
Received 5 May 2024, accepted 17 June 2024, date of publication 19 June 2024, date of current version 27 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3416826

Fast Polar Decoding With Successive Cancellation
List Creeper Algorithm
ILYA TIMOKHIN , (Member, IEEE), AND FEDOR IVANOV , (Member, IEEE)
Department of Cyber-Physical Systems Information Security, National Research University Higher School of Economics, 101000 Moscow, Russia

Corresponding author: Ilya Timokhin (is.timokhin@hse.ru)

This work was supported by the Basic Research Program, National Research University Higher School of Economics (HSE), in 2024.

ABSTRACT Polar codes have emerged as a focal point in the field of error-correcting codes, owing to
their remarkable capacity-achieving characteristics and their relevance in various modern communication
systems. The basic successive cancellation (SC) approach is not optimal to use in terms of the trade-off
between performance and decoding complexity. SC-Creeper algorithm performs better with about the same
low complexity as the SC version of the algorithm. However, the SC-Creeper algorithm did not have
the ability to use the candidate list as a measure to improve performance and refine the search for the
true codeword. To compare with successive cancellation list (SCL) approach and the ability to use more
computing memory, the SCL-Creeper method was developed, using two additional lists. This method
can also be used as a development of Fano algorithms for polar codes (mainly, Fano decoding in polar
decoding does not use lists). This paper addresses the challenge of computational complexity in polar
code decoding by integrating a list structure with the SC-Creeper algorithm. Building on prior research
that introduced the concept of SC-Creeper, the study focuses on enhancing error correction performance
while mitigating computational burden. The first chapters describe the polar encoding process and basic
decoding technologies, then discuss the basic Creeper algorithm. In the following chapters, the authors
describe a modified version of the two-list Creeper approach (that is, the SCL-Creeper version of the
algorithm). Extensive simulations and numerical analysis presented in the paper underscore the tangible
advantages of this novel decoding strategy. Leveraging the basic list algorithm, renowned for its superior error
correction capabilities, the research explores the integration of Creeper to systematically prune unnecessary
decoding paths. The resulting SCL-Creeper hybrid approach aims to strike a balance between error correction
efficiency and computational complexity. Finally, the optimal selection of parameters for the SCL-Creeper
approach and future directions in the research of the list version of the fast Creeper algorithm are discussed.

INDEX TERMS Polar codes, decoding, creeper, reliability, fast decoding.

I. INTRODUCTION
Polar codes [1] have established themselves as a trans-
formative class of error-correcting codes, with theoretical
promises that approach the Shannon capacity for symmetric
binary discrete memoryless channels as the code length
increases. The practical implementation of polar codes for
short to moderate code lengths has been constrained by the
computational complexity associated with the conventional
successive cancellation (SC) decoder. In response to these
challenges, researchers have been motivated to explore
innovative decoding paradigms, such as the successive
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cancellation list (SCL) decoding approach [7], which retains a
list of potential candidate paths for further examination. This
SCL technique has yielded improvements in error correction
performance at the cost of some additional computational
overhead.

In addition to the SCL decoder, there is a similar approach
that uses a stack to store paths, the management of which
allows for more efficient use of memory and the use of fewer
candidates than in the case of SCL. This approach is called
SCS (successive cancellation stack [2]) and provides efficient
decoding with space improvements.

Building upon the success of SCL and SCS decoding
approaches, this paper introduces a novel advancement in
polar code decoding – successive cancellation list Creeper

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 86639

https://orcid.org/0000-0003-1893-906X
https://orcid.org/0000-0001-7869-9657
https://orcid.org/0000-0003-1770-471X


I. Timokhin, F. Ivanov: Fast Polar Decoding With SCL Creeper Algorithm

(SCL-Creeper) algorithm. The SCL-Creeper algorithm inte-
grates the strengths of SCL decoding with a path-wise
traversal strategy inspired by the Creeper algorithm originally
developed for convolutional codes [5]. For reliability and
efficient tree traversal, this algorithm uses two stacks that
work on the principle of SCS decoding, and a list is used to
store path metrics and generate possible candidates, as in the
SCL approach. Thus, SCL-Creeper, inspired by two classical
polar decoding approaches, is a hybrid of a robust and fast
decoder.

