to the maximum and minimum

fitness results.

within 25% of the max fitness in layout #6 and within 10%
in layout #9. Beware that this is not a direct comparison

on the same hardware, but it gives an idea of the overall
performance.

A. LIMITATIONS
Some limitations of the present work are as follows:

« The evaluation of only 10 test layouts in the development
process is a limited number that may not have encom-
passed all possible details in a map, leaving out cases
that could influence the results. This quantity may be
insufficient to gain a comprehensive perspective on the
effectiveness of the employed algorithms. Furthermore,
the restriction of generating maps in a tile format
constrains the flexibility of the results, hindering the rep-
resentation of more complex forms that could be relevant
in practical applications. It would be ideal to extend the
analysis to other techniques not considered in the study

87020

to enrich the understanding of the relative effectiveness
of different floor plan generation approaches.

« The nature of the results obtained at the laboratory level.
Implementing these results in real-world environments
and gathering direct qualitative feedback from end-
users, such as developers and designers, would be
highly beneficial. The absence of this direct interaction
may limit the applicability of the results to practical
contexts. Concerning internal validity, the measurement
of execution times and fitness, as well as the evaluation
of systems with diverse architectures, were relevant
considerations. However, it is necessary to examine
external factors that could influence future research to
understand the results’ generalization fully.

VI. CONCLUSION

We have presented a semi-automatic building layout genera-
tion tool that can be used for designing videogame levels and
other virtual spaces. It leverages simple hill climbing and a
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custom fitness function to reach high-quality solutions fast
enough to be suitable for interactive use.

A. FUTURE WORK
We are working on three main avenues of improvement: the
current neighbor creation process doesn’t allow the algorithm
to explore the search space fully; the fitness function doesn’t
take into account all of the features a user cares about; and the
optimization algorithm itself sometimes gets trapped in local
optima.

o When it comes to the algorithm, while the stochastic

approach is faster and can lead to better results, it is
unreliable by itself. Nevertheless, different techniques
cover these shortcomings, such as random restarts [40].
Considering the time and fitness constraints of the
problems we wish to solve, we could either rely on
the steepest ascent with more stable results and higher
execution times, search for stochastic approaches with
an aggregate that helps to ensure high-fitness results,
or consider another kind of algorithms altogether, such
as simulated annealing or tabu search, among others.

It is worth noting that the evaluation and neighbor search
process can be customized depending on the context of
the use of the buildings. The context of use can vary
greatly from architectural projects to the creation of
structures for interactive software. Still, we can be even
more specific, discerning between houses, museums,
or attraction spots such as parks and mazes. This opens
the possibility to study which options are better for each
use case to offer the final user preset configurations
suited for the specific context they will be working on.
Optimizing algorithms to avoid getting trapped in local
maxima is a challenge to improve performance. When
faced with multiple local optima, the task is to maximize
the ability of the algorithm to converge toward the global
maximum. Exploration strategies beyond local maxima
will be studied; for example, genetic algorithms are
presented as promising approaches to enhancing the
ability of algorithms to reach more optimal solutions in
complex contexts.
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