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ABSTRACT Non-uniform low-light images, characterized by complex lighting conditions, pose a
significant challenge in image restoration and enhancement, particularly under backlit scenarios where
the high-brightness background obscures the foreground information. Existing methods struggle with
the diverse illumination factors across different scenes. To overcome this, we introduce a novel deep
reconstruction network designed specifically for enhancing non-uniform low-light images. This network
leverages the feature representation of uniform natural images, employing the dark channel of the
absorption light scattering model (ALSM) to estimate and enhance facial features. Furthermore, the
reconstruction process is optimized through the posterior constraint of uniform image characteristics,
leading to superior detail enhancement. Our approach has been rigorously tested on both synthetic and
real-world images, demonstrating its effectiveness in addressing the complexities of non-uniform low-light
image enhancement. The results illustrate a notable enhancement, boosting PSNR by 3.37dB and SSIM by
0.0579 compared to recent methods, with a particular focus on enhancing facial feature details. The code
link is https://github.com/zbysygdsghh/face-relight.

INDEX TERMS Face image enhancement, non-uniform low-light images, deep learning, ALSM.

I. INTRODUCTION
During the process of shooting, low lighting is often
encountered due to environmental factors. Particularly in
complex lighting conditions, the images can exhibit non-
uniform low-exposure states. For example, when facing the
backlight source [1], dealing with complex light sources,
or other similar situations, the critical foreground faces
cannot be effectively identified, as depicted in Fig. 1(a).

Existing illumination enhancement algorithms, such as
those based on histogram correction or fusion techniques,
find it challenging to achieve satisfactory enhancement in
such scenarios. Consequently, several enhancement methods
are difficult to achieve desirable enhancement for handling
these complex scenes as some approaches [2].

In addressing this issue, non-uniform illumination
enhancement algorithm [3] offers the analysis of the
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process of the changing illumination. These algorithms
incorporate adaptive implementations of multi-illumination
state enhancement [4] or image lighting analysis [5]
during the image enhancement process. The adaptive
illumination enhancement algorithms primarily employ local
and global techniques, utilizing multiple exposure intensities,
to dynamically and optimally enhance the scene. This
adaptive approach ensures that the image is processed in a
way that best enhances the overall visual quality.

The illumination analysis approaches primarily concen-
trate on utilizing image filters, such as the Naturalness
Preserved Enhancement algorithm (NPE) [6] and the Prob-
abilistic Method for Image Enhancement (SEIR) [7], or deep
networks to analyze pixel intensities within the image based
on the tools dealing with images [8]. However, when dealing
with backlit images, a notable lighting contrast between
the foreground object and the background is observed.
Unfortunately, in many instances, the foreground object
appears severely underexposed. As shown in Fig. 1(b), there
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FIGURE 1. (a) The scene of backlit images. In the presence of direct sunlight, the background of the scene becomes overexposed
while the foreground object appears underexposed due to glaring or diffuse reflections. Consequently, these complex lighting
conditions pose challenges in capturing important information in the foreground of backlit images. (b) The results of both the
compared methods and our proposed method for a real backlit image are presented. Among these methods, our approach
demonstrates superior performance in enhancing the details of the foreground faces.

are several challenges that hinder effective foreground object
recovery using adaptive enhancement techniques for backlit
images. Firstly, the significant contrast in brightness between
the foreground and background makes it difficult to achieve
satisfactory foreground recovery. In some cases, the recovery
process may lead to excessive exposure of the background,
resulting in an unnatural appearance of the image. Secondly,
the extremely low exposure of the foreground makes it
challenging to restore fine details in that area. Lastly,
when working with real images that lack sample labels
and significant variations in lighting conditions, it becomes
difficult to accurately and robustly represent the lighting
state through network training. Consequently, the existing
approaches prove ineffective in enhancing such backlit
images.

To tackle the aforementioned challenges, we propose
a non-uniform illumination enhancement algorithm that
utilizes dark channel analysis under complex illumination
conditions. Our approach aims to address three main
problems. Firstly, by understanding the formationmechanism
of backlit images, we leverage the dark channel to effectively
estimate the illumination distribution of low-quality images.
This allows us to achieve a more accurate representation of
the image’s state, even in the absence of explicit illumination
labels. Secondly, we unify the model of the dark channel with
a deep network to derive an enhancement algorithm. This
algorithm leverages facial feature representations to recon-
struct low-quality images, leading to improved overall image
quality. Lastly, we combine the presentation state of the image
under natural uniform illumination with the reconstructed
image’s posterior. We extract key features of the image using
a shared network and use these features to constrain the
illumination state and details of the reconstructed image,
further enhancing its visual quality.

