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ABSTRACT Deep reinforcement learning (DRL) can learn an agent’s optimal behavior from the experience
it gains through interacting with its environment. However, since the decision-making process of DRL agents
is a black-box, it is difficult for users to understand the reasons for the agents’ actions. To date, conventional
visual explanation methods for DRL agents have focused only on the policy and not on the state value. In this
work, we propose a DRL method called Mask-Attention A3C (Mask A3C) to analyze agents’ decision-
making by focusing on both the policy and value branches, which have different outputs. Inspired by the
Actor-Critic method, our method introduces an Attention mechanism that applies mask processing to the
feature map of the policy and value branches using mask-attention, which is a heat-map representation of
the basis for judging the policy and state values.We also propose the introduction of aMask-attention Loss to
obtain highly interpretable mask-attention. By introducing this loss function, the agent learns not to gaze at
regions that do not affect its decision-making. Our evaluations with Atari 2600 as a video game strategy task
and robot manipulation as a robot control task showed that visualizing the mask-attention of an agent during
its action selection facilitates the analysis of the agent’s decision-making. We also investigated the effect
of Mask-attention Loss and confirmed that it is useful for analyzing agents’ decision-making. In addition,
we showed that these mask-attentions are highly interpretable to the user by conducting a user survey on the
prediction of the agent’s behavior.

INDEX TERMS Deep reinforcement learning, explainable AI, visual explanation, video games, robot
manipulation.

I. INTRODUCTION
The real world is a complex environment made up of
many diverse factors. Deep reinforcement learning (DRL)
is attracting interest as a technique for deriving optimal
behavior for agents in this complex environment. DRL agents
have achieved a high performance in various control tasks [1],
[2], [3], [4], [5], [6], but DRL has a black-box problem in
that it is very difficult for users to understand the agent’s
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decision-making. There are two main components to this
problem. First, it is difficult to know what kind of data
was used for learning, that is, what kind of experience the
agent had, because the data is collected through interactions
between the agent and the environment. Second, the internal
processing of the network to calculate the agent’s behavior
is complex and the basis for the behavior is unknown. The
second issue is a particularly major obstacle when it comes
to applying DRL agents to real-world environments. For
example, if a DRL agent that can control an air conditioner
to a comfortable room temperature suddenly raises the
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FIGURE 1. Overview of Mask-attention A3C.

temperature, users will feel uneasy if they do not know why
the temperature was raised. As another example, if we want
to learn how to play a game from a DRL agent that can obtain
high scores, we cannot learn if we do not know the basis
for its decision-making. Therefore, understanding an agent’s
decision-making is crucial for demonstrating the reliability of
a DRL agent.

Visual explanation analyzes network output factors by
using an attention map to highlight important regions in
the input image. In DRL, research efforts are underway
to introduce this visual explanation technique for enabling
an understanding of DRL agents’ decision-making. There
are two main approaches in this regard. The first is to
post-process trained DRL models to analyze their decisions.
This approach utilizes the inputs/outputs, network weights,
and gradient information of the learned DRL model to reveal
its decision-making process. Therefore, the network structure
of the DRL model is the same as before, but post-processing
is required on the learned DRL model. Also, this method
calculates an attention map, which indicates the factors
affecting the output of the DRL model, but the calculation of
the attention map is computationally expensive. The second
approach makes the network structure of the DRL model an
interpretable structure in advance. This method clarifies the
decision-making of DRL models by designing the network
structure as an interpretable structure during the construction
phase of the DRLmodel. Compared to the first approach, it is
less computationally expensive because it does not require
any post-processing of the learned DRL model, and only
forward propagation is used to compute the attention map.
Therefore, research that analyzes agents’ decision-making
using methods with interpretable structures has become the
mainstream.

When designing DRL models as interpretable structures,
many visual explanation methods have been proposed that
focus on and analyze the policy of the DRL models [7], [8],
[9], [10], [11], [12], [13], [14]. This is because the policy
is direct output values that represent the agent’s decision-
making. On the other hand, there are no studies dealing
with agent analysis with a focus on state value. In DRL,
the state value represents the expected value of the revenue
per episode, and DRL based on the policy gradient method

learns strategies to maximize this state value. In other words,
the state value is as important as the policy in analyzing
agents’ decision-making. Therefore, we need to develop an
explainable algorithm for DRL that focuses on the state value
as well as the policy. Thus, the objects to be explained in our
study are policy and state value in the agent model (reference
Figure 1).
Toward an explainable algorithm for policy and state value,

we focus on the Actor-Critic-based DRL algorithm [15],
[16], [17], [18], [19], [20]. We propose Mask-Attention
A3C (Mask A3C), a visual explanation method for deep
reinforcement learning. Mask A3C visually analyzes the
decision-making process of the agent by calculating and
visualizing mask-attention, which is an attention map of
policy and state value during the agent’s action selection.
The purpose of the Mask-attention Loss is to improve the
interpretability of the mask-attention to the user by limiting
the gazing area related to the agent’s decision-making. Since
the policy and state value in this method are learned by
considering the mask-attention, the agent’s performance can
be improved.

This paper is a revised version of the research results
presented in reference [21], with improvedmethods and addi-
tional experiments. In the previous report, the mask-attention
which indicates the agent’s decision-making was obtained,
but this also indicates some areas that are irrelevant to
the agent’s output, and thus has low interpretability for
the user. In response to this problem, this paper intro-
duces mask-attention loss to obtain highly interpretable
mask-attentions. We confirmed the effectiveness of our
method in robot manipulation, which requires high con-
trol performance. Also, we evaluated the interpretability
of mask-attention to the user by investigating the user’s
prediction of the agent’s behavior using teaching with mask-
attention. The experiments were extended accordingly.

The four contributions of this paper:
• We focus on the Actor-Critic method and propose a
visual explanation method in DRL based on policy
and state value. This enables the analysis of the agent
model’s decision-making process from two different
perspectives.

• Our attention module, called mask-attention, which
expresses the region of gazing at the output and is easily
obtained by a forward pass. We also introduce Mask-
attention Loss, which restricts gazing to regions that do
not affect the agent’s decision-making, to improve the
interpretability of mask-attention.

• Through experiments using video games and robot
manipulation, we clarify the decision-making pro-
cess of the agent by utilizing mask-attention. The
implementation of the attention mechanism considers
mask-attention when outputting the agent’s control
values and improves the agent’s performance by high-
lighting relevant regions.

• We evaluated the interpretability of mask-attention
by investigating users’ predictions of agent behavior
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using mask-attention. Our study provided a highly
interpretable map of the agent model’s behavior to the
user.

