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ABSTRACT Situation Awareness (SA) is a process of sensing, understanding and predicting the environment
and is an important component in complex systems. The reception of information from the environment tends
to be continuous and of a multimodal nature. Al technologies provide a more efficient and robust support by
subdividing the different stages of SA objectives into tasks such as data fusion, representation, classification,
and prediction. This paper provides an overview of Al and multimodal methods used to build, enhance and
evaluate SA in a variety of environments and applications. Emphasis is placed on enhancing perceptual
integrity and persistence. Research indicates that the integration of artificial intelligence and multimodal
approaches has significantly enhanced perception and comprehension in complex systems. However, there
remains a research gap in projecting future situations and effectively fusing multimodal information. This
paper summarizes some of the use cases and lessons learned where Al and multimodal techniques have
been used to deliver SA. Future perspectives and challenges are proposed, including more comprehensive
predictions, greater interpretability, and more advanced visual information.

INDEX TERMS Artificial intelligence, situation awareness, deep learning, machine learning, reinforcement

learning, multimodal fusion.

I. INTRODUCTION
Situation Awareness (SA) is a capability to perceive and
understand critical factors in the environment, and further
towards a set of projections of what will happen with the
system in the near future. According to a widely adopted
three-level SA model introduced by Endsley [1], it comprises
of three stages, i.e., perception, comprehension and projec-
tion. Its applications in numerous fields, such as aviation,
military, cyber security, power systems, etc., have proved its
importance and rationality in risk assessment and decision
making in complex systems.

SA technologies are usually orientated in one of two
ways; one is to measure the operator’s level of SA whereas
the other is designed to provide or enhance SA. Previous
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SA measurement techniques, such as NASA TLX [2],
SAGAT [3], SART [4], CDM [5], were often derived from
aviation and were questionnaire orientated. With the intro-
duction of sensors for collecting data (e.g., eye-tracking,
physiological signals [6]), the emergence of real-time SA
assessments has amplified the demand for increased capacity
and faster data processing. Munir et al. [7] indicated that
challenges in measuring SA are subjectivity, physiology, sur-
veying, limitedness and coverage, respectively. Addressing
these challenges invariably points to a wider range of more
rational data collection. Similarly, environmentally oriented
data acquisition and processing are crucial in order to provide
and enhance SA. According to the three-level model of SA,
a comprehensive perception of the environment determines
higher dimensional understanding and more accurate predic-
tions. The authors in [8] indicate that multimodal systems
have a significant improvement in SA ability. This can also be
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FIGURE 1. Overview of situation awareness system employing ai and multimodal technology.

verified in the way we experience our surroundings: different
senses (e.g., visual, auditory, tactile, etc.) provide our brain
with constant and multimodal information. In [9], the authors
point out that the advantages of a multimodal approach have
been demonstrated in studies both measuring and maintain-
ing SA in automated vehicle drivers. Therefore, SA systems
are designed to manage larger data volumes, wider detec-
tion ranges, longer time spans, and diverse data types. The
challenge here can be the implementation of multimodal
representation and fusion tailored for SA purposes.

The introduction of Artificial Intelligence is significant for
the development of SA. It can improve an operator’s ability to
perceive an environment or an individual, while significantly
reducing the workload of humans. “Learning” is a concept
that appears frequently in Al techniques. Simply put, it is
the process of recording instances and fitting a function that
maps inputs to outputs. Several challenges in substituting
“learning” functions into SA systems include (1) selecting
sensible input data and transforming it into a form that can
be easily processed, (2) learning effective features from the
data, and (3) utilizing the learned features to accomplish
perception, understanding, and prediction of the environment.
These challenges are the same ones that Al technology is
currently facing. In [10], the authors mention that deep learn-
ing methods face overfitting, lack of interpretability, and high
demands on data quality and quantity when representing data.
Fig. 1 shows an overview of the relationship between SA sys-
tems, Al and multimodal processing techniques based on the
three-level model of SA. Al technologies can be subdivided
into many tasks applied with SA systems, depending on the
SA level and objectives. The perceptions in the SA system are
the basis for everything. The authors in [11] state that based
on the capabilities of the perception layer, it can be classified
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as low-level perception and high-level perception. Low-level
perception is just responsible for data collection, presentation
and understanding of low-level contextual features of classes
such as time, temperature, location, etc. Correspondingly,
high-level perception requires further translation of these
understood features. For instance, acceleration data obtained
from gyroscope measurements may determine that the user
is in a ‘running’ state. Feature extraction, data representa-
tion and some simple classification and detection tasks are
important contributions of Al technology at the perceptual
level. The commonly used methods here are (1) Logistic
Regression (LR) [12], Bayesian learning [13], [14], [15],
[16], [17], K-Nearest Neighbors (KNN) [18], [19], Decision
Trees (DT) [20], [21], Random Forest (RF), Support Vector
Machine (SVM) [22] and Artificial Neural Networks based
on Supervised Learning, and (2) Unsupervised learning based
Principal Component Analysis (PCA), Independent Com-
ponent Analysis (ICA), Kernel Density Estimation (KDE),
Kullback-Leibler divergence (KLD). It is worth mentioning
that the contribution of Deep Learning in data representa-
tion tasks is huge. Based on neural network architecture,
multilayer perceptron (MLP), convolutional neural networks
(CNN), recurrent neural networks (RNN) can learn fea-
tures in a variety of complex modalities (e.g., time-series
data, images, text, audio) and train them for specific tasks.
For instance, YOLO detector for target detection [23]. The
comprehension stage is the focus for exemplifying the com-
petence of an SA system, where the various detections and
classifications achieved in the perception stage may be inte-
grated to achieve a holistic perception of the environment by
the entity. Multimodal techniques, such as multimodal rep-
resentation and multimodal fusion, contribute to this phase.
At the projection level, the contribution of AI methods is
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FIGURE 2. Keyword co-occurrence map of the collected works.

similar to them at the perception level. In particular, algo-
rithms based on ‘learning’ may make predictions about future
states through regression, classification, etc.

In order to explore the current trends and research chal-
lenges of Al and multimodal techniques applied to SA, this
survey proposes the following survey objectives and dis-
cusses them in the form of a review of related work.

1) Overview of Al technologies for SA: Explore differ-
ent Al methodologies, such as machine learning, deep
learning, reinforcement learning, and their usage in
providing and enhancing SA.

2) Multimodal Data Integration and Fusion: Investigate
commonly used uni- and multi-modal data representa-
tion methods and how artificial intelligence techniques
can be utilized to integrate and fuse information from
multiple modalities (e.g., visual, auditory, textual) in
order to improve the environmental comprehension of
SA systems.

3) Multimodal AI in applications and use cases on SA:
Examine specific applications and case studies where
the combination of Al and multimodal technologies
have been applied to improve SA in diverse domains,
such as healthcare, risk management and automated
systems.

4) Investigation on SA-related dataset: Generalization of
datasets that can be employed to provide SA in the
current state of lack of SA-targeted datasets. Extract
and analyze the content, size, diversity, limitations and
biases of the dataset.

5) Future directions for Al-based multimodal SA system:
In-depth discussion on potential research directions,
technical difficulties of SA systems enabled by Al and
multimodal technologies to improve the ability of com-
plex systems in sensing, understanding and predicting
the environment.
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To the best of our knowledge, there are numerous surveys
related to SA. In [7], the authors review how to measure and
quantify SA and describe a large number of application areas
for SA, mentioning that Al technology contributes signifi-
cantly to the ‘prediction’ phase of SA. In [24], SA between
individuals, teams and systems is investigated. The authors
argue that the perception of dynamic relationships between
individuals and teams is also particularly important in the
context of SA systems effectively perceiving the environ-
ment, which requires more developed sensor systems for
improved information perception, more robust AI models for
improved perception levels and decision-making capabilities.
A similar point is pointed in [25], where the authors analyze
the human-Al interaction in SA and argue that Al technolo-
gies need to help provide SA to complex systems in a more
transparent as well as explanatory way, whereas the authors
in [26] argue that this can resolve the tension between mass
perception and Al systems.

In some specific areas, the concept of SA is starting to be
emphasized by researchers. For example, [27] reviewed SA
methods evaluated in aviation environments and suggested
that SA systems should combine subjective (e.g., SAGAT)
and objective (e.g., sensor signals) measurements in order
to provide comprehensive perceptions, but the review made
little mention of the contribution of Al technologies. For the
maritime environment, it is mentioned in both [28] and [29]
that Al technology-enabled SA systems can well improve
the safety and efficiency of autopiloted ships, e.g., computer
vision technology helps in detection and evasion as well as
navigation; multimodal processing technology helps in multi-
sensor fusion. In addition, SA systems in smart grid [30],
[31], [32] environments provide more accurate and timely
fault monitoring and emergency response with the support
of AI; Internet of Things [11], [33], [34], autonomous vehi-
cles [9], and social media [35], [36] environments are mostly

88781



IEEE Access

J. Chen et al.: SA in Al-Based Technologies and Multimodal Systems

TABLE 1. Summary of studies for Al-empowered situation awareness.

Architecture Year Studies Methods Contributions Best Outcome
2009 [22] HMM, SVM Human activity detection Acc. 66.51%-88.79%
Higher Recall F1-
2016 [13] KLD, Bayesian Inference Airport taxiway obstruction detection 1eher . ccall and F-score compared
to baseline
.6%-9.8 fi Acc.
2017 [14] Naive Bayes Route recommendations 56 A)A 9-8% outperformed on Acc. over
baseline
2019 [20] RE SA predif:tio'rl on au'tomated vehicle Acc. $4.16%
communication environment
2020 [15] DBN, GNG, MJPF Abnormality detection Acc. over 97%
.. . 6%-15% outperformed on F1 score
2020 BoW, Naive B: D le detect;
Machine Learning (37 oW, Ratve Bayes riving style detection over baseline
2022 [21] DT/LightGBM SA prediction in autonomous driving RMSE 0.121, MAE 0.096, Corr. 0.719
O fi d baseli AUC, Acc.
2022 [17] HDBN, GNG, MIPF Radio environment prediction utperformed baseline on AUC, Ace
and RMSE.
15%-6.76% fi t
202 [38] DT/TGNA, MAB Grid environment prediction 3.15%-6.76% outperformed on regre
measure over baselines
A - . ion of
2023 [18] RF, KNN, ANN ssessment, predl(.jtlon and intervention o Statistical analysis presented
autonomous car driver
2023 [12] SVM, LR SA perception on pilot workload Acc. 75%-82%
2023 [19] KDE, PCA Islanding detection on microgrids Outperformed over baseline
2019 [39] CNN, RNN\BiLSTM Text classification for domestic violence Acc. 89.12%-91.78%
2019 [40] ANN, Petri Nets Time pe_rception in airports, flow perception 7.62% improvement over baseline on
in websites Acc.
2020 [41] LSTM-CNN Internet memes classification Class. Acc. 96.1%
%-8% i Acc.
2021 [42] CNN Text-based crime classification 7%-8% outperformed on Acc. over
baseline
2022 [23] CNN/YOLOX-s Ship detection and localization mAP 84.88%-89.42% with AR fusion
Class. Acc. 90.19%-98.13%, MAE
2002 [43] RNN/BILSTM Pipeline leak detection and localization . :;s e & %,
P hronizati trol stabilit;
2002 [44] Auto-Encoder ower synchronization control stability Acc. 99.53%
Dee detection
Lea[[')nin 2022 [45] TCN, Transformer Network security situation prediction MAE 0.044-0.052, RMSE 0.061-0.071
¢ 2022 [46] ANN SA classification in air combat Acc. 92.4%-93%
2022 [47] GCN, TCN Vessel trajectory prediction Qutp erformed baselines on
displacement errors
2022 (48] BNN Adverse weather Qetection and pilot Ace. 66.5%
workload perception
Broad d Acc. of detecti
203 [49] ANN Traffic Violation Detection roader range and Acc. of detection
than baseline
Fault detection and stability prediction in the
2023 50 GCN Acc. 909
(5] GDT of IoE cc. over 90%
Mari A hi i
203 [51] CNN/RetinaNet arine SA based on ship detection and Acc. 60%-80%
classification
2023 [52] LSTM Trajectory projection for autonomous vehicle ~ MAE 32.99% reduction from baseline
2023 [53] CNN Visual defogging to enhance SA in traffic Outperformed over baseline
2023 [54] CNN Visual support for ship sailing SA Avg. Precision 60.4%
2018 [55] ANN, TD-Learning SA prediction on network environment Outperformed over baseline
2020 [56] Q-Learning SA detection on malicious vehicles Outperformed over baseline
2020 [57] DRL Autonomous vehicles decision-making Outperformed over baseline
2021 [58] Q-Learning Network attack detection and prediction Outperformed over baseline
2022 [59] DRL. Auto-Encoder Aircraft 3D det}ec‘tion tracking, air combat Tracking success rate 89.2%, decidgd
manoeuvre decision manoeuvre 99.1% better than baseline
A twork envi t isi
. 2022 [60] TD-Learning S 9“ network environment and decision Outperformed over baseline
Reinforcement making
Learning 2022 [61] DRL Autonomous vehicles decision-making Outperformed over baseline
Auty hicles decision-maki d
202 [62] DRL, CNN utonomous VERICIes decision-making an Outperformed over baseline
motion-controlling
2023 (63] MAB Insect'species identification, concept drift Acc. 69.6%
detection
2023 [64] UCB Optimiz'ing live transcoding tasks using edge Pcrfo@ancc better thafl baéclinc while
computing reducing 92.3% operating time
2023 [65] DRL Air reconnaissance and trajectory decision Outperformed over baseline
2024 [66] Q-Learning Safety policy optimization for automated AVR 0018, TV 86

driving
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based on computer vision and natural language processing
technologies, and there is a huge demand for innovations in
Al and multimodal technologies. However, these works pro-
vide a comprehensive review of SA systems in their specific
domains, few of them reveal the impact of the development
of Al and multimodal technologies on SA systems and future
research directions.

Compared to other SA-related reviews and earlier works,
this review provide the following contributions:

« Focusing on recently published works, the paper covers
more than 100 references works from various databases
(e.g., IEEE Xplore, Scopus) and is complemented by
summary tables in different sections. Corresponding
tables are summarized for the different sections with
the aim to help researchers better understand the current
state-of-the-art and trends.

o Encompassing a broad spectrum of Al-enabling tech-
nologies for SA, this paper synthesizes existing litera-
ture. It thoroughly analyzes and discusses architectures,
models, and principles across three main categories of
methods: machine learning, deep learning, and rein-
forcement learning.

o Addressing the impact of data analysis on SA systems in
diverse environments, this paper highlights varying data
sources and processing methods. It engages in a com-
parative discussion of the effects of single-modal and
multi-modal processing within SA systems, along with
an in-depth analysis of typical modal fusion methods in
multimodal situations.

The remainder of this article is organized as follows.
Section II makes a comprehensive analysis of Al algorithms
and architectures used for SA systems, discussing the tasks
they address in SA systems in terms of three broad cate-
gories: machine learning, deep learning and reinforcement
learning. Section III discusses the impact on SA systems in
terms of information sources, information types, multimodal
collaboration and fusion. Section IV discusses the use of 3D
technologies for spatial situation awareness. The following
Section V gives categorized illustrations of some use cases
and applications for Al and multimodal enabled SA sys-
tems. SA-related datasets for several fields are discussed in
Section VI. Finally, challenges to be addressed, future trends
and a summary of the article will be discussed in Sections VII
and VIIL

Il. Al METHODS AND ARCHITECTURES IN SITUATION
AWARENESS

Over the past decade, developments in Al have taken SA sys-
tems to a new stage. The Al methods and architectures used
are diverse. However, there are numerous ways to classify
Al methods, such as supervised, unsupervised and semi-
supervised learning based on whether human supervision is
required [10]; online and batch learning based on whether
dynamic incremental learning is possible [67]; as well as
classification algorithms, regression algorithms, clustering
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algorithms, anomaly detection algorithms and migration
learning etc., depending on the task being solved [68].
In reviewing the relevant literature, this paper divides Al
methods applied to SA into three broad categories: machine
learning, deep learning and reinforcement learning. Against
the background of gradually increasing data volume and data
variety, and growing practical needs, such a categorization
can broadly reflect the general trend in the development of Al
algorithms and SA systems. This section is therefore divided
into three subsections to discusses the important elements
for Al methods and architectures in SA, with Sections II-A
to II-C discussing and summarizing the literature based on
each of these three categories of approaches. Table 1 illus-
trates a summary of Al methods and architectures in SA
discussed in this section.

Given the diverse focus, task variations, dataset dispar-
ities, and inconsistent utilization of evaluation metrics in
the literature on situational awareness, it becomes arduous
to directly compare data outcomes across different research
studies. In an effort to try to avoid potential limitations and
biases in the data and results, the following metrics were
extracted and compared in this paper when comparing various
research results. For classification tasks, accuracy, precision,
recall, and F-measure, etc. are a few commonly used metrics:

TP + TN
Accuracy = G N T FP+ FN
N 7p
Precision = ——
Tl; + FP
Recall = ——
TP + FN_

Class Metri Fl _5 Precision - Recall
ass.Metrics score — Precision + Recall
AP = [ P(R)dR

MAP — ZAPclasses
nUMciasses
AUC = /ROC (FPR) d (TPR)

ey

The larger the value of the above metrics, the better the perfor-
mance of the system. TP, TN, FP, FN stands for true positive,
true negative, false positive and false negative, respectively.
‘Positive’ and ‘negative’ represent the result of prediction,
whereas ‘true’ and ‘false’ represent whether the prediction
is correct or not. P(R) is a curve with precision on the vertical
axis and recall on the horizontal axis, and ROC denotes
the receiver operating characteristic curve with True Positive
Rate (TPR) on the vertical axis and False Positive Rate (FPR)
on the horizontal axis. In classification tasks, accuracy repre-
sents the ratio of the number of correct predictions to the total
number of samples, which can reflect the overall performance
of the model in the dataset, but in the case of sample imbal-
ance, the model may ‘cheat’ (e.g., completely ignoring the
categories with small sample sizes), resulting in accuracy not
being a suitable metric for evaluation. Precision and recall,
on the other hand, are used to evaluate the model against the
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predicted results and the original sample, respectively. The F1
score provides a balance between precision and recall, with
relative accuracy being more suited to imbalanced datasets.

For the regression task, assuming that set X =
{x1,x2,...,xy} and group X = {%1.%, ..., &y} are the
actual and predicted values, respectively, the commonly used
metrics are defined below:

1 N
MAE = ﬁ; lx; — &

N
1 N2
MSE = — Xi — X;
Reg.Metrics : N é( ' l)
RMSE = ~/MSE

Sy (i — &) (vi — i)

I - 2) X (- )
2)

where MAE, MSE, RMSE and PCC are short for Mean
Absolute Error, Mean Square Error, Root Mean Square Error
and Pearson Correlation Coefficient, respectively. y; and y;
represents another set of data for calculating PCC with set
X. The smaller the values of MAE, MSE and RMSE or the
larger the absolute value of PCC, the stronger the regression
performance of the system. They both measure the predictive
power of the model by calculating the difference between
the predicted and true values. MAE treats all errors equally,
which makes it unable to reflect the distribution of prediction
errors. On the contrary, MSE and RMSE are more sensitive
to predicted values with larger errors.

