
Received 5 May 2024, accepted 10 June 2024, date of publication 18 June 2024, date of current version 28 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3416087

Evaluate Canary Deployment Techniques Using
Kubernetes, Istio, and Liquibase for Cloud
Native Enterprise Applications to Achieve
Zero Downtime for Continuous
Deployments
ANTRA MALHOTRA 1, (Senior Member, IEEE), AMR ELSAYED2,
RANDOLPH TORRES3, AND SRINIVAS VENKATRAMAN4
1System Engineering, Network Systems–Shared Platforms and Product, Verizon, Temple Terrace, FL 33637, USA
2System Architecture, Network Systems–Shared Platforms and Product, Verizon, Temple Terrace, FL 33637, USA
3Technical Strategy, Network Systems–Shared Platforms and Product, Verizon, Temple Terrace, FL 33637, USA
4System Engineering, Network Systems–Shared Platforms and Product, Verizon, Basking Ridge, NJ 07920, USA

Corresponding author: Antra Malhotra (antra.malhotra@verizon.com)

This work was supported by the Shared Platforms and Product Organization, part of Network Systems in Verizon.

ABSTRACT To cater to the changing needs of the businesses, enterprises are adopting processes that allow
rapid iteration and feedback loop. Today, development teams work closely with the business leveraging
agile methods to gather feedback, assess the impact of the changes and deploy changes in a short duration.
By taking advantage of themicroservices architecture (MSA), largemonolithic code is logically broken down
into microservices that can be developed, deployed and scaled independently. Applications are leveraging
containerization and orchestration technologies along with microservices architecture to package, deploy
and manage the code across different environments. The underlying infrastructure and agile processes need
to be supported with robust methods to perform code integration and deployments without any service
disruption. This paper provides a qualitative assessment of the following code deployment techniques (i)
Recreating Deployments (ii) Rolling Deployment (iii) Blue-Green Deployment (iv) Canary Deployment.
This assessment can guide enterprises to identify the right code deployment strategy that can be adopted
based on the business use case. Next, the paper dives deeper on how the in-built capabilities of Kubernetes
along with open-source tools like Istio can be leveraged successfully to implement canary deployments
for service changes. The paper presents a novel technique for performing canary deployments whereby
service and database changes can be promoted to production by leveraging Istio and Liquibase along with
load balancer without incurring any downtime for the application. The paper provides a complete canary
deployment reference architecture that can be adopted by enterprises pursuing zero downtime for continuous
deployments.

INDEX TERMS Zero downtime code deployments, canary deployment, high availability, cloud computing.

I. INTRODUCTION
Zero downtime deployment means that a new code or bug fix
is deployed and made available to the users without incur-

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

ring any application downtime or service interruption. The
deployments are seamless for the user and their experience
is maintained throughout the update process as explained
in [1]. Such a deployment strategy enables more frequent
changes to be deployed. Modern applications are anchored
on the microservices architecture where the application is

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 87883

https://orcid.org/0009-0003-1658-9075
https://orcid.org/0000-0001-9315-1788


A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

made of independent, loosely coupled services. This mod-
ular design helps with faster development cycles, but it
also increases the complexity of the application. Given the
ever-changing needs of the business, enterprise organizations
are looking for opportunities to simplify and optimize the
software delivery lifecycle. There is a growing demand to
adopt the right techniques to successfully integrate, test and
deploy the code without any service disruption. Hence, the
paper provides a qualitative assessment of the different code
deployment methods to help the enterprise organizations
to adopt the right strategy based on the business use case
and requirement. In addition, the paper evaluates the canary
deployment technique for service changes using Kubernetes
gateway API (Application Programming Interface) and Istio
service mesh. The paper does a deep dive on canary deploy-
ment and proposes a novel technique to rollout changes both
for services and database without incurring any application
downtime. The technique explained in this paper can also
be applied for rolling back changes if not certified. Orga-
nizations struggle to maintain zero downtime for database
changes and to mitigate this challenge, the paper provides a
complete reference architecture that organizations can adopt
to achieve true zero downtime using canary deployment
technique.

A. CONTINUOUS INTEGRATION AND CONTINUOUS
DEPLOYMENT
Continuous Integration and Continuous Deployment (CI &
CD) are important practices implemented as part of the soft-
ware development lifecycle to improve the software delivery
process. The workflow shared in the Fig. 1 below shows
the steps involved for performing continuous integration and
deployment. For integration, code need to be checked into a
common repository and then using the automation the new
code is merged with the existing code. As part of integration,
regression and progression test cases are executed for quality
assurance. This process promotes a high level of accountabil-
ity amongst the developers as the code is scanned for any
quality issues, vulnerabilities and functional testing is per-
formed prior to the code merge. While continuous integration
focuses on automating the build and test processes to ensure
quality and consistency in the code, continuous deployment is
focused on automating the process of deploying code changes
to test, staging and production environments. The process
for continuous integration and deployment is also explained
in [2] and [3].

FIGURE 1. Process flow of a continuous integration and continuous
deployment pipeline.

Now, in the absence of the continuous integration and con-
tinuous deployment practices, the code changes are manually
promoted in the test environment for validation. The changes
are manually version controlled using systems like Git. The
code is built using tools like Maven, Gradle and then com-
piled in a Java ARchive (JAR) or Web Application Archive
(WAR) file. During the deployment, production instances
are stopped and at times backed up to serve as a rollback.
These activities incur a downtime and the existing code files
are replaced with the new build. This approach is manual,
linear, slow and requires a downtime for the application. This
may work for small, less complex projects and when the
business is able to manage the downtime and longer release
cycles. However, that is no longer the case with modern
enterprises as they are looking for zero downtime for code
deployments and zero failure rate. The survey of the various
practices conducted by S. Bobrovskis and A. Jurenoks in [4]
suggests that modern businesses and software development
practices are striving for zero downtime. Zero downtime for
code deployments can be calculated as the time difference
between when the code is committed to the time the code
is available in production. Similarly, zero failure rate can be
calculated as the number of failure transactions out of the total
transactions processed. The experience created by errors in
production post releases and its impact on user experience is
well explained in a roundtable discussion mentioned in [5].
It is ideal to keep the difference to zero and also the failure
rate to zero when organizations are working towards zero
downtime experience for the business.

There is ongoing research on various code deployment
strategies and methods to achieve zero downtime. Big giants
like Facebook, Netflix have been constantly upscaling their
DevOps strategy for zero downtime as explained in [6]. There
has been research done on comparing the various techniques
to perform Blue/Green deployments. C.K. Rudrabhatla in
the paper [7] explores the different techniques to perform
zero downtime deployments and then simulates blue/green
deployment for a research project using DNS swap, load
balancer and newer image switch techniques. Similarly,
in another paper [8] Bo Yang and other authors have
explored the opportunity to perform service discovery based
blue/green deployments for better performance. Jez Humble
and Dave Farley in their book on Continuous Delivery [9]
introduced the concept of achieving zero downtime with
canary deployments. Alexander Tarvo and other authors in
their paper [10] elaborated on canary testing and introduced
this tool called Canary Advisor to monitor the deployed
versions of an application and detect any degradation for
performance and scalability. Ernst and other authors in their
paper [11] proposed an approach to actively control the
request distribution to shorten the time a canary runs for
collecting the results. Nichil Stresser compares the different
canary deployment tools in the master’s thesis [12]. Similarly,
in another paper [13] the authors have explored the concept
of multi-cloud deployments using Kubernetes with Istio and
monitoring tools like Prometheus and Grafana. Given all

87884 VOLUME 12, 2024



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

the work done, it is ascertained that deployment techniques
hold a strong relevance for cloud native applications striving
towards zero downtime.

In this paper the focus is on providing a complete ref-
erence architecture for canary deployments. This reference
architecture provides a novel technique for performing canary
deployments using Istio, Liquibase and load balancer to show
how both services and database changes can be deployed and
rolled back without incurring any downtime.

B. KEY CONTRIBUTIONS OF THE PAPER
The paper introduces novel techniques to overcome the tech-
nical challenges associated with system unavailability during
code deployments and database upgrades or changes.