II. RELATED WORKS
We describe our research on the visual explanation of
agent models in deep reinforcement learning, which is most
relevant to our study. We also briefly describe the field of
image recognition, where visual explanation of models has
been actively studied.

A. VISUAL EXPLANATIONS FOR AGENT MODEL
Research attempting to analyze the decision-making of DRL
agents can be classified into direct approaches that focus
on the agent model and indirect approaches that focus on
the states, etc., observed by the agent. Indirect approaches
are analysis methods based on state-space clustering, mask-
based sensitivity analysis, etc. [8], [22], and [23]. On the other
hand, the direct approach analyzes what part of the input
information the agent model gazes at, thereby providing a
clearer understanding of the agent’s decision-making process.
The direct approach is described below.

The policy of DRL agent model can be classified as Value-
based, Policy-based, or Actor-Critic-based depending on the
learning method. Value-based DRL utilizes a neural network
to represent the action value function Q(a|s; θ ) and updates
the network parameter θ through TD learning to obtain the
optimal policy [24], [25], [26]. Value-based DRL selects
agent actions based on the action value function. Therefore,
the analysis of agents’ decision-making for action-value
models has been addressed. Sorokin et al. introduced the
attention mechanism to the action-value model [7]. They
analyzed the action value function Q(s, a; ) by using deep
recurrent Q-Network [27], a value-based DRL method using
RNN, as an action value model and introducing the attention
mechanism before LSTM. Zahavy et al. analyzed the state
recognition of DRL agents based on the feature values of
the action value model acquired through training [8]. They
analyzed the agents’ decision-making by clustering the state
space using manually generated features. Zhang et al. guided
the gazing area of the agent model by utilizing human gaze
information while playing video games [9]. They trained
a model that reproduces the human gaze in a heatmap by
supervised learning and then augmented the input values of
the action value model with this gaze information.

Policy-based DRL utilizes a neural network to directly
represent the policy and learns the optimal policy π (a|s; θ )
by updating the network parameters θ using the policy
gradient method [17], [18], [28]. Policy-based DRL uses
policy models to select agent actions, so the analysis of
agents’ decision-making is conducted on policy model.
Manchin et al. visualized agent behavior as an attention
map by implementing self-attention in a policy model [13].
They applied proximal policy optimization [18] as the policy
model.

Actor-Critic-based DRL consists of Actor, which outputs
policy π (a|s; θ), and Critic which outputs state value V (s; θ )
[29]. The state value V (s; θ ) is the expected value of the
reward in the current state s and represents how good the
current state is. In Actor-Critic-based DRL, the Actor selects
and executes the current action according to the policy, the
probability distribution of the action, and Critic evaluates
Actor using the state value. Each network parameter is
updated in parallel, with the Actor using the policy gradient
method and the Critic using the TD error. Asynchronous
Advantage Actor-Critic (A3C) [15] is a typical Actor-
Critic-based DRLmethod. This method combines distributed
DRL [30], [31], [32], asynchronous parameter updates in
distributed learning, and advantage learning that considers
rewards several steps ahead. A3C uses multiple environments
to generate the training data (i.e., experiences) in parallel
to obtain a high-performance agent in a short training
time. Actor-Critic-based DRL uses an Actor model to select
agent actions, so the analysis of agents’ decision-making for
the Actor model is underway. Greydanus et al. calculated
perturbed images with a Gaussian filter applied using the
gradient information of the agentmodel and obtained saliency
maps from the perturbed images [10]. Since this method
is a bottom-up approach, backpropagation is required to
obtain the saliency map. Weitkamp et al. apply a bottom-up
gazing area calculation method based on Grad-CAM [33],
the visual explanation method in image recognition to the
Actor model [11]. This method requires back-propagation to
compute the attention map, similar to the Greydanus et al.
method. Shi et al. emphasized task-related regions related
to the agent’s decision-making by generating a fine-grained
attention mask in the agent model [14]. They focused on the
actormodel and showed agent decision-making by generating
an attention mask to highlight task-related regions. Mott et al.
obtain two Attentions (‘‘what’’ and ‘‘where’’) by using
query-based attention in the actor model [12]. This method
requires a major change in the network architecture (key,
value, etc.) because of the need to generate a query for the
attention.

Actor-Critic-based DRL uses state values, the output of the
Critic model, to learn policy. Therefore, not only the Actor
but also the Critic are considered to contribute to the agent’s
decision-making. However, conventional methods focus only
on the Actor model, i.e., policy, and do not consider the state
value. In this study, we implement an attentionmechanism for
both Actor and Critic, and obtain a mask-attention that is an
attention map for the policy and state values. We also propose
Mask-attention Loss, which prevents agents from gazing at
regions that do not affect their decisions. By introducing
Mask-attention Loss into the learning process, we obtain a
highly interpretable mask-attention for the agent’s decision-
making. By visualizing the mask-attention during inference,
we can analyze the agent’s decisions obtained from the
learning process in terms of a visual explanation of the policy
and state value.
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FIGURE 2. Overview of Mask-Attention A3C with Mask-attention Loss.

B. VISUAL EXPLANATIONS FOR IMAGE RECOGNITION
MODEL
In the field of image recognition, the internal processing
of recognition models is complex, and these models suffer
from the black-box problem. To address this problem,
several works have attempted to analyze the reasons for
the judgments about the inference results of recognition
models. Proposals in this vein include visual explanation
methods based on feature maps of CNN that constitute
recognition models [33], [34], [35], [36], [37], visual
explanation methods based on perturbations to the input
image [38], [39], [40], and visual explanation method that
incorporates an explanatory mechanism into the model [41],
[42]. Fukui et al. proposed the Attention Branch Network
(ABN), which applies the attention map to the attention
mechanism [43]. This method visually explains the reason
for the model’s decisions by using the attention map during
training, and at the same time, improves the recognition
accuracy. These works demonstrate that using an attention
map in the inference process of a model can improve
recognition accuracy in image recognition.

III. MASK-ATTENTION A3C
To clarify the basis for decision-making in agent models,
we consider that two perspectives within the framework of
deep reinforcement learning are important: policy and state
value. Therefore, we focus on A3C, a typical distributed DRL
method of the Actor-Critic, and propose Mask-Attention
A3C (Mask A3C), which enables the interpretation of agent
model decisions by incorporating an attention mechanism
in Actor and Critic. Mask A3C introduces an attention
mechanism to the policy branch (Actor) and the value branch
(Critic). In this way, we obtain mask-attention, which is
an attention map that shows the gazing area associated

with the output of each branch. In addition, by introducing
Mask-attention Loss, which restricts the agents not to gaze
at unnecessary regions that do not affect their decision-
making, we obtain the mask-attention that highly explains
the agents’ decision-making. Mask-attention Loss generates
a pseudo mask-attention by introduces specific perturbations
to the mask-attention, and identifies unwanted regions
based on fluctuations in output values when using the
pseudo mask-attention. By visually presenting the two mask-
attentions, a detailed understanding of the agent’s decision-
making is achieved. Furthermore, by introducing the attention
mechanism, this approach improves the agent’s performance
by considering mask-attention when learning to estimate
policy and state value.