It is worth mentioning that some specific metrics are
used to evaluate reinforcement learning models. Cumulative
rewards are the total rewards earned by the model over a
period of time, which is used as a basic metric to evaluate
the performance of RL models; average rewards refer to the
average of the rewards earned by the model over a period of
time, which can be supplemented with cumulative rewards
metrics in order to understand the stability of the model.
The metrics described above may not cover all cases, and
specific metrics will be described subsequently for individual
studies.

PCC =

A. MACHINE LEARNING-BASED APPROACHES
The performance of machine learning technology on classifi-

cation and decision-making tasks has been revolutionary for
SA tasks.

1) MONITERING-BASED PERCEPTION

It is common practice to use sensors to monitor environmen-
tal conditions and convert them into digital signals and use
machine learning methods to process. The authors in [22]
investigated the use of various detectors in smart homes to
determine human behaviors. Among them is the use of SVM
for posture detection of targets in video tracking systems.
In this learning there are three pose classifications, ‘standing’,
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‘lying down’ and ‘sitting’. Using
K (xi,%) = ¢ )" ¢ (x) 3)

as a kernel function, where ¢ is the function mapping the
training vectors to a higher dimension. After training, a
‘one-against-one’ classification with a voting strategy would
compare the incoming targets and determine which of the
three postures it belongs to. For the processing of audio
modality, the authors use a neural network-based detector to
determine whether there is speech activity in each frame from
parameters such as the energy and frequency of the audio.
For fusing and utilizing the features from these modalities,
a left-right Hidden Markov Model (HMM) was used at a
later stage to learn eight states in the environment, including
‘individual work’, ‘siesta’, etc. The left-right HMM employs
a fully connected structure, allowing the states of each node
to progress either ‘left’ or ‘right’ or remain unchanged. In this
model, we denote the HMM with a set of hidden states S and
observable states O:

SN} “)
oM} &)

The transition probability matrix A consists of transition
probabilities A;;, denoting the probability of transition from
hidden state §; to S;. Additionally, the emission probability
matrix B comprises probabilities Bj, representing the proba-
bility of emitting observation Oy given the hidden state S;.

Aj =P (g1 =5j1q: = 5i) (6)
Bji = P(ox = vi | g1 = 57) @)

where ¢g; and o; denotes the sequences of states and
observations.

For individual situations, and ‘presentation’, ‘speech’, etc.
for multi-person situations, respectively. When this work is
applied to real-time SA, overall recognition rates of close to
90% can be achieved. It is worth noting that recognition in
multi-person situations is often confused, which the authors
attribute to multiple situations sharing the same features.

The authors in [12] investigated the use of eye-tracking
signals and electroencephalogram (EEG) for SA perception
related on air traffic control officers workload. The authors
recorded EEG and eye-tracking data from participating air
traffic control officers and introduced the SAGAT [3] freeze
probe technique and NASA-TLX assessment scores to pro-
duce training data. For feature extraction of EEG and ET
data, independent component analysis (ICA), fast Fourier
transform (FFT), power spectral density (PSD), and Hilbert
transform, etc. were used. The authors define a two-level SA
classification (Fig. 1), which first determines whether it is a
low SA, and later determines whether the low SA is associ-
ated with a high workload. Seven classification algorithms
are evaluated here including logistic regression (LR), Radial,
polynomial and linear basis function (i.e., SVM-R, SVM-P
and SVM-L), Random Forest (RF) and Artificial Neural Net-
work (ANN). Greater than 75% accuracy was obtained using

S ={s1,52,..
0 ={01,0,..

VOLUME 12, 2024



J. Chen et al.: SA in Al-Based Technologies and Multimodal Systems

IEEE Access

_,| Physiological feature samples
(after feature reduction)

Fy

(1-LEVEL

Classifiers

~
Dataset (all samples from Task I & II)
(distinguish high / low S4)

Keep monitoring

leave-one-subject-out cross-validation i

Low SA High SA

2-LLEVEL Dataset (the recognised low SA ples)
" . (classify low SA with normal / high worklead)
Classifiers

leave-one-subject-out cross-validation

Low SA within
normal workload

Automated intervention

The corrected actions for regaining SA
(take workload into consideration)

-
FIGURE 3. Classification of SA classes using biological data [12].

SVM-R in the first level of SA classification, whereas over
82% accuracy was achieved using LR in the second quarter of
SA classification. These simulations suggest that integrating
EEG and eye-tracking signals with machine learning classi-
fication algorithms can significantly improve SA perception
in high-demand environments like air traffic control.

The authors in [13] explored leveraging visual inputs aug-
mented by GPS data and high precision maps to enhance
obstacle perception for unmanned aerial vehicles (UAVs)
during taxi operations. The proposed method is multimodal,
i.e., the camera image, the airport map and the GPS measure-
ments. The camera images are inverse perspective mapped
(IPM) to match the airport map, and then the Kullback-
Leibler divergence (KLD) between the distribution of the
navigation map and the camera images is minimized to
obtain a calibrated navigation map and GPS measurements.
The authors integrated probabilistic representations from
each information source, combining Bayesian inference and
the aforementioned data processing into a self-learning
framework. The demonstrated experiments revealed that the
self-learning method exhibited significant improvement in
detecting smaller objects compared to the non-self-learning
method. The authors point out that this self-learning process
occurs throughout the taxing process of the UAYV, so that the
features of the image are constantly being learned and the
weight of the navigation map resulting from the skidding pro-
cess is constantly being increased as it is learned. Therefore,
this Bayesian learning based approach has a high degree of
interpretability.

The benefits of machine learning go beyond classifica-
tion tasks. In [19], Tajdinian et al. proposed unsupervised
anomaly detection algorithm based on kernel density esti-
mation (KED) for power grid SA. KDE is used to estimate
the distribution of the dataset and PCA is then employed
to downscale the obtained probability density function for
feature extraction. Technically, KDE is a probability-based,
non-parameter technique for estimating the probability den-
sity function of a random variable. Assuming that there is a
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set of independent random variables:
X ={x1,x2, ..., xn} (®)

where X is drawn from an unknown probability distribution
PDF f (x), the KDE for x can be expressed as follows:

. 1 < x —X;
fm=%ZK(h) ©)

where f (x) is the estimated PDF of the point x, K denotes the
kernel function, n and & denotes the number of data points and
the bandwidth parameter, respectively.

Similarly, Carlos et al. [37] not only employed machine
learning method for classification task, but also innovatively
applied the bag of words (BoW) model for data representation
when they investigated how to use mobile phone sensors
to analyze vehicle driving styles. This study only deals
with unimodality, i.e., the acceleration sensor on the phone.
As the acceleration is vector data and its orientation to the
vehicle may be unknown, the authors used Principal Com-
ponent Analysis (PCA) to downscale and manually calibrate
the X and Y axes respectively during data pre-processing.
It is interesting to note that acceleration data is usually a
time series, whereas the data representation method BoW
used by the authors is a typical natural language processing
method which counts the number of times the subsequence
of interest occurs in the entire sequence. When applied to
acceleration data, the BoW model learns various character-
istics of signal fluctuations, enabling recording, clustering,
and encoding. This allows subsequent classification tasks
to acquire more advanced features of the data that are not
intuitive to the human observer. The classification task being
an important aspect of SA of this study, the authors imple-
mented two classifiers: (1) a binary classifier to distinguish
aggressive from safe driving, and (2) a multi-class classifier
to distinguish aggressive driving maneuvers. The evaluation
involved four classifiers: Multilayer Perceptron Neural Net-
work (MLP), Random Forest (RF), Gaussian Naive Bayes
Classifier (GNB), and KNN. The experiments showed that
MLP performed best on the first classifier, which did not
misclassify a single driving event on the authors’ dataset,
while GNB was slightly better than MLP on the multi-
classification task, with an accuracy rate higher than 96%.
It is evident that the matching of the computation method
of feature vectors to the algorithm of the classifier may be
important.

The machine learning models used in this stage of SA
systems are more inclined to provide preliminary interpre-
tations of the raw data, such as ICA and SVM used in [12],
BoW and GNB used in [37]. They give statistically significant
interpretations of the detected data in the environment, which
allows some simple classification tasks to be realized and
provide SA for the system. These methods are relatively easy
to implement, but the limitation is a shallow understanding of
the environment.
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2) FROM MONITORING TO UNDERSTANDING

Using the data obtained from monitoring to hypothesize
or fit the environment to a particular distribution enhances
the system’s understanding of the environment. Understand-
ing is usually based on probabilities, as in the case of
Bayesian networks, where various events in the environ-
ment can be modeled as a node in a directed graph, with
edges between nodes representing probabilistic dependencies
between events. This directed graph can be represented as
G = (N,E), where N and E are the set of all nodes and
all edges, respectively. Let X = x, (n € N) be the random
variable represented by a node n in the graph, then we have:

P =[] Pl xpam) (10)
neN
where P (X) denotes the joint probability of all random vari-
ables, whereas pa (n) denotes the conditional probability of
the parent of node n. Since real SA application scenarios are
usually full of variations, the changing state over time may
lead to the bias of traditional static Bayesian networks.
Dynamic Bayesian Networks (DBNs) introduce a temporal
variable by learning the temporal dynamics of the state of
each object in the training data in order to predict the object
state when analyzing time series data. Mathematically, it can
be expressed as:

P(xll-xl—la-xl—zv DR »-xl) =P (-xt|xpa(t)) (11)

The transition between time steps is using a first-order
Markov assumption, meaning that the state at time ¢ depends
only on the state at r — 1, represented as P (x;|x;—1).

Thekke Kanapram et al. In [15], the use of DBN as a data-
driven model for anomaly detection, state prediction, and
collective SA in connected and self-driving cars is investi-
gated. Each self-driving car will train a DBN model using
its own collected sensor data. In order to implement DBN
state changes over time, the authors introduced the growing
neural gas (GNG) clustering algorithm to learn the transition
and conditional probabilities of each node in the DBN model.
Each DBN network is then equipped with a Markov jump
particle filter (MJPF) [16] for independently state estimation
and anomaly detection. Technically, a state transition model
is represented as:

Xt :.f:Yr (xl—lvvt)+6f (12)

where f;, represents the state transition function associated
with the mode s;, u; is the control input, and ¢; is the process
noise.

Additionally, the observations y; for detection at time ¢ are
related to the state x; through a measurement function A, :

Ve = hg (X)) +6; (13)

The experiment was set up with two self-driving smart
vehicles equipped with LIDAR and 3D cameras. The trained
vehicles were able to travel according to the learnt routes and
make emergency braking decisions when detecting pedes-
trians crossing the road, demonstrating the performance of
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anomaly detection. In simulation tests, the anomaly detection
of the proposed DBN model without wireless transmission
loss (using the IEEE 802.11p standard) achieves an accu-
racy of 98.26%, and the accuracy is higher than 97% even
when the transmission loss is increased, which justified
the IoT enablement. Additionally, the authors in [17] pro-
posed the use of hierarchical dynamic Bayesian networks
(HDBN) to achieve SA of UAVs with respect to the radio
environment, updating the transition probabilities using the
GNG algorithm and applying MJPF for model inference for
multi-level anomaly detection. Differently, the authors apply
KLD abnormality (KLDA) and continuous level abnormality
(CLA) to the discrete and continuous layers of the DBN
network, respectively, in order to extend the MJPF for more
accurate anomaly detection. And the model is further updated
by incremental learning.

The authors in [14] propose an algorithm called FAVourite
rOUte Recommendation (FAVOUR). This Bayesian learning
based algorithm provides SA for multimodal route selection.
To enable route selection, the input to the method introduces
user preferences in addition to the necessary maps. These
preferences are collected by means of a question-answer
process and stored in the form of a binary comparison for
easy subsequent training. The FAVOUR algorithm uses an
incremental learning strategy, updating the approximation w
of user preferences once for each additional user using the
equation w = argmax,,p (w|T). Where p (w) is the initial
belief without any user preference, p (T |w) and p (w|T)
are prior and posterior belief, respectively. The p (w| Ti) is
updated using Bayes’ rule:

1
p(w|Ti):p(Ti|w)xw (14)
p (1)

Given the constraints on repeatedly querying new users, the
authors use a mass preference prior (MPP) approach to extract
features from existing user data for the task of transfer learn-
ing. The MPP iteration incorporates the Kullback-Leibler
divergence (KLD), halting when the difference between suc-
cessive KLD values falls below a specified threshold. In the
experiments, multiple modes of transport and route charac-
teristics including distance, time and cost were assumed. The
experiments show that the introduced MPP-based transfer
learning improves accuracy by 4.3% to 10.6%. In contrast, the
FAVOUR algorithm, based on Bayesian learning, achieves a
maximum accuracy improvement of 23.6% compared to the
traditional algorithm. It is worth noting that the introduction
of transfer learning improves the model more significantly
with less training data, whereas the benefits of incremental
learning increase with the amount of data.

Decision trees (DT) are another effective classification
and regression algorithm. In contrast to Bayesian networks,
which use graph structures for modeling, the decision tree
approach is based on a tree structure that divides various
attributes of things and points to various possible outcomes.
With supervised learning at its core, different branches are
constructed artificially on sample features to form a tree
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FIGURE 4. Empowering vehicle SA systems using machine learning [20].

structure. Frequently used decision tree-based algorithms
are ID3 [69], C4.5 [70], CART [71], Random Forest (RF)
[72] etc. Theoretically, let D be the data collected from the
environment and P (k) be the proportion of the k”* class of
samples in the set D. The information entropy and conditional
entropy of the data are (2) and (3), respectively.

K
H (D) = = > P (k)log, P (k) (15)
k=1
H[DI|X)= ) PxHD|X =x) (16)
xeX

Measure the uncertainty of information D according to (2)
and (3), i.e., the likelihood that an event will have differ-
ent outcomes in the environment. To further determine the
uncertainty of an event after obtaining a certain condition, the
information gain G is obtained from (2) and (3) to be used as
a selection criterion for the attribute.

G(D,X)=H (D) — H (D|A) (17)

In SA, classifiers are commonly employed to identify
events or states. Authors in [20] explore utilizing a multi-
classification machine learning approach to enhance situa-
tional awareness for vehicle communication in millimeter
wave environments. To ensure that the right beam is selected
for communication while the vehicle is moving, the authors
use the RF. The algorithm consists of an aggregation of
multiple classification trees, can consider a wide range of
non-linear and complex features. Predictions from individ-
ual classification trees are aggregated to determine the final
prediction class. The input to this process is the location
information of the vehicle and the output is a matching beam
pair proposal. The SA function is implemented on the base
station that communicates with the vehicle. The base station
uses the vehicle information transmitted periodically by the
connected vehicle with the location information to construct
a location relationship map and to reason about suitable beam
pair recommendations, which are then transmitted to the cor-
responding vehicle. The authors also evaluated RBF-SVM,
gradient boosting, and found that the random forest algorithm
outperformed the other algorithms by at least 14% in terms of
beam alignment probability. However, the beam pairs derived
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multimodal data [18].

using different classifiers did not differ significantly in the
subsequent data transmission sessions. This underscores the
significance of understanding the properties of the source
modality and their impact on the SA system.

Decision trees scale well, which incorporates the con-
cept of gradient to make the loss function fall quickly, such
as Gradient Boosting Decision Tree (GBDT) [73], and its
variants such as XGBoost [74] and LightGBM [75]. Zhou
et al., in [21] utilized LightGBM to learn eye-tracking data in
order to dynamically assess the vehicle driver’s SA level and
improve the takeover performance when switching between
autonomous and manual driving. The authors normalized the
degree of SA to a continuous variable in 0 and 1. SA pre-
diction was modelled as a regression problem using a loss
function with a combination of MSE and MAE. To construct
the decision tree structure, the authors summarized 28 vari-
ables related to eye-tracking data for predicting SA. When
LightGBM uses the full set of predictor variables to predict
SA, it has achieved RMSE and MAE below 0.11 and below
0.087, respectively. On this basis, the authors introduced
shapley additive explanations (SHAP), which uses shapley
values to indicate the effect of predictor variables on SA.
Utilizing only the top fourteen most influential predictor vari-
ables identified by SHAP further enhanced the performance
of LightGBM.

In [18], the authors investigate the use of machine learning
models for state perception, supervision, and intervention
with human drivers in autonomous vehicles. The perception
module used RF, ANN, and K-nearest Neighbor algorithm
(KNN) to analyze the driver’s physiological signal (ECG,
EDA, RESP), to make predictions for two states of fatigue,
one mental workload, three emotional states, and an overall
SA with good performance. After obtaining the results of the
several classifiers mentioned above, the fusion of modalities
is then performed by thresholding, voting, and logical rules in
order to reach a reconstruction of the driver’s state. Therefore,
a driver’s state can be characterized on a scale of one to
five from poor to good. The authors have designed rules in
the supervision and intervention modules, respectively, which
use the results obtained in the perception module to perform
the appropriate actions on the driver.
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Continuously learning new data is another viable approach
in the face of SA’s changing environment. As mentioned
earlier [14] and [15] use the idea of incremental learning. The
authors in [38] have investigated the use of online learning
methods to achieve energy SA when IoT electric vehicles
are charging and discharging to smart buildings. The method
is based on Contextual Multi-Armed Bandit (CMAB) [76].
Confirmation of the building’s grid operation modes, i.e.,
normal and abnormal, guided by sensors and state variables in
smart buildings. The power distribution of the smart building
will be uploaded to the cloud as a context, denoted as e ().
The CMAB algorithm deployed in the cloud will identify
e (t,) and search for similar situations in the historical context
E, as a reference. the CMAB algorithm will compute the
overall probability distribution and try to make the choice
with the highest ‘reward’. Specifically, the reward expression
0 (t,) € [0, 1] is represented as:

O (ty) = Q*% - (dy (1 — exp (—0%))) (18)

where Q¢ and Q*¥¢ are the reward and penalty mechanisms
for EV charging behavior and driver satisfaction. d,, is another
penalty factor that denotes the completion rate of the energy
requested from vehicles.

The authors have also defined two types of attackers
i.e., internal and external attackers. They will cause privacy
leakage potential to the system in the cloud and externally
respectively. CMAB will take this into consideration while
making a choice, i.e., it introduces a Tree based Gaus-
sian Noise Aggregation (TGNA) algorithm while calculating
the probability distribution, which randomizes the ‘reward’
mechanism of the CMAB algorithm. Different from the
metrices shown on (1) and (2), average regret (AR) and
cumulative regret (CR) is used as an important metric to
evaluate the model. Based on the regret mechanism, regret
increases when the system does not select the best vehicle
and incurs a loss. A low value of AR and CR indicates a better
scheduling strategy.