Experimental results on both synthetic and real data have
shown that our method outperforms the state-of-the-art in the
enhanced images.

To sum up, contributions of the work are as follows:

1) We analyze the model ALSM through the formation
mechanism of backlit images of the actual scene, and
combine the dark channel prior and the brightness anal-
ysis of the low-quality image to realize the optimization
of the low-quality backlit images for face details.

2) We have effectively analyzed the dark channel rules and
data statistics of backlit face images in actual scenes,
summarized their presentation rules in images, and
effectively applied them to the deep learning network.

3) We build a deep learning network based on the
dark channel prior and the posterior constraints of
the uniform face feature representation, and realize
the reconstruction representation of low-quality backlit
images through the loss functions.

The remainder of the paper is organized as follows.
In Section II, we introduce some related works. Our method
is proposed in Section III. The experiments on synthetics and
real-world low-quality images are conducted in Section IV.
In Section V, we conclude our work.

II. RELATED WORK
A. LOW-LIGHT ENHANCEMENT
Low-light enhancement approaches, such as those proposed
byHan et al. [9] and Gao et al. [5], aim to improve the illumi-
nation and visibility of dark images. Albu et al. [10] proposed
the model based on recursive filtering and contrast stretching
techniques, driven by statistical measures of the image and
implemented under a logarithmic image processingmodel for
low-light enhancement. These approaches can be broadly cat-
egorized into two main types: Retinex decomposition-based
methods and deep learning-based methods. Retinex-based
methods, such as single-scale Retinex [11] and multi-
scale Retinex [12], employ Gaussian or bilateral filters to
effectively remove halo artifacts and enhance the overall
image quality. Other methods focus on manipulating both
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the illumination and reflectance layers to achieve more
impressive enhancement results.

Deep learning methods for enhancing low-light images
have been extensively studied. Wang et al. [13] reviewed
the main techniques of low-light image enhancement devel-
oped over the past decades, such as frequency-domain
methods, image fusion methods, defogging model meth-
ods and machine learning methods. In a recent study
by Yang et al. [14], an attempt was made to explore
semi-supervised learning techniques for low-light image
enhancement. The work proposed a deep recursive band
(DRBN) representation that served as a connection between
fully supervised and unsupervised learning frameworks,
thereby leveraging the advantages of both approaches.
In 2023, Wang et al. [15] introduced Low-Light Trans-
formerbased Network (LLFormer) with the axis-based
multi-head self-attention and cross-layer attention fusion
block for low-light enhancement. Taking into account the
semantic information of different regions, Wu et al. [16]
proposed a semantic-aware knowledge-guided framework
(SKF) that assisted a low-light enhancement model in
learning priors encapsulated in a semantic segmentation
model. Wang et al. [17] proposed the low-light image
enhancement framework based on virtual exposure, its
exposure control parameters are adaptively generated through
a statistical analysis of the low-light image, and a virtual
exposure enhancer constructed by a quadratic function is
applied to generate several image frames from a single input
image. Li et al. [18] proposed a knowledge distillationmethod
for low light image enhancement based on the teacher-student
framework, which realizes the student network learn the
knowledge of image enhancement under the supervision of
ground truth images and under the guidance of the teacher
network simultaneously.

To improve the application of the models, some unsu-
pervised methods are proposed for low-light enhancement.
For example, instead of directly learning an image-to-
image mapping as previous work, Guo et al. introduced
the unsupervised model Zero-Reference Deep Curve Esti-
mation (Zero-DCE) [3] for image illumination enhancement.
Jiang et al. [19] proposed an unsupervised generative adver-
sarial network, dubbed EnlightenGAN, that could be trained
without low/normal-light image pairs, which generalized
very well on various real-world low-quality testing images.
In 2023, Fu et al. [20] proposed the unsupervised Paired
Low-light Image Enhancer (PairLIE) that learned adaptive
priors from low-light image pairs as the Retinex theory,
and applied the priors to remove inappropriate features in
the raw image with a self-supervised mechanism for well
enhancement.

However, real-world low-quality images are frequently
subject to various complex degradation conditions. More-
over, these images often exhibit non-uniform brightness,
which further complicates the task of restoring low-quality
face images. As a result, effectively restoring real-world

low-quality face images under these challenging degradation
conditions remains a significant hurdle to overcome.