A. OVERVIEW OF MASK A3C STRUCTURE
The network structure of Mask A3C is shown in Figure 2 left.
Mask A3C consists of a feature extractor, output branches
(policy and value) with an attention mechanism. The details
of each component of Mask A3C are described below.

1) FEATURE EXTRACTOR
This module calculates a feature map Ffe(st ) from a given
state st using a convolutional layer and recurrent neural
network (RNN). The state at time t is defined as st ,
where st in this task is an image. Mnih et al. reported
that the use of LSTM in A3C can consider temporal
information of the input state and significantly improve
the agent’s performance [15]. However, since LSTM can-
not consider the spatial information of the input image,
mask-attention cannot be computed when using LSTM
in Mask A3C. Therefore, we use convolutional LSTM
(ConvLSTM) [44] as RNN, which can consider spatio-
temporal information. The extracted feature maps are input
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to the policy branch and the value branch, the mask-attention
module.

2) MASK-ATTENTION MODULE
This module generates mask-attention for the policy and
state value: Mv(st ) for the value branch and Mp(st ) for the
policy branch. The mask-attention is generated by applying a
sigmoid function to the featuremapFfe(st ) with a convolution
layer of 1 × 1× # of channels. This mask-attention is then
input to each output branch.

3) OUTPUT BRANCHES WITH ATTENTION MECHANISM
The policy branch has the role of Actor and outputs policy,
and the value branch has the role of Critic and outputs state
value. The input to each branch is the feature map Ffe(st )
extracted by the feature extractor. Each branch receives
Ffe(st ) and applies convolutional layers andReLU to compute
new mid-layer feature maps Fv(st ) and Fp(st ) respectively.
These mid-layer feature maps and mask-attention are then
used by the attention mechanism for each output branch.
The attention mechanism performs mask processing using
mask-attention on the mid-layer feature maps for each
branch. This masking process can emphasize the regions that
contribute to the optimal behavior and state value. The feature
maps F ′

v(st ) and F
′
p(st ) of each branch after mask processing

are calculated as follows

F ′
v(st ) = Fv(st ) ·Mv(st ), (1)

F ′
p(st ) = Fp(st ) ·Mp(st ), (2)

where M (st ) is the mask-attention. By inputting the masked
feature maps F ′

p(st ) and F ′
v(st ) to the output layer, policy

and state value are obtained. Using the masked feature map,
the agent focuses on the highlighted regions and selects the
optimal action.

B. MASK-ATTENTION LOSS
We introduce Mask-attention Loss in training, which restricts
the agent from gazing at unnecessary regions that do not
affect its decision-making. This enables us to obtain a
mask-attention that focuses only on regions that contribute
to the policy and the state value. These unnecessary regions
are identified from the variation of output values in each
branch using pseudomask-attention (pseudo-maskatt), where
only one pixel is set to 0 and all others are set to 1. The
size of the pseudo-maskatts are the same as that of mask-
attention. Also, pseudo-maskatt is created for all positions by
shifting the pixel positions with value 0— that is, the number
of pseudo-maskatts is the same as the size of the pseudo-
maskatt. An example of the Mask-attention Loss calculation
is shown in Figure 2 right.

The flow of calculating the mask-attention loss is as
follows.

1) Calculate the mask-attention and the output value
(policy or state value) at each branch by inputting the
state observed from the environment.

TABLE 1. Experiment details of video game strategy task.

2) Calculate the policy and state value when pseudo-
maskatt is used for the attention weight of the attention
mechanism. Here, the input values are the same as
in 1).

3) Calculate the degree of difference is calculated between
the output values (policy and state value) of 1) and
2). The difference degree of the policy is calculated
using Kullback-Leibler (KL) divergence, as the policy
is probability-distributed. As for the difference degree
of the state value, it is calculated using the L1 norm.
Each degree of difference Difp,Difv is calculated as

Difp =
∣∣KL(

π (st ,Mp(st )) ∥ π (st ,Mpseudo)
)∣∣
1, (3)

Difv = |V (st ,Mv(st )) − V (st ,Mpseudo)|1, (4)

where st is the input state at time t , M (st ) is the mask-
attention,π(st , ·) is the policy,V (st , ·) is the state value,
and KL(· ∥ ·) is the KL divergence. The lower the
value of Dif, the less the output value changes between
mask-attention and pseudo-maskatt. That is, when Dif
is low, the region corresponding to the pixel value 0 in
pseudo-maskatt is an unnecessary region that does not
affect the agent’s decision-making.

4) Select pseudo-maskatt with low degree of difference by
thresholding.

5) Calculate the mask-attention loss that restricts the DRL
model from gazing at the attention weight of the
mask-attention corresponding to the pixel value 0 of
the pseudo-maskatt selected in 4). Mask-attention Loss
LMA is calculated as follows:

LMA = LMAp + LMAv , (5)

LMAp =
1
Np

Np∑
i=0

Attpi , (6)

LMAv =
1
Nv

Nv∑
i=0

Attvi , (7)

where Attp,Attv are the attention weights of the
mask-attention corresponding to the pixel value 0 of
the pseudo-maskatt for the policy branch and the value
branch. Also, Np,Nv is the number of Attp,Attv.
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FIGURE 3. Comparison of mask-attention by Mask-attention Loss: The arrow shows the direction of travel of Pac-Man.

6) The other loss functions are the same as those of A3C.
Therefore, add theMask-attention Loss calculated in 5)
to the A3C loss function during training. When adding
Mask-attention Loss, the learning rate α is multiplied
and the scale of the loss is adjusted. This learning rate
is a hyperparameter.

By introducing this loss into the training process, Mask-
attention approximates the value of 0 for regions that don’t
contribute to the output value. In other words, Mask-attention
Loss has the effect of making mask-attention a map that
shows only the regions that contribute to the output. This
improves the interpretability of mask-attention and promotes
user understanding of the agent’s behavior.

IV. EXPERIMENTS
In this section, we describe experiments using a video
game strategy task to evaluate the effectiveness of Mask
A3C and Mask-attention Loss. In addition, we confirm that
the effects in these video games are equally effective in
robot manipulation tasks, where deep reinforcement learning
has been successful. To confirm that mask-attention is
highly interpretable to users, we conduct a questionnaire
investigation of users’ predictions of the agent’s behavior.
Sec. IV-A - IV-G describe experiments with a video game
strategy task, and Sec. IV-H describes a robot manipulation
task. Sec. IV-I describes a questionnaire experiment about the
interpretability of mask-attention for users to understand the
agent’s decision-making.