T
CR = ZR(at) (19)
t=1

1
AR = —-CR (20)
T

where a; is one step of decisioninasetA = {ay, a, ..., ar},
and R(-) denotes the quantified regret value, i.e., the differ-
ence between the current reward value and the maximum
reward value, as:

R(a;) = max @ (a) — Q (@) 2

After experimental comparisons, the CMAB-based model
stabilized at 11% in AR, which is an improvement of 8.3%
to 76.5% compared to the baseline model, while the CR
decreased from 27.5% to 81.8% compared to the baseline.
To understand complex environments, more sensors are
introduced [15]. The increase in the number of model param-
eters as well as the computational complexity allows SA
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systems to understand the changes in the environment over
time, such as the HDBN used in [17] and CMAB used in [38].
Overall, machine learning models in this phase provide a
deeper understanding of the semantic information in the envi-
ronment, especially for temporal signals.

B. DEEP LEARNING-BASED APPROACHES

With the accumulation of data volume, complexity of algo-
rithms and development of computing performance, machine
learning introduced the concept of neural networks. While
traditional machine learning algorithms may rely more on
handcrafting in this aspect of feature engineering, neural net-
work mechanisms allow deep learning algorithms to mimic
the human brain for ‘learning’ capabilities. Deep learning
algorithms that utilize deeper networks to mine data for
information tend to outperform traditional machine learning
algorithms.

1) AWARENESS BASED ON SERIALIZED DATA

The introduction of neural networks means a wider range of
data to process, faster processing, and more robust feature
extraction. A neural network usually consists of an input layer
Yin, hidden layers Y}, and an output layer Y,,,, defining the

number of nodes in each layer to be mgy, my, ..., mg_1, mg,
then the output vector of each layer is as follows:
T
_[y1 y2 g
Vo= Yo Y2 Y00
T
_ 1 2 mi
Yhia, = I:Yhidl’Yhidw ""Yhidl]
T
1 2 M1
Yhia, = I:Yhid,,’ Yiid, -+ -+ Ypia, ]
1 2 m )"
YUW = Youl’ Yout’ SRR Yout (22)

Classically, the forward propagation of layers other than the
input layer can be represented as follows:

net; = W;Yi_1 + b; (23)
Y; = fi (net;)
1 2 m; T
=f; ([netl- ,nety, ..., net, ’] )
T
= [Yi‘, Y. Y,»’”"] (24)

where W; and b; denotes the weight matrix and bias vector for
each layer, respectively, whereas f; is the loss function.
Benefiting from the automation of feature engineering in
neural networks compared to machine learning, the process
of applying neural networks to SA can be simplified as:
o Modeling and building network structures according to
business scenarios;
o Training model by feeding labeled data into the neural
network;
o The neural network automatically adjusts the hidden and
output layer neuron weights and biases by the difference
between the predicted and actual outputs;
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o Data prediction, feeding new data into the neural net-
work and obtaining a predicted output.

The authors in [40] proposed an algorithm based on Arti-
ficial Neural Networks (ANN) and Petri Nets (PN) for SA
of airport operations named Perceptual Petri Nets (PPN).
Extending ANN using the parallel, concurrent, and asyn-
chronous features of PN to make it suitable for scenario
of airports services. The authors used various parameters
from the system and various external conditions as labels
and inputs, respectively, for training the ANN to obtain
the desired perceptual parameters. The structure of ANN is
illustrated in Fig. 4, where E, represent values of external
conditions, Ty, ST and W are negative exponential dis-
tribution, normal distribution and weight of the network,
respectively. After using three influential external conditions,
time, weather, and aircraft type, as input parameters for model
training, the ANN achieved an accuracy rate higher than
81% on several perceptual parameters. The comparison to
the baseline method (A-CDM) improved 7.62% in terms of
average accuracy. In addition, PNN performs equally well on
web services with high concurrency characteristics, proving
its versatility.

Dantas et al. [46] suggest the use of a pre-trained ANN
network to provide recommendations in their study on how to
improve the SA of air combat pilots. The authors simulated
10,000 air combat scenarios and used information such as
altitude, radar warning, aircraft position and type as variables
for training a four-layer ANN based on expert advice. To pre-
vent overfitting, 20% Dropout was set at each layer. This
supervised learning method was tested with an accuracy over
92%, which demonstrates that ANNSs as a classifier is effec-
tive in making recommendations for air combat decisions.

Zhong et al. [49] investigated the use of ANN with fuzz
testing mechanism for SA of traffic violations of self-driving
cars in simulated situations and proposed the AutoFuzz
algorithm. The principle behind fuzz testing is to identify
conditions that trigger errors in the testing system by contin-
uously inputting random variables. Training data is gathered
from various vehicle sensors (such as cameras and radar)
within the simulated environment, resulting in a multimodal
dataset. AutoFuzz trains an ANN classifier in each test for
predicting the confidence that a randomly generated test
case causes a system error (i.e., a simulated traffic accident
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occurs), and implements the one with the highest confidence.
This structure allows for the implementation of incremental
learning, where knowledge gained from previous training is
used to filter out a portion of the test cases in advance to
improve efficiency. Compared to a decision tree-based base-
line method that also has incremental learning capabilities,
AutoFuzz consistently detects 10-39% more traffic violations
in a variety of simulated environments.

Incorporating neural network mechanisms into existing
machine learning algorithms is one way to implement deep
learning. Yiu et al. in [48] investigated the use of Bayesian
neural networks (BNN) to identify potentially subjective
hazardous environments from EEG data. Similarly to [12],
the methodology was contextualized around the work of Air
Traffic Control Officers and applied the NASA-TLX index
to assess the mental state of participants for the dataset.
The EEG data was similarly preprocessed using the ICA
algorithm. As mentioned earlier, Bayesian networks are a
process of calculating a posterior distribution based on a prior
distribution using Bayesian formulas. In BNN, the estimated
posterior distribution is then obtained by training the model
weights of the neural network. The authors implemented a
binary classification network using BNN, i.e., the outputs are
only ‘good visibility’ and ‘low visibility’. Mathematically,
the collected data D can be represented as:

D={(xlv)’l)’(XZ,YZ)»«--(XNJ’N)} (25)

where x; and y; represents the input data and corresponding
labels, respectively. The initial and prior distribution P(6) of
the BNN is set before observing any data, where 6 denotes the
initial weights and biases of the network. Since then, using the
Bayes’ theorem, the posterior distribution can be calculated
by:

P(OD) = P DY) PO (26)

P (D)

where P(6D) denotes the updated distribution of parameters
after observing data.

Compared to traditional machine learning methods (DT,
RF, SVM and LR), the BNN prevailed with accuracy of
66.5% and F1 score of 61.4%. Facing the problem of inter-
pretability of deep learning, the authors used the SHAP value
to imply the top ten most important features of neural net-
works heavy. The three highest of these features correspond
to the temporal, frontal, and parietal cortices of the human
brain that process auditory, visual, and integrative sensory
information, respectively, reflecting the rationality of the
methodology.

To better process sequential information, adding a ‘recur-
rent’” mechanism to the ANN can increase the correlation
between the front and back inputs, i.e., recurrent neural net-
work (RNN) [77]. Each time a neuron processes an output
it will be multiplied by a weight and fed back into the input,
in such a way that allows the network to have some ‘memory’
and to ‘learn’ over time and even ’forget knowledge.
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The characteristics of RNN structures make them widely
used in natural language processing tasks. The authors in [39]
investigated the use of deep learning algorithms to detect
domestic violence related posts and comments in social
media. For feature extraction, the authors have taken two
pre-trained embeddings, Word2Vec and GloVe, for compar-
ison; the classification models involved in the comparison
include deep learning algorithms such as RNN, LSTM, GRU,
BiLSTM, and CNN, as well as traditional machine learning
algorithms such as SVM, LR, DT, and RF. The experimental
results show that GRU and BiLSTM with GloVe embedding
achieved optimal indices with 91.78% and 91.29% accuracy,
respectively. The experimental results show that GloVe has a
higher performance on this work, the reason may be that the
essence of GloVe is to construct heterogeneous co-occurrence
matrices containing all the words that have appeared, which
remembers the representations of these words in the con-
text very well as compared to the predictive type of the
word2vec approach. In addition, the experimental results
clearly demonstrate the strong performance of classifiers
using deep learning algorithms over machine learning.

The authors in [42] investigated the use of deep learning
algorithms for the prediction and perception of crime types
and crime risk levels for text-based criminal case summaries.
In order to explain the crime risk level more intuitively, the
21 crime types involved in the classification were artificially
weighted, and the crime risk rating was described as

CRS = WC - (WG + WA)
+ WP - (WG + WA)
+ WM - 10 (27)

where WC, WG, WA, WP, and WM are the weights of
the crime type, gender, age, physical injury, and material
injury, respectively. In order to classify texts and predict CRS,
568 keywords were defined and assigned to 21 crime types.
After that, a four-layer DNN structure consisting of fully
connected layers and a three-layer CNN structure were con-
structed for predicting the CRS. The experiments show that
the CNN structure comprehensively outperforms the Bi-DNN
in terms of accuracy, precision, recall, and F1 score, reaching
91%, 92%, 82%, and 84%, respectively. This situation also
occurs when comparing SVM and Naive Bayes.

Overall, when SA systems process time-series signals, the
use of basic deep learning models, such as ANN, BNN, RNN,
etc., can improve the ability to fit the environment compared
to traditional machine learning models, as demonstrated in
work such as [42] and [48].

2) AWARENESS BASED ON VISUAL INFORMATION

Vision is widely regarded as one of the primary senses for
humans, playing a crucial role in understanding complex
systems. Beskow et al. in [41] investigated the use of deep
learning networks to enable the perception and classification
of Internet culture (i.e., memes) for social media tweets.
The authors analyzed the problem from a modal perspective:
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tweets contain memes information that may be embedded in
text and images, including text in images. An optical charac-
ter recognition (OCR) technique based on Google Tesseract
is applied to extract text from images. After extracting the
word embeddings of the text using GloVe, LSTM is used as
a text classifier to transform the obtained word embeddings
and hidden vectors into new hidden vectors. For image clas-
sification, the convolutional neural network (CNN), which is
the most popular in the computer vision direction, is used.
To achieve multimodal fusion, the authors modified the fully
connected layer at the tail of the CNN network to ensure
that its output is a vector rather than a classification result.
Interestingly, the authors consider face information to be
equally important. A face encoder that also outputs a vector
is added to the method. Ultimately, the vectors output by
the LSTM, CNN, and face encoder will be used as input
to a fully connected layer, and the classification results
will be output from a subsequent SoftMax layer. In their
experiments, the authors on the text classifier side used LR,
SVM, and Naive Bayes to compare with LSTM, and the
result is that LSTM not only has superior accuracy and F1
score, but also has a 12% to 33% improvement in recall.
VGG18, ResNet18 and Inception-v3 are compared as CNN-
based visual classifiers. The difference between them was
not significant, with accuracy and recall close to 95%. In the
multimodal case with simultaneous consideration of visual,
textual and facial information has the best performance, with
both accuracies, F1 score and recall higher than 96%. The
authors assert that this method’s performance is at least
8 times superior to that of traditional template-based clas-
sifiers, further underscoring the advantages of multimodal
approaches.

It is important to mention the contribution of CNNs on
object detection, an important way for providing visual
perception. The latest techniques introduce concepts such
as attention mechanisms [78], high-resolution representa-
tion [79], hierarchical perception [80], inter-target rela-
tions [81], etc., to improve performance. These models can be
used as a backbone to provide visual perception for situational
awareness systems with different requirements. In investigat-
ing how to enhance the SA of autonomous surface vehicles,
Liu et al. [23] introduced the CNN-based YOLOX network
as a ship detector. Among the four versions of YOLOX, the
authors considered the hardware limitations, so they chose
YOLOX-s with the lowest computational cost to accom-
modate edge devices in the maritime IoT. Four Res-Blocks
(ResNet) form the backbone of this network, flanked by a
Feature Pyramid Network (FPN) for fusing information from
different receptive fields. The authors employed a transfer
learning approach to train the YOLOX-s network, i.e., the
use of the pre-trained model obtained by training on the
COCO dataset. 2268 images were used as a fine-tuning
training set to update the parameters while the backbone of
the network was partially frozen. Thanks to the numerous
sensors (e.g., LiDAR, radar, cameras, satellite navigation
systems, etc.) in the maritime IoT, an augmented reality (AR)
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navigation system based on multimodal fusion is proposed.
The detected vessels are transformed according to the rela-
tionship between the proposed pixel coordinate system and
the world coordinate system, which allows to present infor-
mation such as latitude, longitude, speed and heading in the
system. Similarly, the authors in [51] introduced a framework
for maritime surveillance that uses a deep learning approach
to implement video content analysis of videos captured by
surveillance cameras on board ships. RetinaNet, YOLOv3
and YOLOvV3-tiny are compared as ship detectors in the
experiment. YOLOv3-tiny with fewer parameters suffers a
slight loss in accuracy. Worth mentioning that when using
videos as the training set, the authors specifically added
videos containing occluded vessels to increase the perfor-
mance of the detector.

Visual signals may be affected by the environment and
degrade the imaging quality of image sensors. How to solve
the problems of occlusion and blurring of visual signals is a
challenge for vision-based SA. In [53], the authors propose
DADEFNet to overcome the effect of possible haze on visibil-
ity in images. This network is based on an encoder-decoder
structure to reconstruct clear images by improving a typical
U-Net. The encoder extracts high-channel semantic features
from the blurred image using multiple convolutional units and
maximum pooling operation, and then the image is recon-
structed by the convolutional units and bilinear interpolation
operator in the decoder. The authors add an adversarial loss to
the traditional L1 loss to constrain the image reconstructed by
the network. On the other hand, the authors in [54] introduced
point cloud data detected by LiIDAR and AIS data containing
ship position information to assist in 2D target recognition
of ships using YOLOVG6. Projecting the point cloud data onto
the 2D image improves the localization of target monitoring
while the AIS data is enhanced in visualization. This provides
enhanced support for ship navigation.

Providing visual perception for SA systems is the focus of
deep learning methods to differentiate them from other meth-
ods. CNN-based methods provide semantic-level perception
and understanding for SA systems.

3) DEEP LEARNING EMPOWERED PROJECTION

Prediction tasks essentially involve analyzing existing data to
predict trends or characteristics of future events or unknown
data.

Transformer, based on encoder-decoder structure and self-
attention mechanism, is a very popular approach in recent
years. Multi-head attention allows attention to be computed
for each position in the input sequence, which allows the
algorithm to obtain global contextual information, and is
well suited for processing sequential data. It is able to iden-
tify more important and stable inputs and is superior to
RNN at the feature processing level. Parallel computation
is applicable during training and hence also outperforms
RNN in terms of training efficiency. Mathematically, start
from self-attention mechanism, query Q, key K and value
V are three vectors that wanted from the input embeddings
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X = {x1,x2,...,xn}, and they can be represented as:
Query : Q = XWp (28)
Key : K = XWg (29)
Value : V = XWy (30)

where Wp, Wk, Wy are learnable weight matrices. There-
fore, the attention could be calculated as:
Attention (Q, K, V) ft (QKT) \% 31
ention (Q, K, = softmax .
Vdy
In multi-head attention, ‘heads’ comes from the repetition of
the (31), let h represents the number of heads.

MultiHead (Q, K, V) = Concat (H{, Ha, ..

., Hy) - Wo
(32)

where Hj, denotes each head and Wy is a learnable weight
matrix for output transformation [82].

In [45], Yin et al. combined the features of Transformer
and CNN for investigating the long-term SA of network con-
ditions. Given that the embedding method in the traditional
Transformer is not able to extract features directly on the
time series, the authors have used Temporal Convolutional
Network (TCN) instead of it to form a SA model called TCN-
combined Transformer. TCN allows time series to be input
directly without further coding, and subsequently Trans-
former calculates the correlation and periodicity between
network traffic sequences to predict future sequences. Tech-
nically, the multi-head attention is edited as:

MH = ConvSA (X) (33)

where ConvSA() denotes the process of combing the TCN and
original multi-head attention similar to (31).

Experiments show that the TCN-Transformer network out-
performs both networks individually. The performance of
RNN-based GRU and LSTM deteriorates drastically when
the sequence length is too long, whereas the proposed net-
work based on Transformer does not suffer from this problem.

In complex systems, relationships between objects often
surpass the capabilities of conventional data structures like
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arrays and trees. Graph structures effectively depict inter-
relationships and influences among objects. Introducing the
idea of graphs into deep learning methods is a novel direc-
tion in recent years. The authors in [47] investigated the
use of graph-based neural network algorithms for trajec-
tory perception and prediction of ships at sea. The authors
proposed the spatio-temporal multigraph convolutional net-
work (STMGCN), comprising two key layers: the STMGC
layer, based on graph convolutional networks (GCN), and the
self-attentive temporal convolutional layer (SATCL), lever-
aging a self-attention mechanism. STMGCL consists of three
STGCNs that perform spatio-temporal convolution opera-
tions on graphs composed of AIS data. The reason for using
three networks in parallel is to generate embeddings from
the three graphs ‘social forces’, ‘time to nearest point of
approach’ and ‘size of surrounding ships’ respectively. The
original 2-D graph convolutional operation can be defined as:

K K
fouX) =0 (Z D i (¥ @ how)) - W (h, w)) (34)
h=1w=1
where, o denotes the activation function, o represents the
sampling function which indicates the neighbor nodes of the
x position and W is the learnable weight matrix. The authors
improved the operation for three graphs:

fout (Vgl)

I
= 2 z oy v (v ¥0)) - W (43 v7)
vieB()

(35)

where 19, and v/ are two vertices at the time @ representing
the distance relationship.

Besides, SATCL contains a TCN, a self-attention mod-
ule and a fully connected network. Its role is to compute
the correlation of the three graphs to enable prediction
of ship trajectories. Comparing the deep learning methods
such as LSTM, and GRU, the STMGCN comprehensively
outperforms in average displacement error (ADE), final dis-
placement error (FDE), and maximum displacement error
(MDE). They are represented as:

) Y
o et Toew, (0 = )+ (=2 -
ZmeM Nm
1 ) A \2
FDE =+ 3" \/ (o — @)+ (m - w,,) (37)
meM
1 N2 A \2
MDE = — > max,[ (¢}, — &) + (n—3n) 68
meM

where [¢/, A"] and [¢!, A" ] are respectively the Cartesian
coordinates of the m™ vessel’s ground truth trajectory at
time n.

In [50], the authors innovatively combined digital twin
technology with graph theory to propose graph digital twin
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(GDT) for SA of the energy Internet. The authors abstract
multiple Phasor Measurement Units (PMUs) in the Energy
Internet into graphical structures by treating the PMU as
the subject of the digital twin. After GCN processing of
the graph, there are two designed classifiers: (1) a binary
classifier for predicting stability for the whole graph, and (2) a
multi-classifier for detecting fault types for individual nodes.
Multiple experiments have shown the method to be approxi-
mately 99% accurate in stability prediction and at least 94%
accurate in fault type detection.