1) MAINTAINING ZERO DOWNTIME FOR MICROSERVICE
CHANGES
An application has to regularly stay updated and manage ser-
vice changes for rolling out new features, enhancement or for
applying security patches. Maintaining downtime for service
changes and upgrades is important for seamless operations
and customer experience. The paper explains the different
deployment strategies that can be adopted by the organiza-
tions for managing the application level changes. The paper
does a deep dive on canary deployments and shows how lever-
aging service mesh and Kubernetes gateway API, the traffic
can be redistributed from the old version of the application
to the new version of the application without incurring any
downtime. In a canary deployment, a new service version
is exposed to an early sub-segment of the users with the
objective to certify the new functionality prior to making it
available for the entire user base. The paper acknowledges
that the challenge with maintaining zero downtime with the
deployment strategies discussed is that while these strategies
can be applied for microservice changes, these strategies are
not successful in maintaining downtime for database updates.
In case of microservices there can be multiple versions of the
microservices (old and new) running to ensure zero down-
time, however to manage database schema changes whilst
keeping the multiple microservices of the applications run-
ning is not feasible.There is no support offered by Kubernetes
to make the old and new version of the database schema avail-
able along with the application. The paper discusses the novel
technique that overcomes the technical challenges associated
with maintaining zero downtime for database changes.

2) MAINTAINING ZERO DOWNTIME FOR DATABASE
CHANGES
An application uses data that is stored in databases main-
tained within a cloud computing environment. Certain
applications may read data from the database, while other
applications may write data to the database. When the
database is being upgraded, the existing database that utilizes
the database are taken offline. Once an upgraded version of
the database is deployed within the cloud computing environ-
ment, the applications are provided access to the upgraded

database. This results in downtime for the application and
its users. The paper explains a progressive rollout strategy
that suggests that during database upgrade, incoming requests
can be routed to the new version of the database and some
percentage of the requests can be routed to the old version
of the database. The requests are gradually moved to the new
version of the database and the modifications to the different
versions of the database are then synchronized with the use
of triggers that are used to propagate changes between the
different versions of the database in order to keep the database
versions in-sync.

3) MAINTAINING ZERO DOWNTIME FOR BOTH
MICROSERVICE AND DATABASE CHANGES
The technique proposed in this paper advances the approach
and technique of canary deployments by having both old
and new versions of the application along with their schema
versions to coexist with each other. The pattern used and
tested here can support data-intensive applications for high
availability without replicating the database. Similarly, the
technique supports single or multiple databases as well as sin-
gle or multiple schemas or even multiple databases with mul-
tiple schemas. The solution presented in this paper involves
combining Istio which is a service mesh with Liquibase
which is a database schema version control tool along with
load balancer and traffic router to rollout the changes to a
subset of users or servers without incurring any downtime.

Conventional upgrade techniques take an application and
database offline during upgrade. This leads to unacceptable
downtime for the application users. The upgraded application
and database are not available for use until the deployment is
complete and fully validated. The technique explained in this
paper will enable the application and database upgrades to be
completed and validated without incurring any downtime.

In the following Section II, the paper explains the history of
continuous integration and deployment process and how the
software development and delivery landscape has evolved to
meet the changing needs of the business. Section III covers
the various building blocks that enterprise organizations can
adopt for implementing continuous deployment techniques.
Section IV provides a qualitative evaluation of the different
continuous deployment methods (i) Recreating Deployments
(Purge) (ii) Rolling Deployment (iii) Blue-Green Deploy-
ment (iv) Canary Deployment. The qualitative evaluation
helps to assess the right code deployment strategy that can
be adopted for achieving zero downtime. Section V presents
a deep dive on canary deployment by explaining the canary
deployment workflow and introduces the Kubernetes gate-
way API and open-source technologies that can be leveraged
for managing application-level changes. In Section VI, the
paper does a comparison between two techniques to perform
canary deployment and evaluates the most efficient way to
perform canary deployment for application changes. The two
techniques discussed in this section perform canary deploy-
ment with Kubernetes gateway API and service mesh and
another technique that involves use of service mesh only.

VOLUME 12, 2024 87885



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

In Section VII, the paper expands the techniques compared in
Section VI to also include managing database changes with-
out incurring any downtime. This section provides a complete
reference architecture that can be leveraged by enterprise
organizations for incorporating canary deployments for man-
aging zero downtime for both application and database
changes. The last Section VIII, gives a summary of the paper
and draws inferences based on the techniques discussed.

II. HISTORY AND RELATED WORKS
The early days of software development were associated
with small and isolated teams. Code was written without
much standardized practices and the software development
life cycle followed a linear sequence where the phases of
requirements, design, development, testing, implementation
and maintenance were managed sequentially. Developers
worked in silos and code was merged from different teams
leading to integration challenges. This phase was character-
ized by manual deployment and lack of automation. In 1991,
Grady Booch advocated frequent use of classes and objects in
programming to simplify software design and this concept of
object that enabled abstraction for complex software systems
is further explained in [14]. Grady’s intent was more on
simplifying the design rather than promoting frequent soft-
ware changes. However, in 1997 Extreme Programming was
introduced and it recognized the need to improve software
quality and responsiveness to the changing business needs.
Extreme Programming introduced peer programming, shorter
release cycle, code reviews, unit testing and user acceptance
testing as explained in [15]. Eventually, these steps formed
an integral part of the software development lifecycle. Other
methodologies like Scrum, Kanban, were introduced with a
common goal to build better quality software and release
it to the business within a shorter time frame. The effects
of these methodologies on software development are further
explained in [16] and these methods played a big role in
establishing various agile frameworks for software delivery.
While the software industry recognized that it was important
to deliver software more quickly, there was a lack of adequate
tools and automation in place to do so. In 2001, CruiseControl
was introduced and this was a game changer as it automated
builds, testing and commits to a version control system. This
enabled continuous integration and also helped in identifying
any integration conflicts early in the process. During the
late 2000’s, the concept of continuous deployment started
to take shape with the introduction of tools like Jenkins.
Jenkins not only enabled automated testing but also auto-
mated deployment to staging environments. Configuration
management and ability to consistently and repeatedly deploy
to environments was made possible with the help of tools
like Puppet and Chef. In the mid-2010’s the new applica-
tions were being built using the microservices architecture,
where services could be independently developed, tested and
deployed. Next came the rise of cloud computing, container-
ization technologies like Docker and container orchestration
platforms like Kubernetes. These technologies introduced

self-managed, self-hosted code integration and deployment
tools that are able to operate with cloud environments and can
be integrated with services for observability and analytics.
The Fig. 2 below shows a complete timeline of evolution
of continuous integration and continuous deployment tech-
niques leading to modern day containerization. The history
of continuous integration, deployment and overall software
engineering is further discussed in [17] and [18]. The latest
development with microservices architecture and container-
ization is oriented towards keeping the application downtime
minimum, detect issues early on in the process and leverage
automation and version control practices.

FIGURE 2. Timeline of evolution of continuous integration and
continuous deployment leading to modern day containerization.

In this paper we will review the code deployment methods
to understand the pros and cons associated with these meth-
ods. These techniques will be qualitatively evaluated based
on performance, user experience and cost. The evaluation
will help organizations to understand the right technique
that can be adopted based on the business use case. Even
though, from a technology perspective we have come a long
way in managing continuous integration and deployment.
However, keeping zero downtime is still a challenge when
there are application and database schema changes involved.
Most of the organizations are challenged to perform database
upgrades and maintain zero downtime as these changes
could be sensitive, time consuming and can compromise the
data integrity if not done properly. The paper provides a
novel technique to perform canary deployment using Istio,
Liquibase and load balancer for both service and database
changes. Using this technique, applications can maintain zero
downtime during code deployments. The paper presents a
complete reference architecture for canary deployments that
can be adopted to maintain zero downtime for both services
and database changes or upgrades.

III. BUILDING BLOCKS FOR CONTINUOUS DEPLOYMENT
This section of the paper elaborates on the building blocks
for implementing continuous deployment techniques. These
best practices can help enterprise organizations build a robust
deployment pipeline to deliver the software faster, frequently
and without any service interruption. These building blocks
are important for achieving zero downtime architecture and
are leveraged by the canary deployment technique discussed
in this paper for service and database changes.