B. FACE RELIGHTING
To solve the backlit, many works [21], [22], [23], [24], [25],
[26], [27] have been proposed to improve or generate the
exposure state of the image. In [28], Xie et al. observed the
surface normal shapemodel to estimate an illumination image
for the relighting.

In Portrait Shadow Manipulation (PSM), Zhang et al. [29]
present a computational approach that gives casual photog-
raphers some of this control, thereby poorly-lit portraits to
be relit post-capture in a realistic and easily controllable
way. In [30], Wang et al. formulated the single image
relighting task and proposed a novel Deep Relighting
Network (DeepRelight) with scene reconversion, shadow
prior estimation, and re-renderered to form the required
estimation under the target light source. In recent work,
Hou et al. [31] proposed the differentiable algorithm for
synthesizing hard shadows of the face images based on
ray tracing, which was incorporated into the face relighting
model for complex illumination conditions.

However, the experimental results of the existing work
show that it is difficult to reconstruct ideal enhancement
results by relighting algorithms due to the special nature
of the backlit illumination state, or when the foreground
image is in an extremely low lighting state, where the image
enhancement is poor in the absence of prior knowledge.

C. NON-UNIFORM LOW-LIGHT ENHANCEMENT
Low-illumination image enhancement approaches [3], [5],
[32], [33], [34], [35] amplify illumination and improve
visibility of dark images. They are classified mainly into two
categories: Retinex decomposition-based [12], [36], and deep
learning-based [33], [37].
The above illumination enhancement methods can not

be applied to the non-uniform illumination scene directly,
and then some algorithms [5], [32], [38] are proposed to
fix such problem. instead of directly learning an image-to-
image mapping as previous work, the methods introduced
the multiple exposure illumination [4] for non-uniform
illumination images enhancement adaptively.

Wang et al. [32] introduced intermediate illumination
in our network to associate the input with the expected
enhancement result (DeepUPE), which augmented the net-
work’s capability to learn complex photographic adjustment
from expert-retouched input/output image pairs. In [1],
focusing on the fact that the intensity histogram of a
backlit image showed a characteristic bimodal distribution,
Ueda et al. proposed an image enhancement method for
single backlit images using histogram specification. In [39],
Li et al. proposed a low-light image enhancement method
based on the degradation model to overcome the complex
situations. In 2023, Wang et al. [15] introduced Low-Light
Transformerbased Network (LLFormer) with the axis-based

85726 VOLUME 12, 2024



B.-Y. Zhang et al.: Non-Uniform Low-Light Face Image Enhancement

multi-head self-attention and cross-layer attention fusion
block for low-light enhancement. To seek the results with
satisfied lighting, cleanliness, and realism from degraded
inputs, Guo and Hu [40] present a framework named
Bread for low-light enhancement, alleviating the degradation
entanglement.

Recently, several learning-based approaches have shown
significant improvements in general-purpose shadow detec-
tion and manipulation, as well as non-uniform low-light
enhancement. For instance, the dual hierarchically aggrega-
tion network (DHAN) [41], attentive recurrent generative
adversarial network (ARGAN) [42], and stacked con-
ditional generative adversarial network (ST-CGAN) [43]
were notable examples. These approaches had demonstrated
enhanced performance in shadow removal tasks.

When applying high and low brightness adaptive enhance-
ment or shadow removal techniques for image enhancement,
experimental results often indicate that the adaptive opti-
mization is inadequate. This can lead to unsatisfactory
foreground enhancement or overexposure of the back-
ground. Furthermore, due to insufficient reconstruction of
foreground details, effective image restoration cannot be
achieved.

D. DARK CHANNEL PRIOR AND IMAGE
UNIFORM POSTERIOR
As shown in Fig. 1, the backlit scene with a direct light
source generates a background state of high brightness, and in
some cases even in an over-exposed situation. The foreground
object can only receive weak light sources and diffuse
reflections due to problems, so the foreground object is in a
very low light state. The light contrast between the foreground
and the background also makes the state of the foreground
pixels, and it is almost impossible to identify the detailed
information.

The atmospheric scattering model (ASM) focuses on the
dehaze [44], [45], [46] and enhancement [47], [48], that is

I (x) = A · R(x)t(x) + A(1 − t(x)), (1)

where I is the observed low-quality image, and R is the
reflection of the scene, with x representing the pixels in the
image. A is the atmospheric light intensity, which can be seen
as the constant value. t is the light transmission parameter,
used to express the illumination state in our work. Inspired
by ASM, Wang et al. [49] proposed the model, ALSM for
low-light enhancement. In ALSM, J (x) = A · R(x) describes
the portion of atmospheric light that is directly reflected from
the scene, and it also can be seen as the target image. In a
backlit environment, t forms a special distribution because
the foreground object is affected by factors such as low
light and diffuse reflection. In Fig 1(a), the face is in the
low exposure due to the weak lighting source and lighting
absorption. Then we apply the model to the uniform low-light
face enhancement.