A. EXPERIMENTAL DETAILS OF THE VIDEO GAME
STRATEGY TASK
Experiments were conducted using the OpenAI gym game
tasks [45] to evaluate the explanation of the agent’s

decision-making and the effectiveness of the performance
improvement by Mask A3C. Six video games were used:
Breakout (BO), Ms. Pac-Man (MP), Seaquest (SQ), Space
Invaders (SI), Beamrider (BR), and Fishing Derby (FD).

Table 1 shows the details of our experiments. In com-
parison methods, Policy Mask A3C and Value Mask A3C
refer to a Mask A3C in which the attention mechanism
is implemented on one side of the branch (i.e., policy
branch or value branch). Mask A3C MaskattL refers to a
Mask A3C with mask-attention loss. In training conditions,
Mask-attention Loss in Mask A3C MaskattL was introduced
after 0.8 × 108. In other words, the same loss function as
that of A3C and Mask A3C was used for learning until
the number of global steps was 0.8 × 108. In the early
training phase, the agent model is unclear about which
regions contribute to the output. Therefore, we introduced
Mask-attention Loss in the late training phase to facilitate
learning that excludes unnecessary gazing areas after the
agent model’s gazing areas have been clarified. The threshold
value for extracting pseudo-maskatts with a low degree
of difference was set to 0.1 in the Mask-attention Loss
calculation.

We utilized the following five evaluation metrics.

• Effect of Mask-attention Loss on mask-attention
• Visualization comparison of gazing areas using previous
studies

• Analysis of agent’s decision-making process through
visualization of mask-attention

• Comparison on Atari 2600 game scores
• Comparison by score reduction in inverted
mask-attention

• Agent reaction to the new state from mask-attention’s
point of view
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FIGURE 4. Visualization comparison of gazing areas with previous studies: Ours is a visualization of mask-attention with Mask A3C MaskattL.

1) DETAILS OF AGENT MODEL IMPLEMENTATION
We describe the details of the agent model used in the video
game experiment. The input and output are a grayscale image
of the game screen and control commands for the current
state of each game. The input grayscale image is resized
to 80 × 80. The feature extractor is constructed with three
convolutional layers (maxpooling and ReLU are applied after
the convolution process) and ConvLSTM. The convolutional
layers are two layers with 32 output dimensions and one
layer with 64 output dimensions. Also, the output dimension
of the hidden state of ConvLSTM is 64. The policy branch
consists of one convolutional layer (ReLU is applied after
convolution process), one fully connected layer (FC), and a
softmax function. Here, layers are a convolutional layer with
32 output dimensions and a FC with the same number of
output units as the number of agent actions. The value branch
consists of one convolutional layer (ReLU is applied after the
convolution process) with 32 output dimensions and one FC
with one output unit. TheA3C in this experiment has the same
as the network structure as Mask A3C without the attention
mechanism.

B. EFFECT OF MASK-ATTENTION LOSS ON
MASK-ATTENTION
Figure 3 shows a visualization example of mask-attention
in the same frame in MP for the Mask A3C and the Mask
A3C MaskattL. In (a), it is evident that Mask A3C MaskattL
focuses more on Pac-Man’s direction of movement compared
to Mask A3C. As the task in MP is to control which direction
the agent moves, we can conclude that Mask A3C MaskattL
is strongly gazing at Pac-Man’s direction of travel. In (b),
we can see that Mask A3C and Mask A3C MaskattL are
both focused on the cookie, which is the source of the
score. Mask A3C MaskattL shows broader coverage of the
remaining cookies on the screen compared to Mask A3C.

TABLE 2. Calculation time of gazing area per frame and model size in
Breakout: A3C shows the inference time for calculating policy and state
values. NVIDIA RTX A6000 was used for the measurements.

As these results show, we can confirm that the introduction
of Mask-attention Loss limits the gazing area for both the
policy and state value. In addition, by limiting the gazing area,
the user can obtain the mask-attention that indicates only a
specific area. Therefore, we can obtain the mask-attentions
that are highly interpretable to the agent’s decision-making
for the user.

C. VISUALIZATION COMPARISON OF GAZING AREAS
USING PREVIOUS STUDIES
We confirm that the mask-attention calculated by our method
is useful by comparing visual explanations for the agent
model using previous and ours studies. Also, we confirm
that our method can calculate the gazing area at low cost
by verifying the calculate time of the gazing area and the
number of parameters of the agent model. Here, we use the
perturbation-basedGreydanus et al. method [10] as a previous
study of visual explanation methods for agent models.
Greydanus et al.’s method is a saliency calculation method
to generate saliency maps for interpreting agent’s action
selection, and generates perturbed images by perturbing
specific pixels in the input image. The saliency map is
calculated from the importance of the perturbed pixels based
on the fluctuation of the output values when these perturbed
images are used as input to the agent model.

Figure 4 shows a visualization of the gazing area for
previouss and ours studies. The Greydanus et al. method is a
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FIGURE 5. Visualization example of mask-attention in policy branch: This is a visualization of mask-attention with Mask A3C
MaskattL. The controller of ‘‘Image with mask-attention’’ is the action chosen by the DRL agent in the current state.
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FIGURE 6. Visualization example of mask-attention in value branch: This is a visualization of mask-attention with Mask A3C MaskattL. Examples
of mask-attention at two points where the state value changes significantly are shown. The graph shows the transition of state value, where the
dashed line in the graph indicates the transition to the next stage in each game.

map that focuses on characteristic objects such as balls, pac-
man, and submarines (Breakout value, Ms. Pac-Man policy,
Seaquest value, etc.). On the other hand, Ours is a map that
focuses on objects and areas affected by the agent’s behavior,
such as the ball, pac-man’s direction of movement, and fish
that are the target of the submarine’s attack (Breakout policy,
Ms. Pac-Man policy, etc.). Furthermore, compared to Ours,
Greydanus et al.’s approach sometimes shows maps with no
gazing area (Breakout policy) or with gazing in irrelevant
areas to the agent’s behavior (Ms. Pac-Man policy).

Table 2 shows the calculation time of the gazing area and
the number of parameters of the agent model for eachmethod.
Here, A3C is the agent model without visual explanation
method and is the standard value for each method. Ours
calculates mask-attention at the same time as inferring the

policy and state value, so themask-attentionmodule increases
the calculate time and model parameter. However, the
Mask-attention module has a simple structure that consists
of a Conv. 1 × 1 and a Sigmoid function, which allows for
real-time inference of policy and state values, and gazing area
calculation. On the other hand, Greydanus et al. method is
not an approach to the agent model structure, so the model
parameter is the same value compared to A3C. However,
this method calculates the gazing area using the pertur-
bation image, which significantly increases the calculate
time.