A. MODULAR DESIGN
Themodular design of the application based onmicroservices
architecture enables the application to run and manage the
services as independent components that are loosely coupled

87886 VOLUME 12, 2024



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

together. Each service can be managed, deployed, updated
and scaled independently. This transition from monolithic
to microservices architecture and emergence of modularity
in software design is explained in [19], [20], and [21]. One
service does not share any code or implementation with
another service. In microservices architecture as provided in
Fig. 3 below, the monolithic pattern of writing the code is
broken down into smaller chunks for easy maintainability.
Prior to microservices, when the applications were written as
one big piece of monolithic code and multiple teams worked
on the same piece of code base, it was extremely difficult to
merge code. Every time a new change had to be deployed,
all the changes needed to be queued, integration conflicts
resolved, functional testing done for the entire application.
Finally, the entire application had to be released as all the
new and old code was bundled together as one unit. Thus,
in a non-microservices architecture, release management is
challenging and requires a lot of coordination across teams.

FIGURE 3. A comparative view between monolithic and microservices
based architecture.

B. CONTAINERIZATION
In a traditional deployment scenario, the operating system is
running on hardware and the applications or software runs
on top of the operating system using the common libraries
and dependencies. When an upgrade or a change is needed
for the application, there are conflicts due to the intertwined
libraries and dependencies. However, in a containerized envi-
ronment, a ‘container engine’ helps to package the libraries
and dependencies as one container. These containers provide
a runtime environment where developers can build, test and
execute the code bundled in one package. This runtime envi-
ronment includes the application with all its dependencies,
libraries, binary files and other configuration files needed
to run the application. ‘Docker’ is an open-source container
engine platform that manages containers. Each container sits
on top of a container engine (Docker), which in turn sits
on top of an operating system. The Fig. 4 below shows the
transition of the infrastructure architecture from traditional
deployments to containerized deployments and it is further
explained in the references [22], [23], [24], [25], [26], [27].
In case of a modern application, containers allow you to inde-
pendently deploy services into separate containersmaking the

maintenance process more efficient. The containers can be
easily moved from one machine to another and hence they
can help with easy deployment of applications to multiple
environments.

FIGURE 4. A comparative view between traditional, virtualized and
containerized deployment.

C. GRACEFUL SHUTDOWN
Graceful shutdown requires that all in-flight tasks are com-
pleted, resources released properly before the system shuts
down. Usually, an application is handling multiple parallel
requests from concurrent users and hence it is important to
have a certain method to address these inflight requests to
prevent data loss and service disruption. Once the server
shutdown is initiated, any new incoming requests are rejected
and the server shuts down once the last pre-existing request
is completed.

FIGURE 5. A client service communication showing the handling of
incoming and new requests when the shutdown is initiated.

The Fig. 5 shows the process of shutdown between the
client and server and how the requests are handled when
a shutdown is initiated. In case of continuous deployment,
having a graceful shutdown can ensure a smooth transi-
tion from one version of the application to another [28],
[29], [30], [31]. Data integrity of the inflight transactions is
maintained by gracefully shutting down the application or
else if in-flight transactions are lost or partial requests are
completed this will lead to service disruption and poor user
experience.

VOLUME 12, 2024 87887



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

D. LOAD BALANCER
A load balancer is responsible for distributing the application
traffic across identical servers. In a continuous deployment
environment, a load balancer can help move the incoming
requests to the server with the old version while the new ver-
sion is getting deployed on another server. Similarly, if there
are issues encountered with the new version, load balancer
can move the traffic back to the old version. Load balancers
can also help with splitting the traffic to specific versions of
the application and this helps to stabilize the new version of
the software before making it available for general use. Load
balancing is also important for scalability as based on the
volume of the incoming traffic the new servers can be added
or removed from the load balancer to manage traffic. Load
balancing is an integral part of cloud computing and there
are many techniques introduced to manage load in a cloud
environment as explained in [32] and [33] to take advantage
of economies of scale. This overall helps with reliability and
scalability of the application. The Fig. 6 below shows how the
load balancer is managing the traffic across the servers.

FIGURE 6. A load balancer managing the incoming traffic amongst
various application servers.

E. HEALTH CHECKS AND TRAFFIC ROUTING
Health checks and routing traffic dynamically are an exten-
sion of the load balancing. When the load balancer is
distributing requests to the servers, it can make informed
decisions on routing the traffic based on the health checks
performed for the servers. This ensures that traffic is always
diverted to the healthy servers and there is no service dis-
ruption. Load balancing is essential for efficient operation
in distributed environments [34]. These health checks can
be user initiated whereby the load balancer checks for the
health before sending the traffic and then if a particular
instance of the server is not responding, the load balancer

will mark that instance as unavailable and will send the traffic
to other available instances. Similarly, load balancer can do
such frequent checks on an alternate end point of the server,
these checks are not user initiated and then based on the
checks the servers can be made unavailable until back up
again to receive traffic. Similarly, dynamic routing can help
with seamless transition of the traffic from the old to the new
version. It supports controlled testing of the new versions
of the software by gradually releasing the traffic to the new
versions. The health checks and dynamic routing go hand in
hand with load balancing. The Fig. 7 below shows the load
balancer managing traffic amongst the different instances
based on the health checks. This is integral to the success of
continuous deployments and supports application availability
and reliability.

FIGURE 7. A load balancer managing the incoming traffic based on
health checks.

The building blocks shared in this section will be lever-
aged in the solution discussed in this paper for achieving
zero downtime during deployment of services and database
schema changes.

IV. DEPLOYMENT STRATEGIES
Kubernetes provides a framework for container management
and orchestration. It manages the scaling of the pods, failover
and deployment patterns as mentioned in [35]. Applications
deployed in Kubernetes can take advantage of using the
out of box deployment strategies to achieve zero downtime
during an upgrade or maintenance window and the [36]
by Domingus and Arundel can be referred to understand
how the applications can be built, deployed and scaled in a
cloud environment. To perform a qualitative analysis on the
code deployment techniques, the paper considers a container-
ized enterprise cloud-native application. This Application (1)
has a sample microservice (A) deployed in a Kubernetes

87888 VOLUME 12, 2024



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

environment and replicated on multiple pods for scalability
and high availability.

A. RECREATING DEPLOYMENT (PURGE)
The Application (1) is considering a complete revamp of its
microservice (A) version 1 and introducing user interface
changes. In this scenario, recreating deployments is used to
replace the existing deployment of the service with the new
version. This is done by shutting down the existing pods and
resources and replacing themwith a version 2 of microservice
(A) running on a different set of pods. There will be downtime
as the old instances are stopped prior to bringing up the new
instances. The downtime is a function of the time it takes to
shut down the old and then bring back the new instances.
Any required configurations will have to be applied to the
new service before initiating the new deployment. The new
instances should be validated and tested prior to making it
available to the entire user base. The Fig. 8 below shows
recreating deployments and how the user traffic is moved to
the new instances of the application and the old instances are
shut down. Such deployments are usually done to manage
major releases that involve significant changes to the software
or when the application is not capable of handling continuous
deployment.

FIGURE 8. Recreating deployment where the traffic is moved 100% to the
new Application version and old instances of the pods are shutdown.

B. ROLLING DEPLOYMENT
The Application (1) is making a change to its microservice
(A). With rolling deployments, the pods running the older
version 1 of the service can be replaced with a newer version
2 while continuing to service the clients. In order to achieve
this, a deployment file is created with a configuration about
the number of pods to be created at the time of deployment
(also known as replica set). Deployment is triggered when
the image in the deployment file is updated from version 1 to
version 2 for microservice (A). New pods are created pointing
to the new image and gradually the old pods are terminated
based on the positive health check of the new pods. As the
new pods start to come up, traffic is diverted to the new pods.
The Fig. 9 shows rolling deployments where the pods running
with the old version of the service are replaced with the new

version of the service. For the users the transition is seamless
as there is no downtime and the traffic gradually moves from
the old pods to the new pods and eventually all the old pods
are terminated or replaced with the new pods.

FIGURE 9. Rolling deployment where the pods running with the old
version of the service are replaced with the new version while continuing
to service the clients.