Also for comparison, we consider an algorithm that uses
flipping decoding with additional attempts and a list of
possible candidates, as in the basic SCL case. Successful
cancellation flip (SCF) and list-based (SCLF) techniques are
studied for comparison with the list version of the Creeper
approach presented in this work and are also analyzed in
terms of performance and complexity parameters.

In this paper, we delve into a comprehensive exploration of
the SCL-Creeper algorithm. We provide a detailed analysis
of the algorithm’s performance, comparing it to basic
polar decoding techniques, and highlight its potential to
revolutionize polar code decoding for different code lengths.
Additionally, we present the results of a computer simulation
that demonstrate the SCL-Creeper algorithm’s effectiveness
in improving error correction capabilities and its suitability
for real-world applications. SCL-Creeper algorithm is com-
pelling solution for harnessing the full potential of polar
codes in a wide range of communication and data storage
systems.

II. RELATED WORKS
The topic of optimal polar decoding in terms of compu-
tational complexity and performance has been extensively
explored in numerous studies [29]. For instance, a study [23]
on the SC-Fano algorithm allows us to draw conclusions
regarding various decision-making processes involved in
traversing a decoding tree. Furthermore, it introduces the
intriguing concept of acceleration resulting from specific
nodes.

The SC-Fano flipping decoder [24] not only reduces com-
putational complexity within a single decoding attempt but
also enhances performance through an adaptive algorithm.
This approach exemplifies the symbiosis of two strategies:
the allocation of additional resources (such as decoder
attempts, CRCs, candidate lists, etc.) and the utilization of
Fano decoding principles alongside decision-makingmetrics.

The isolation of special nodes suitable for accelerating
decoding for any codewords is an intriguing and extensive
topic addressed in the literatures [25] and [27]. Alongside
conventional decoding methods, accelerated algorithmic
variants are also explored. However, for list methods,
these special nodes require modification, as they pertain
to metrics for calculating the probability of a candidate’s
inclusion in the list. Some optimizations [26] concerning
irregular polar codes enable achieving relatively low com-
putational complexity using additional nodes without a list,

leveraging the structure of polar code construction. This
facilitates the acceleration of decoding for a specific class
of polar codes, distinct from those considered in the present
study.

Furthermore, researchers propose expediting the con-
vergence of belief propagation decoding methods [28].
In this scenario, reducing the number of iterations (i.e.,
achieving fast convergence) results in a decrease in com-
putational complexity asymptotically. Hence, employing the
belief propagation strategy in certain cases serves as a
technique to reduce time complexity. However, a primary
challenge associated with this approach is the poten-
tial compromise in performance due to fewer decoding
iterations.

III. POLAR ENCODING AND DECODING CONCEPTS
Let’s assume polar code with a finite code length N = 2n

(n ∈ Z+), information length of K and reliability bits
sequence I ∈ {0, . . . ,N − 1}, |I | = K . Subchannels with
intermediate reliability fall between silent ones, which have
high reliability, and noisy ones, which have low reliability.
Subchannels F not included in I will be called frozen. Its
values will be zeros. By notation xji, i≤j authors will mean the
vector

(
xi, xi+1 . . . , xj

)
. Encoding procedure can be described

by the next equation:

xN−1
0 = dN−1

0 GN , (1)

where dN−1
0 is initial message vector with binary elements,

xN−1
0 is encoded vector,GN = F

⊗
n, the matrix F =

[
1 0
1 1

]
specifies the standard Arican transform, and

⊗
n is the n-th

Kronecker power of the matrix F.
The authors will denote an input LLRs vector (log-

likelihood ratio) as yN−1
0 = (y0, y1, . . . , yN−1). The result of

decoding (or the only one node of decoding) in the meaning
of likelihood data calls ‘‘output LLRs vector’’ and denotes
as aN−1

0 . Output decoded message based on the output LLRs

vector will be denoted as d
N−1
0 .

SC-decoding algorithm can be thought of as a greedy
tree search algorithm for polar code. Of the two possible
values of the information bit, only one with the highest prob-
ability is selected for subsequent processing. SCL method
adopts a distinct strategy compared to the conventional
SC approach. Instead of directly estimating the message
vector, SCL generates a list of potential L candidates and
identifies the correct one in the final stage. Specialized
path metric (PM) metric quantifies the likelihood of each
path. Computational complexity of such algorithm with
fixed list size L is estimated [7] as O (LN logN ) and space
complexity – O (LN ).
To discern the path closest to the source word in terms of

probability, additional CRC (cyclic redundancy check) bits
are incorporated. Through an evaluation of CRC values, the
correct path among the candidates is determined, a technique
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known as CRC-aided SCL (CA-SCL), which significantly
enhances performance and path selection accuracy.