The authors in [52] proposed SA-LSTM based on LSTM
to solve the task of trajectory prediction of self-driving
cars under off-road road conditions. Compared to [47], this
work provides a more comprehensive trajectory prediction
including short, medium & long term. Among them, residual
LSTM and autoregressive LSTM are used for short-term
and medium-term prediction, respectively. The authors point
out that spatial inference is more important in long-term
prediction, so a CNN-based situational awareness extraction
module is activated before the autoregressive LSTM aiming
at sensing the level of risk within the environment. The
authors collected over 11,000 frames of data for training and
validation by building a game platform. The experimental
results show that compared to vanilla LSTM, SA-LSTM
obtains higher accuracy in short-medium and long-term pre-
diction, 0.0153, 0.0260 and 0.0394, respectively. This metric
improves the performance from 16.73% to 32.99% compared
to baselines such as GNN and MLP.

4) MULTI-SENSOR ENHANCING AWARENESS

Multi-sensors are an effective way to enhance the sensing
range. The authors in [43] investigated fluid pipeline related
SA. The data source for the approach is a network of multiple
wireless pressure sensors in the pipeline, and these sensing
always produce time series data. In the part of detecting leaks
in pipelines, the authors used sliding windows to compute
three features based on similarity, namely ‘leak’, ‘pump’ and
‘valve’. Bidirectional Long Short-Term Memory (BiLSTM)
based on RNN structure was used as a classifier. The accu-
racy of the method was experimentally measured to be at
least 90%, with less than 5% false discovery rate. Com-
pared to other ML methods, the problem of false alarms and
leakage is well solved. For the leak localization function,
the authors calculated the time difference between anomaly-
induced pressure fluctuations reaching different sensors in
the wireless sensor network. Specific localization is obtained
using a set propagation speed and pipe length.

Based on an encoder-decoder architecture, the authors
in [44] investigated stability detection and SA of power grids
using deep learning algorithms and proposed the encoder
stacked classifier which is based on auto-encoders. Firstly,
denoising autoencoder is used during data preprocessing in
order to reduce the noise in the raw data. Multiple encoders
are used to learn the distribution of the contaminated data and
thus learn how to characterize the data. The same number of
decoders are then used to reconstruct the feature vectors into
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signal data for validation. The backpropagation algorithm
will be applied to the encoder and decoder training. The
trained autoencoder network will discard the decoder part as
there is no longer a need to reconvert the learnt features into
signal data. A fully connected layer and a Softmax classi-
fier will replace it and perform a binary classification task.
A dataset consisting of 42944 grid voltage related time series
is used for training and validation. The proposed algorithm
achieves 99.53% in accuracy, better than 98% of the tradi-
tional multilayer perceptron (MLP i.e., ANN). In addition,
since the encoder learns how to repair the corrupted data,
it has half the false positive rate of the MLP, which reflects
the robustness of the algorithm.

C. REINFORCEMENT LEARNING-BASED APPROACHES

1) CONTINUOUS PROIJECTION FOR SA SYSTEMS

Realistic environments are ever-changing and hard to predict,
whereas the core of SA is the perception, comprehension and
projection of the environment. On this basis, it is possible for
the SA system to provide feedback on the response to the
environment. Traditional supervised or unsupervised learning
always tries to extract information in a fixed dataset. This
may be incomplete for SA. Reinforcement learning (RL)
provides a great way to think about problem solving. It learns
optimal solutions by trial and error as the agent interacts
with the environment. It is continuous and ongoing [67]. This
may enhance SA from static and external to dynamic and
real-time.

Temporal Difference (TD) learning is a typical RL
algorithm. Similar to Monte Carlo methods, it does not need
to re-establish a complete knowledge of the environment
but learns the value function V (s) directly from experience
using TD errors. Similar to dynamic programming methods,
it allows to boost on the estimation results in real time without
waiting for the whole event to finish. Its updates obey the
rules:

V(s) <V (s) + & X TDerror (39)
where « is the learning rate and
TDermr =r+ )/V (S/) -V (S) (40)

The authors in [55] introduced reinforcement learning to
accomplish security SA for smart grids. The authors con-
ceptualize all users within the grid, including both legitimate
and malicious entities, as players (agents) within a network
framework grounded in game theory. Therefore, the strategies
in the game are the behaviors of the users in the network.
A SA system based on TD learning and neural networks is
proposed (Fig.6). The input layer of the system takes the
strategies (behaviors) of all the players (users) at a single time
as a single input, learns these strategies through the hidden
layer of the neural network based on TD learning, and outputs
a vector Situation (t 4+ 1) that contains information such as
node addresses, attack states, and attack events. Weights are
updated following the second input, enabling players to learn

VOLUME 12, 2024

Input Hidden

Player A Player B
r Awareness
Behavior(t) a distributions
' ° Awareness values
° Deviation
I Situation(t +1)
Stochastic
function

Behavior(t - 1) . % ‘
Average

.
.
.
Behavior
(t-(k=1)7) %
Behavior(t) ~ Behavior
(t—(k-1)r)

Difference learning based | /.
on Convergent temporal | 4¢
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SA [55].

from strategies employed by other players in the previous
phase and adjust their behaviors accordingly to pursue what
they perceive as the optimal strategy. The authors conducted
experiments in a simulated environment. The perception rate
of the proposed method is consistently higher than that of the
baseline method in a setup of nine attacks.

The authors in [60] investigated the use of reinforcement
learning algorithms for SA of communication environments
in high-speed railway scenarios. In order to adapt to the
ever-changing environment during high-speed mobility, the
authors used TD learning to simulate the parameter switching
mechanism during communication. Based on the commu-
nication environment, the authors define a tuple containing
the state (i.e., information in the environment), action (i.e.,
switching parameters), reward (i.e., behavioral reasonable-
ness) and policy (i.e., TD value). Trained according to the
updated rules described in the previous section, the agent will
always find the most suitable switching parameter later in the
iteration.

2) FROM PROJECTION TO DECISION

Decision making is a series of interventions by an intelligent
system after it has an expectation of a future state. An impor-
tant contribution of Q-Learning is the introduction of the
concepts of ‘state’ as well as ‘state update’. It is an extension
of TD Learning, which is the off-policy approach, i.e., it does
not find the optimal policy by learning the policy directly. Its
updating rule [56] is defined as:

Onew (5,0) =1 —a) -0 (s,a)
+a-(r+y-maxd - Qs d)) (41)

where:

o sand s represents the current and next state.

o aand d represents the action and possible action in state
s and 5/, respectively.

« r denotes the reward received after taking action «.

e (0 < o < 1) is the learning rate of the method.

e ¥ (0 <y < 1) is the discount factor that affects future
rewards.
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The authors investigate the use of reinforcement learn-
ing to allow vehicles to maintain SA and trust assessment
of their environment. Nodes within the vehicular network
are treated as agents with varying levels of participation.
In this approach, Q-learning is utilized to dynamically adjust
the trust computation strategy for individual nodes, enabling
adaptation to the evolving environment while ensuring con-
sistent and reliable trust assessments. The authors define state
as the agent’s judgement of internal and external informa-
tion, where internal information is the a priori knowledge
that the agent has built up over its history, and external
information is the information that the agent receives in real
time. When receiving internal and external information with
different views, it may affect the choice of strategy. The Q-
table Q (s, a) is updated according to the update rule. The
authors conducted a simulation experiment involving over a
thousand intersections and thousands of roads, distinguishing
between two types of vehicles: normal and malicious. The
smaller the share of malicious vehicles, the more accurate the
system is in perceiving the environment with events (close
to 100%). And the system still performs reasonably well
with half of the malicious vehicles. Similarly, The authors
in [58]{Citation} proposed a Q-learning based context-aware
routing mutation algorithm (CQ-RM) in their research on SA
for network security using reinforcement learning methods.

Deep Reinforcement Learning (DRL) were created when
combining Deep Learning Networks and Reinforcement
Learning methods. For example, Q-learning is usually model-
free, whereas a deep learning approach is introduced, it is
deep Q-learning (DQN). The authors in [59] used DQN in
their study of spatial SA and autonomous maneuver decision-
making in air combat. 3D perception in space relies on a
YOLOv6-based 3D target detector. After commutation, the
detected 3D target is given a six-degree-of-freedom atti-
tude estimate, which is fed into the DQN as a state in
Q-learning. A three-layer fully connected network forms the
DQN, which is used to obtain the optimal Q-value, i.e., the
policy, by means of gradient descent. Base on the Q-function
represents by (41), DQN has neural network weights 6 given
the state s and action a. Using the Mean Squared Error (MSE)
as the loss function, the target Q-Value is computed as:

Target = r +y -maxd - Q(s',d’;67) (42)

where 0~ denotes the weights of a separate target network
which are periodically updated from the main Q-Learning
network.

Aircraft deployed with the algorithm achieved between
84.6% and 99.1% chance of winning a simulated air battle,
demonstrating the performance of the DQN. Similarly, the
authors in [65] combined Soft Actor-Critic network with
ANN to empower UAVs to sense radar signals as well as make
maneuver decisions.

In [57], the authors construct a DRL-based decision-
making strategy for overtaking self-driving cars. Using state
variables (vehicle speed, relative distance, etc.) and con-
trol actions (acceleration, lane change, etc.) as inputs, they
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construct a neural network to approximate and update the
Q-table in the decision problem. Its network can be repre-
sented as:

0(@s,a,0)=V(s;01)+A(s,a;0) 43)

where V and A denotes function for states and actions, respec-
tively. 6 is the learnable parameters of function V and A.

Similarly, in [61], the authors introduce transfer learning
based on the DRL algorithm, i.e., the pre-trained neural
network in another task (source task) is fine-tuned to the
new target task, which also thought to introduce the a priori
knowledge from the source task and transform it into the
knowledge needed for the target task. To differentiate from
the pre-trained network, the authors explored more possible
decisions by adding randomized actions of the agent. In order
to obtain a better state representation of the sensory data, the
authors in [62] added a convolutional neural network and an
attention layer before the DRL model learning parameters in
order to extract global and important local information from
the sensory data, respectively. Specifically, decision-making
and action control belong to discrete and continuous action
spaces, respectively, and their raw data are passed through
the CNN layer to obtain new state representations, while the
attention layer assigns different levels of attention to different
vehicles at the same moment, which is a more intuitive and
effective approach than the traditional RL algorithms that
implement the two action spaces, decision making and vehi-
cle control, together.

It is worth mentioning that the multi-armed bandit (MAB)
mentioned in Section II-A is also a typical reinforcement
learning method. In [63], Costa et al. proposed Bayes-
Adaptive Contextual Multi-Armed Bandit (BA-C-MAB)
algorithm in order to achieve species perception of insect-
related signals. Similarly, Liu et al. [64] used a UCB-based
reinforcement learning approach to risk-aware the perfor-
mance of edge devices using contextual information of the
devices.

In arecent study, Zhang et al. [66] discussed the use of rein-
forcement learning approaches to approximate the optimal
bounds of safety policies in autonomous driving to address
the problem of overly conservative safety policies, proposed
Safe Reinforcement Learning with Dead Ends Avoidance and
Recovery (DEARRL). The proposed method distinguishes
the degree of danger of the state to constrain and correct the
security policy. The method was evaluated using the number
of constraint violations (TV) and the average constraint vio-
lation rate (AVR). Lower values of TV and AVR represent
a lower number and likelihood of the method being violated
in the task, i.e., higher security. Compared with the baseline
method, the proposed method obtains the minimum TV (86
times) in several environments while the baseline method
obtains 3330 times. In addition, the AVR value is 0.018,
which is lower than the 0.519 of the baseline method, imply-
ing that its constraints on the safety states achieve effective
performance.
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D. PHASE SUMMARY OF Al ARCHITECTURES AND
METHODS FOR SITUATION AWARENESS

The survey work in this section reveals the following key
points and insights for Al architectures and methods in SA:

e Approaches based on Al technology mainly provide
or enhance situation awareness for complex systems
through tasks such as data representation, feature
extraction, classification, and decision making, which
basically covers the three-layer model of SA.

e With the shift from machine learning to deep learning,
multiple works have experimentally demonstrated an
increase in accuracy, e.g., [39], [42], [48].

e Reinforcement learning achieves a higher level of situa-
tional awareness for more informed decision making in
complex dynamic situations through adaptive decision-
making strategies, provides a reliable decision-making
layer beyond the three-layer SA model to enable the
shift from sensing the environment to influencing it.

e Although Al-based algorithms perform well on predic-
tion tasks, most of the work in which Al techniques
have been used does not include prediction of SA as a
primary task, but rather focuses on achieving advanced
perception and further understanding.

e The volume of data and the number of modalities have
a decisive influence on the capability of SA. Com-
pared to unimodal systems, situation awareness using
multimodal systems usually has a stronger sensing
capability, and more work has been done to achieve
prediction of situations, e.g., [18], [21], [40], [55].

IlIl. MULTIMODAL SYSTEMS IN SITUATION AWARENESS

Modalities are carriers of information, and data from mul-
tiple sources recorded simultaneously in an environment
may present semantic correlations or complementarities.
To achieve a more comprehensive perception in SA, simulta-
neously sampling the environment using different modalities
enables the system to perceive the environment from var-
ious perspectives. It is possible to access patterns that are
not captured by a single modality when multimodalities are
considered together. For instance, a single ECG data may
be able to determine whether the participant is exercising,
whereas combined with accelerometer data may be able to
suggest a specific type of exercise (e.g., running, cycling,
etc.). This requires that the system uses a suitable multi-
modal fusion method. On the other hand, when designing
an SA system. The effectiveness of data representation in
capturing modalities within the environment depends on the
careful selection of data and modalities aligned with SA
goals, along with the utilization of their respective represen-
tations. Despite the many benefits of multimodal systems,
multimodal approaches have not dominated all recent SA-
related work, and unimodal approaches may be successful in
achieving their goals in some single environments. Therefore,
in Section IV-A, approaches to modal representation will
be discussed from the perspectives of unimodal systems,
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representation using statistical features [83].

whereas Section IV-B will delve into multimodal represen-
tation and fusion approaches, drawing from a diverse array
of literature, to provide the reader with more comprehen-
sive information through comparison. The discussion in this
section is also based on the description of related work and
differs from Section II in that it focuses more on data acquisi-
tion, modality selection, corresponding representations and
multimodal fusion methods for implementing SA systems
that cope with different environments. Table 2 illustrates a
summary of different types of data and their corresponding
representation methods used in SA-related works. Table 3
indicates the typical multimodal fusion methods.

A. REPRESENTION METHODS FOR UNIMODAL SA
SYSTEMS

Sensor deployment is essential for sampling the environment.
Accordingly, different sensors have different characteristics.
The authors’ work in [83] focuses on the detection of motion
disorders in individuals with autism. A single accelerometer
deployed on the participant’s wrist was used as the primary
sensor for action perception. The data stream it produces is
three-dimensional, capturing acceleration changes in the x, y,
and z axes. To extract features from this time-series data, the
authors computed various metrics for the signals in each axis,
including mean absolute value, root mean square, variance,
standard deviation, waveform length, and over-zero. These
features will represent the signal in terms of hard-to-observe
dimensions. Movements such as arm rotation, swinging, and
lifting were perceived from these features, as well as repeti-
tive patterns of movement that are characteristic of patients
with mobility disorders. The authors used an ANN-based
classification network to classify the extracted features with
an accuracy of over 99%. This result justifies the data acqui-
sition and feature extraction part.

In the study of vehicle motion perception and anomaly
detection, the authors used the spatial coordinates and motion
trajectories of vehicles as data sources in [84]. Within a
probabilistic framework, a DBN is built for modelling and
representing the position information. The DBN architecture
can reasonably observe the changes in position coordi-
nates and motion trajectories produced by a moving vehicle.
As time progresses, the DBN may learn correlations between
certain random variables in the data to better represent the
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data. The authors used Gaussian Process (GP) regression
to correlate spatial coordinates and displaced movements to
obtain the most probable movement patterns. Mathemati-
cally, the utilize of GP is to find a function f (-) that relates
input X and output Y, such that:

Ya = fa (Xa) + na (44)

where, 74 ~ N (0, aj) denotes a Gaussian zero-mean white
noise process and represents the estimation error. fa()is a
function that fits the relationship between X and Y. Particu-
larly takes agent’s locations as input to estimates the expected
motivations of vehicles for an activity A. It can be regarded
as a probability distribution from a GP process:

OO0~ GP (10, > (%)) (45)

In the same experimental setup as in [17], the agent using
this method successfully determined anomalies during multi-
ple automatic avoidance maneuvers and emergency stops by
self-driving vehicles.

The authors in [85] investigate the SA of the grid. PMU,
a specialized monitoring sensor for the grid, records phase
information within the grid. This data is analyzed at various
locations in the grid, leveraging precise time information
provided by GPS. The authors concluded that there is a
ubiquitous uncertainty in the system and therefore trained
a Random Matrix Model (RMM) based on random matrix
theory using real-time collected data as used for anomaly
detection in the grid. An N-dimensional random data lifting
Xnx1 with T observations is defined. n € N represents
the metrics or devices in the grid system, whereas t € T
represents the timestamp, i.e., the data in the last column is
the closest to real-time. X «7 can be normalized as:

1
X = (xi — wi (x7)) (46)
oi (x)

where x; = (x;j1, X2, ...,X7).The o; and wu; denotes the
standard deviation and mean calculated from every column
of the random matrix Xy «7.

Based on the data analysis using the RMM, the authors
employed linear eigenvalue statistics (LES) as a method of
data representation to provide an understanding of the com-
plex system through probabilistic estimation of the data rather
than exact measurements. The LES 7 of the matrix Xy «7 can
be defined as:

N
(9. X) =D ¢ ) (47)
i=1
where A; = eigenvaluesofX. The ¢(-) is a selectable test
function, such as Chebyshev Polynomials:
Tr:p(h) =2x>—1 (48)
T3:¢ (M) =4x> —3x (49)

This approach uses a data-driven procedure for SA and
changes in real time, so it has good flexibility and robustness.
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Besides, it is model-free, which makes it low computational
and has good generality.

Similarly, in recent power system related SA studies,
Wang et al. [86] have used PMUs as a window for recording
and analyzing grid data. In contrast, the former used LES to
represent only spatial features and ignored temporal features.
The authors used an Al-based approach to extract and learn
temporal and spatial features from PMU data, having arrived
at a more comprehensive perception, understanding and pre-
diction. An approach combining CNN and LSTM is proposed
to extract spatially relevant features and temporally relevant
features in PMU data, respectively. Interestingly, multiple
LSTM units are used as the tail of the network to process
the continuous output of the CNN. This approach efficiently
leverages the correlation of each time slice, benefiting from
the processing capabilities of the LSTM units. The simultane-
ously obtained temporal and spatial correlation features allow
the SA system to spatially determine whether an anomaly is
occurring at each location where PMUs are deployed, while
temporally projecting the stability of each location.