C. BLUE/GREEN DEPLOYMENT
While the rolling update provides the flexibility to upgrade
the service without any service disruption, however the user
experience can be poor if the new change that is rolled out
is not functionally aligned with the user expectations or it
is not able to handle real-life traffic leading to performance
degradation. To avoid this scenario, the Application (1) can
deploy using the Blue/Greenmethod by creating two identical
environments, where ‘Blue’ is the version 1 ofmicroserviceA
running in production and ‘Green’ is the new version 2 avail-
able in a parallel production environment but it is not live yet.
The traffic from the ‘Blue’ environment for microservice A
version 1 is moved to microservice A version 2 in the ‘Green’
environment after the new version is fully tested. The ‘Blue’
version can stay on a standby mode until the new version is
stabilized. Blue/GreenDeployment requires two exact similar
instances of the environment running to support existing and
the new version of the code. The traffic can be routed using
application load balancers, routers or a reverse proxy. The
Fig. 10 shows Blue/Green deployment where the 100% traffic
is moved from old to the new version.

FIGURE 10. 100% traffic is moved to a new instance in green and blue
instance can be turned down once the new version is stabilized.

VOLUME 12, 2024 87889



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

D. CANARY DEPLOYMENT
Canary gives the advantage of making the changes available
to a certain set of users for validation and only once certified
the new changes can be rolled out for the entire user base.
This approach gives the flexibility to validate the changes for
performance and stability prior to enabling the new changes
to the entire user base. Application (1) has microservice (A)
version 1 running in production as a ‘stable’ version and
a new version 2 is introduced. A percentage of users or
specific users can be identified as a ‘canary group’ and the
new version of the application can be deployed only for this
subset of users. The performance and functionality of the new
version can be tested and once stabilized the new version of
the microservice (A) can be made available to the entire user
base. If issues are detected in the new version, rollback is easy
as the entire traffic can be rolled back to the stable version.
The Fig. 11 below shows how the initial 20% traffic is sent to
the canary version and once validated 100% traffic is moved
to the canary version.

FIGURE 11. 20% traffic is sent to the canary version and once validated
100% traffic is diverted to Canary version post validation.

To summarize, below is the qualitative assessment of
the four deployment techniques (i) Recreating Deployment
(ii) Rolling Deployment (iii) Blue/Green Deployment (iv)
Canary Deployment. The assessment is based on: Lead time
for changes, Cost and User Experience. The deployment
techniques are assessed as ‘High’Medium’ and ‘Low’ against
these parameters based on the qualitative assessment Lead
time is the function of the time taken to deploy the changes,
commit to production and then the time taken to rollback the
changes. Cost is assessed based on the resource utilization
during the code deployment process and User Experience is
the outcome of any service disruption experienced during the
deployment. Enterprise organizations striving towards zero
downtime deployments should work towards maintaining a
low lead time for changes, operational cost associated with
the deploymentmethod should be low and the user experience
should not be impacted due to any service disruption. The
Table 1 below captures the qualitative assessment for the four
deployment techniques explained in this section.

The qualitative assessment indicates that canary deploy-
ments fare well compared to other techniques and can be a
potential tool for enterprises striving towards zero downtime
deployments. As there has been limited research done on
how canary deployments can be used for achieving zero
downtime, the next section of the paper will evaluate canary

TABLE 1. Qualitative assessment of the deployment techniques.

deployment techniques for managing service changes using
Kubernetes gateway API and Istio service mesh. The paper
will then extend the technique evaluated to also perform
database schema changes along with service changes without
incurring any application downtime. The reference architec-
ture provided in this paper for canary deployments can serve
as a blueprint for enterprises striving for zero downtime code
deployments.

V. CANARY DEPLOYMENT WORKFLOW AND
TECHNIQUES
Canary deployments require a way to manage traffic so the
workloads can move successfully from the old version to
the canary version. It also requires observability built in to
assess the effectiveness of the canary version. The workflow
outlined in Fig. 12 below shows the decision-making process
throughout the canary deployment.

FIGURE 12. Decision making workflow to manage traffic for Canary
deployments.

Kubernetes provides in-built features to orchestrate the
traffic and also scale the instances based on the incom-
ing traffic. However, for canary deployments that involve
application and database changes, the in-built features of
Kubernetes are not adequate and should be supported by
open-source tools like Liquibase, Istio and load balancer to
achieve true zero downtime for the application. CNCF (Cloud
Native Computing Foundation) and the CDF (Continuous
Delivery Foundation) shelters open-source competitive tools
to improve enterprise’s ability to deliver software with speed
and security. Details about the open-source tools and the
process to manage the tool is further explained in [37] and
[38]. In this section, the paper elaborates on the Kubernetes
services and explains the reason to introduce open-source
tools to perform canary deployments.

87890 VOLUME 12, 2024



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

A. SERVICES
Elaborating on the Kubernetes capabilities to enable zero
downtime, a pod is the smallest deployable unit in Kubernetes
and it consists of multiple containers running on a cluster.
Kubernetes has a set of services that can be used to expose a
set of pods running the application instances to the external
world or even for internal communication amongst the pods
within a cluster. Usually, pods are deployed with multiple
replicas of the application instance for scalability and reli-
ability. However, the pod gets a new IP address every time a
pod is replaced due to failure or a new one added to manage
the workloads. Hence, the Kubernetes services provides the
abstraction for a stable IP address and DNS name to facilitate
external and pod-to-pod communication. Network policies
can be applied to manage traffic to the pods and how the
pods communicate to each other. There are different types
of services offered by Kubernetes that can be utilized based
on the use case. These different types of services are Clus-
terIP, NodePort and LoadBalancer [39]. ClusterIP enables
the service to be reachable by other pods within the cluster
by assigning its own IP address. NodePort will expose the
service on a static port on each node’s IP address. This
allows the services to be accessible from outside the cluster.
LoadBalancer will create an external IP and then manage
traffic to either NodePort or ClusterIP. For the purpose of
this assignment, we have used ClusterIP and LoadBalancer
service in our setup.

B. LEVERAGING OPEN-SOURCE TECHNOLOGIES
Now, given the understanding of the different deployment
strategies and Kubernetes service capabilities, if canary
deployment had to be performedwhere VersionA is the stable
version and Version B is the canary version then perform-
ing canary deployment using Kubernetes native capabilities
comes with challenges due to the way Kubernetes cluster
works from a traffic routing perspective.

Kubernetes does not provide the capability to perform
rolling update deployment with Version B of the service and
expect that Version B will remain up and running. This is
because the way Kubernetes rolling updates work is that for
a single deployment, Version A will have as many replicas
scaled and then once Version B replicas are introduced and
stabilized, Version B replicas will become primary and Ver-
sion A replicas will be turned down. In order to perform
this exercise, two separate deployments of the same service
will have to be performed. Now, if two separate deployments
are used for each version then each deployment will have
its own auto-scaler which is a good concept when both the
deployments need to be kept available. However, this imposes
a gap for canary deployment where 90% traffic needs to be
diverted to Version A deployment and 10% traffic to Version
B deployment. This kind of traffic distribution cannot be
achieved as each deployment will have its own auto-scaler
running in silo from the other version and it will scale up only
based on its load. Thereby giving very little opportunity to

control traffic segmentation for each version. Hence, manual
scaling will be needed for Version A to be at 9 replicas and
Version B to be at 1 replica. Now, this is a tedious process
as every time the replica count will have to be readjusted
based on the traffic. So, even if a single deployment or two
deployments are used, it will not help as there is a fundamen-
tal gap with Kubernetes because it uses instance scaling to
manage traffic version distribution and replica deployments.
Hence, a better solution is required to manage canary deploy-
ment and open-source tools like Istio [40], [41] that offer
solution for managing scaling of the pods, introduce the use
of VirtualService and DestinationRule objects to decouple
traffic distribution from deployment replicas by using an
application load balancer level controller that does the heavy
lifting of traffic splitting without having to deal with replicas
ratio challenge. Hence, for the purpose of this paper canary
deployment for service changes will be executed using two
options. Option 1 involves performing canary deployment
using Kubernetes gateway API and Istio service mesh and
option 2 involves performing canary deployment using Istio
service mesh only. This evaluation will show howKubernetes
frameworkwhen augmented with these open-source tools can
enable zero downtime deployments for service changes.