From these results, it can be seen that our method
can visualize the gazing areas that indicate areas related
to the agent’s behavior by introducing a simple structure
called mask-attention module, which significantly reduces
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TABLE 3. Max and mean scores between 100 episodes in Atari 2600 games: Scores of models with the highest mean score among five trials in each
method are shown. Bold text indicates the highest score of the max / mean score in each game.

the calculation time of the gazing areas compared to the
Greydanus et al. method.

D. ANALYSIS OF AGENT’S DECISION-MAKING PROCESS
THROUGH VISUALIZATION OF MASK-ATTENTION
Figures 5 and 6 show visualization examples of the
mask-attention with Mask A3C MaskattL for BO, MP, and
SQ. The following is an explanation of the mask-attention
shown in these figures.

1) BREAKOUT (BO)
BO is a game in which the player controls a paddle to hit the
ball back and destroy blocks. The agent (i.e., the paddle) has
three actions: No-op, Left, and Right. Figure 5a shows the
mask-attention for the policy in BO. In Frame 1, the ball is
moving toward the right side of the paddle. In Frame 2, when
the ball is approaching the paddle, the DRL model infers
Right by gazing in the direction of the ball. In Frame 3, the
paddle moves to the region gazed at in Frame 2 and returns
the ball. Hence, we see that the agent controls the paddle in
accordance with the direction of the ball’s travel. Figure 6a
shows themask-attention for the state value in BO. At Point 1,
the agent shows no gazing area, correlating with a low state
value on the graph. The agent at Point 2 gazes at the left end
of the block, and the graph shows that its state value is high.
Note that at Point 2, the left end of the block has fewer blocks.
In BO, getting the ball to the space above the blocks is one of
the major factors to obtain a high score. From these results,
we can see that the value branch recognizes the importance
of getting the ball to the space above the blocks.

2) MS. PAC-MAN (MP)
MP is a game that controls the player to collect scat-
tered cookies while avoiding enemies. The agent (i.e.,
Ms. Pac-Man) has nine actions: No-op, Up, Down, Left,
Right, Up+Left, Up+Right, Down+Left, and Down+Right.
Figure 6a shows the mask-attention for the policy in MP.
In Frame 1, the agent selects Left and Pac-Man moves to
the left. In Frame 2, Pac-Man reaches a crossroads and the
agent selects Down+Left to gaze at the cookie below Pac-
Man. In Frame 3, Pac-Man moves to the point where the
agent was gazing at in frame 2 and acquires the cookie. Thus,
the agent is controlling Pac-Man to move toward the cookie.
Figure 6b shows the mask-attention for the state value in MP.
At Point 1, the agent gazes at the whole screen because the
game is just starting. In contrast, the gazing area shrinks at

Point 2 as the number of cookies decreases. In addition, from
Point 1 to Point 2, the state value also decreases as the number
of cookies on the screen decreases. These results indicate that
the agents recognize the cookies as a scoring source.

3) SEAQUEST (SQ)
SQ is a game in which the player controls a submarine
to rescue divers while destroying enemy submarines and
fish. The agent (i.e., the submarine) has six actions:
No-op, Up, Down, Left, Right, and Attack. Figure 5c shows
the mask-attention for the policy in SQ. In Frame 1, the agent
is gazing at the fish that appeared from the right side of
the screen and selects Attack. In Frame 2, the agent’s beam
is directed toward the fish that the agent was gazing at in
Frame 1. In Frame 3, the agent is no longer gazing at the fish
and defeats it. These results indicate that the agent recognizes
the fish as soon as it appears and controls the submarine to
destroy it. Figure 6c shows the mask-attention for the state
value in SQ. At Point 1 (just before destroying the fish), the
agent is gazing at the fish. At Point 2 (the state value has
decreased), the fish gazed at in Point 1 has been destroyed
and the gazing area for the fish has disappeared. These results
indicate that the agent recognizes that destroying fish is an
important factor in SQ.

4) DISCUSSION
We confirmed that two different mask-attentions (policy and
state value) can be obtained by implementing an attention
mechanism in the output branch of the Actor-Critic based
DRLmethod.We confirmed that the mask-attention of policy
directly indicates the region that contributes to the action
selected by the agent. This is because policy represents
the probability distribution of the agents’ possible actions
in the current state. On the other hand, we confirmed that
the mask-attention of the state value indicates the region
that represents the main characteristics of the game. This
is because the state value represents the expected value of
return in the current state. Here, the return is the sum of the
rewards in the episode. By using mask-attention from these
two viewpoints, we have shown that it is possible to clarify
the agent’s decision-making.

E. COMPARISON ON ATARI 2600 GAME SCORES
Themax andmean scores between evaluation of 100 episodes
for each comparison methods in Atari 2600 games are shown
in the Table 3. In BO, we see that A3C has the highest score
in terms of mean score, but in terms of max score, Mask A3C
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TABLE 4. Game scores with and without inverting the gaze area of the policy mask-attention: The checkmark for the Inverse att. indicates whether the
gazing area of mask-attention is inverted or not. The random indicates the score when the action is randomly selected.

has the highest score (864) possible in BO for all methods.
Since BO is a simple game without external factors (only
balls and blocks are affected), Mask A3C is not likely to score
significantly lower than A3C. In MP, SI, and FD, it scored
higher than A3C by introducing the mask-attention in the
policy branch. This is because the mask-attention emphasizes
objects that contribute to the agent’s action selection (e.g.
cookies and enemies in MP, defensive walls and invaders
in SI, fishes closest to the player in FD). BR has enemies
that can be defeated to score points and enemies that
should be avoided, and these enemies are quite similar in
appearance. Emphasis on the target by mask-attention alone
is not sufficient to capture the differences in the detailed
characteristics of the enemies. Therefore, we consider that
there was no significant difference in the scores for any of
the methods. SQ’s score varied greatly depending on whether
the agent was able to acquire the actions to attack the fish
or to replenish oxygen. As shown in the mask-attention
visualization example in Sec. IV-D, the agent is gazing at the
fish and attacking them, but is not gazing at the oxygen gauge
at the bottom of the screen. Since mask-attention alone is not
enough to make the agent gaze at the oxygen gauge, there was
no significant difference in the scores for any of the methods.
The mean score of the methods with Mask-attention Loss
decreased compared to Mask A3C (BO,MP, SQ, BR). On the
other hand, it can improved or achieved the same score for SI
and FD compared to A3C. From these results, we consider
that although the Mask-attention Loss limits the gazing area
and makes it difficult to consider the surrounding information
of the gazing target, the mask-attention loss improves the
score compared to A3C and achieves a higher interpretability
than the Mask A3C.