Stack decoding algorithm represents an optimization of
the SCL decoder, primarily aimed at reducing computational
complexity. SCS introduces two key parameters: L, which
is akin to the list size in SCL and restricts the search
width during decoding, and D, representing the stack size.
The complexity of computation with stack is equals to
O (LN logN ) and its space complexity is O (DN ).
Flipping-based method described in [21] is a generaliza-

tion of the SC-decoder with CRC validation to improve
its error correction performance. This method does not
guarantee finding the correct codeword and is parameterized
by T attempts of SC-decoder refining. This algorithm has
a significant improvement in performance compared to the
SC-decoder, but its complexityO(WN logN )— it invokes the
SC algorithmW times.

Due to the incompatibility between SC metrics and path
metrics from the SCL decoder, it is challenging to determine
how to seamlessly integrate the SCL algorithm into the SCF
strategy. This SCLF algorithm [20] also uses the parameter
T , as in the SCF approach, which represents the maximum
number of bit flip attempts. Instead of iterative decoding
with a one-level bit-flipping procedure using the SC method,
it employs the SCL function with CRC bits to obtain the ŷN1
vector.

This method achieves slightly improved performance for
the SCF approach [19], and also illustrates an increase in
the reliability metric compared to the basic SCL approach.
Next, we will consider flexible and generalized approaches
to the SCLF concept to achieve the optimal decoding
performance.

IV. CREEPER ALGORITHM
Novel decoding strategy known as SC-Creeper is founded [3]
upon the convolutional Creeper approach. SC-Creeper melds
aspects of stack-based decoding with the Fano decoding [4],
utilizing the Fano metric as the path metric (PM). The key
distinction between SC-Creeper and the Fano approach lies
in the computation of the dynamic threshold denoted as T .
In SC-Creeper, a last-in-first-out (LIFO) stack, denoted

as N , takes center stage as the primary data structure for
assessing likelihood paths. SC-Creeper introduces essential
definitions related to the core tree structure. For a given
node v(t)i , representing the current state at level t , SC-Creeper
avoids the need to maintain the entire code tree in memory.
The stackN in SC-Creeper has twomain operations: header’s
element ν from this stack, denoted as V : N→ν and
obtaining the position of element pν from node ν in stack,
this function denotes as Pos : N→pν .

When the path metric surpasses the threshold T , it is
identified as a ‘‘valid node’’. All the valid nodes are
maintained in the T stack. One of the most powerful
features [8] of the SC-Creeper approach is its computational
complexity, comparable to the SC-algorithmwith complexity

optimizations, and uses O (N ) operations. Space complexity
is also linear: O (N ).

V. OUR CONTRIBUTION: SCL-CREEPER
In this section authors present SCL-Creeper decoding
algorithm. The basic SC-Creeper operates on two stacks with
the ability to refine the metric values for each path. Let us
assume that the decoding performance can be improved as it
was for convolutional list decoding [9]. The main idea is to
use not only the SCS-like approach, but also SCL.

To calculate the path metric for stacks, this work uses the
Fano metric called PMF (Fano-based path metric), which
goes back to the work on Fano list decoding. As in the case
of the Creeper method, PMFi metric is calculated iteratively:

PMFi =

 PMFi−1 + log
P(di|yN−1

0 ,d
N−1
0 )

1 − pi
, i > −1

0, i = −1

(2)

Here we consider a probabilistic scheme, where for each
i-th channel there is an error probability pi. Therefore, for
the initial version of the SCL-Creeper algorithm, it was
decided to use the basic path metric described in Equation 2.
PMi depends on ai value from decoding LLRs output. It is
possible to use both PM and PMF metric for SCL-Creeper
algorithm; generally speaking, PMF metric also comes from
log-likelihood ratios values:

ai = log
P

(
di = 0

∣∣∣ yN−1
0 ,d

N−1
0

)
P

(
di = 1

∣∣∣ yN−1
0 ,d

N−1
0

) (3)

The next question for implementing the algorithm is how
to choose the dynamic threshold depending on the length of
the list? To implement the algorithm, the following value was
chosen for the threshold T : T = ⌊log2 (N/L)⌋.
This choice was due to the fact that for a list decoder

with CRC checks, going through the entire tree (which
corresponds to the value T≈0) is not an optimal solution,
because such a pass is calculated to be equivalent to one
iteration of SC-Creeper without a list. In the case of additional
candidates and cyclic checks, you can select a threshold value
based on the number of levels in the code tree.