Images and videos are very common modalities in daily
life, which often contain more information compared to
one-dimensional sensor data and may be more intuitively
understandable to humans. This makes images and videos
a very typical modality for enabling SA. However, the dif-
ficulty in using images and videos as input to the system
is how to use algorithms to give computers perception and
understanding similar to that of humans. The authors in [87]
used Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) and Histogram of Oriented Gradients (HoG) methods
to represent every single frame of low- and high-resolution
videos, respectively, to detect pedestrians appearing in the
video. Let G and Gy be the gradients in the x and y direc-
tions, respectively. The magnitude M and orientation 6 of the
gradient are calculated as follows:

M= Jc+c (50)

Gy
6 = arctan G, (&28)

X

The histogram within cells can be partitioned into multiple
blocks by the gradient direction:

H; = Z My i biock (52)

pixels
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To achieve pedestrian tracking and crowd detection, the
authors propose a hierarchical clustering method. The method
employs a bottom-up strategy, i.e., each detected individual
is treated as a separate cluster, which is then aggregated
into more groups based on the relative distance between
each cluster or group (composed of multiple clusters). For
example, let k be the size of a group. Gy and e are the
vertices of the connectivity graph and the total number of its
edges. According to the rules of clustering, when a person is
associated with more than half of the members of a group will
be able to this person to join the group. Then:

N k
€yl = € + E (53)
£\ 2
3 if k is even
ex = (54
k—1 k—1

where, ¢;41 is the minimal number of edges in the connec-
tivity graph Gy after a person p; joined. Therefore, once
there are two groups of people, the relationship between
connectivity graphs G, and G:

eptq = eprq + (ep +eq) — (6p + &) (55)

The clustering achieves a similar subjective perception
of people’s concept of crowd, and experiments show that
its accuracy approaches that of a human observer, which
enhances the SA system’s understanding of crowd videos.
In order to address the problem that computer vision’s scene
description in a single viewpoint is of limited help to the
system’s understanding of the environment, the authors intro-
duced different kinds of visual sensors deployed in different
locations in [88]. Multiple UAVs and cameras deployed at
the roadside are used to observe and monitor the traffic
scene from multiple perspectives. The authors used a fuzzy
ontology-based aggregation approach for further high-level
representation of events detected by the visual sensors. Each
of the sensors in the system is equipped with such data
representation capabilities, but their different viewpoints may
lead to differences in the obtained representations, which
provide the system with a more comprehensive perception
and understanding of the environment.

In recent work, neural network based modal representa-
tions have been widely used in image processing. In their
study, referenced as [89], the authors utilized images from
social media to compile a large dataset specifically tai-
lored for landslide detection. They trained a CNN-based
ResNet to construct an end-to-end SA system capable of real-
time landslide confidence calculations on mountain-related
images sourced from social networks. The trained network
can perform landslide confidence calculations in real time on
mountain related images obtained from social networks and
represent the possible locations in the images. In addition,
ViT based on Transformer architecture is also a popular
image representation method recently. The authors in [90]
constructed a ViT-based image representation. The authors
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used ResNet as image embedding. In order to cope with
the complex and changing environmental disturbances and
limited samples, a proposed enhanced self-attention module
is used to strengthen the contour features of the target region
and also reduces the collective amount of data required to
train the model, enabling few-shot learning. This configura-
tion improves the robustness of the SA system in complex
environments and reduces the data acquisition requirements.

B. MULTIMODAL REPRESENTION AND FUSION FOR
COMPREHENSION IN SA SYSTEM
1) REPRESENTATION IN MULTIMODAL SYSTEMS
Multimodal design brings richer information to the system,
but also implies more complex structures and calculations.
Earlier studies did not bring neural network-based approaches
to multimodal systems. Byun et al. considered multimodal
systems when building SA for indoor environments in [91].
To allow the environment to guide the lighting control,
motion sensors and luminance sensors were deployed in the
room for real-time monitoring. The authors designed a series
of logical rules to determine whether lighting is required in
the current monitoring situation. The sensor data does not
need to undergo additional representation or interpretation,
and the fusion of multi-sensor signals is accomplished by
simple nesting of if statements. However, such a multimodal
system reaches only low-level perception at the SA level.
Achieving more advanced sensing and understanding often
necessitates deploying additional sensors alongside sophis-
ticated representation and fusion methods. In [92], cameras
and pressure sensors are deployed simultaneously in the
room to sense and monitor the indoor environment and the
patient’s condition, respectively. Multiple pressure sensors
are arrayed on the patient bed and each deployed pressure
sensor has independent coordinates (i.e., rows and columns).
The authors used the center of gravity (CoG) method for
representing the pressure sensor data, and subsequently the
patient’s sitting posture as well as position in the bed can
be determined based on the extracted features. Cameras that
are deployed in high places can observe the bed as well as
the neighboring area. The authors used Mixture of Gaus-
sians (MoG) for modelling the video of invariant viewpoints,
which is used to segment out the background and objects.
The multimodal fusion in this system is also rule-based, but
further representation of the sensor data and video allows the
system to gain a more advanced perceptual capability. Based
on the decision tree approach, the authors in [93] perform fea-
ture extraction and fusion of environment-related processors
(e.g., smoke, brightness, temperature, etc.), vital sign sensors
(e.g., blood pressure, heartbeat, body temperature, etc.) and
behavioral sensors (e.g., acceleration, position, etc.) deployed
indoors. Entropy calculation is introduced to evaluate the
importance of each attribute and the attribute that gives the
maximum gain is selected as the root of the decision tree
to construct a better decision tree. To deepen the system’s
understanding of the data, the authors introduced the Frequent
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Pattern Growth algorithm (FP-Growth) to learn the correla-
tions in the data. Certain scenes and time periods may involve
only a few sensors with the most pertinent information; for
example, the presence sensor in the bathroom during morning
hours holds significant perceptual value.

The authors in [94] examined the use of wearable systems
to provide awareness of participants’ workloads. Participants’
Electroencephalogram (EEG), respiration (RSP), electrocar-
diogram (ECG), pulse wave through photoplethysmography
(PPG), electrodermal activity (EDA) and skin temperature
(SKT) were recorded by multiple sensors and made into a
dataset. The signals are simultaneously recorded and filtered
by a bandpass FIR filter, which defined as:

N-1
yinl= D hik]-x[n—k] (56)
k=0
where x[n] and y[n] are respectively the input and output
signal at time n. h[n] is the impulse response coefficients of
the filter which is designed to only pass specific range of
frequencies for different signals. For instance, the authors set
[0.03 — 0.5] Hz for the RSP signals and [0.1 — 5] Hz for the
PPG signals.

For data representation, the authors developed different
features based on the different characteristics of each phys-
iological signal, e.g., using the interval between two peaks in
the ECG signal as a representation. Multiple SVMs make up
the authors’ proposed system, which, after training with the
dataset, provides classification and confidence estimates for
real-time input data, and also represents the perceptual aware-
ness of the system. For three levels of SA, the represented
score for perception (scorey 1), comprehension (scorey) and
projection (scorer3) calculated from the cascaded SVMs are
represented as:

scorer, (k) ,n=1[1,2, 3]
SVMpr1 (Xgsp [k])

= 1 SVMyr» (XecGaskr [k]) + scorer
SVM;3 (Xppg [k]) + scorer + scorery

(57)

where X(,)[k] denotes the filtered and delineated signals with
workload situation labels.

Different physiological data possess different importance
in each perceptual class. The authors concluded that the
RSP signal was the most important at the lower levels of
perception, whereas the ECG, SKT and PPG features were
then engaged as the participant’s workload increased and the
system’s perceptual capabilities improved.

Additionally, eye movement data were added to physio-
logical data in the study in [95] to enable assessment of SA
levels in participants, which used the SAGAT as a criterion.
The authors used metrics such as variance and root-mean-
square as representations of physiological and eye movement
data and used the K-NN algorithm to replace or interpo-
late possible outliers and missing values in the time series.
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The multi-sensor data representations were integrated by an
ANN-based fuzzy cognitive map (FCM) to understand their
concepts and the relationships between them. The classi-
fication results of the FCM then represent the perceptual
capabilities of the system.

Neural network-based architectures simplify feature
extraction and fusion process of multimodal data by the
system to a great extent. The end-to-end characteristic makes
deep learning networks easier to deploy. The application
of models is usually modular. For instance, the SA system
proposed in [96] utilizes sequential deep learning networks to
compute the confidence level of vehicle multi-sensor signals.
The author in [97] used HMM and ANN as classification
models for audio and physiological signals, respectively.
Additionally, In [98], the authors utilize CNN-based ResNet
and Deep Spiking Neural Networks (DSNN) as feature
learning methods using the built-in sound sensor, position
sensor, accelerometer, and gyroscope of the cell phone as
channels for indoor SA. The authors designed three ResNet
networks for sound events, trained for emergency monitoring,
emergency classification and normal event classification. The
integrated acceleration and gyroscope signals were used as
activity recognition. Two DSNN networks were used for
abnormal activity detection and normal activity classification,
respectively. One more DSNN network is used for pair
prediction of location information. The information from
multiple sensors is fused at the outputs of the three mod-
ules to provide the system with indoor situation awareness.
Besides, Wang et al. [99] skillfully exploited the sensitivity
of the CNN structure to spatial information by mapping the
relative angular shift (RAS) and rate of change of frequency
(ROCOF), two temporal signals measured from the power
grid, into a single-channel grayscale image and using sep-
arately designed CNNs for feature extraction and anomaly
detection. Technically, the gray image, which provide the
spatial information, is generated as:

GDyjy = cr - Ry + c6 - Gy + ¢ - Biry  (58)

where GDy is the gray degree at time ¢t € T. The two
modalities ROCOF and RAS will be fused in this grayscale
image. They are denoted as respectively:

Fre—r+1) — Frao
ttk—t+1)—t(k)

i i global
RAS;(k) = VA;U{) — VAt(k) (60)

ROCOF; ) = 59)

where F} ) is the measured frequency of the power system at
time k and 7 is the sampling interval. The VAi r) and VAf(lZ;’al
are respectively the voltage angle shift and global voltage
angle of the i device at time k.

Social media, as a source of information besides sensors,
can provide huge amounts of multimodal information and
is a common scenario for multimodal SA systems involving
Al-based approaches. Images and text are the most common
modals in social networks. In [100], the authors designed two
CNN s for feature extraction of images and text respectively.
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The extracted features will represent images and text from
the same tweet and be classified through the aggregation
layer and the softmax layer. Similarly, the work in [101]
adds an element of tweet API to the text and images. After
classification and fusing the images and text using CNNs,
the perceptual information is fused with a geo map using
location information extracted from the API to provide a
more intuitive SA using visualization. Word embedding, e.g.,
Word2Vec and GloVe, is a useful approach when it is nec-
essary to get a good semantic representation for each lexical
learning instead of classifying a whole passage of text. This
is evidenced by the work in [39] and [41].

As datasets get larger and model parameters increase,
machine learning methods excel in accuracy and can solve
many problems, even rivaling humans, but their interpretabil-
ity decreases. Employing rule-based algorithms offers a
potential solution to mitigate the interpretability challenges
encountered with machine learning methods. In [102], the
authors provide an ontology-based contextual model for
homecare-oriented SA systems. The authors construct sepa-
rate ontologies for the patient, the environment, warnings, and
social relationships, and diverse physiological sensors, envi-
ronmental sensors, and textual information are represented
and fused within or across ontologies. The work in [103]
similarly utilizes an ontology-based model: multiple UAVs
equipped with cameras deployed with tracking algorithms
act as agents for sensing the environment, and the data
they generate is represented in coded form and integrated
into ontological statements. The authors introduce semantic
Web technologies to provide sensible relevance suggestions
while tagging and tracking the data. Besides, Belief-Desire-
Intention (BDI) reasoning is also one of the ways to improve
interpretability. The rules formulated based on the BDI mech-
anism use the dynamic information received by the agent
as a way to update beliefs or learn prior knowledge. The
agent executes predefined actions from the intention set upon
receiving cases that align with those contained in the belief
set. The authors in [104] have used location sensors, physio-
logical sensors, etc. as the SA perception layer, the rules in the
belief part of the BDI as a holistic understanding for a single
agent, and the intent part as the decision and action layer to
provide feedback and update to the environment, enabling
monitoring and alerting of early symptoms of Covid-19. For
instance, if an agent A; detected from the sources that fever
symptoms are happening, the belief mechanism B; of BDI
would determine whether it is in the knowledge base KB;, the
detection method can be represented as:

True, B;~ ¢ € KB;
Awareness = | False, B;~ ¢ ¢ KB; (61)
True, Bj~ ¢ € KB;

where B; is the belief operation from another agent A;, ¢ is

the fused representation of multimodal signals.
Additionally, The Bayesian-based approach always

describes the relationship between variables in terms
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of conditional probabilities, which may confer it better
interpretability compared to neural network architectures.
Rehder et al. [105] designed a Bayesian network for rec-
ognizing drivers’ intention to change lanes. Sensors such as
cameras and Lidar on the vehicle are integrated and the data
is represented as a relationship between the vehicle and the
lane, e.g., speed, orientation, distance to the vehicle in front
and behind, and distance to other lanes. This information
plays a role in the individual nodes in the Bayesian network,
providing probability-based references. In comparison with a
deep learning network with 20 hidden layers, the Bayesian
network-based approach has comparable performance and
better interpretability.

2) FUSION IN MULTIMODAL SYSTEMS

Multimodal fusion is necessary when the system is designed
to have inputs in multiple modalities. Effective multimodal
fusion enables SA systems to obtain more accurate and com-
prehensive information in the environment, whereas scattered
aggregation may reduce the performance of detection and
prediction. There are generally two types of methods for
multimodal fusing, model-agnostic approaches and model-
based approaches, respectively. The following discussion
describes several works that have used typical multimodal
fusion methods.

For model-agnostic approaches, data from multiple modal-
ities can be spliced and fused into a single feature vector in
the early stages of the process and then input to the model for
subsequent tasks. This early fusion generates feature vectors
that always contain redundant information, so they are usu-
ally combined with feature extraction methods to streamline
the information. Hegde et al. [107] proposed that the multi-
modal information received by each agent in a multimodal
SA system will be filtered and fused into a contextual profile
in advance. multiple profiles from different agents will be
subsequently integrated and exchanged information by the
server. Assuming there are N devices given by the set D, M
kinds of modalities, including GPS, environment audio, user
speech, handwriting text and typing text, given by the set C.
The contextual profile P is concatenated by D and C.

D ={D1,D»,...,Dy}
C={C,C,...,Cy}
Pi={Pij:ieN,jeM} (62)

P; = {Pi.gps. Piea, Pi.us, Pi.ur. Pixr} (63)

In [106], the authors superimposed the raw features of the
biometrics from the participants’ faces and ears on top of
each other, referred to as stochastic biometric fusion. Further
features were subsequently extracted from the fused vectors
by Fisher’s linear discriminant analysis and discriminabil-
ity was increased using linear discriminant analysis (LDA).
Finally, the inputs are fed into a K-NN based classifier to
provide risk perception for the biometric based SA system.
Similar to [99], the authors in [108] fuses the information
from multiple modalities into a 2D signal in advance and
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TABLE 2. Typical multimodal fusion methods.

Fusion Year study Methods Contributions
2009 [106] LDA, K-NN Randomized multimodal data folding and distance-based linear discrimination
2013 [107] Contextual profiles Multimodal contextual information exchange between mobile devices in a SA
system
Early 2022 [108] Linear projection Projection of multiple measurements into the same two-dimensional space
Evaluate the importance of each modal feature in differentiating SA levels to
2023 [109] Decision tree eliminate the negative impact of redundant or irrelevant features on model
performance
2017 [110] Ontological model SA Reasoning at the semantic level by building ontological models
2020 [111] Graph-based clustering Com!olmng location aqd textual information to construct semantic graphs to learn
location-event correlations.
2020 [103] Ontological model SA Rea_sqmng via Ontological Design Combining Location Information and Target
Recognition
Lat 2020 [112] Attention mechanism Select{on of 'valld'modal representations based on confidence and masking of
ate potentially misleading representations.
2021 [113] Rule-based algorithms Computing an.d.sensmg events based on multi-sensor signals and using rules to fuse
and make decisions
2022 [114] Visualization User-oriented interaction system for multi-sensor data and SA event visualization
2022 [115] Ensemble learning Stack the prqbabllmes of Tr{odel outputs for multiple modalities and weight the
outputs for different modalities.
2023 [116] Attention mechanism Decision-level fusion of long-sequence multimodal information
2016 [117] AE Learning intermodal correlations and the same representation of multimodalities
through autoencoder (AE) structures.
Learning and aligning the representations of modalities generated by separate
2020 [118] VAE autoencoders at the distributional and semantic levels to obtain stronger
discriminability.
2021 [119] VILBERT Learning intermodal correlations through hard parameter sharing
Model-based 2022 [120] VAE Learning normal and abnormal patterns in multivariate time series based on
autoencoder.
2022 [121] RNN g;lts;m of emotional intensity and temporal dimensions for long-series multimodal
2023 [122] Attention mechanism Psychploglcally based 11'1ult1.level intra-modal self-attention and inter-modal cross-
attention for understanding irony
2023 [123].[124] CNN Multiscale cross-modal fusion of RGB-T to fully extract high-level semantic

features

extracts features directly from the 2D view as the output of
a decision tree-based classifier model. The difference is that
the authors propose a more lightweight approach compared
to neural network architectures, the 2D Orthogonal Locally
Persistent Projection (2D-OLPP).

Although multimodal data provide data describing the
environment from different perspectives, redundant data may
contain many features of low relevance, which may reduce
the ability of the model to fit and predict the environment.
The authors in [109] introduce decision tree to identify the
features that significantly differentiate between high and
low SA levels in the process of SA assessment of drivers
of self-driving cars using eye movement signals and EEG.
The features with highest importance are concatenated and
classified using ANN. The performance of EEG only, eye
movement signals only, and the combination of the two was
compared with accuracy of 0.76, 0.77, and 0.81, respectively.
This indicates the advantages of multimodal fusion.