Inspired by the dark channel prior [45], in most outside
scenes, the dark channel tends to zero:

Jdark (x) = min
y∈�(x)

( min
c∈{R,G,B}

J c(y)) → 0, (2)

where J c is each channel of the color image, and�(x) denotes
a window centered on pixel x, representing the small area
around pixel point p in the window.
However, as argued, its statistical dark channel rules do

not apply to the blue sky, sea, or certain situations with high
exposure to direct light. The low-exposure foreground objects
still meet the statistical rules of the dark channel. We have
performed statistical analysis on a large amount of data and
found that there is a significant difference between the dark
channel statistics of the foreground and the background in
Fig. 4. The dark channel provides maximum classification of
the portion with different absorption rates.
Given this observation, we construct the data state of the

image from the dark channel, following

Idark (x) = Jdark (x)t(x) + A(1 − t(x)), (3)

where Idark and Jdark are respectively the dark channel priors
of the low-quality and target images. The generation of t
is constrained from the dark channel state such that the
foreground state of the input dark channel Idark converges to
the highlighted state of its background, as formulated by

t(x) = (Idark (x)/A− 1)/(Jdark (x)/A− 1), (4)

and then t is applied to the atmospheric scattering model
as Eq.(1) to generate the optimal image result Ĵ .
To maintain the details of the reconstruction results,

we introduce face features as the constraint. Since both the
low-quality image I and the target image J are information
interpretations of the same object, we try to introduce their
common feature, the face parsing map M as an adequate
information constraint for the enhancement. The facial details
are extracted from the low-quality image as the distribution
function:

p(Jr (x),M |I (x)) = p(Jr (x)|M , I (x))p(M |I (x)), (5)

where Jr can be seen as the more information of the face
details for the enhanced result Ĵ .With the help of the network,
we can predict precise target details Jr from the correlated
information p(Jr (x),M |I (x)).
In addition, after effectively achieving low-quality image

enhancement, we want to maintain the natural uniform state
of the enhanced image Ĵ as well as to fully express the
foreground detail information. As the high-quality face image
in the natural state can estimate the clear face parsing
map [50] for the face details, the generation Ĵ also can provide
the detailed information for face featuresM . The distribution
function is shown as

p(M ) = p(M |H (x))p(H (x)). (6)

where H is the high-quality image. p(M |H (x)) represents
the common process to estimate features from the image,
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FIGURE 2. The block diagram of the our proposed framework.

FIGURE 3. The framework of our network consists of dark channel prior
constraint, image enhancement, and image uniform posterior. Firstly,
we analyze the dark image with the dark channel to output the light
transmission parameter t0. Then, with t0, we constrain the generation
J0 as the intermediate result. Following that, we feed J0 and the
estimated facial mask M0 into the network for the result J1. And it is the
final result in the red box. Finally, we constrain the final result
with the image uniform posterior. The basic network module is U-Net,
and the numbers before and after U-Net indicate the number of channels
for the input and output of the module.

and then this process can be applied to the enhanced
image Ĵ . If the facial features can be estimated from
the enhanced image by this common process, it proves
that the generation Ĵ has adequate and effective details to
approach the target one in a uniform state. Rather than
discriminative networks, [51] that introduce unexpected
artifacts, we prefer to improve the accuracy and uniform
brightness by using the feature representation as the posterior
constraint.

In Fig. 2, we present the block diagram of the our proposed
framework.

III. PROPOSED METHOD
A. NETWORK
Our solution is mainly based on the dark channel rules in
the backlit scenario, and the main algorithm is implemented
through end-to-end network architecture. In this section,
we present its framework. According to the analyzed
statistical rules, the network structure for image enhancement
mainly consists of the following parts: one is the dark

channel prior constrained network for illumination analysis
and the generation of enhancement, and another part is for
image enhancement under illumination analysis and rule
constraints. Meanwhile, the posterior constraint network
is provided to better optimize the uniform representa-
tion of the foreground and background of low-quality
images.