F. COMPARISON BY SCORE REDUCTION IN INVERTED
MASK-ATTENTION
We investigate whether mask-attention indicates the gazing
areas of an agent’s decision-making process. In this experi-
ment, we focus on the mask-attention of the policy branch
to confirm its contribution to the agent’s action selection.
We assumed that mask-attention indicates the reasoning
behind the agent’s decision-making process, and evaluated
the game score by inverting the mask-attention gazing areas
(i.e., making regions with high attention values low and those
with low values high). If the game score obtained by the agent

FIGURE 7. Decrease rate of mean score due to inverse policy
mask-attention: The mean score = average scores between 100 episodes.

does not change when mask-attention is inverted (indicating
no effect of mask-attention on the agent’s action selection),
then the mask-attention is not considered to contribute to
the agent’s action selection. In contrast, if the game score
decreases (indicating mask-attention does affect the agent’s
action selection), mask-attention is considered to have a
significant contribution to the agent’s action selection. In this
method, the mask-attention of the policy branch in the trained
agent model is inverted to create a map, and the attention
mechanism uses this map to select actions. By comparing
scores with andwithout mask-attention inversion, we confirm
whether themask-attention is effective as a visual explanation
for the agent’s decision-making. The mask-attention M (·)
gazing area inverted mapsMinverse(·) were created as follows.

Minverse(st ) = 1 −M (st ), (8)

where st is the state (grayscale image of the game screen).
Table 4 shows a comparison of scores with and without

mask-attention inversion, while Figure 7 shows the decrease
rate of scores due to the mask-attention inversion. As shown
in Table 4, in all games, the score is significantly lower
when mask-attention is inverted. Especially in BO and
BR, the scores after the mask-attention inversion are lower
than random in models with Mask-attention Loss. In MP,
SQ, SI, and FD, as shown in Figure 7, the mean score
decreased by more than 85%, similar to the other games.
Therefore, we can confirm that the mask-attention inversion
significantly reduces the score. From this result, we can
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FIGURE 8. Agent’s reaction to new states with mask-attention visualization: This is a visualization of mask-attention with Mask A3C MaskattL.

conclude that the mask-attention gazing areas in the policy
branch are the areas that contribute to the agent’s action

selection for achieving a high score. Additionally, since the
decrease rates of Mask A3C and Mask A3C MaskattL are
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FIGURE 9. Overview of our methods in robot manipulation.

similar, we can conclude that the gazing areas limited by
Mask-attention Loss are effective for analyzing the agent’s
decision-making. Thus, by limiting the gazing area with
Mask-attention Loss, the agent’s decision-making is more
clearly indicated by the mask-attention.

G. AGENT REACTION TO THE NEW STATES FROM
MASK-ATTENTION’S POINT OF VIEW
We investigated the effects on mask-attention and the agent’s
decision-making when there is an unexpected change in
the agent’s gazing object described in Sec. IV-D. If a
change in the gazing object significantly affects the agent’s
behavior and mask-attention, the object is considered to be
an important factor contributing to the agent, and the agent’s
gazing object expressed by the mask-attention is considered
to be correct. In this experiment, cookies (MP) and fishes
(SQ) were used as targets. The agent model was Mask A3C
MaskattL with Mask-attention Loss used for visualization in
Sec.IV-D. As an experimental method, cookies (in the case
of MP) or fish (in the case of SQ) were added to the input
image to the agent model at unexpected frames during the
evaluation. InMP, the frame to add a cookie is when the agent
finishes acquiring half of the cookies on the screen. In SQ, the
frame to add the fish is the frame in which the fish does not
exist. After adding each object, we investigated changes in
the agent’s behavior and mask-attention.

Figure 8a shows the change in agent behavior and
mask-attention after adding cookies in MP. As seen from the
value mask-attention, the frame before the cookies is added,
the agent is gazing at the remaining cookies on the screen.
In contrast, after Frame 2, the agent attends to all cookies,
including the added ones. These results indicate that MP’s
cookies are objects that contribute significantly to the agent’s
behavior.

TABLE 5. Experiment details of robot manipulation task.

Figure 8b shows the change in the agent’s behavior and
mask-attention when a fish is added in SQ. As can be
seen, the policy mask-attention in Frames 1 and 2 indicates
that the agent is gazing at the left side of the screen where
the fish appears, and the policy mask-attention after Frame
2 indicates that agent is strongly gazing at the fish. The value
mask-attention in Frames 1 and 2 indicates that there is no
gazing area, and after Frame 2, the agent is strongly focused
on the added fish. These results indicate that the fish in SQ are
objects that contribute significantly to the agents’ behavior.

In SQ, the policy mask-attention is strongly focused
on the fish in Frame 3, the frame immediately after the
fish is added. In other words, the policy mask-attention
is considered to be immediately affected by the addition
of the fish. In contrast, the value mask-attention in SQ
does not pay attention to the fish in Frame 3, but then
gradually begins to do so. Similarly, MP’s mask-attention
does not pay attention to all cookies in Frame 3 (the frame
immediately after the cookie is added), and then gradually
pays more attention to the cookies. These results indicate that
the policy mask-attention and the value mask-attention have
different effects on mask-attention when the gazing object
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FIGURE 10. Visualization example of mask-attention in robot manipulation: Ours is a visualization of mask-attention with Mask PPO
MaskattL.

changes. In other words, these mask-attentions have different
knowledge about the agent’s decision-making. The effect of
policy mask-attention on the change of the gazing object
was immediate, whereas the effect of value mask-attention
was several frames later. Therefore, we conclude that policy
mask-attention indicates regions that contribute to the agent’s
current behavior, and value mask-attention indicates regions
that are related to game characteristics considering time series
information.

H. APPLICATION TO ROBOT MANIPULATION TASKS
In this section, we describe experiments with robot manipu-
lation tasks to evaluate the effectiveness of our method.