Late fusion, where multiple models are applied to the
corresponding modalities separately and fused at the output
layer. Models that are independent of each other can avoid
misinterpretation of the data by the models, but they may
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also lose relevant information between modalities and have
higher computational complexity. The use of different models
for different modes provides a certain degree of convenience
in design, and thus the late fusion method is widely used
in work related to multimodal SA systems. Similar to the
previously mentioned [100], [101], different modalities are
designed separately for feature extraction and classification
models, which are then fused using multiple classification
results. When using deep features from multiple modalities
for a downstream task, the attention mechanism can learn
relationships between modalities to learn more representative
features. In [112], the authors use cross-attention for visual
and textual deep features to influence the final confidence
level based on the effectiveness of different modalities at
different disaster times. The modality with more confident
representations can reduce the impact of the modality with
misleading representations through cross-attentive linking.
Experiments show that this approach has better performance
as well as higher robustness compared to directly splicing the
features of multiple modalities. Similarly, the authors in [116]
investigated the use of cross-attention to learn an efficient
representation of long sequences of multimodal information.
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The depth representation of three temporal modalities (EEG
signals, eye movement signals, and vehicle sensor signals) is
first learned using LSTM, and then a decision-level fusion
of the feature representations for each modality is performed
using the cross-attention mechanism. Employing the graph-
based clustering, [111] also completes the fusion of location
information and text classification. In [115], two independent
XGBoost are used to classify EEG and eye movement data,
and the output probabilities of the two models are combined
into an ensemble and fused end-to-end using the proposed
Random Vector Function Link Stacking (RVFL-S). Viewing
the fusion of results from multiple models as a process of log-
ical reasoning suggests a systematic approach to combining
information for decision-making. Corresponding rules have
been developed in [113] for different SA objectives. Once
multi-sensor information has been extracted, classified, and
processed, the corresponding rules guide the system in inter-
preting the classification results and formulating predictions
and plans accordingly. Similarly to [32], the authors in [114]
adopted the digital twin approach and used visualization
to fuse the multi-sensor data. In addition, ontology-based
approaches can provide a flexible and interpretable logic for
the later fusion of systems with a larger number of modalities
(e.g., [102], [103], [110]).

In model-based approaches, how the modalities are fused
depends on the structural design of the model. Quan
Guo et al. [117] adopted an unsupervised neural network-
based method, proposed to process incomplete multimodal-
ities from social media in two steps. In [122], the authors
propose a multi-interaction and multi-level neural network
by choosing four modalities: text, image, text in image, and
image illustration as signals for perceiving tweets with sar-
castic sentiments in social media. By mimicking the brain’s
process of perceiving sarcasm, the proposed network has four
components: extraction, interaction, integration, and cogni-
tion. Images and texts are acquired modal representations
using CNN-based and BiLSTM-based networks, respec-
tively. Based on the gate and attention mechanisms, the
four modal representations are subsequently used to com-
pute interactions ranging from unidirectional to quadratic for
multimodal integration. The integrated feature vectors are
activated, and classification is done by a linear layer. In addi-
tion, the authors in [121] employed RNN in order to introduce
temporal dependency for human emotion recognition. Visual,
audio and text are represented using GRUs and then fused
using the attention mechanism, and feature representations
from different time points are further fused using RNN.

Based on Transformer and Attention mechanism, Vil-
BERT [125] processes image and text using two encoder
sets, then the features of different modalities can interact with
each other in parallel space. Applied in [119] to enhance the
system’s understanding of the correlation between text and
images in social media. Similarly, Vison Transformer (ViT)
is used as the image encoder in ALBEF [126], and the first
six layers of the BERT model are used as text encoders,
while the last six layers are used as multimodal encoders for
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multimodal fusion.
MMEnCOdEI"ALBEF = ViT (Ximg) ® BERT (tht) (64)

where X;n,, and X;,, denotes the image and txt labeled multi-
modal data.

When the data to be processed is unstructured (e.g.,
images, text, and files in various formats), the absence of
modality is common. In [118], the authors use separate modal
representation methods for image and text modalities, and
then use Variational Autoencoders (VAE) separately in order
to learn the common features between the different modali-
ties. In [120], multivariate time series are used as inputs to
the system, and VAE is used to learn normal and abnormal
patterns in the data as well as the differences between them
to output anomaly monitoring results, enabling an end-to-end
SA system.

In vision-based SA systems, in addition to the common
RGB images, thermal cameras monitor the infrared radiation
emitted by an object to provide thermal imaging images.
Zhou et al. [124] proposed a Multi-Task Awareness Network
(MTANet) with hierarchical multimodal fusion for urban
scene understanding based on RGB-T signals. The network
contains two encoders using ResNet152 as a backbone for
extracting feature maps from RGB images and thermal imag-
ing images, respectively. The feature maps extracted by the
two encoders are selected and fused with complementary
information from the RGB and thermal features through
spatial and channel attention modules, and residual concate-
nation is performed when the decoder reconstructs the image
to ensure that the features at different scales have been cor-
rectly reconstructed. The network outperforms other baseline
models by obtaining an average IoU of 56.1% and 78.6% in
the RGB-T semantic segmentation datasets MFNet [127] and
PST900 [128], respectively. In a subsequent work, dynamic
bilateral cross-fusion network (DBCNet) [123] utilized the
cross-fusion of features from multi-scale RGB and thermal
images to further improve the model’s understanding of the
urban environment.

C. PHASE SUMMARY OF MULTIMODAL SYSTEMS

IN SITUATION AWARENESS

The survey work in this section reveals the following key
points and insights for multimodal systems in SA:

e The representation methods of modalities in SA sys-
tems is closely related to factors such as the information
carried by the modalities themselves and their format.
From conventional statistical features to representation
learning based on Al techniques, the obtained rep-
resentations are becoming increasingly complex but
converging to semantics. This is helpful in providing
more advanced SAs, but at the same time may create
problems of interpretability.

e Multi-modal or multi-sensor SA systems do increase
the perceived range of the environment, but they do
not imply an increase in the SA level, as in the earlier
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work [91]. It is worth mentioning that modal repre-
sentations based on Al technology may help in the
comprehension session of SA, but more complex logic
is also bound to cause an increase in computational
load.

e Most of the related work on multimodal SA systems
has employed late fusion, i.e., the use of multiple mod-
els for different modalities, followed by fusion of the
outputs of the individual models at the decision level.
This fusion approach can be modular and may help in
the expansion of the system. Moving into the Al era,
modality-based approaches allow for better learning
of correlations between modalities and also blur the
boundaries between modal representation and fusion,
allowing them to be implemented end-to-end in a single
model. However, it has only been applied in a few
works.

IV. SITUATION AWARENESS WITH 3D TECHNOLOGIES
Perception of space is a common task in situation aware-
ness, which often determines the ability of complex systems
to perform their tasks efficiently and safely. Simple spatial
perception is low-dimensional, e.g., using human presence
sensors to determine whether a space is occupied. Combined
with a 3D model of the environment, it can provide users with
services such as localization and navigation. The integration
of visual sensors, such as cameras, has enhanced spatial
awareness in situation awareness systems, making it more
akin to human visual perception. Some work has used thermal
infrared sensors, LIDAR, depth sensors, etc. in some work
individually to provide sensing of different usage scenarios or
combining them to provide more comprehensive information,
which may involve multimodal fusion. Situation awareness
systems usually need to translate and understand the raw
data from sensors with the help of algorithms such as detec-
tion, segmentation, tracking, scanning, etc., and Al-based
approaches have advantages. This section explores how a
situation awareness system can utilize the raw data provided
by various sensors in order to achieve spatial awareness from
the perspective of 3D technology. Table 4 shows a summary
of 3D technologies for situation awareness.

A. 3D LOCATING AND NAVIGATION

3D modeling of the environment is the basis for 3D localiza-
tion and navigation, while the focus is on how to transform
sensor signals into semantic information with real-world
meaning and link them to the 3D model of the environ-
ment. The authors in [129] designed a model for indoor
and outdoor urban environments that combines 3D indoor
and outdoor GIS signals with a 3D model to enable local-
ization in both areas and seamless switching of navigation
between the two areas. In the model, objects such as ele-
vators, staircases, doors and windows inside the building as
well as water sources and roads outside the building are
endowed with semantic information. The authors define more
than ten indoor emergency events and use smoke sensors,
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heat sensors, etc. for their detection. The 3D indoor-outdoor
modeling makes the environment intuitively perceivable, and
for the various semantic objects allows for timely and accu-
rate representations of the detected events, providing critical
information to the people inside.

The easy to deploy and distributed nature of the Internet
of Things (IoT) facilitates 3D localization and navigation.
The authors in [130] built a wireless sensor network (WSN)
to provide users with situation awareness and emergency
localization and navigation. The authors model a dense and
discrete sensor network as an undirected graph, where each
vertex in the undirected graph represents a sensor node and
the raw data from each sensor is converted into a semantic
hazard index based on its relevance. Nodes or clusters of
nodes with a high hazard index are designated as hazard fields
by the authors, signaling potential danger zones within the
network, which becomes the condition of the route planning
of people in the undirected graph to a defined evacuation exit.
In a multi-story building, the stacks of WSNs deployed for
each floor form a three-dimensional network. The authors
conducted experiments using a three-story building where the
three levels of the WSNs were connected at the location of the
staircase and three exits with different evacuation capacities
were set up. When there are sensors in the WSNs that detect
danger, the escape routes can avoid the danger field and tend
to leave through the exit with high evacuation capacity.

Route planning may need to consider different goals of
situation awareness and corresponding environments. For
indoor evacuation in case of fire, the authors in [131] used
a cellular automata model, a typical microscopic evacuation
model, to model the environment. In addition, the authors
utilized flame and fire dynamics models (FDS) for predicting
the fire’s course and extent. Multi-sensor data streams con-
structed from temperature sensors, smoke sensors, gas-phase
sensors, and cameras were converted into fire indices and
crowdedness indices and assigned values to corresponding
locations in the cellular automata-based 3D model. Cells
containing hazard information were defined as obstacle cells,
implying escape routes to be avoided. In simulation experi-
ments, using the proposed method possesses shorter escape
time and probability compared to the baseline method with
the same number of escapees.

The spatial perception provided by 3D maps for disaster
and accident scenes helps a lot, but what the maps show can
be inaccurate. With the help of UAVs, the authors in [132]
fused images from a bird’s-eye view with 3D maps to achieve
a more accurate and time-sensitive situation awareness. Posi-
tion sensors on board the UAVs can add position, orientation,
and attitude information to the acquired images, which are
references for the alignment of the images with the 3D maps.

B. 3D OBJECT DETECTION

In SA systems based on visual perception, 3D object detec-
tion is one of the most fundamental tasks and plays a decisive
role. Based on multimodal fusion, RGB images together with
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TABLE 3. 3D technologies for situation awareness.

Distribution Year  study

Modality

2015 [129
3D location and navigation 2017  [130

3D model, GSI data
3D model, WSN data

]
1
2020 [131] 3D model, multi-sensor data
2021 [132] 3D map, image, GSI data
2017  [133] image (RGB) and LIDAR (BEV + FV)
2017 [134] image (RGB) and LIDAR (BEV)
3D object detection 2018  [135] image (RGB) and LIDAR (BEV)
2018  [136] image with depth information (RGB-D)
2019  [137] image with depth information (RGB-D)
2021 [138] image (RGB) and LIDAR (BEV)
2017 [139] LIDAR (point cloud)

3D semantic segmentation

2018 [140], [141], [142]

2020 [143]

LIDAR (point cloud)
LIDAR (point cloud)

depth information or LIDAR data can construct a 3D model
for the environment.

Typically, in [133], Chen et al. proposed a 3D object
detection network for autonomous driving scenarios. The
bird’s eye view (BEV) and front viewpoint (FV) cloud images
generated by LIDAR and the RGB images generated by the
camera are used as data sources. The bird’s eye view is repre-
sented by height, intensity, and density while the front view
provides supplementary information. Based on the Regional
Proposal Network (RPN), the authors proposed to use a
deep fusion approach, which combines early and late fusion,
to hierarchically fuse multi-view features, which improved
the performance by 0.5% to 1%. The proposed method
achieved average precision (AP) of 71.29% to 87.65% at 3D
Intersection over Union (IoU) of 0.75 to 0.25.

Similarly, the work in [135] applies RPN as a backbone
network for 3D object detection, but the authors discard
the LIDAR front view, which carries less information, and
use only BEV and RGB images as inputs to the network.
The use of a 3D Anchor grid is proposed for multi-view
alignment and cropping for multimodal fusion. The proposed
method achieves up to 88.53%, 58.75% and 68.06% AP
for 3D target recognition for cars, pedestrians and bicycles,
respectively. Recently, the authors in [138] introduced an
Attention Generation Module (AGM) to improve the detec-
tion performance of occluded objects. The authors routinely
used a network based on CNN architecture for feature extrac-
tion of LIDAR BEV and RGB images, and modal alignment
using 3D anchors. The AGM is introduced in the subsequent
backpropagation operation of the network that generates 3D
ROISs to enhance the network’s attention to the objects. The
proposed network improves 1.3% in AP compared to [135].
Besides, The authors in [134] use HOG descriptors and LBP
descriptors to feature representations of RGB images and
LIDAR point cloud data and connect them for multimodal
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early fusion. The authors trained a pedestrian detector based
on a multi-view approach and used Random Forest (RF) to
classify the detection window. The proposed method achieves
an AP of up to 82% for 3D target detection of cars.

Depth image (RGB-D) sensors are a well-established 3D
sensor that produces RGB images with depth maps. The
authors in [136] propose a 3D object detection method
for RGB-D images. For RGB images, the authors use a
well-established 2D CNN object detector to propose and
categorize the content in the picture. The authors propose
to project a 2D bounding box at an angle according to the
camera viewpoint onto a 3D depth map as the search space for
objects. For depth maps, similar to LIDAR-generated FVs,
points belonging to the same object are always relatively
close to each other and are therefore more easily segmented
within the specified search space. The proposed method
achieves up to 83.76% AP for 3D inspection of cars.

Beyond detection, pose estimation of detected objects is
a further understanding of the 3D environment. Based on
RGB-D images, the authors in [137] define a Normalized
Object Coordinate Space (NOCS) to include all the detected
3D objects in it. Utilizing the Mask R-CNN architecture, the
authors employ separate head structures for the X, y, and z
axes to process proposed regions. The depth map is subse-
quently aligned to the RGB image to output the proposed
regions in 3D. The advantage of this approach is that the
CNN-based network does not need to involve 3D data, but
rather the model can be trained using regular datasets to
achieve more detection objects and higher detection perfor-
mance.

C. 3D SEMANTIC SEGMENTATION

3D semantic segmentation provides a higher level of under-
standing for situation awareness systems. From object
detection to semantic segmentation, the system’s ability to
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understand visual data is refined from the region level to
the pixel level. Charles et al. [139] proposed PointNet for
classification, segmentation, and semantic interpretation of
3D objects, pioneering the use of deep learning architectures
to directly process point cloud data. Technically, PointNet is
divided into two networks for classification and segmenta-
tion, extracting respectively a global feature and point-wise
feature, respectively, on the point cloud data to maintain the
representation performance across different sensory fields.
As we may have a point cloud data input represent as

{P, Py, ..., Py} (65)

where P; denotes one point in 3D space, and
Pi = (xpj, ypi, zpi, Fpi) (66)

where x, y, z are the coordinates and Fp; could be the optional
features such as color. A transformation matrix 7 is learned
by a shadow MLP to represent the point cloud data:

T = MLP7praps (X1, X2, . .., Xp) (67)

The point-wise feature f; and global feature f; extraction can
be described as below:

Ji = MLPreaure (T - X;) (68)
fG ZPOOIing(fl?f27 7fl1) (69)

After training with a 3D object dataset with 40 classes,
it achieved a mloU metric of 83.7%. Additionally,
DOPS [143] of the same directly applies the CNN-based
network directly to the point cloud data to ensure the integrity
of the spatial information.

The authors in [140] propose the SqueezeSeg algorithm
based on SqueezeNet, which uses spherical projection to
convert point cloud data from data structures unsuitable for
2D CNNs into a front view. Based on a classical encoder-
decoder architecture, SqueezeSeg learns the shapes of various
objects in the 3D dataset as a priori knowledge, making it
possible to predict the 3D shapes of the detected objects,
even though they may be incomplete. Thanks to SqueezeNet’s
streamlined network architecture, SqueezeSeg has an impres-
sive inference speed. Building on the descripted foundations,
the subsequent SqueezeSeg V2 [141] and SqueezeSeg V3
[142] maintain excellent performance.

D. PHASE SUMMARY OF 3D TECHNOLOGY IN SITUATION
AWARENESS

The survey work in this section reveals the following key
points and insights for 3D technology in SA:

e Situation awareness heavily relies on spatial percep-
tion, which is evolving with the integration of diverse
sensor technologies. From traditional human presence
sensors to sophisticated visual sensors like cameras,
the shift towards 3D models enhances spatial under-
standing and facilitates tasks such as localization and
navigation.
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e Combining various sensor modalities such as thermal
infrared sensors, LIDAR, and depth sensors allows
for comprehensive spatial awareness. Fusion of multi-
view, multi-sensor and multi-modal enable the transla-
tion of raw sensor data into meaningful representations,
enhancing the system’s ability to detect, segment, track,
and scan the environment.

e Existing methods have gained promising results in
3D target detection and semantic segmentation, but
they are still limited in their ability to interpret the
contextual relationships of the detected objects. This
may need to be addressed by introducing graph-based
approaches [130].

V. SITUATION AWARENESS WITH INTERPRETABLE
TECHONOLOGIES

Although technologies such as Al and multimodality have
greatly improved the ability of SA systems to perceive, under-
stand, predict and even make decisions, complex models
and changing real-world environments affect their reliability
and robustness [144]. In particular, the introduction of deep
learning has made the complex, multi-layered model a ‘black
box’. This can lead to a lack of understanding and trust in SA
systems by users.

Commonly used interpretability methods in building SA
systems are: Fuzzy classifier, Local Interpretable Model-
agnostic Explanations (LIME) [145], SHapely Additive
exPlanations (SHAP) [146], Class Activation Mapping
(CAM) [147], etc.

The concept of fuzzy classifier was introduced in [84],
[91], and [92] to increase the interpretability of SA. Derived
from fuzzy logic, its variables can be any real number
between zero and one, which mimics human reasoning pat-
terns and distinguishes it from clear logic (Boolean logic)
binarization. Suppose there is a set of input features X =
{x1,x2,...,x;}, then there is a corresponding set of fuzzy
sets A = {A1, A, ..., A;}. The affiliation function ua(x) is
used to represent the degree of affiliation of x; to A;. A set of
manually formulated if-then rules reason the input fuzzy set
A; to the output fuzzy set A; and output clear and interpretable
predictive values.

LIME is a local surrogate model, i.e., it focuses on inter-
preting individual predictions. A new dataset is obtained as a
set of input samples x/ that are randomly perturbed according
to a specified distribution, and the corresponding predictions
generated by the original (black box) model f(-). LIME trains
an interpretable model g(-) (e.g., a decision tree-based model)
on this new dataset. The weight w; of a perturbed sample
is determined by its similarity to the original sample, and
the closer it is to the original sample, the higher weight
it gets. Then an interpretability model can be represented
as:

g (x;) = argming Zivzl wi - Loss (f (x;), g (x])) + 2 (g)
(70)
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where f(x;) and g(xlf) denotes the prediction of the original
model and the new interpretable model for the i original
sample and perturbed sample, respectively. 2(g) is a regu-
larization term.

Besides, SHAP is used to calculate the significance value
of each feature to improve the interpretability of the predicted
values, independent of the model. This approach was intro-
duced in [21] and [48]. Specifically, the Shapley value ¢; for
feature i can be computed as follows:

SIT(NT = IS] = 1!
¢,-=ZS§N\{Z.}' H ||N||! =N s Ui - £ )
(71)

where N is the set of all features and S is a subset of features
except the i feature. The contribution of each feature to the
model’s prediction results is indicated by the calculated Shap-
ley value. In combination with LIME, Kernel SHAP can also
train a linear local surrogate model that provides explanations
for localized (single-sampled) prediction results.