This value can also be interpreted as follows: for example,
with list size L = 8, N = 64, the threshold value is T =

3, that is, out of six levels of the code tree, the PMF value
will be refined for three (where the metrics from SC-Creepers
do not reach the threshold T ), and for three more levels the
refinement will occur not according to the Fano metric, but
according to the path metric from SCL.

The algorithm consists of filling the stack/list and clear-
ing the stack/list, both of which work in parallel. Thus,
as with the basic SCL approach, this method stores child
nodes as potential codeword candidates. However, unlike the
basic implementation of the list method, SCL-Creeper uses
a stack to check whether the current codeword should be
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included in the list. If both children for some node are valid
and PMF of some child is greater than any other metric
calculated before, let’s this node be a T-node. The current
filling of the stack depends on the values of the metrics,
and the filling of the list depends on the current state of the
stack. Similarly, depending on whether the current pointer is
a T-node, the stack or list is cleared.

After this procedure, it is possible that the stacks are not
empty, but the tree traversal has already been completed.
In this case, the sequence of metrics lying in the stacks
will be unloaded into a special file (dump). When retrying
decoding after failure, it is possible to use PMF information
from the stacks ‘‘saved’’ from previous attempts to more
accurately traverse the tree and generate a new list of
candidates with the condition of the calculated metrics. This
caching allows for more accurate decoding and higher quality
performance when running SCL-Creeper several times on the
same code. A similar concept is bit-flipping decoding, where
iterativeness also has a positive effect on performance. The
authors will try to develop the idea of a caching algorithm in
future works.

Let νc be the root of coding tree,µc is related metric, stacks
T = N = ∅. List L has size L, T = ⌊log2 (N/L)⌋, µmax =

−∞. Next, there is a description of SCL-Creeper algorithm
with parameter L in Algorithm 1.

As can be seen from the algorithm, the list is first filled and
basic SCL decoding occurs if the path metrics are critically
large. However, after going through about half the levels of
the code tree, a main list of candidates is formed for which
another metric will be calculated - PMF, the calculation and
analysis of which uses stacks of valid nodes. Next, when the
list overflows, the least reliable paths are excluded (as in the
main SCL algorithm). If the list is not full, the stack is cleared.

Each time 2 new paths are added according to the number
of ‘‘child’’ vertices at each level. At each iteration, only the
most reliable paths and values from the stack are retained.
Thus, for one possible path in the tree, it is necessary to store
two stacks – for all T-nodes, as well as for unreliable paths for
which backwardmovement is available, similar to SCS. Thus,
the overall computational complexity of such an algorithm
approach is O (LN ), and the spatial complexity approaches
O

(
D̂LN

)
, where D̂ is the total dimension of the two storage

stacks nodes.

VI. SIMULATION RESULTS
e The authors now provide a performance comparison, testing
the hypothesis that the list variant will have a much better
frame error rate (FER) for different code lengths. One frame
contains 104 different data blocks with sizes 210 bits per
block. Therefore, the comparison was carried out both for
the classical algorithms (SC, SCL (L = 8), SCS (L =

8, D = 10)) and for the SC-Creeper (T = 1) and SC-Fano
(T = 1) ‘‘convolutional-like’’ algorithms. For SCL-Creeper
we assume that threshold factor T = ⌊log2(N/L)⌋.
Normalized complexity was also considered and compared

for different algorithms. Normalized complexity was chosen

Algorithm 1 SCL-Creeper Algorithm

Input: yN−1
0 – received LLRs, L – list size, T –

threshold;
(List filling) Find child nodes for νc, denote it as
ν1 and ν2. If ν1 = ν2 = ∅ then choose word candidate
d
N−1
0 ∈ L (CRC-procedure) and return it;

if ν1 ∈ F or ν2 ∈ F then
Append 0 to L, T , N ;

else
Calculate related PMF metrics µ1, µ2 and PM
metrics: µ̂1, µ̂2;

if max(µ1, µ2) < min(µ̂1, µ̂2) then
Continue tree traversal with SCL algorithm and
append ν1 or ν2 bit to the candidates’ paths from
list L;