1) EXPERIMENTAL DETAILS OF THE ROBOT MANIPULATION
TASK
Figure 9 shows an overview of the robot manipulation task
and agent model. This experiment targets robot manipulation
using Isaac-gym [46], a physics simulation environment
developed by NVIDIA for reinforcement learning research.
This task is to grasp a target object from among multiple
objects using Franka Emika’s Panda, a single-armed robot.
The objects are dumbbells, plastic wrap, and a tennis ball
case from the ARC2017 RGBD Dataset [47]. These objects
are randomly positioned in the tray for each episode. The
target grasping objects in this task are dumbbells. The control
target (agent) is a Panda end-effector, and a camera is placed
in front of the end-effector, with the hand viewpoint image
as input information for the agent. Here, the end-effector

automatically lowers as soon as the episode starts and reaches
the tray in 12 steps. After 12 steps, the end-effector is
automatically closed, and then it is raised. In other words,
the goal of this task is to control the end-effector to grasp
dumbbells within 12 steps. The actions that can be selected
by the agent model are to move the end-effector forward
or backward with respect to the tray, to move left or right,
and to rotate the end-effector forward or backward; these
actions are continuous values. These actions are performed
only during the descent of the end-effector. The reward is
+1 only when the dumbbells, the target grasping objects,
are grasped and lifted above a certain height. The training of
the agent model utilizes Proximal Policy Optimization (PPO)
[18], an Actor-Critic based DRL algorithm that has achieved
high performance in the robot control task.

Table 5 shows the details of this experiment. Here, the
comparative method Mask PPO refers to the proposed
method that introduces the mask-attention module in the
structure described below, and Mask PPO MaskattL means
Mask PPO with Mask-attention Loss. As shown in the
training conditions, the Mask-attention Loss of Mask PPO
MaskattL was introduced after 2.0× 107. In other words, the
same loss function as in PPO and Mask PPO was used until
the training step reached 2.0×107. The reason for introducing
Mask-attention Loss from the late training phase is the same
as for the video game task (see Sec. IV-A). The threshold
for selecting pseudo-maskatts for the Mask-attention Loss
calculation was set to 0.01. We utilized the following two
evaluation metrics.
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TABLE 6. Average grasping success rate during 1,000 episodes in robotic
manipulation.

• Visual explanation of the agent model with mask-
attention

• Evaluation by grasping success rate of target object

a: DETAILS OF AGENT MODEL IMPLEMENTATION
We describe the details of the agent model used in our
robot manipulation task experiments. The inputs are the hand
viewpoint image and the target grasping object image from
the camera attached to the end-effector, and the outputs are
the control values of the end-effector. The input RGB images
of the hand viewpoint and the target grasping object are
resized to 128 × 128. The feature extractor is a module
for extracting features from the hand viewpoint image and
consists of three convolution layers (Batch normalization
and ReLU are applied after convolution processing) and a
ConvLSTM. The convolution layer consists of one layer with
16 output dimensions, one with 32 output dimensions, and
one with 64 output dimensions. The output dimension of the
hidden state in ConvLSTM is 64. The target feature extractor
is a module for extracting the features of the target grasping
object image, and has the same structure as the feature
extractor (except for ConvLSTM) in addition to introducing
a convolution layer with 32 output dimensions (ReLU is
applied after the convolution processing). The value branch
consists of a convolution layer with 32 output dimensions
(ReLU is applied after convolution), two fully connected
layers (FC), and LeakyReLU [48] (applied between FC).
The policy branch consists of the same modules as the
value branch, in addition to a Hyperbolic tangent function
(tanh) and a Gaussian policy head that generates a Gaussian
distribution with the value of tanh applied as the mean
value. The FC before tanh has the same number of output
units as the number of agent actions. In each branch, the
agent learns actions considering the target grasping object
by concatenating the feature vectors extracted by the target
feature extractor with the input values before the first FC.
The PPO in this experiment is the same as the above structure
without the mask-attention module.

2) VISUAL EXPLANATION OF THE AGENT MODEL WITH
MASK-ATTENTION
We confirm the effectiveness of mask-attention in robot
manipulation tasks. Here, mask-attention is a map visualized
byMask PPOMaskattL with Mask-attention Loss. An exam-
ple of mask-attention visualization is shown in Figure 10.
Scene 1 shows the entire dumbbell, which is the object to
be grasped, appearing in the image, and Scene 2 shows the
dumbbell under plastic wrap, partially occluded. From the

policy mask-attention of Ours in Scene 1, we can see that
the agent consistently focuses on the dumbbells and ignores
other objects. This means that the agent correctly recognizes
the dumbbell as the object to be grasped, and controls the
grasping of only the dumbbell by not gazing at any objects
other than the dumbbell. The value mask-attention of Ours
in Scene 1 also shows the same focus on the dumbbells.
In addition, in the Value mask-attention, the agent strongly
focuses on the handle of the dumbbell. This means that
the agent is recognizing the important area for grasping the
dumbbell. These mask-attention trends in Scene 1 are also
confirmed in Scene 2, where occlusion occurs.

Compared to Greydunus et al.’s method, we can confirm
that in the Policy visualization example, Greydunus et al.
is noisy, whereas Ours accurately captures the target
grasped object. In the Value visualization example, both
Greydunus et al. and Ours are gazing at the target grasped
object, but Ours is capturing a more localized region of the
object.

These results indicate that the agent correctly recognizes
the target grasping object from multiple objects despite
occlusion, understands the important areas for grasping
(dumbbell handle, etc.), and controls the end-effector.

3) EVALUATION BY GRASPING SUCCESS RATE OF TARGET
OBJECT
To confirm the effect of the mask-attentionmodule andmask-
attention loss on the control performance of the agent in the
robot manipulation task. In this experiment, we confirm the
effectiveness by the grasping success rate of the dumbbell
to be grasped. The grasping success rates with and without
Mask-attention module and Mask-attention Loss are shown
in Table 6. The grasping success rate is the average of
1,000 episodes of evaluation of the trained model. The
success rate of the model without the mask-attention modules
(PPO) was 54.58, while the success rate with mask-attention
modules was 55.91, an improvement of 1.33 pt. The success
rate of the model with the mask-attention module (Mask
PPO) was 55.91, while the success rate of the Mask PPO
with Mask-attention Loss was 56.18, an improvement of
0.27 pt. These results indicate that the introduction of
the Mask-attention module and Mask-attention Loss has
improved the performance of the robot by recognizing the
areas that are important for optimal robot control.

From the above visual explanation of mask-attention and
the evaluation of grasping success rate in robot manipulation,
we confirmed that our method is effective not only in 2D
environments such as video game strategies, but also in 3D
environments such as robot control.

I. INTERPRETABILITY EVALUATION OF MASK-ATTENTION
BASED ON AGENT BEHAVIOR PREDICTION BY USERS
In this section, we evaluate the interpretability of
mask-attention by investigating whether mask-attention is a
map that can be understood for users.
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TABLE 7. Average correct answer rate and ‘‘unknown’’ answer rate to the
agent’s behavior prediction questions: w/o attention is teaching with
RGB images only.