VI. EVALUATE CANARY DEPLOYMENT TECHNIQUE
This section will cover the metrics collected when canary
deployment is executed for service changes with Option
1 using Kubernetes gateway API and Istio service mesh and
then Option 2 using only Istio service mesh. The deployment
methods are evaluated based on performance, efficiency and
any failures reported. To be able to measure the deployments
based on these criteria the parameters identified include Time
taken for tests, Requests per second, Time per concurrent
requests and Number of failed requests. The Table 2 below
captures the formula for the metrics identified for comparison
and this is also referenced in [42].

TABLE 2. Metrics for canary deployment test runs.

A docker desktop enabled with Kubernetes single-node
cluster is set up to execute the canary deployment. The Table 3
below elaborates on the namespaces created to apply gateway
configurations.

A spring boot containerizedmicroservice ‘HelloStats’ with
basic health check and spring boot actuator HTTP endpoint

VOLUME 12, 2024 87891



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

TABLE 3. Kubernetes namespaces for the deployment.

APIs is used for canary deployment. There are two different
helm chart configurations implemented for this application
one for supporting Kubernetes gateway API and Istio service
mesh. The other for supporting Istio service mesh without
Kubernetes gateway API. Each helm chart defined consists of
two deployments - productionDeployment (replica count 2)
and canaryDeployment (replica count 2). Kubernetes service
definition, Istio destination rule and Istio virtual service are
defined for both stable and canary service versions of the
application. The microservice ‘HelloStats’ can auto scale by
increasing the number of maximum and minimum replicas
based on compute utilization and requests per seconds thresh-
old. It is always advisable to run multiple instances of pods
to ensure that there is enough capacity to serve requests. The
environment configuration applied for this exercise include
Port Forward to add istio-injection enabled labels to the ‘Hel-
loStats’ application namespaces. These configurations are
applied for the Istio proxy container sidecars to be injected in
runtime to properly route traffic and balance requests weight
per configuration between the canary and the stable service
versions of the application.

The concurrency level is set to 10 for both the runs
and 1000 HTTP requests are sent to the stable version at the
start of the test and then the traffic is moved in the intervals
of 10%, 40%, 90%, 100 % from stable to canary version.
The Fig. 13 below shows the movement of traffic from stable
to canary version. Once, the canary version is completely
validated with 100% traffic, the stable version is upgraded
to V2 using rolling updates and all the traffic is moved to the
new upgraded stable version.

FIGURE 13. Workload moving from stable to canary version.

A. IMPLEMENTATION AND RESULTS
The reference architecture for Option 1 includes setting up
the Kubernetes gateway API and service mesh as explained
in Fig. 14 below.

The Table 4 below has the configurations for the canary
deployment executed using Kubernetes gateway API and
Istio service mesh. Table 5 captures the pipeline phases for
the stable version V1 upgraded to the stable version V2 using
Kubernetes gateway API and Istio service mesh.

FIGURE 14. Canary deployment using kubernetes gateway API and
service mesh.

TABLE 4. Configuration for kubernetes gateway API and Istio.

The metrics of the test run executed using Kubernetes
gateway API and Istio as service mesh are captured in the
Table 6 below.

The second run for the canary deployment is set up with
only Istio servicemesh. Theworkloads aremoved from stable
to canary version leveraging the service mesh setup. The
reference architecture for option 2 with Istio service mesh is
provided in the Fig. 15 below

The Table 7 below has the configurations for the canary
deployment executed using Istio service mesh. The Table 8
captures the pipeline phases for the stable version V1
upgraded to the stable version V2 using Istio service mesh.

The metrics of the second test run executed using Istio
service mesh are captured in the Table 9 below:

B. OBSERVATIONS
As next steps to conclude the findings, the timings collected
from both the runs mentioned in Table 6 and Table 9 is plotted

87892 VOLUME 12, 2024



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

TABLE 5. Pipeline phases for kubernetes gateway API and Istio.

FIGURE 15. Canary deployment using service mesh.

in the graph shown in Fig. 16 below. The graph shows the
metrics collected for the time taken for tests, time per request
and time per concurrent requests. These numbers do not show
any vast variation between the two techniques. The other
important criteria considered is number of failed requests.
For both the test runs completed using different techniques,
there were no failed or interrupted requests. It was observed
that the number of requests handled per second increased or
doubled when the implementation had only service mesh.
For the test run using Kubernetes gateway API and service
mesh, the implementation handled approx. 6.58 requests per
second and then for the test run using service mesh alone, the
implementation handled approx. 13.15 requests per second.

The two test runs were completed using weightage-based
routing. To accomplish this, ‘DestinationRule’is defined to
provide the subset version of the application - v1 and v2.

TABLE 6. Metrics for kubernetes gateway API and Istio.

Next, to distribute the traffic ‘VirtualService’ has the weights
specified to move the workloads between v1 and v2.

An application can opt for either of two options explained
here for the test run. It is evident that there is not a major
variation from a metrics perspective so choosing the option
that works best will be driven by the nature of the appli-
cation architecture. Kubernetes gateway API is responsible
for managing the ingress and egress traffic from external

VOLUME 12, 2024 87893



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

TABLE 7. Configuration for Istio service mesh setup.

TABLE 8. Pipeline phases For Istio service mesh.

sources. On the other hand, service mesh is responsible for
internal traffic between the services (east-west). When only
Istio service mesh is used, there is an in-built ingress API
gateway for external traffic that can be leveraged. If the
application is looking for simpler architecture with lesser
hand-offs, then leveraging only Istio service mesh is doable,
however the application will not be able to take advantage of
the additional features like logging, observability and track-
ing that are offered by Kubernetes gateway API. In the test
run, the number of requests handled per second were double
when we only had Istio service mesh and it reduced by 50%
when we had Kubernetes gateway API introduced. However,
if the application is keen on decoupling the functions for
managing ingress and egress traffic then Kubernetes gateway
API should be set up so there is a clear separation of function-
ality. This will increase the maintenance for the application;
however, the application will be able to better leverage the
additional features.

The test runs conducted in this section were limited to
service changes and the complexity increases with the intro-
duction of the database schema changes. The technique
presented in the next section elaborates on how the test
runs conducted can be executed to include both services and
database schema changes. The next section also provides a
complete reference architecture for the canary deployments.

TABLE 9. Metrics for Istio service mesh.

VII. CANARY WITH DATABASE CHANGES
Applications built using the microservices architecture lever-
age relational databases. Any change to the table structure,
table definitions and schema requires execution of the
statements using DDL (Data Driven Language) and this
leads to downtime. So, while multiple deployment strategies
have addressed the challenges of maintaining zero down-
time for service changes, there is limited work done to

87894 VOLUME 12, 2024



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

FIGURE 16. Graph with metrics for Canary deployments with Kubernetes
Gateway API and Service Mesh and with Service Mesh alone.

achieve zero downtime for database schema changes. In this
section of the paper, we will elaborate further on the canary
deployment technique and use Liquibase, Istio and load
balancer to perform database schema changes without any
downtime.

A. ENVIRONMENT SETUP AND IMPLEMENTATION
The technology stack that is used in the implementa-
tion includes Kubernetes for hosting multiple versions of
applications as containers. Ingress to balance the traffic
weightages across the multiple versions of the applica-
tion to realize canary deployment pattern and Istio ser-
vice mesh. Liquibase to manage different versions of the
database schema sets. Liquibase is an open-source tool used
for tracking, logging and managing database changes as
explained in [43] and [44].

Liquibase is leveraged to support Database Change Man-
agement. The property value ‘expand’ for the Liquibase
controller is used to introduce new schema changes with-
out removing the old changes. The old schema changes
will be removed when services are deployed with the ‘con-
tract’ property value and when 100% of the traffic goes
to the new version of the service. The intricacies of per-
forming database schema changes are further explained
in [45] and [46].