(Stack filling) Assume that µ1 > µ2. Calculate
metric value: µcur = max(Pos(N ), µ1);
if µcur≥T then

push µcur to N ;

if µcur > µmax then
µmax = µ1 and push µ2 to T ;

(List erasing) if V (N ) ∈T then
Pop the least reliable paths from Lwhile|L| ≥ L

else
(Stack erasing) Pop element from N stack and T
stack.

as a target analysis tool due to its ease of use: by taking the
number of operations required to implement the SC algorithm
(which, generally speaking, does not depend on Eb/N0) and
taking this number as 1, a user can build dependencies
regarding the complexity of SC. Thus, if an algorithm with
a performance higher than that of an SC decoder is still close
to SC in terms of normalized complexity, then we can draw a
conclusion about its effectiveness.

To simulate the real channel authors use binary phase
shift keying (BPSK) modulation and additive white gaussian
noise (AWGN) model [16]. The following polynomial was
chosen as the basic polynomial for simulation: g(x) = x16 +

x15 + x2 + 1. CRC code with 16 bits provides a higher
level of error detection compared to shorter codes. This is
important in polar decoding because it helps identify and
correct errors more effectively. Moreover, it is a common
choice in many communication standards and protocols. 5G
NR communications system [6] was chosen for (N ,K )-code
construction with ratio R =

K
N and operations counting

module for C++17. The following environment was used
to conduct the experiments: Linux distribution (CentOS 8),
CPU with Intel Xeon Gold 6230N, RAM with 8*32G
DDR4 ECC.

There were obtained the results for performance and nor-
malized complexity of different polar codes with codeword’s
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FIGURE 1. SCL-Creeper (list size 8 and 32) performance comparison with
other decoders, N = 32.

FIGURE 2. SCL-Creeper (list size 8 and 32) performance comparison with
other decoders, N = 256.

lengths N = {32, 256, 512, 1024}: low code rate (1/4),
medium code rate (1/2) and high rate (3/4).

The Figures 1-4 show graphs comparing the performance
of various decoders, and the Figures 5-8 show how the
normalized complexity changes with increasing Eb/N0 value,
respectively. In comparing various polar decoding algorithms
several key observations emerge.

FIGURE 3. SCL-Creeper (list size 8 and 32) performance comparison with
other decoders, N = 512.

FIGURE 4. SCL-Creeper (list size 8 and 32) performance comparison with
other decoders, N = 1024.

SC stands as the baseline algorithm, characterized by its
simplicity and relatively low complexity. While it generally
performs adequately, it may struggle when faced with higher
error rates. SCL algorithms with different list size offer
improvements by maintaining lists of candidate codewords.
While SCL-32 provides better error correction capabilities,
it comes at the expense of increased complexity.
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FIGURE 5. SCL-Creeper (list size 8 and 32) complexity comparison with
other decoders, N = 32.

FIGURE 6. SCL-Creeper (list size 8 and 32) complexity comparison with
other decoders, N = 256.

Note also that SCLF has good potential for comparison
with the SCL-Creeper algorithm: recent studies [22] show
that with increased performance in the case of a flipping
strategy, the time complexity indicator can also be reduced.
However, from Figures 1-4 provided in this work, it can be
seen that the use of additional attempts is a good alternative

FIGURE 7. SCL-Creeper (list size 8 and 32) complexity comparison with
other decoders, N = 512.

FIGURE 8. SCL-Creeper (list size 8 and 32) complexity comparison with
other decoders, N = 1024.

to the Fano method when decoding and allows you to achieve
high performance rates.

Further advancements are seen in algorithms like SC-Fano,
SC-Creeper, and SCL-Creeper. Notably, SCL-Creeper
achieve SCL-32 performance with reduced list sizes,
particularly with a list size of 8. This reduction in complexity
makes them attractive options for resource-constrained
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scenarios. However, it’s worth noting that SCL-Creeper
may exhibit inferior performance for low code lengths
compared to other algorithms due to its reliance on list
decoding. Nonetheless, with a list size of 32, SCL-Creeper
demonstrates superior complexity compared to conventional
SCL-32, making it advantageous in certain environments.
Additionally, it benefits from fast convergence with increas-
ing signal-noise ratio values, maintaining good performance
without excessive complexity.