CAM provides CNN models with interpretable visualiza-
tions. Zhou et al. [ 147] retrained the model after adding global
average pooling (GAP) in front of the final classifier (linear
layer) of the CNN one to obtain CAM. the obtained CAM can
be represented as:

n
Léam = D, Wi - M; (72)

where M; is the i feature map generated by the last con-
volution layer. w{ is the weight of the cth neuron of the
linear layer in the i feature map, which corresponds to the
¢ classification category. Subsequently, Grad-CAM [148]
combines the gradient information to compute importance
weights for the feature map, which allows the model to extract
any layer of CAM without including the GAP layer and
without retraining.

A. INTERPRETABLE FORECASTING AND
DECISION-MAKING
The authors in [149] introduce a knowledge graph to increase
the interpretability of Al models for demand forecasting.
Entities and concepts from data sources are identified and
a knowledge graph is constructed. Predictions from trained
Al models are queried in the constructed knowledge graph
to determine their reliability, which relies on a rule-based
process. In [150], the authors investigate the interpretable
classification and prediction of bearing faults. The input sig-
nal is the acceleration signal of a bearing, which is converted
into a time-frequency map using Short-Time Fourier Trans-
form (STFT) and feature maps are extracted using CNN.
Grad-CAM is used to compute the attention of the model to
show the frequency bands of signals that are of most interest
for different fault types. The authors used decision trees and
fuzzy classifiers to validate and interpret the predictions of
the CNN, respectively.

Based on reinforcement learning, the authors in [151]
introduce deep Q-learning to enable epidemic diagnosis.
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Based on the observable Markov decision process, the pre-
diction process of the model becomes relatively transparent.
The authors point out that utilizing deep Q learning to aid
diagnosis can effectively improve the accuracy and timeliness
of epidemic diagnosis.

B. INTERPRETABLE VISUAL-BASED SYSTEM

Segmentation of tasks to provide better interpretability.
In [152], the authors investigate the use of Al models for inter-
pretable SA assessment of drivers in an autonomous driving
environment. A DNN is first used to predict the driver’s gaze
angle, after which a Gaussian mixture model is used to map
its features to the same space to predict the driver’s region of
attention.

In the field of medical diagnosis, Allahabadi et al. [153]
utilized ResNet and U-Net as backbone networks for image
feature extraction medical image segmentation respectively
to assist doctors in diagnosing whether a patient is infected
with Covid-19. Based on LIME, the authors delineated the
image into hyper pixels and evaluated the significance of
each hyper pixel by inputting only a portion of the hyper
pixels. In addition, a physician-oriented human-computer
interface visualizes the segmentation and diagnosis results.
The authors in [154] use Grad-CAM to explain the results of
a deep learning model for medical image classification. The
authors point out that their heatmaps generated by the trained
model effectively point out regions of interest for diagnosis,
and their visualization results are consistent with the expert’s
diagnosis.

Besides, Zhang et al. [155] proposed an interpretable CNN
for object classification task. The authors designed a loss
function that passes the loss gradients of different classes
to the corresponding filters, i.e., different filters will be
responsible for different object classes. The interpretable
convolutional layer is used to replace the last conventional
convolutional layer of the CNN. The accuracy of image clas-
sification is improved while providing interpretability.

C. INTERPRETABLE MULTIMODAL SYSTEM
As mentioned in previous sections, the introduction of mul-
timodal data is very effective for SA. However, complex
modal representations and modal fusion methods make the
multimodal system difficult to interpret. In addition to inter-
preting unimodal modalities in multimodal systems, such as
the use of Grad-CAM in vision to achieve attention-based
interpretation, interpreting the complementarities between
different modalities can help to understand the mechanisms
of multimodal enhancement of system performance [156].
The authors in [157] provides an attention-based interpre-
tation of the image along with an attribute-based interpre-
tation of the image using textual modalities, i.e., adding an
attribute prediction network output describing the attributes
of the image. The most salient attributes of each image can
be obtained using backpropagation and they are interpreted
in the form of text for the image.
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TABLE 4. Summary of applications using SA based on Al and multimodal
technologies.

Focus Area Year study
2015 [161]
2017 [162]
Military Defence
2020  [163]
2023 [164]
2015 [165]
2018 [166]
Disaster and Risk Management
2019  [167]
2019 [168]
2014 [169]
Medical and Healthcare 2020 [170]
2021 [171]
2016 [172]
Smart Home 2017 [173]
2019 [174]
2015 [175]
Vehicle Assistance 2020 [176]
2022 [177]
2016 [85]
Power and Energy 2020  [178]
2023 [179]
2024 [180]
Industry and Equipment 2020 [181]
2023 [182]

In addition, a graph-based approach, [158] proposes to
construct images into scene graphs using annotations of the
images. This facilitates vision-based SA systems to under-
stand the environment from a semantic perspective. In [159],
the authors investigate the perception of human movements.
Each frame in the video is utilized to generate a correspond-
ing scene graph, which is merged into a spatio-temporal graph
in the order of frames, aiming to explore the process of model
inference while monitoring human actions.

VI. APPLICATIONS USING SITUATION AWARENESS
BASED ON Al AND MULTIMODAL TECHOLOGIES

This section will discuss five applications of situation aware-
ness that use both Al and multimodal techniques: (1) Military
Defense; (2) Disaster and Risk Management; (3) Medical and
Healthcare; (4) Smart City and Life; (5) Vehicle Assistance;
(6) Power and Energy; (7) Industry and Equipment. Table 5
shows summary of applications using situation awareness
based on Al and multimodal technologies.

A. MILITARY DEFENSE
The concept of situation awareness began in the military and
is now a necessity to provide and enhance military defense.
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The essence of military defense is the monitoring, identifi-
cation and tracking of enemies or unknown targets and the
perception of the battlefield environment. Earlier works of
SA for military defense used vision-based methods such as
visible light images and infrared images [160]. However,
the dynamic and unpredictable nature of the battlefield envi-
ronment necessitates comprehensive situational awareness
capabilities for effective military defense, so environmen-
tal factors such as GPS, radar and radio signals are also
attempted to be considered [65].

Using perception based on infrared and visible images,
Gundogdu et al. [161] introduced a visual tracking method
to provide military defense SA. The authors pointed out that
visible images are easier to achieve segmentation of the target
contours as they are more textured and have less edge noise
compared to infrared images. Their aim is to fully utilize
images from both modalities for environmentally adaptive
target tracking. Using a MOSSE-based filter, a template-
based tracking method, the authors propose an algorithm that
switches between image modality and monitoring template
when monitoring the tracker’s inability to adapt to the target’s
appearance. Experiments yielded that the algorithm main-
tains performance when switching from visible to infrared
sequences and obtained AUC indices of 0.327 and 0.36 for
visible and infrared sequences, respectively.

Liu and Liu [162] considering the limited computa-
tional and memory resources of military embedded plat-
forms, an early fusion method is proposed for visible
images, infrared images, and motion images, where the
motion images are derived from the difference between visi-
ble images of different frames. The authors fused the three
images to become a color image through RGB channel,
and then output the target frame through CNN extracted
features and ROI classification and regression. The pro-
posed multimodal target detector achieves topl accuracy and
average precision both higher than 98% while maintaining
computational efficiency and low computational resource
requirements. The authors improved the methodology for
target region proposals in their subsequent work [163] by
using a more advanced fully convolutional network based
RPN, which achieved a better average accuracy of higher than
99.8% while using less time.

Lee et al. [164] designed a deep learning-based decision-
making system for military defense that incorporates a
GNN-based robust tactical map fusion technique (RTMF)
and a spatio-temporal multilayer model (STBR) for ontology-
based battlefield recognition. The RTMF first performs
target monitoring using a single-stage target detector with
image data from different agents (e.g., soldiers, vehicles, and
UAVs), and then projects the multi-agent target monitoring
results and textual descriptions onto the hypergraph plane
using a GNN to project the multi-agent target monitoring
results and textual descriptions onto the hypergraph plane
for multimodal fusion. The STBR provides well-established
ontological rules and uses ANN to provide combat decisions
and recommendations.

VOLUME 12, 2024



J. Chen et al.: SA in Al-Based Technologies and Multimodal Systems

IEEE Access

B. DISASTER AND RISK MANAGEMENT

Monitoring and forecasting of events and their locations is
a major part of disaster and risk management [165]. Infor-
mation collection is a key factor, and multimodal techniques
enhance the range and reliability of predictions. Commonly,
multimodal data acquisition is realized through multi-sensors
or multi-agents, which are deployed in the environment for
sensing various aspects of the environment. Nowadays, the
growth of the Internet has made data access easier. On social
media, users may be able to become a multimodal agent for
disaster and risk management, which enhanced the flexibility
of the SA system.

Using multi-sensor IoT-based sensing, Gu et al. [167]
designed a multimodal system for open pit mine disaster
SA. Multimodal information from various sources, including
sensors and cameras, is integrated at the data level using an
SVM-based model and outputs the site safety level repre-
sented by the data. The fused data will be used as input to
the ELM model for the prediction of mining area disasters.

Wang and Gerber [165] considered combining textual
information from tweets with structured mobile network data
to enable prediction of future crime locations. The authors
categorized the system into three models: (1) a SVM-based
text-rich classification model for extracting location-related
features from tweet information and text information and pre-
dicting the user’s nearest next location type; (2) a text retrieval
model based on a vector space model, which instances a
document for each location and utilizes nearby tweets as
search keywords to obtain the most probable destinations;
and (3) a text-retrieval model based on a vector space model,
which uses nearby tweets as search keywords for the most
probable destinations; and (4) a text retrieval model based
on the vector space model. (3) a text enrichment regression
model for determining the distance of features captured from
text content to each site type and feature. The proposed
algorithm is able to distinguish crime locations containing
25 crime types with 35% accuracy. Vomfell et al. [166]
proposed the use of tweets and cab data to predict the
number of crimes. The correlation between the number of
crimes and location information is learned using models
based on machine learning architectures such as RF, GBM
and ANN on textual information from tweets and cab traffic
data.

Based on the textual information, Rizk et al. [168] intro-
duced the image information that tweets also contain in order
to classify social media species disaster-related tweets. The
method consists of two components corresponding to the first
level (perception) and second level (comprehension) of SA.
The model at the first level uses metrics such as RGB his-
togram, HSI/V histogram, and gradient direction histogram
to represent the image information, and the BoW method is
used to describe the semantic information. Separately trained
classifiers classify the two modalities. SVM based classifiers
are applied with the second quarter of the model to fuse and
classify the data representations and features generated by the
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first level model at the decision level. The method obtained
92.24% accuracy in the test.

C. MEDICAL AND HEALTHCARE

Compared to SAs in other domains, SAs in medical and
healthcare usually focus more on sensing the user’s physical
conditions. With the addition of multimodality, devices such
as portable and wearable physiological signal sensors, sensor-
integrated smart phone and person-facing cameras, etc. can be
deployed to provide sensing.

Haghighi et al. [169] designed a health monitoring sys-
tem based on wireless sensors and wearable sensors. The
acceleration sensor data from the mobile phone, consisting
of x-, y-, and z-axis values, is preprocessed into a vector
format and inputted into a K-NN classifier. The action-related
classifications output by the classifier will be fused with
low-level sensory data such as heart rate, blood pressure
and body temperature. Based on fuzzy inference, the authors
have created a rule base and corresponding inference rules
for multimodal fusion at the decision level. Weights are
assigned to each semantic variable (e.g., heart rate) based on
its contextual significance. The weighted average of all the
variables will be used as the confidence level for the system to
judge whether the participant is healthy or not. The proposed
system considers being run on a removable device and adopts
an intelligent adaptation strategy that reduces the sampling
accuracy of the sensors to save power when the participant’s
health monitoring results are positive, which increases the
lifetime of application by over 38%.

Henaien et al. [170] proposed a rule-based medical mon-
itoring system. The authors divided the system into several
layers, most notably (1) an active and assisted living sensor
layer that includes all wearable sensors and nearby sensors
that can represent information about the patient’s health sta-
tus, location, movement, etc.; (2) an ontological model data
layer that includes ontological rules based on expert recom-
mendations; and (3) a machine-learning based inference layer
that is used to learn new predictive and defensive healthcare
or technology rules, where decision tree learning algorithms
are applied.

Saad et al. [171] proposed a recurrent neural network-
based SA recommendation system. Body temperature, blood
pressure, heart rate and respiratory rate data from wearable
sensors are used as multimodal inputs to the system. The
RNN-based network learns physiological signals acquired at
different times and relevant medical recommendations sug-
gested by experts. It outperforms traditional baseline methods
in disease matching proportion, time complexity, and sys-
tem latency due to the efficiency of RNN inference. Similar
features are recognized and used to provide learned counter-
parts and medical advice based on classification. Symptoms
not previously encountered are used for training the model.
The authors compare traditional baseline methods, and the
proposed method is superior in terms of the proportion of
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disease matches, time complexity, and system latency ben-
efiting from the inference efficiency of RNNs.

D. SMART HOME

A key element of the smart home is the perception of the
environment, which is where situation awareness applica-
tions come in. In smart homes, the ability to accurately
detect the activities of home users and respond to their needs
is the focus, with more emphasis on the interaction between
the user and the environment than applications in medical and
healthcare.

For smart life, Lee and Lin [172] proposed a smart home
system based on multi-sensor and Al technology. A wearable
device with integrated accelerometers and gyroscopes and
location beacons arranged throughout the room constitute a
sensor network. The system can deduce the user’s position
based on the Received Signal Strength Indicator (RSSI) of
multiple received beacons. Accelerometers and gyroscopes
are used to determine the user’s state, and three decision
trees are used to determine the user’s posture (sitting, lying,
or standing), activity (chatting, watching, and reading), and
whether or not the user is sleeping, respectively. The Hidden
Markov Model enhances the confidence of state classification
by calculating the likelihood of hidden states. When the
system is aware of the user’s activity, it can change the light
color and play specific types of music for specific activities to
achieve a livable smart home environment. Zhang et al. [173]
Inferring the user’s posture and position using multiple sen-
sors integrated in smartphones and smartwatches. SVM was
used for posture sensing, and in combination with heartbeat
data and position data, the system was able to determine if the
user had fallen and deliver an alert.

Wang et al. [174] considered the impact of alarm sounds on
user’s emotions and used multimodal data from smartphones
and contextual information such as weather and social infor-
mation to sense the situation in order to provide appropriate
alarm sounds. Acoustic features such as over-zero rate, pitch
type, and speed were used to evaluate the Arousal-Valence
value of the alarm sound, and a K-NN algorithm was used to
assign a reasonable Arousal-Valence value to the new alarm
sound. The alarm sound will be changed according to the
extracted vectors including feature vectors indicating user’s
sleep, context vectors indicating user’s mood and outdoor
weather and social vectors indicating social relationships.
Experiments have shown that the application of the system
has improved the emotional state of the user by about 11%.

E. VEHICLE ASSISTANCE

Vehicle assistance is provided to ground, air and sea vehicles.
The assistance consists of sensing the state of the vehi-
cle itself and its driver and performing the corresponding
actions, which can improve driving safety and even enable
autonomous driving. Many of the methods mentioned in the
previous sections are also in the context of vehicle assistance,
e.g., [18], [20], [21], [47], [56], [59], etc.
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When an automated vehicle encounters an unmanage-
able situation, it needs to hand over control to the driver,
which requires ensuring that the driver has sufficient situation
awareness. Hofbauer et al. [176] introduced eye-movement
data sensors to enable the assessment of the driver’s situation
awareness. The multimodal data consists of eye movement
data and images captured by the vehicle camera. The system
first senses the image content using a machine learning based
region of interest (ROI) prediction network. Comparing the
regions covered by the eye-movement data, the authors define
four scenarios: (1) undetected, i.e., the eye-movement data
does not overlap with the ROI region; (2) detected, i.e.,
the eye-movement data overlaps with the ROI region; (3)
comprehended, i.e., the regions overlap for a period of time
that exceeds a formulated threshold; and (4) distraction, i.e.,
the eye-movement data overlaps with the non-ROI region.
Hu et al. [175] suggest that playing appropriate music in
a vehicle can help to improve driver fatigue and negative
emotions, thus enhancing the driver’s situation awareness.
The proposed system was experimentally demonstrated to
reduce the fatigue level and negative mood level by about
49% and 36%, respectively.

Automated driving requires continuous decision support
and state updates. A reinforcement learning approach is intro-
duced in [177] to deal with the control transition problem
of self-driving cars in specific traffic situations. In the event
that an autonomous vehicle encounters a special situation that
requires a transfer of driving authority, the safety state of the
vehicle (e.g., speed, road congestion, etc.) can be modelled
using RL and an optimal takeover strategy can be fitted to
avoid the vehicle from performing a minimal-risk operation
(i.e., stopping as safely as possible). The RL-based SA system
treats the area around a single vehicle as a cell and senses the
average speed of all vehicles in the cell as well as the number
of automated and manually driven vehicles to serve as the
environment state. Also, a successful takeover is performed as
a condition for model reward. Based on learning and updating
the Q-functions using a dual-delay deep deterministic policy
gradient training strategy (TD3), longer autopilot times and
distances are achieved compared to conventional takeover
schemes.

F. POWER AND ENERGY

Energy and power grids continue to increase in size and
complexity as technology advances. At the same time, the
reliability and security of the grid is a continuous concern.
The introduction of SA is essential to enhance the security of
the grid and avoid attacks against energy systems [183].

As reviewed in the previous work on smart grids, PMUs
are important sensors that sense the conditions of the grid
system in real time. Using only the data measured by PMUs,
the authors in [85] employed random matrix theory (RMT) to
model the data and provide a more rudimentary SA for data
analysis as well as visualization of the grid system from a
statistical perspective. In [178], the authors introduced deep
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reinforcement learning to simulate and interact with the grid
through a data-driven agent. Their designed reinforcement
learning agent can receive signals collected from a variety
of sensors in the system, including PMUs, in order to sense
and understand the state of the system at the current moment,
and iterate through the state by updating the Q-value in the
reinforcement learning in order to formulate a strategy for
autonomous voltage control.

Al-based SA of batteries can not only sense the state of
the battery, but also optimize its performance and service
life. In order to better predict the service life of batter-
ies, the authors in [179] used state-space modeling of the
degradation process of lithium-ion batteries, estimated the
implicit parameters of the state model using particle filter-
ing and expectation-maximization methods, and corrected
the estimated parameters using support vector regression.
This effectively models the battery degradation process with
stochasticity and achieves superior performance in lifetime
prediction.

G. INDUSTRY AND EQUIPMENT

The traditional labor-intensive model of industrial production
and equipment maintenance is becoming obsolete, and Al-
based SA may update this model. Based on a deep learning
approach, the authors in [180] predicted the lifetime of the
equipment by collecting sensor data from the equipment to
extract features of interest and training a time-series predic-
tion data. In [181], the authors enhance the prediction ability
for long-term time series data using LSTM-RNN approach.
Their model was trained and tested using sensor data from
electrical equipment in railroads as samples to predict the
future maintenance time of the equipment.