The technique aims to achieve zero downtime when both
services and database schema changes have to be deployed as
a single transaction. The microservice code fully manages the
database schema. Application code and schema changesets
are deployed in a single repository for better service mainte-
nance and this also eliminates the need for separate database
support or specific deployment pipelines to manage database
change deployment in a silo.

The technique leverages the concept of ‘contexts’ sup-
ported by Liquibase to distinguish the expanded state of the
application where both old and new schema changes have
to exist together to serve both stable and canary versions
of the application during the canary deployment phases.
The technique explained here uses Liquibase to manage
the different versions of the database. The ‘changesets’ are
used in this implementation to manage database version
control. Changesets are defined in a changelog as a col-
lection of individual changes which are used to track and
apply database schema changes. The microservice code uses
the Liquibase maven plugin to perform rollout and rollback
operation to a specific version tag. The ‘context’ prop-
erty value is sent as a JVM argument at the start of the
application and the Liquibase changeset files are marked
with context as ‘contract’ or ‘expand’ attribute. The change-
sets will be executed depending on the context value that
matches the different stages of the deployment pipeline
Also, the implementation utilizes a spring configuration
class called Liquibase configuration with a task executor
to ensure that the microservice startup fails if Liquibase
changes runs into integrity issues and are not able to suc-
cessfully perform the required changes. This enables early
recognition of any potential deployment issues related to the
database.

To execute the technique, the microservice version V1 is
deployed as step 1. Liquibase executes the database change-
sets associated with the version V1 of the code as the
microservice comes up on the Kubernetes cluster. This repre-
sents the stable deployment of the microservice version V1.
In step 2, microservice version V2 is deployed as a canary
release. Liquibase will maintain the old and new schema
associated with the microservice version V1 and V2. This
will enable the microservice version V1 to remain up and
running servicing a portion of the segmented traffic. The
microservice version V2 is deployed with Liquibase context
property to expand so that version V1 of the application does
not break due to the introduction of the new schema changes.
In step 3, the new microservice version V2 introduced as
a canary release is validated and once certified, step 4 is
executed where the user traffic is gradually shifted to the
new microservice version V2. In step 5, the microservice
version V1 is phased out and microservice version V2 is
deployed as the new stable version. The Liquibase context
property is updated as ‘contract’ and this will trigger the
underlying database changesets that will do the necessary
cleanup to remove the changesets in place to serve microser-
vice version V1. Finally, in step 6 the complete user traffic

VOLUME 12, 2024 87895



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

is transitioned to the new stable application version V2. This
entire technique employs an expand and contract strategy for
managing database schema changes with Liquibase handling
the different database versions.

FIGURE 17. Illustration of the Contract/Expand method.

The Fig. 17 below provides a visual representation of the
contract and expand pattern and Table 10 maps the deploy-
ment phases to the contract and expand pattern.

TABLE 10. Deployment pipeline phases correlated with liquibase.

In the previous section, the paper evaluated techniques
to perform canary deployments for services changes using
Kubernetes gateway API and Istio service mesh. In this
section, the paper elaborates the technique to manage
database schema changes along with services changes with-
out incurring any application downtime. The paper shows
how uniquely the expand and contract pattern can be extended
for canary deployments leveraging tools like load bal-
ancer and Liquibase for database version management. The
complete reference architecture for canary deployment is
provided in Fig. 18 below.

FIGURE 18. Reference architecture for Canary deployments including
services and database schema changes.

B. ZERO DOWNTIME COMPLMENTING PRIVACY AND
SECURITY FOR CLOUD COMPUTING
The zero downtime technique discussed in this paper
can be leveraged by enterprise organizations for software
development and delivery. In addition, the zero downtime
technique can also complement and enhance the effective-
ness of recent schemes like privacy-preserving reputation
updating (PPRU) scheme for cloud-assisted vehicular net-
works [47], time-controllable keyword search scheme [48]
and privacy-preserving spatial data query in cloud com-
puting [49]. Zero downtime deployment can enable con-
tinuous updates to the privacy-preserving reputation updat-
ing (PPRU) system without interrupting its operation. The
reputation scores can be updated without incurring any
downtime and this enhances the reliability and accuracy
of the reputation system in vehicular networks. Leveraging
the canary deployment technique discussed in this paper, the
privacy-preserving reputation updating (PPRU) system can
be updated gradually and any potential issues or vulnerabili-
ties can be identified and addressed early, minimizing the risk
of failures in the process. Similarly, zero downtime practices
can facilitate iterative improvements to the time-controllable
keyword search scheme which is designed for secure and
privacy-preserving keyword search operations. This function-
ality helps in accessing medical records and documents or
information stored in the cloud repository. Real-time dynamic
policy updates can be made to enhance the responsiveness of
the scheme to changing user preferences and access rights.
Similarly, continuous optimizations can be applied to pri-
vacy preserving spatial data query in cloud computing. These
queries contain sensitive location information and allow orga-
nizations to analyze spatial data without revealing precise
location details of individuals. The zero downtime technique
discussed in this paper can help to keep the query latest and
be able to apply dynamic updates with incurring any data or
service loss.

87896 VOLUME 12, 2024



A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

The schemes discussed in this section are used for main-
taining the privacy and security for critical domains like
vehicular network and health care. These schemes need reg-
ular updates and any downtime may lead to loss of data
that otherwise needs to be dynamically updated in real-time
Hence, the zero downtime technique discussed in this paper
can complement these schemes in a cloud computing envi-
ronment.

VIII. CONCLUSION
The paper summarizes the building blocks necessary for
applications to support zero downtime code deployments.
The paper provides a qualitative assessment of the differ-
ent code deployment techniques that the business can use
to identify the right strategy as per the use case and busi-
ness requirements. Based on the qualitative assessment, the
paper dives deeper on the canary deployment techniques.
The paper performs evaluation of the canary deployment
technique for the service changes using Kubernetes gateway
API and Istio service mesh. It is evident from the evaluation
that either of the techniques can be applied and decision
for choosing between the two techniques should be driven
by the application architecture and whether the business
functions require to use the additional capabilities offered
by the Kubernetes gateway API like logging and traceabil-
ity. Kubernetes in-built features are not adequate to achieve
true zero downtime for deployments that involve both ser-
vices and database schema changes. Hence, the paper takes
canary deployment a step further and covers how zero down-
time deployment for service and database schema changes
can be achieved. The novel technique implemented in this
paper shows how the concept of ‘contract’ and ‘expand’
can be used along with tools like Liquibase, Istio and load
balancer to achieve zero downtime code deployments for
services and database schema changes. With this technique,
the paper mitigates the technical challenge in achieving
zero downtime for services and database schema changes.
The technique discussed in this paper enables zero down-
time code deployment for both services and database related
changes.

The paper covers the various aspects of the canary deploy-
ment to provide a complete reference architecture. The paper
elaborates on the canary deployment decision workflow and
shows that canary deployments offer the flexibility to eas-
ily rollback the changes if any issues are encountered with
the new version. Canary deployments can be implemented
without running multiple parallel environments and this can
also help in lowering the operational expense for orga-
nizations working towards zero downtime architecture for
code deployments. The paper has not covered the integra-
tion of the technique explained here with the deployment
pipeline. It will be ideal to have a single step dedicated
in the pipeline process for promoting the database schema
changes, however this paper does not capture that pro-
cess in detail. Enterprise organizations can use this paper
as a reference architecture to build the process related

to canary deployments for achieving zero downtime code
deployments.

ACKNOWLEDGMENT
The authors would like to acknowledge the contribution
of these team members toward the study and implemen-
tation of best practices for high availability and near zero
downtime experience. The study related to zero downtime
code deployments for cloud native enterprise applications
was conducted as part of the Verizon initiative to build
resilient, highly available, and cloud native applications
under the leadership of Sebastien Jobert [Executive Direc-
tor with Verizon (e-mail: sebastien.jobert@verizon.com)]
and Ashuma Singh Kaul [Executive Director with Ver-
izon (e-mail: ashuma.s.kaul@verizon.com)]. Application
Development Engineer: Deepak Kumar; DevOps Engi-
neers: Yaswanth Nadella and Ruban Sathyamoorthy; and
Verizon India Partners: Saranya Kumaraguruparan and
Ritu Sharma.