Table 1 shows performance gain (Eb/N0) in comparison
with classical SCL approach and SCL-Creeper scheme. It is
interesting to note that the difference in Eb/N0 between
SCL-8 and SCL-32 in different simulation scenarios ranges
from 0.3 to 1 dB. Thus, based on Table 1 results, we can
clearly state that SCL-Creeper with a list length of L =

8 achieves the performance of the SCL-8 decoder.

TABLE 1. Performance gain for SCL-Creeper with list sizes 8 and 32.

Now let’s fix the normaized complexity value for
SC-decoder as 1. Table 2 shows the relationship between the
normalized complexity of the classical SCL algorithm and the
SCL-Creeper algorithm. It is worth noting that the normalized
complexity of SCL is considered to be a constant L, therefore
complexity reduction for SCL-Creeper is understood as the
ratio of L to the current complexity of SCL-Creeper with list
length L.

Next, consider the throughput metric [17], [18], which
estimates the peak value of the optimal rate at different
code rates. Each throughput value is a multiplication of
the current R by 1 − FER for the current decoding option
with fixed Eb/N0 ≡ 2 value. For better visualization, the
graph was smoothed using spline interpolation. Figures 9-10
show that the optimal value of R for most algorithms is a

TABLE 2. Complexity reduction for SCL-Creeper with list sizes 8 and 32.

parameter approaching 0.8, but for SC and Fano decoders this
value is approximately 0.5. It is noteworthy that the highest
throughput is achieved by SCL-Creeper with a list length of
32, since the basic SCL (L = 32) on average has a lower FER
at these code lengths.

As one can see from the Figures and Tables, the
SCL-Creeper is indeed capable of better performance than the
SCL-8 and the basic SC-Creeper. It is especially interesting
that path refinement in SCL-Creeper for short codes turns out
to be much more efficient than one-way tree traversal in the
case of SCL. Also for short codes it is clear that SCL-Creeper
with a list length of 32 at large values of Eb/N0 FER is much
lower than for SCL-Creeper with L = 8.
In the general case, using SCL-Creeper with long lists

(of the order of 32) turns out to be an ineffective solution,
since with a large increase in computational complexity the
performance gain turns out to be insignificant.

VII. LIMITATIONS AND DISCUSSIONS
It is obvious that despite the full potential of using the Creeper
approach, the development of the idea of improved decoder
leads to a certain list of limitations that can be encountered at
the synthesis stage with list and stack technologies.

First, the most obvious limitation is memory usage. Since
SCL-Creeper uses a list and two stacks, the memory costs are
significantly higher than both SCL and SCS decoders. When
comparing with them, we understand that the normalized
mutiplication factor for SCS is a stack size parameter D
(similarly L for SCL), but in our case this factor can reach
a value of D2L. If in the worst case we assume that D =

LN , then the space complexity of the algorithm grows to
O(L3N 2). This complexity will be a significant overhead for
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FIGURE 9. SCL-Creeper (list size 8 and 32) throughput comparison with
other decoders, N = 256.

FIGURE 10. SCL-Creeper (list size 8 and 32) throughput comparison with
other decoders, N = 1024.

medium and large list lengths, as well as for largeN codeword
lengths.

Next, we should mention the simplification in the current
work associated with the inclusion of the threshold parameter
T in the heuristic formula. Achieving optimal performance
for a given pair of input parameters (L,T ) seems to be a
non-trivial task within the framework of Creeper decoding,

so a similar restriction was chosen for the threshold. Based on
the value of the T parameter, the current T-nodes are formed,
which affects the progress of the entire algorithm. Therefore,
finding a value at which the tree traversal is fast and points to
the correct (from the point of view of the original data block)
nodes is a future direction for research.

Also, the performance of the SCS-based algorithm may be
sensitive to the characteristics of the communication channel,
such as noise distribution and fading effects. In scenarios
where the channel conditions deviate significantly from the
assumptions made during algorithm design, the decoding
performance of SCL-Creeper may suffer.

Architecture-dependent improvements are also an impor-
tant aspect in decoder research. Despite the fairly general
description of the SCL-Creeper algorithm, existing research
on the hardware applicability of polar decoders and various
computational topologies can be used [13], [14]. Since this
algorithm represents a fairly high-load method of storing
data, optimizing access to it and interaction (send/receive data
block) will reduce latency and increase the performance of
calculations even with high space complexity. This work has
already put forward ideas for caching data from stacks — in
this case, by repeating the SCL-Creeper procedure, an accu-
rate result (in a probabilistic sense) can be achieved much
faster.