1) DARK CHANNEL PRIOR CONSTRAINT MODULE
The dark channel prior constraint module is mainly used
for image brightness analysis and dark channel generation
constraints. The module mainly consists of two parts.
A process is used to generate the target dark channel Jdark

from the input dark channel Idark , as shown in

Jdark0 (x) = U0(Idark (x)), (7)

where U0 denotes the network, and Jdark0 denotes the dark
channel output by the training.

Another process is to combine the input dark channel Idark

and the generated output Jdark0 to predict the illumination
parameters under the dark channel constraint by a network,
formally

t0(x) = U1(concat(Idark (x), Jdark0 (x))), (8)

where U1 denotes the generative network and concat is used
to concatenate these feature maps together. t0 is the output
of the light parameters predicted by the network. The dark
channel constraint is mainly used to predict the illumination
parameters to constrain image enhancement.

2) IMAGE ENHANCEMENT MODULE
The image enhancement module mainly targets the enhance-
ment of the image, which is based on the dark channel prior
constraint. To better reconstruct the low-quality foreground
objects of the image, we introduce face features as detailed
optimization and further enhancement constraints in the
enhancement process. Themodule consists of three parts. The
first process focuses on the input of the low-quality image I,
generating the face feature mapM :

M0(x) = U2(I (x)), (9)

where U2 denotes the generation network, and M0 denotes
the face feature output. The second process is to enhance the
input low-quality image based on the illumination parameters
of the dark channel to generate the face enhancement
result J :

J0(x) = U3(concat(I (x), t0(x))), (10)

where U3 denotes the generation network, and J0 denotes the
enhanced image output. The third process is based on the
foreground object feature map constraint to further enhance
the image and generate the result of further enhancement of
the face:

J1(x) = I (x) + U4(concat(M0(x), J0(x))), (11)
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FIGURE 4. The listed real backlit images (a),(c) and their corresponding
dark channel images (b),(d). (e) is the statistical average intensity of
foreground and background for the about 2000 selected images in actual
scenes, where blue denotes the background and orange indicates the
foreground. (f) shows the number of different average values between
the background and foreground of the same image sequence. (g) is the
statistical average intensity of foreground and background for about
2000 synthetic images. (h) shows the number of different average values
between the background and foreground of the same sequence.

where U4 denotes the generated network, J1 denotes the
enhanced image output, expressed jointly by I and residual
features. J1 is also used as the final expression of the network
enhancement.

Further, to better make the enhancement result J1 in a uni-
form illumination state, we introduce a uniform expression
posterior module to constrain our reconstruction results by a
large number of uniform illumination results.

3) IMAGE UNIFORM POSTERIOR MODULE
The image uniform posterior module is mainly used to
constrain the results of our reconstruction enhancement by
the generated results of other uniformly illuminated images.
The network module includes a generative network, which
is a parameter-sharing network structure. The input-output
pairs of shared parameters include our enhanced result J1 as
input and its generated object feature mapM1 as output. The
object training set Iur , which is independent of the sample set,
is used for input and its generated feature mapMur as output,
as follows:

M1(x) = U5(J1(x)),Mur0(x) = U5(Iur (x)), (12)

where U5 denotes the generative network and it provide
the sharing weighting for the images J1(x) and Iur (x).
Mur0 denotes the foreground object feature maps from
input Iur .

B. LOSS FUNCTIONS
The setting of the loss function also mainly refers to the
design of the network structure, which mainly includes three
parts: the prior loss function for the dark channel, the loss
function for image enhancement, and the posterior loss
function for uniform expression.

The dark channel prior loss function mainly constrains
the generation of two outputs, the target dark channel Jdark0

and the luminance parameter t0 as

Loss0 = ||Jdark0 (x) − Jdark (x)||22
+ ||(Idark (x)/A− 1) − (Jdark (x)/A− 1)t0(x)||22
+ ||(I (x)/A− 1) − (J (x)/A− 1)t0(x)||22. (13)

where A can be estimated as a constant value by [45] for the
loss function. And t0 is the feature parameters to constrain
Eq. 1 and Eq. 3 meanwhile.
The image enhancement loss function is used for the

enhancement of the final image results, constraining two
outputs, such as object feature maps M0 and the image
enhancement output J1.

Loss1 = ||M0(x) −M (x)||22 + ||J1(x) − J (x)||22. (14)

The uniform posterior loss function is used to constrain
the uniform expression of the image, including the object
featuremapM1 of the enhancement result and the featuremap
Mur0 of the posterior dataset, whose functions are as follows:

Loss2 = ||M1(x) −M (x)||22 + ||Mur0(x) −Mur (x)||22. (15)

The overall loss function is the combination of the three
loss functions:

Losst = αLoss0 + βLoss1 + γLoss2. (16)

where α,β,γ are used to balance the overall loss function.

