
Received 21 May 2024, accepted 8 June 2024, date of publication 18 June 2024, date of current version 27 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3416095

Enhancing Sniffing Detection in IoT Home Wi-Fi
Networks: An Ensemble Learning Approach
With Network Monitoring System (NMS)
HYO JUNG JIN 1, FARSHAD RAHIMI GHASHGHAEI 1, NEBRASE ELMRABIT 2,
YUSSUF AHMED 1, AND MEHDI YOUSEFI
1School of Computing and Digital Technology, Birmingham City University, B4 7XG Birmingham, U.K.
2Department of Cyber Security and Networks, Glasgow Caledonian University, G4 0BA Glasgow, U.K.

Corresponding author: Nebrase Elmrabit (nebrase.elmrabit@gcu.ac.uk)

This work was supported by Glasgow Caledonian University.

ABSTRACT Network packet sniffing is one of the techniques that is widely used in the network and
cyber security fields. However, sniffing can also be used as a malicious technique that allows threat actors
to intercept and capture data flow to collect various information within the victim network. Where the
wireless network environment can be vulnerable to sniffing vulnerabilities attacks due to the broadcasting
function of Wi-Fi network. Wi-Fi access point devices can often be compromised, and critical information
is leaked through sniffing attacks. Moreover, since sniffing is usually one of passive attacks, it is very
challenging to detect sniffing activity in the network completely. The primary aim of this research is to
contribute to enhancing the security of Internet of Things (IoT) home Wi-Fi systems. This is achieved
by applying ensemble machine learning technology with sniffing detection methods using a Network
Monitoring System (NMS) to effectively identify and mitigate potential sniffing behaviour within the IoT
home Wi-Fi environment. Ultimately, this research will prove whether it is possible to precisely detect
abnormal sniffing in a smart home Wi-Fi environment using machine learning techniques.

INDEX TERMS Ensemble learning, network monitoring system (NMS), smart home, sniffing, Wi-Fi.

I. INTRODUCTION
The Internet of Things (IoT) has advanced in home networks,
with intelligent sensors, smart devices, and web-based
systems designed for health and fitness monitoring [1]. The
smart home adoption in the United Kingdom is currently
hovering around 62% as of 2024, and projections anticipate
it to surge to 115% by the year 2028 [2]. Nevertheless,
the increasing popularity of smart devices also presents
potential risks to users’ security and privacy [3]. An instance
of this is the cyber attack on smart thermostats in Finnish
apartments, planned by hackers and resulted in residents
enduring extreme cold during winter [4]. Furthermore, these
systems generally rely on Wi-Fi within home networks to
provide services such as remote monitoring, energy effi-
ciencymanagement, and safety and security management [1],

The associate editor coordinating the review of this manuscript and

approving it for publication was Ding Xu .

[5]. Home Wi-Fi networks are vulnerable to sniffing devices
due to their wireless broadcasting features, as described
by [6]. Particularly concerning are tiny IoT devices employed
in smart home networking, where credential management
becomes challenging, and information is subject to exposure
through sniffing attacks. In the case of a vulnerability in
smart home networking equipment, crucial information is
constantly leaked through sniffing attacks. As sniffing attacks
function passively and often generate minimal logs, detecting
them becomes more challenging than active attacks [7]. As a
result, understanding the fundamental concepts of sniffing
technology is essential for developing effective detection
systems.

To successfully detect sniffing attacks, it is crucial to
possess a thorough comprehension of sniffing technology and
the risks it entails [8]. The traditional definition of sniffing
encompasses a range of activities involving the monitoring,
interception, and analysis of network traffic to capture data

86840

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-7439-755X
https://orcid.org/0009-0001-9634-3301
https://orcid.org/0000-0002-4267-8798
https://orcid.org/0000-0003-4079-9243
https://orcid.org/0000-0003-0832-650X
https://orcid.org/0000-0002-3759-4805

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

packets [9], [10]. In its proper application, a legitimate packet
sniffer captures and examines only the packets intended for
a particular computer. However, if the network interface
card (NIC) is set to promiscuous or monitoring mode, the
packet sniffer acquires the ability to intercept all network
packets, regardless of their intended recipient. Promiscuous
mode, a configuration for a network card, enables it to send
all received traffic to the central processing unit, deviating
from the usual practice of forwarding packets with specific
addresses.When packet sniffers are set in promiscuous mode,
threat actors can capture the network traffic. Significantly,
within a network, user credentials, like usernames and
passwords, are frequently transmitted without encryption,
making them vulnerable to analysis through intercepted
packets [11]. This vulnerability positions sniffing technology
as a potentially valuable tool for malicious attackers.
Consequently, there has been a collective endeavour to create
detection technologies for sniffing as a defence against
cyber hacking, marked by the recent integration of machine
learning methods in this field.