Code tree preprocessing using neural network methods is
also a well-known [15] polar decoding technique. Typically,
such methods use a combination of ‘‘guessing’’ the most
accurate traversal path using a deep learning algorithm, and
then applying SCL to traverse that path.

This tactic reduces the complexity of SCL because it avoids
unnecessary computation and storage of additional vertices.
In the case of the SCL-Creeper algorithm, such preprocessing
will help not only to significantly optimize stack sizes, but
also to more accurately determine the optimal threshold for
calculating T-nodes.

VIII. FUTURE WORK DIRECTIONS
The versatility of the hybrid SCL-Creeper approach opens
avenues for further exploration and refinement. By leveraging
a diverse array of decoding techniques, including stack,
list, and CRC, researchers and practitioners can fine-tune
the decoder to meet the specific requirements of different
communication environments.

The development of the SCL-Creeper idea is memory
optimization (using the reliability matrix [10] as one of the
basic modifications) and the use of alternative metrics [11],
[12] (not related to the Fano metric in the case of a stack).
Of course, the study of additional metrics and improvements
in SC-Creeper needs to be transferred to the case of a list
decoder.

One of the most promising future directions is the use of
flipping strategy in the Creeper algorithm using lists. Since
SCF-Creeper has already been described in previous works
(see [3], [8]), the main difficulty lies in the synthesis of
the list Creeper approach and the flipping strategy. To do
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this, additional possibilities for creating a critical set should
be explored, because in the SCF-Creeper version there are
several options for carrying out the flipping procedure.
We should also discuss the computational complexity of
such a method, which uses both additional decoding attempts
and two lists. The closest reference is the SCLF method,
previously discussed in this article. However, a potential
SCLF-Creeper algorithm would require a careful balance
between extremely high complexity and performance.

Also, cost functions for the Creeper approach are of
interest, since you can use more flexible (in terms of the
number of operations) methods of traversing the tree than
PM/PMF-values. There is a modification to T-nodes that
allows traversal to be even faster, but it is not applicable
in the current version of SCL-Creeper. Generally speaking,
exploring different metrics and dynamic ways to update
thresholds will help avoid unnecessary operations and
additional passes through the tree in the future.

IX. CONCLUSION
This paper elucidates a captivating narrative of algorithmic
evolution, tracing the trajectory of the Creeper algorithm
from its origins in convolutional code decoding to its
integration within polar codes alongside list-based decoding
methodology. The development of this hybrid approach,
exemplified by the SCL-Creeper decoder, marks a sig-
nificant milestone in decoding optimization within digital
communication systems. By concurrently employing list
and stack techniques, the algorithm showcases a nuanced
understanding of decoding dynamics, offering a holistic
solution that capitalizes on the strengths of each method.

Despite the augmented spatial complexity inherent in
storing 2L stacks of comparable lengths (L), the algorithm
manages its memory requirements effectively, ensuring that
the computational overhead remains reasonable. Moreover,
the simplicity of stack operations underscores the algorithm’s
efficiency, enabling it to navigate the decoding process with
precision and agility. This balance between complexity and
computational efficacy positions the SCL-Creeper decoder as
a compelling solution for real-world deployment scenarios,
where reliability and resource efficiency are paramount
considerations.

Architectural features of data transmission and quick
access to such data are a priority, since SCL-Creeper is the
most optimal performance algorithm of all those considered
in this work. Combined decoding techniques made it possible
not only to achieve minimum FER at low Eb/N0 at almost
all code lengths, but also to maintain the computational
complexity of the modified algorithm at the level of the basic
SCL decoder. The development of this approach will allow
not only to synthesize the ideas of various specialists in the
field of polar decoding, but also to arrive at a fundamentally
new decoding method at the junction of convolutional and
polar codes.

In wireless communication systems, where reliability
and spectral efficiency are paramount, the SCL-Creeper

algorithm offers significant benefits. By providing robust
error correction capabilities while maintaining reasonable
computational complexity, it enables more reliable data
transmission over wireless channels prone to interference,
fading, and noise. SCL-Creeper algorithm’s adaptability and
performance make it a compelling choice for next-generation
communication networks and cloud data storages, where
it can enhance the reliability and efficiency of data
transmission.
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