C. IMPLEMENTATION DETAILS
All the network frameworks used for feature extraction
and image generation are based on U-Net [37], [52],
mainly because the network structure has fewer parameters
compared to residual networks (ResNet) [53], dense networks
(DenseNet) [54], etc. The intermediate skip connection
allows for more efficient loss gradient transfer, thus providing
a more comprehensive reconstruction performance compared
to other network frameworks. Themodel is trained byADAM
optimizer [55]. The balance parameters in the overall loss
function are respectively α = 0.001, β = 1, γ = 0.01. The
learning parameter is set to 0.0001, where the parameter value
is halved every 100 epochs during training. The total number
of epochs is 400, with a final learning rate set to 1.25e−5. Our
experiments are implemented by Pytorch [56] on an NVIDIA
RTX 1080ti GPU.

IV. EXPERIMENTS
We experimentally verified the effectiveness of our algorithm
on backlit images. As a special scene of low-quality
images, the contrast algorithms include two types. One
can be seen as non-uniform low light enhancement and
the other can be seen as shadow removal. The contrast
non-uniform low light enhancement algorithms include the
classical traditional algorithms NPE [6], SEIR [7], the SOTA
framework of deep learning algorithms, DeepUPE [32],
PairLIE [20], LLFormer [15] and the unsupervised methods
Zero-DCE [3] and EnlightenGAN [19]. Shadow removal
algorithms include the recent algorithms DeepRelight [30]
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TABLE 1. The objective metrics (PSNR and SSIM [60]) of the ablation
experiments w/o DC, w/o UF, w/o DCUF, and ours.

and ST-CGAN [43]. All compared deep learning algorithms
use provided pre-trained models for evaluation on various
simulated and real datasets.

A. DATESETS
The simulation data used for training is from the dataset
CelebA, where we extract the foreground Ms, and the
background informationMb by the matting algorithm:

I = Mb + θMs, (17)

where θ is the balance parameter of the foreground Ms
and background Mb, and its value range is set to a random
number between [0.1, 0.2]. The input image is simulated
and the original image is used as the target image for
training. All training data are tuned to 512×512. In addition,
the training data used to uniformly express the posterior
constraints during training are CelebAMask-HQ [57] and its
mask data that does not overlap with the training test data.
The simulation data used for testing is processed by similar
simulations, such as CelebA [58] and Helen Dataset [59].
In addition, about 2500 backlit images are extracted from the
web as test data for the actual scene.

To count the dark channel rule of the backlit data, we do
statistical analysis of the data on more than 2000 images
randomly selected from actual and synthetic scenes as Fig. 4.
The images in Fig. 4(a) and (c) are the low-quality inputs, and
the images in Fig. 4(b) and (d) represent the corresponding
dark channel maps as [45]. As we have discussed, the
background of the backlit image presents large values of
pixels because it is directly exposed to the light source,
so the background is in a high pixel state compared to
the dark channel rule of the foreground object. In contrast,
in Fig. 4(e), we enumerate the comparison of the average
values of the foreground and background for the statistics,
with blue as the background and orange as the foreground
pixels. The two have contrasting ranges of values and are in
significantly different distributions. In Fig. 4(f), we also show
the distribution of the difference in the average values of the
foreground and background of the same image, with values
mainly distributed between [50, 150], indicating that the
foreground and background of the same image can mostly be
clearly distinguished by the dark channel prior. The presented
images and statistics demonstrate the validity of the dark
channel priors for the analysis of the backlit images, or the
low-quality state of these images. Fig. 4(g) and (h) also show
the corresponding distribution of selected 2000 synthetic
images, which are similar to the distribution of the image in
Fig. 4(e) and (f) in reality.

FIGURE 5. The generated images of the ablation experiments w/o DC,
w/o UF, w/o DCUF, and ours.

B. ABLATION STUDY
In order to verify the respective contributions of the dark
channel prior, image enhancement, and uniform expression
posterior constraints to the image reconstruction, we perform
ablation experiments of the respective modules. These
include making α = 0 to remove the dark channel constraint
(w/o dark channel as w/o DC), making γ = 0 to remove
the uniform constraint (w/o uniform as w/o UF), and making
α = 0 and γ = 0 to remove the prior and posterior constraints
(w/o dark channel and uniform as w/o DCUF).