1) VERIFICATION METHOD
In this experiment, we verify whether users can understand
the agent’s behavior when taught using mask-attention, our
proposed method. As a comparison, we also verify the
teaching method without a gazing area and the teaching
method with a saliency map based on Greydanus et al.
method [10]. The teaching method without a gazing area is
teaching using only RGB images, which are the agent’s input
information. In this experiment, a total of 51 participants
were divided into three groups based on the teaching method,
and they answered two types of questions. The first is a
question about predicting the agent’s behavior. This question
asks the participants to predict the agent’s behavior in a
given frame from the map shown in the teaching method for
each group, and to answer the question in the choice format.
The answer choices are the actions that the agent could
take in the task, and ‘‘unknown’’ is added. The participants
choose ‘‘unknown’’ if they cannot determine the agent’s
behavior from the given information. The second is a question
about the prediction of the target grasping object. This
question asks the agent to predict which of three objects
(dumbbells, plastic wrap, tennis ball case) it is trying to
grasp, and to answer the question in the choice format. This
is the question for the robot manipulation task, and will be
answered after the behavior of agent prediction question in
the robot manipulation. The verification process is described
below.

1) The 51 participants were divided into 3 groups (17
participants per group) based on the teaching method.
Each group is described below.

• w/o attention: No indication of gazing area,
teaching by RGB image.

• Greydanus et al.: Teaching with saliency map of
Greydanus et al..

• Ours: Teaching with mask-attention of our method
introducing Mask-attention Loss.

2) The participants are prompted to understand what the
task is by watching a video with a description of
each task. In order to limit themselves to understanding
the taskwithout teaching, we use a demonstration video
with random control (i.e., we don’t use demonstrations
by trained agents).

3) The participants answer the agent’s behavior prediction
questions (10 questions per task, 30 questions for all
tasks) indicated by the teaching method for each group,
in a choice format.

FIGURE 11. Details of the answers to the prediction questions of the
grasps target object.

4) The participants perform all tasks 2) and 3) (video
game: 3 tasks, robot manipulation: 1 task). After
answering all the questions in the robot manipulation
task, the participants answer the prediction questions
for the target grasping object.

5) We analyze the interpretability of each teachingmethod
based on the correct answer rate of the agent’s behavior
prediction questions and the correct answer rate of the
grasped object prediction questions by participants in
each group.

A high percentage of correct answers to these questions
indicates that the user can understand the agent’s behavior
from the map used for teaching. In other words, the map is
highly interpretable to the user.

2) VERIFICATION RESULTS
We analyze the interpretability of the maps used for each
teaching method from the correct answer rates to the two
types of questions. Table 7 shows the average correct answer
rate and the percentage of ‘‘unknown’’ answers for question
about agent behavior prediction. A high average correct
answer rate indicates that the map used for teaching is a
map that correctly represents the agent’s behavior, and a low
percentage of ‘‘unknown’’ answers indicates that the map
is easy for the user to read the agent’s behavior. Therefore,
it can be considered that the visual explanation method
of the agent with a better evaluation value by the two
metrics has a higher interpretability for the agent’s behavior.
Comparing the correct answer rates for video games and robot
manipulation, the correct answer rate for robot manipulation
is consistently lower for all teaching methods. The robot
manipulation is a 3D environment that requires more depth
information consideration than video games, and the action
space of the agent is vast. Therefore, the correct answer
rate for robot manipulation was lower than that for video
games. Ours had the highest correct answer rate for all tasks
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at 66.02%, and the lowest rate of ‘‘unknown’’ at 2.5%.
These results indicate that mask-attention (Ours) enhances
users’ understanding of agent behavior and serves as a
highly interpretable visual explanation method for the agent
model. On the other hand, Greydanus et al.’s method had
a lower correct answer rate than w/o attention and a higher
percentage of ‘‘unknown’’ answers. The results indicate that
the Greydanus et al.’s method is less interpretable than mask
attention and provides incorrect information for the users.

Figure 11 shows the details of the answers to the prediction
questions regarding the target grasping object. Here, the
target grasping objects of the agent model in all teaching
methods are ‘‘dumbbells’’. That is, the correct answer to this
question is dumbbells. In w/o attention, 47.1% of participants
answered dumbbells, but 29.4% of participants answered
unknown. From this result, it can be concluded that the
w/o attention teaching was not sufficient to determine which
object was the object to be grasped, since only RGB images
were used. In Greydanus et al., 41.2% of participants chose
dumbbells, while responses for plastic wrap and tennis ball
case ranged between 20 − 30%, showing scattered answers.
In contrast to this result, Ours has a high correct answer rate
as 94.7% of participants answered dumbbells. Therefore, the
mask-attention in Ours demonstrates high interpretability in
understanding the agent’s grasping object, attributable to the
constraints imposed by the mask-attention loss.

From these results, we confirmed that the mask-attention
module and mask-attention loss enhance the interpretability
of mask-attentions, effectively indicating the behavior of the
agent model.

V. CONCLUSION
In this paper, we focus on two perspectives: policy and
state value, in order to clarify the basis for judgments
about the agent model’s behavior in the framework of
deep reinforcement learning. Then, we proposed Mask
Attention A3C (Mask A3C), a visual explanation method
for DRL agents based on the Actor-Critic method. Mask
A3C implements an attention mechanism for policy and state
value, which are output branches of the Actor-Critic method,
and generates mask-attention that highlights significant
regions associated with each branch’s outputs. Since policy
represents the probability distribution of the action selection
and state value represents the value of the current state, these
are important elements in the decision-making of a DRL
agent. Therefore, visualization of the mask-attention enables
us to visually explain the reason for the agent’s decision
from both policy and state value perspectives. At the same
time, applying the Mask-attention Loss prevents the agent
from gazing at areas that do not affect its decision-making
during learning, thus improving the interpretability of the
mask-attention. Experimental results with the video game and
robot manipulation show that the mask-attention represents
an important regions for interpreting the agent’s decision-
making. To our knowledge, this is the first study to analyze
DRL agents from two perspectives: policy and state value.

In our study, we focused on policy and state value, but the
simple structure of our mask-attention module allows for
its application to other DRL methods, including value-based
DRL algorithms in addition to Actor-Critic methods.

The threshold value for selecting the pseudo-maskatt in
Mask-attention Loss and the introduction step need to be
set to optimal values for the task. In the future, we plan to
conduct detailed investigations into these hyperparameters.
Also, a large number of studies on interpretability focusing
on the decision-making of DRL agents have realized visual
interpretations of DRL agents’ decisions. Thus, these studies
face challenges that the interpretation of a DRL agent’s
gazing map is received differently by different users.
Therefore, we consider it necessary to develop a method to
explain the agent’s decision-making in natural language.
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