REFERENCES
[1] M. Tuovinen. (2023). Reducing Downtime During Software Deployment.

Open Access Res. Papers. Accessed: Nov. 27, 2023. [Online]. Available:
https://core.ac.uk/download/pdf/250163188.pdf

[2] K. Gallaba, ‘‘Improving the robustness and efficiency of continu-
ous integration and deployment,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2019, pp. 619–623, doi: 10.1109/
ICSME.2019.00099.

[3] M. Meyer, ‘‘Continuous integration and its tools,’’ IEEE Softw., vol. 31,
no. 3, pp. 14–16, May 2014, doi: 10.1109/MS.2014.58.

[4] S. Bobrovskis and A. Jurenoks. (2023). A Survey of Continuous Inte-
gration, Continuous Delivery and Continuous. Accessed: Nov. 26, 2023.
[Online]. Available: https://ceur-ws.org/Vol-2218/paper31.pdf

[5] B. Adams, S. Bellomo, C. Bird, T. Marshall-Keim, F. Khomh, and K.Moir,
‘‘The practice and future of release engineering: A roundtable with three
release engineers,’’ IEEE Softw., vol. 32, no. 2, pp. 42–49, Mar. 2015, doi:
10.1109/MS.2015.52.

[6] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,
‘‘Continuous deployment at Facebook and OANDA,’’ in Proc. 38th Int.
Conf. Softw. Eng. Companion, May 2016, doi: 10.1145/2889160.2889223.

[7] C. K. Rudrabhatla, ‘‘Comparison of zero downtime based deployment
techniques in public cloud infrastructure,’’ in Proc. 4th Int. Conf. I-SMAC,
IoT Social, Mobile, Anal. Cloud (I-SMAC), Oct. 2020, pp. 1082–1086, doi:
10.1109/I-SMAC49090.2020.9243605.

[8] B. Yang, A. Sailer, S. Jain, A. E. Tomala-Reyes,M. Singh, andA. Ramnath,
‘‘Service discovery based blue-green deployment technique in cloud
native environments,’’ in Proc. IEEE Int. Conf. Services Comput. (SCC),
Jul. 2018, pp. 185–192, doi: 10.1109/SCC.2018.00031.

[9] J. Humble and D. Farley,Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Reading, MA, USA:
Addison-Wesley, 2015.

[10] A. Tarvo, P. F. Sweeney, N. Mitchell, V. T. Rajan, M. Arnold, and
I. Baldini, ‘‘CanaryAdvisor: A statistical-based tool for Canary testing
(demo),’’ in Proc. Int. Symp. Softw. Test. Anal., Jul. 2015, pp. 418–422,
doi: 10.1145/2771783.2784770.

[11] D. Ernst, A. Becker, and S. Tai, ‘‘Rapid Canary assessment through proxy-
ing and two-stage load balancing,’’ in Proc. IEEE Int. Conf. Softw. Archit.
Companion (ICSA-C), Mar. 2019, pp. 116–122, doi: 10.1109/ICSA-
C.2019.00028.

[12] N. Strasser. (2023). An Evaluation of Canary Deployment Tools.
Accessed: Nov. 27, 2023. [Online]. Available: https://pub.fh-campuswien.
ac.at/obvfcwhsacc/content/titleinfo/8874850/full.pdf

[13] V. Sharma, ‘‘Managing multi-cloud deployments on kubernetes with
istio, prometheus and grafana,’’ in Proc. 8th Int. Conf. Adv. Com-
put. Commun. Syst. (ICACCS), vol. 1, Mar. 2022, pp. 525–529, doi:
10.1109/ICACCS54159.2022.9785124.

VOLUME 12, 2024 87897

http://dx.doi.org/10.1109/ICSME.2019.00099
http://dx.doi.org/10.1109/ICSME.2019.00099
http://dx.doi.org/10.1109/MS.2014.58
http://dx.doi.org/10.1109/MS.2015.52
http://dx.doi.org/10.1145/2889160.2889223
http://dx.doi.org/10.1109/I-SMAC49090.2020.9243605
http://dx.doi.org/10.1109/SCC.2018.00031
http://dx.doi.org/10.1145/2771783.2784770
http://dx.doi.org/10.1109/ICSA-C.2019.00028
http://dx.doi.org/10.1109/ICSA-C.2019.00028
http://dx.doi.org/10.1109/ICACCS54159.2022.9785124


A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

[14] G. Booch, ‘‘Object-oriented development,’’ IEEE Trans. Softw.
Eng., vol. SE-12, no. 2, pp. 211–221, Feb. 1986, doi: 10.1109/TSE.
1986.6312937.

[15] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change. Reading, MA, USA: Addison-Wesley, 2012.

[16] H. Lei, F. Ganjeizadeh, P. K. Jayachandran, and P. Ozcan, ‘‘A statistical
analysis of the effects of scrum and Kanban on software development
projects,’’ Robot. Comput.-Integr. Manuf., vol. 43, pp. 59–67, Feb. 2017,
doi: 10.1016/j.rcim.2015.12.001.

[17] J. Hall. (2021). A Brief History of CI/CD. Jonathan Hall Blog. Accessed:
Nov. 27, 2023. [Online]. Available: https://jhall.io/archive/2021/09/26/a-
brief-history-of-ci/cd/

[18] G. O’Regan, ‘‘History of software engineering,’’ in A Brief History of
Computing. NY, USA: Springer, 2021, pp. 201–225, doi: 10.1007/978-3-
030-66599-9_16c.

[19] A. Malhotra, A. Elsayed, R. Torres, and S. Venkatraman, ‘‘Evaluate solu-
tions for achieving high availability or near zero downtime for cloud native
enterprise applications,’’ IEEE Access, vol. 11, pp. 85384–85394, 2023,
doi: 10.1109/ACCESS.2023.3303430.

[20] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, ‘‘The structure and
value of modularity in software design,’’ in Proc. 8th Eur. Softw. Eng. Conf.
9th ACM SIGSOFT Int. Symp. Found. Softw. Eng., Sep. 2001, pp. 99–108,
doi: 10.1145/503209.503224.

[21] L. De Lauretis, ‘‘From monolithic architecture to microservices architec-
ture,’’ in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISSREW),
Oct. 2019, pp. 93–96, doi: 10.1109/ISSREW.2019.00050.

[22] S. Hardikar, P. Ahirwar, and S. Rajan, ‘‘Containerization: Cloud computing
based inspiration technology for adoption through Docker and kuber-
netes,’’ in Proc. 2nd Int. Conf. Electron. Sustain. Commun. Syst. (ICESC),
Aug. 2021, pp. 1996–2003, doi: 10.1109/ICESC51422.2021.9532917.

[23] V. G. D. Silva, M. Kirikova, and G. Alksnis, ‘‘Containers for virtualization:
An overview,’’ Appl. Comput. Syst., vol. 23, no. 1, pp. 21–27, May 2018.

[24] M. Aleksic. (2023). Containerization vs. Virtualization? Understand
the Differences. Accessed: Nov. 27, 2023. [Online]. Available: https://
ubuntu.com/blog/containerization-vs-virtualization

[25] J. Watada, A. Roy, R. Kadikar, H. Pham, and B. Xu, ‘‘Emerging trends,
techniques and open issues of containerization: A review,’’ IEEE Access,
vol. 7, pp. 152443–152472, 2019, doi: 10.1109/ACCESS.2019.2945930.

[26] (2023). What’s the Difference Between Containers and Virtual
Machines? Accessed: Nov. 27, 2023. [Online]. Available: https://aws.
amazon.com/compare/the-difference-between-containers-and-virtual-
machines/

[27] Azure Fundamentals: Exam AZ-900, 30 Bird Media, Rochester, NY, USA,
2020.