In Fig. 5, the experimental results without dark channel
and uniform constraint (w/o DCUF) are the worst ones, and
the reconstructed images still suffer from severe non-uniform
low illumination in the absence of dark channel and uniform
image constraints. In the case of missing uniform image
constraint (w/o UF), the reconstructed foreground image
shows poor color state and poor reconstruction details, which
proves the effect of uniform image posterior constraint on
the lighting and color of the reconstructed image. And the
reconstruction results in the absence of dark channel analysis
(w/o DC) show that the non-uniform low-light images still
affect the details of the foreground objects, proving the
contribution of the dark channel in the network training
process.

The objective metrics in Tab. 1 also demonstrate and
validate the effectiveness of the respective modules for the
final experimental results. Among them, the objective metrics
are the smallest w/o DCUF, which can be viewed as the worst
reconstruction performance in the absence of constraints.
w/o DC and w/o UF, the metrics of PSNR and SSIM
have a slight deviation, but both are small compared to the
final reconstruction results, proving the effectiveness of our
designed framework.
Analysis of Parameters:We also analyze the effects of the

different parameters α, β and γ . Since the parameters have
the balancing ratio, we always set β = 1 to test the impact
of different values of α and γ on the experimental metrics
PSNR. As shown in the Fig. 6, the optimal parameters are
α = 0.01 and γ = 0.001. With the increase of parameters,
their performance gradually decreases with a slight trend.
State Analysis of Constraint Generations: In Fig. 7, we list

several images of intermediate results. M0 and M1 represent
the features of the foreground objects generated by the input
image reconstruction and uniform constraint, respectively,
where M1 is better rendered and the results show the
performance of the generated enhanced results. The input and
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TABLE 2. Average PSNR(db), SSIM, NIQE [61] and il-NIQE [62] of our results and the comparison methods NPE [6], SEIR [7], DeepUPE [32],
EnlightenGAN [19], Zero-DCE [3], LLFormer [15]+DC, Bread [40]+DC, and ST-CGAN [43]. Par denotes the parameters of the methods, Flops denotes the
floating point operations, and Time denotes the running time of the methods.

FIGURE 6. The ablation study of the different parameters.(a) The metrics
PSNR of the different values of the parameter α, (b) the metrics PSNR of
the different values of the parameter γ .

FIGURE 7. The intermediate generations during the training. The images
are corresponding to the feature maps in the modules of image
reconstruction and uniform posterior. The images of M0 and M1 are the
object features in Eq. (14) and Eq. (15). The images of I , Idark , t0 and J are
related to Eq. (13).

output maps are shown as I and J in the figure. while Idark is
the image result of the dark channel. The maps t0 in the figure
as Eq. (8) are mainly used as an important parameter of the
dark channel to constrain the generation of final results. The
presented results also reflect difference in brightness between
face and background.

C. COMPARISONS WITH COMPETITIVE METHODS
In this section, we compare our results with the compared
methods. Since our work aims at recovering low-quality
backlit images, the performance is verified on simulated
datasets CelebA and Helen. The comparison experiments are
tested mainly on our training model as well as on the existing
comparison algorithms. These include the non-uniform
luminance enhancement algorithms NPE, SEIR, DeepUPE,
Zero-DCE, and EnlightenGAN, as well as the de-shadowing
algorithms DeepRelight and ST-CGAN. To address the issue
of a dark foreground in the results obtained using pre-trained

LLFormer and Bread, we incorporated the constraints of
our proposed dark channel prior during training. They are
denoted as LLFormer [15]+DC and Bread [40]+DC.