In a production environment, the efficiency optimization
of mining with complex working conditions using a vision-
based SA approach is proposed in [182]. The improved
YOLOVS can accurately monitor the position of different
minerals on the production equipment for mineral sepa-
ration and resource recovery. This significantly optimizes
the efficiency of industrial production while saving human
resources.

H. PHASE SUMMARY OF APPLICATIONS USING
AI-EMPOWERED SITUATION AWARENESS

The survey work in this section reveals the following key
points and insights for applications in SA:

« A key challenge in applications is the integration of het-
erogeneous data from multiple sensors and modalities,
such as in [162], [165], [172], and [176]. Ensuring the
quality, accuracy and consistency of data from various
sources can be challenging, especially in dynamic and
unpredictable environments.

« In applications such as smart homes and vehicle assis-
tance, the collection and analysis of multimodal data
raises concerns about privacy, data security, and ethi-
cal considerations. Balancing the benefits of enhanced
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situation awareness with the protection of individual
privacy rights is a critical challenge that needs to
be addressed, federated learning might be a potential
method [184].

o Integrating Al-based SA systems into human-centered
workflows and decision-making processes requires
careful consideration of the dynamics of human-Al
interaction [170], [176]. Designing interfaces and inter-
action mechanisms that enable humans and Al systems
to collaborate and communicate effectively is an impor-
tant challenge.

VII. SITUATION AWARENESS-RELATED DATASETS

This section discusses the current status and development
of SA-related datasets. Datasets are often closely related to
practical applications. Therefore, this section reviews related
work from healthcare, autonomous systems, and disaster
management perspectives. These datasets play a crucial role
in realizing SA by providing the necessary information for
Al models to accurately sense, understand, and predict sit-
uations. It is important to note that only a few datasets
declare themselves to be SA-relevant, and thus the work in
this section relies on the paradigms, tasks, and applications
discussed in the previous section. Table 6 shows the datasets
discussed in this section.

A. OVERVIEW OF DATASETS
1) AUTONOMOUS SYSTEM DATASETS
Karlsruhe Institute of Technology and Toyota Technolog-
ical Institute dataset (KITTI) [185] is one of the largest
international dataset of computer vision algorithm reviews
for autonomous driving scenarios. It was recorded in a real
traffic environment over a period of up to six hours, and
the dataset consists of multimodal information such as cor-
rected and synchronized imagery, radar, GPS, and IMU speed
information. However, its limitations may have included a rel-
atively small size compared to real-world variability, focusing
mainly on urban scenes, which might not adequately repre-
sent diverse driving conditions (e.g., rural, adverse weather).
Although the KITTI dataset does not directly focus on SA,
it has become a benchmark for many studies [133], [134],
[135], [136], [138], [140], [142], [195], indirectly developing
vision-based SA systems for autonomous vehicles.
Cityscapes [186] dataset provides 25K images of driving
scenes in 50 cities. 5K of these images have pixel-level anno-
tations with up to 97% coverage for various categories such
as cars, pedestrians, roads, and buildings; whereas the other
20K images have coarse-grained annotations. Its limitations
include an exclusive focus on the urban environment, which
may lack diversity in road types, landscapes and geographic
areas. This leads to its under-representation of transporta-
tion patterns and infrastructure in cities with rural or other
cultural backgrounds. Focusing on semantic segmentation,
the Cityscapes dataset provides significant contributions in
paved road and urban traffic environments. Vision-based

88809



IEEE Access

J. Chen et al.: SA in Al-Based Technologies and Multimodal Systems

TABLE 5. Summary of SA-related datasets.

Focus Area Datasets Modality(ies) data volume
KITTI [185] RGB, LIDAR, Location, Vehicle motion 15K images with LiDAR data
Autonomous Cityscapes [186] RGB, Location, Vehicle motion 25K images (5K fine annotation + 20K weakly annotation)
System Waymo Open [187] RGB, LIDAR, Location, Vehicle motion over 10 hours video with LiDAR data
ROAD [188] RGB 122K frames from approx. 3 hours video
CrisisLex [189] Text 7 datasets, over 300K tweet texts
Disaster xBD [190] Image 22K images
Management CrisisMMD [191] Image, Text 16K tweet texts + 18K images
VIDI [192] Video 4534 video clips
Healthcare SEED [193] EEG, eye movement signal Over 10 hours EEG signals

PhysioNet [194]

Image, Physiological signals, clinical diagnosis

Over 200K hospital admissions, over 370K images

autonomous vehicles were able to clearly perceive road con-
ditions at a semantic level.

Waymo Open [187] dataset is a dataset that focuses
on vision-based perception and motion prediction in
autonomous driving. The Perception Dataset includes
1950 high-resolution (1920*1280px) videos of 20 seconds
duration and corresponding point cloud data labeled with the
four categories of ‘Vehicles’, ‘Pedestrians’, ‘Cyclists’, and
‘Signs’, whereas the Motion Dataset has 100K segments of
over 200M frames of data, and the label lacks the ‘Signs’
category than the former. Although the images in this dataset
have a higher resolution than the other similar datasets, its
data volume is significantly lower than that of others. This
may raise its limitation that the data is underrepresented.
Besides, Access to this dataset is protected by a protocol,
resulting in the possibility of receiving restrictions or limita-
tions on content access. We mentioned the importance of 3D
visual perception in Section IV, and the Waymo Open dataset
elevates the visual perception of autonomous vehicles SA
systems from 2D images to 3D point cloud data. Compared
to the KITTT dataset, it has a higher data volume and a more
advanced sensor configuration.

ROAD [188] dataset, as recent work, specifically focuses
on situational awareness in autonomous driving, utilizing a
purely visual approach. The dataset comprises 22 segments,
each approximately 8 minutes long, containing 560,000
entity labels, 640,000 action labels, and 499,000 location
labels. The limitation of the dataset is that it does not focus
on the actions of pedestrians. Pedestrians, as important par-
ticipants in traffic, may have an impact on driver behavior,
resulting in behaviors that cannot be explained or catego-
rized by action labels. In contrast to the previously discussed
datasets, the ROAD dataset declares that it focuses on the
situational awareness task and attends in more detail to the
situational awareness of pedestrians by autonomous vehicles.

‘When applied to SA, the discussed datasets may contribute
to the following:

o Perception and object detection: The annotation data

provided by the dataset for various objects, such as cars,
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pedestrians, and cyclists, contributes to training artificial
intelligence models for situational awareness in detect-
ing and tracking surrounding entities in autonomous
driving scenarios.

« Semantic Segmentation: Pixel-level annotation enables
artificial intelligence models to comprehend and classify
each pixel in an image, thereby enhancing the under-
standing of scenes in urban environments and improving
situational awareness capabilities.

o Multi-sensor Fusion: The dataset’s provision of multi-
modal sensor data aids in the fusion of information from
LiDAR, cameras, and radar, enabling a comprehensive
understanding of the environment and enhancing situa-
tional awareness by providing multiple perspectives.

« Environment comprehension: The multimodal dataset’s
diverse data types (stereo images, LiDAR point clouds)
enable algorithms to understand the environment’s
geometry and semantics, contributing to a compre-
hensive understanding of the driving scene for better
situational awareness.

2) DISASTER MANAGEMENT DATASETS
CrisisLex [189] is a series of datasets comprising mul-
tiple text-based collections focused on disasters. The
collection includes datasets on diverse topics such as
political events (BlackLivesMatterU/T1), natural disas-
ters (CrisisLexT6, CrisisLexT26, ChileEarthquakeT]1, etc.),
climate-related issues (ClimateConE350), and more. Specif-
ically, the CrisisLexT26 dataset comprises 250,000 tweets
categorized into 26 types of disasters that occurred between
2012 and 2013. On the other hand, a portion of the dataset
was collected decades ago, which may result in insufficient
timeliness and comprehensiveness. However, the CrisisLex
series of datasets provides a rich corpus for disaster manage-
ment orientation, which directly enhances the performance of
text-based SA systems.

xView Building Damage (xBD) [190] dataset provides
high-resolution satellite images capturing building damages
resulting from natural disasters. The dataset recorded 22,068
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images, including pre-disaster and post-disaster images; and
19 different event markers, including earthquakes, floods,
wildfires, and volcanic eruptions. They can be used for dam-
age localization and assessment. Since the data is satellite
imagery, this makes the image quality heavily dependent on
the weather conditions at the location where it was taken.
Observation of the dataset revealed a number of post-disaster
features and buildings that were obscured by large areas
of cloud. As an image dataset, the xXBD dataset provides
different perspectives for SA systems to perceive disasters in
a remote sensing manner. Different from the disaster pictures
taken from the ground perspective, remote sensing images
can improve the accuracy and recall of SA due to its single
perspective making the features more regular, but obtaining
real-time remote sensing images may be an obstacle when
deploying the system.

CrisisMMD [191] dataset is similar to CrisisLex, as both
collect disaster-related data from social media. However,
CrisisMMD focuses more on image information within the
dataset’s content. The multimodal data of images and texts
contribute to providing more comprehensive information
for disaster monitoring. The dataset contains three types of
labels:(1) whether the content is related to a disaster or not;
(2) eight types of disaster events (including car accidents,
building damage, casualties, missing persons, etc.); (3) three
levels of damage severity. In social media, the posting of
messages is usually multimodal. The CrisisMMD dataset
simulates a more realistic environment for SA systems and
provides richer labels as well.

VIDI [192] dataset is a up-to-date video dataset for dis-
aster event classification. It contains a total of 4534 video
clips from 43 event categories collected from social media.
Unlike perceiving events with words, the information density
of visuals is more sparse and closer to the way humans
perceive events. In contrast to other vision-based datasets
(images), the VIDI dataset annotates the videos, allowing Al-
based models to model the temporal correlation of the visuals,
which improves the perception of the SA system.

When applied to SA, the discussed datasets may contribute
to the following:

o Disaster Monitoring and Assessment: For instance,
using satellite images from the xBD dataset enables
Al models to monitor, analyze building damages, and
evaluate the extent of the damage. This contributes to
managing disaster-stricken areas.

o Detecting Disasters from the Internet: Learning from
multimodal data disseminated on social media within
the dataset assists situational awareness systems in per-
ceiving patterns of disasters from various modes such as
images, texts, and others.

3) HEALTHCARE DATASETS

The SJTU Emotion EEG Dataset (SEED) [193] contains
EEG and eye-tracking signals obtained from 15 subjects
while they watched 15 movie segments. The original dataset
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included three types of movie segments categorized as posi-
tive, negative, and neutral. Each segment lasted around four
minutes, resulting in a collective signal recording of over
10 hours. Subsequent extensions, such as SEED-IV and
SEED-V, introduced movie segments inducing emotions like
‘happiness,” ’sadness,” ‘fear,” and ‘disgust,” aiming to broaden
the range of captured EEG signals. The limitation of this
dataset is that it involves a small number of subjects, which
may have limitations in data representativeness. Secondly, the
movie clips used for data collection were all Chinese movies,
which may lead to errors in the dataset in terms of culture,
age, and gender. However, the contribution of SEED is its
use of a multimodal approach to provide individual emotion
perception for SA systems.

PhysioNet [194] stands as an expansive repository hous-
ing a wide array of freely accessible physiological signal
datasets and associated resources. One of the prominent
medical datasets, MIMIC-III, houses clinical records of
53,423 patients admitted to intensive care units between
2001 and 2012. It encompasses diverse patient information,
vital sign measurements, medication records, and additional
data. In contrast, the visually centered dataset, MIMIC-CXR,
predominantly comprises 377,110 annotated chest X-ray
images, featuring details on anatomical locations and image
orientations. However, most of the datasets are unimodal.
This results in datasets that may lack sufficient contextual
information for their use as medical contexts, making it
challenging to interpret physiological signals into real-world
scenarios.

When applied to SA, the discussed datasets may contribute
to the following:

e Physiological signal comprehension: Establishing con-
nections between an extensive range of emotional
labels, disease classifications, and various biological
signals enhances the situational awareness system’s
capacity to comprehend biological signals comprehen-
sively. This augmentation significantly aids in elevating
the system’s perceptual capabilities in tasks such as
emotion detection and disease monitoring.

e Disease prediction: Temporal patient case data can
serve as a valuable source of historical information for
Al models, augmenting their ability to predict potential
diseases. Aligning and fusing multimodal physiologi-
cal signals with time-series-based medical records may
substantially enhance the model’s robustness and per-
formance.

B. POTENTIAL BIASES
As with several of the previously described datasets, potential
biases may be introduced in the experimental design, data
collection, and labeling. Researchers should be cognizant
enough of their limitations and potential biases when con-
structing or using datasets.

Bias due to data collection methods typically occurs in
datasets where the design of the experiment was used for
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collection. For example, the authors of the SEED dataset used
a device with integrated eye movement monitoring and EEG
collection to collect data. Compared to a similar EEG dataset,
the circuit design, sampling location, sampling frequency,
and other parameters may not be the same. Second, the mea-
surement of physiological signals, such as ECG and EEG, is a
discrete analog of electrical signals to the human body, and
thus the acquired signals are inherently subject to error [196].
Additionally, sampling bias is a pervasive factor that stems
from non-random sampling. The presence of sampling bias
can lead to a less representative dataset. Using the Cityscapes
dataset as an example, although it contains data from up to
50 cities, all of these cities are located in Europe. This may
make the models trained using this dataset less resilient to
different transportation environments in other regions.

VIil. OPEN CHALLENGES AND FUTURE WORK

This section presents various open challenges encountered
in situation awareness empowered by Al and multimodal
technologies. The challenges captured in this work include
further projections, federated learning and distributed com-
puting for SA systems, Explainable AI for SA, SA of
autonomous vehicles and mixed reality for SA.

A. FURTHER PROJECTIONS

Munir et al. [7] indicate that the deployment of Al is partic-
ularly useful for the prediction phase of SA, but only a few
of the existing work based on AL techniques actually achieve
prediction of the environment, e.g., [47], [50], [104], [197],
etc., and most of these are predicting a single or few variables
in the environment.

B. REAL-TIME SA WITH UPDATES

Increasing computing power enables Al model-based SA
methods to provide or evaluate SA at near real-time speeds,
but most of the applied AI models are based on supervised
learning, which may lead to obsolescence of the trained
models in the face of ever-changing environments, so the
introduction of the concepts of on-line, incremental, or rein-
forcement learning is worth considering.

C. FEDERATED LEARNING AND DISTRIBUTED
COMPUTATING FOR SITUATION AWARENESS SYSTEMS
The trend of multiplying data volumes and model parame-
ters has led to the gradual dominance of big data and big
models, which usually require the support of huge computa-
tional resources. Situation awareness systems will probably
be hindered by environmental factors when using these tech-
nologies in the future. New challenges may lie in realizing
distributed computing for situation awareness systems. Fed-
erated learning is a machine learning technique which trains
models through multiple decentralized devices or servers for
distributed deployment. These devices or servers hold local
data samples but do not exchange data for better privacy.
Federated learning for situation awareness is a new research
area. The feasibility of using federated learning to achieve
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distributed computing for situation awareness systems [184]
and its improvement in the accuracy of situation awareness
systems has been demonstrated in recent work.

D. EXPLAINABLE Al FOR SITUATION AWARENESS

The domains where situation awareness is applied, such as
military, medical, etc., may be very sensitive and less fault
tolerant. However, when introducing Al-based approaches
in situation awareness systems, factors such as false patterns,
missing and noise in the training data may cause the predic-
tions made by the model to lack in correctness and robustness,
resulting in them not being trusted. Explainable Artificial
Intelligence (XAI) refers to the ability of an intelligent being
to communicate clearly and effectively with users, affected
persons, decision makers, developers, etc., of an Al system in
an explainable, understandable, and human-computer inter-
active manner in order to gain the trust of human beings
while meeting regulatory requirements. In [198], the authors
discuss a useful taxonomy for XAI approaches from three
perspectives: (1) simplifying interpretation, (2) adding visual
interpretation, and (3) measuring feature relevance.

E. SITUATION AWARENESS AND EXTENDED REALITY
Interaction and feedback is an important part of the sit-
uation awareness system. Extended Reality (XR), as the
sum of Virtual Reality (VR), Augmented Reality (AR), and
Mixed Reality (MR), provides more intuitive and immersive
methods of interaction, enabling users to interact with dig-
ital content in innovative ways. In [199], the authors point
out the focus of realizing XR: (1) display devices, which
provide the hardware foundation for realizing XR; (2) track-
ing algorithms, which track the user’s body parts, gestures,
orientations, and entities in the environment and establish cor-
respondences in space; and (3) Al automation, which includes
3D scanning, image segmentation, and spatial computation
(e.g., interpreting the physical scene). With the support of [oT
technology, multimodal technology, and 3D situation aware-
ness, work has been done to introduce XR technology into
situation awareness systems, such as [23], which combines
the results of the perception of the environment with real-time
navigational footage using AR technology in order to provide
more integrated information to the user.

IX. CONCLUSION
This paper provided a comprehensive overview of context-
aware perception instances based on artificial intelligence
technology and multimodal systems. The review encom-
passed various models and architectures in artificial intel-
ligence, including machine learning, deep learning, and
reinforcement learning, as well as the situational awareness
tasks targeted by these methods. Findings from the survey
revealed that as models become more complex, there is
indeed a significant enhancement in their performance; how-
ever, interpretability has emerged as a new issue.

Of particular note is the reinforcement learning meth-
ods, due to their unique characteristics, provide sustainable
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predictive layers and additional decision-making layers to
SA systems. Furthermore, multimodal data offers more
comprehensive environmental information to SA systems,
demanding refined representation and fusion methods for
multimodal data, which this paper deeply delves into.

Moreover, this paper extensively explored 3D technolo-
gies associated with situational awareness and use cases of
artificial intelligence and multimodal approaches in various
fields of situational awareness. Concerning data sources, only
a relatively small number of datasets are constructed with
the direct goal of providing situational awareness, but diverse
datasets can provide situational awareness capabilities to the
system indirectly. This paper summarized them from various
fields, modalities, volumes and limitations.

The survey results have important implications for a
variety of practical applications. For example, in military
defense, the integration of reinforcement learning meth-
ods into SA systems can enable a more robust prediction
and decision-making layer that improves the ability to
monitor, identify, and track enemy or unknown targets
in dynamic battlefield environments. Similarly, in disaster
and risk management, improvements in the representation
and fusion of multimodal data can enable more accurate
event monitoring and prediction, enhancing preparedness and
response.

The review also highlighted unresolved challenges and
suggests future work in the following areas: (1) enhancing
SA capabilities to offer deeper and more comprehensive envi-
ronmental predictions; (2) developing real-time SA updated
with Al technology; (3) employing distributed computing
and federated learning for SA; (4) creating interpretable Al
models for SA systems; (5) utilizing augmented reality for
more comprehensive interaction.
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