[28] Y. Zhang. (2023). Graceful Shutdown Services in Kubernetes. Thought-
works. Accessed: Nov. 27, 2023. [Online]. Available: https://www.
thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-
kubernetes

[29] P. Welch. Graceful Termination—Graceful Resetting. Accessed:
Feb. 3, 2024. [Online]. Available: https://kar.kent.ac.uk/20953/1/
GracefulWelch.pdf

[30] Y. Zhang. Graceful Shutdown Services in Kubernetes. Accessed:
Nov. 27, 2023. [Online]. Available: https://www.thoughtworks.com/en-
us/insights/blog/cloud/shutdown-services-kubernetes

[31] Harness Developer Hub. (2023). Graceful Delegate Shutdown. Accessed:
Nov. 27, 2023. [Online]. Available: https://developer.harness.io/
docs/platform/delegates/delegate-concepts/graceful-delegate-shutdown-
process/

[32] M. Rahman, S. Iqbal, and J. Gao, ‘‘Load balancer as a service in cloud
computing,’’ in Proc. IEEE 8th Int. Symp. Service Oriented Syst. Eng.,
Apr. 2014, pp. 204–211, doi: 10.1109/SOSE.2014.31.

[33] N. Malik and A. Malik, ‘‘Survey of load balancing algorithms and per-
formance evaluation in cloud computing,’’ in Proc. Int. Conf. Commun.
Comput. Syst. (ICCCS), Nov. 2016, doi: 10.1201/9781315364094-195.

[34] J. Rodela. (2023). What is Dynamic Routing, and How Does it
Work? Accessed: Nov. 26, 2023. [Online]. Available: https://gomotive.
com/blog/what-is-dynamic-routing/

[35] G. Menachem. Kubernetes Deployment: How it Works & 5
Deployment Strategies. Accessed: Nov. 27, 2023. [Online]. Available:
https://komodor.com/learn/kubernetes-deployment-how-it-works-and-5-
deployment-strategies/

[36] J. Domingus and J. Arundel,Cloud Native DevopsWith Kubernetes: Build-
ing, Deploying, and Scaling Modern Applications in the Cloud. Beijing,
China: O’Reilly, 2022.

[37] What is Open Source? Accessed: Nov. 27, 2023. [Online]. Available:
https://opensource.com/resources/what-open-source

[38] F. P. Deek and J. A. MacHugh, Open Source: Technology and Policy.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

[39] G. Sayfan, Mastering Kubernetes Master the Art of Container Manage-
ment By Using the Power of Kubernetes. Birmingham, AL, USA: Packt
Publishing, 2018.

[40] (2023). ISTIO. Accessed: Nov. 2, 2023. [Online]. Available: https://istio.io/
[41] Google. What is ISTIO? Accessed: Nov. 2, 2023. [Online]. Available:

https://cloud.google.com/learn/what-is-istio
[42] Apache HTTP server benchmarking tool. (2023). Apache HTTP Server

Benchmarking Tool. Accessed: Nov. 2, 2023. [Online]. Available:
https://httpd.apache.org/docs/2.4/programs/ab.html

[43] PETE. The LIQUIBASE Community: The Database DevOps Community.
Accessed: Nov. 27, 2023. [Online]. Available: http://www.liquibase.org/

[44] Liquibase: Database Change Management & CI/CD Automation |
Database DevOps. Accessed: Nov. 27, 2023. [Online]. Available:
http://www.liquibase.com/

[45] J.-J. Dijkstra. Zero-Downtime Schema Changes. Accessed: Nov. 27, 2023.
[Online]. Available: https://research.utwente.nl/en/publications/zero-
downtime-schema-changes

[46] C. Kampen. Zero Downtime Schema Migrations in Highly
Available Databases. Accessed: Nov. 27, 2023. [Online]. Available:
https://essay.utwente.nl/92098/1/vanKampen_MA_EEMCS.pdf

[47] Z. Liu et al., ‘‘PPRU: A privacy-preserving reputation updating scheme for
cloud-assisted vehicular networks,’’ IEEE Trans. Veh. Technol., pp. 1–16,
2024, doi: 10.1109/tvt.2023.3340723.

[48] Y. Miao, F. Li, X. Li, Z. Liu, J. Ning, H. Li, K. R. Choo, and R. H. Deng,
‘‘Time-controllable keyword search scheme with efficient revocation in
mobile E-health cloud,’’ IEEE Trans. Mobile Comput., vol. 23, no. 5,
pp. 3650–3665, May 2024, doi: 10.1109/TMC.2023.3277702.

[49] Y. Miao, Y. Yang, X. Li, L. Wei, Z. Liu, and R. H. Deng, ‘‘Effi-
cient privacy-preserving spatial data query in cloud computing,’’ IEEE
Trans. Knowl. Data Eng., vol. 36, no. 1, pp. 122–136, Jan. 2024, doi:
10.1109/TKDE.2023.3283020.

[50] R. Jeyaraj, A. Balasubramaniam, N. Guizani, and A. Paul, ‘‘Resource man-
agement in cloud and cloud-influenced technologies for Internet of Things
applications,’’ ACM Comput. Surv., vol. 55, no. 12, pp. 1–37, Mar. 2023,
doi: 10.1145/3571729.

ANTRA MALHOTRA (Senior Member, IEEE)
was born in Delhi, India. She received the first
master’s degree in business and finance from
Mumbai University, Mumbai, India, in 2006, and
the second master’s degree in computer science
from Georgia Institute of Technology, Atlanta,
USA, in 2022.

She is currently with Verizon Network Systems
Team, Temple Terrace, FL, USA, as an Associate
Director–Software Development. She is responsi-

ble for the application development and software delivery for the big data
platforms that provide intelligent location services, product availability, and
network data collection framework. Prior to joining Verizon, she was with
Hutchison 3G U.K., Mumbai, India; and Acclaris (product based company),
Tampa, FL. She is a Guest Faculty with the Hillsborough Community
College–ICCE for teaching cloud concepts and technologies. Her area of
research and work involves cloud technologies, application stability, and big
data management.

87898 VOLUME 12, 2024

http://dx.doi.org/10.1109/TSE.1986.6312937
http://dx.doi.org/10.1109/TSE.1986.6312937
http://dx.doi.org/10.1016/j.rcim.2015.12.001
http://dx.doi.org/10.1007/978-3-030-66599-9_16c
http://dx.doi.org/10.1007/978-3-030-66599-9_16c
http://dx.doi.org/10.1109/ACCESS.2023.3303430
http://dx.doi.org/10.1145/503209.503224
http://dx.doi.org/10.1109/ISSREW.2019.00050
http://dx.doi.org/10.1109/ICESC51422.2021.9532917
http://dx.doi.org/10.1109/ACCESS.2019.2945930
http://dx.doi.org/10.1109/SOSE.2014.31
http://dx.doi.org/10.1201/9781315364094-195
http://dx.doi.org/10.1109/tvt.2023.3340723
http://dx.doi.org/10.1109/TMC.2023.3277702
http://dx.doi.org/10.1109/TKDE.2023.3283020
http://dx.doi.org/10.1145/3571729


A. Malhotra et al.: Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase

AMR ELSAYED was born in Cairo, Egypt.
He is a technology geek. He currently holds

the position of a Distinguished Engineer–Data Sci-
ence with Verizon, Temple Terrace, FL, USA.
He plays a pivotal role in providing innova-
tive solutions across Verizon’s Network Systems.
Before joining Verizon, he was with the IBM
Clients Innovation Center, where he honed his
skills and expertise in the technology field. His
diverse talents and dedications make him a valu-

able asset in the technology industry and a source of inspiration for aspiring
writers.

RANDOLPH TORRES was born in Miami, FL,
USA. He received the Bachelor of Arts degree in
science and computer science from Florida Inter-
national University, USA. He is currently with
Verizon Network Systems, Temple Terrace, FL,
and leads the architecture and technology strategy
for the Shared PlatformsOrganization. His respon-
sibilities range from AI/ML modeling to complex
architectures relating to high performance comput-
ing, data integration, and fault resilience. He has

contributed to Open Config and holds many patents for network systems in
production with Verizon.

SRINIVAS VENKATRAMAN was born in
Chennai, India. He received the Master of Engi-
neering degree from the Indian Institute of Science
in Metallurgy. He is currently a AVP–Software
Development, leading the Shared Platform Port-
folio for Verizon, New Jersey, USA. In his current
role, he manages suite of enterprise applications
and tools that facilitate service assurance. He is
passionate about technology and leads the tech-
nology recommendation group across network
systems.

VOLUME 12, 2024 87899