As shown in Fig. 8, the input images are simulated from the
Helen (first row) and CelebA (second through fourth rows).
Similar to the real backlit image, the foreground object in
the figure is in extreme darkness and almost unrecognizable,
while the background is in normal light or even over-
exposed state. The reconstruction results of the traditional
non-uniform illumination enhancement algorithm NPE can
achieve some enhancement effects in the foreground, but
still in low light, while the background image is somewhat
overexposed, and the enhancement effect of SEIR for
foreground objects is poor compared with NPE, as some
images are still in low light. Deep learning non-uniform
illumination enhancement algorithms DeepUPE, Zero-DCE,
and EnlightenGAN all have some enhancement effects on the
input image. Zero-DCE has the best effect, but the foreground
object is still shimmering and the background color is dis-
torted; EnlightenGAN has better foreground enhancement,
but the background is overexposed; DeepUPE has the worst
enhancement effect, where the main problem is the poor
brightness enhancement of the foreground and the most
serious overexposure of the background. The de-shadowing
algorithms DeepRelight and ST-CGAN both have serious
problems with the enhancement of the input and poor
image recovery. Compared to all comparison algorithms,
our method can effectively achieve foreground recovery
while maintaining as much background image information as
possible, which is mainly dependent on image analysis in the
dark channel and a posteriori constraints on uniform image
reconstruction. In contrast, in the absence of effective image
resolution, NPE, DeepUPE, and EnlightenGAN have some
overexposure in the background during image enhancement.
And SEIR and Zero-DCE are ineffective for foreground
enhancement. And shadow removal algorithms DeepRelight
and ST-CGAN are poor for face enhancement, largely
because there is some difference between the imagingmethod
of backlit images and shadow occlusion, or the face of
backlit images is in low light. The introduction of the dark
channel prior for the methods LLFormer and Bread can
realize the good visual performance of the backlit images.
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FIGURE 8. The simulated results of compared methods and ours. The comparison methods include NPE, SEIR, DeepUPE, Zero-DCE,
EnlightenGAN, DeepRelight, and ST-CGAN. The images in the first row are from the Helen dataset, and the results in the following rows are
from the CelebA dataset.

FIGURE 9. (a) The results of real backlit images generated by comparison methods and ours.(b) The limitations for our results of real
backlit images, (b1) and (b2) represent different facial images.

The de-shadowing algorithm ST-CGANhas serious problems
with the enhancement of the input and poor image recovery.
Compared to all comparison algorithms, our method can
effectively achieve foreground recovery while maintaining as
much background image information as possible, which is
mainly dependent on image analysis in the dark channel and
a posteriori constraints on uniform image reconstruction.

As in Tab. 2, we list several main objective metrics,
which include PSNR, SSIM [60], and the no-reference
performance metrics NIQE [61], il-NIQE [62]. According
to the metrics, when compared with other methods, our
approach improves PSNR by 3.37dB and SSIM by 0.0579,
while decreasing NIQE by 0.1 and il-NIQE by 0.51 on the
synthetic CelebA dataset. On the synthetic Helen dataset,
our method enhances PSNR by 3.74dB and SSIM by 0.0923
compared to the methods. However, our method ranks third
in terms of NIQE and second in terms of il-NIQEmetrics. For
optimal outcomes in most scenarios, this affirms the efficacy
of our method and the robustness of the model, validated
both subjectively and objectively. We also list the compared

computation complexity, and ours are at a moderate level in
terms of parameters, Flops (floating point operations) and
running time.

D. REAL-WORLD IMAGES
We have also evaluated our method on real-world images.
Our results are recovered from the models trained from
synthetic low-light images of CelebA datasets. As shown
in Fig. 9, frontal and non-frontal facial backlit images
are captured from cameras. The results of SEIR and
DeepUPE suffer from the low-light conditions. The results
of Zero-DCE and EnlightenGAN have better enhancement
performance, however, their backgrounds are over-exposed
and the foreground objects are unclear enough. Compared
to the above methods, our results enjoy the most detailed
information and natural illumination.

E. LIMITATIONS FOR REAL-WORLD IMAGES
In Fig. 9(b), our method has some limitations for the real-
world images. As in Fig. 9(b1), the captured image is affected
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by extremely dark foreground objects, then our method does
not performwell on such low-quality images for more details.
Then the result is also hard to recognize. As in Fig. 9(b2),
foreground object, such as faces, is also affected by uniform
illumination. Although our method can achieve brightness
enhancement, it does not completely maintain the uniform
brightness, even for foreground objects, mainly because our
constraints and simulation data do not take into account
the uniform illumination of foreground objects, so it is
impossible to keep image brightness uniform for testing,
which is the direction for optimization.

V. CONCLUSION
Our research addresses the challenge of low-quality backlit
images, particularly those with low-light foreground objects.
We investigate the underlying principles of the dark channel
within ALSM for backlit images. Building upon this analysis,
we propose a deep reconstruction network that incorporates
these principles and integrates feature representations from
uniform natural images to impose posterior constraints.
Extensive experimentation demonstrates the superiority of
our approach over recent methods, resulting in a notable
increase in PSNR by 3.37dB and SSIM by 0.0579. However,
ourmethod encounters limitations when applied to real-world
images with extreme darkness. Additionally, due to the
scarcity of paired data for non-uniform low-light face
images, we aim to develop an unsupervised method utilizing
brightness analysis models for image enhancement in future
research.
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