This research aims to utilise ensemble machine learning
technology for the identification of sniffing behaviour within
the home Wi-Fi network environment. To achieve this
aim. First, the study will conduct a complete evaluation
of previous sniffing detection technologies and approaches
that incorporate machine learning. Additionally, a pivotal
aspect involves establishing a simulated testing environment
tailored for a sniffing attack in a home Wi-Fi network. This
controlled setup includes essential components such as a
Wi-Fi router, a Sniffing device, and a network monitoring
system. Alongside configuring the testing environment, the
research explores factors influenced by sniffing activities,
involving selecting pertinent features and systematic data col-
lection through well-designed experiments. An integral part
of the research entails training a dedicated sniffing dataset
using ensemble machine learning technology, followed by a
detailed analysis of the results of this training process.

The research presents a series of essential questions to
guide the investigative process. These questions encompass
identifying an optimal sniffing detectionmethod suitable for a
homeWi-Fi environment, exploring the effective applications
ofmachine learning technology to enhance sniffing detection,
examining the system characteristics within a home Wi-Fi
environment influenced by the operation of a sniffing
program, and exploring potential limitations and ethical
considerations associated with the utilization of ensemble
machine learning for sniffing detection methods.

This work introduces a multifaceted approach to enhance
home Wi-Fi network security, particularly against sniffing
attacks, which have become a concern due to the proliferation
of IoT devices. A key element is the development of an
ensemble machine learning model designed to detect and
counteract these attacks. The research also involves setting
up a controlled testing environment, including a Wi-Fi
router, sniffing device, and Network Monitoring System
(NMS), to simulate and evaluate sniffing attacks effectively.

Additionally, the study applies ensemble machine learning in
creating a training dataset, leading to a highly accurate model
for sniffing detection with practical applications. Ultimately,
this research offers valuable insights and strategies to bolster
the security of smart home environments, thereby making a
significant contribution to the broader field of Cyber Security
and IoT protection.

The paper follows a structured format, starting with an
introduction that outlines aims and objectives. It proceeds
with an exploration of sniffing detection principles through
a literature review, followed by a detailed methodology
covering the proposed detection approach and experimental
processes. The paper presents experimental outcomes, ana-
lyzes results, discusses findings, and addresses limitations
and ethical considerations. The paper ends with a conclusion
and future research topics.

II. LITERATURE REVIEW
Although there is existing literature on sniffing technology,
research on sniffing detection has been relatively inactive.
Limited studies have delved into detection methods, and
some tools are outdated or incompatible with current
systems [7]. Detection methods are broadly classified into
host-based and network-based, with network-based methods
further divided into Challenge-based and Measurement-
based subgroups. Nowadays, machine learning-based
(ML-based) methods have been gaining prominence [7].

A. HOST-BASED SNIFFER DETECTION METHOD
The study conducted by [12] introduced an innovative host-
based method to detect network sniffers on computers. This
method utilizes a specialized program known as an agent,
which continually sends real-time information about the
computer’s network status to a central server. The agent
program is installed on the local host to actively monitor and
identify potential sniffing threats. In practical terms, the agent
program employs a straightforward comparison between the
computer’s Media Access Control (MAC) address and the
destination address of incoming packets. If the MAC address
matches the destination address of the received packet,
it implies that the computer is not currently executing any
sniffing programs. Conversely, if the MAC address does not
align with the received packet’s destination address, there is
a possibility of a sniffing threat on the device.

Another crucial aspect of this method involves the
monitoring of incoming network traffic. The agent program
sets a predefined threshold value, and if it detects an increase
in incoming traffic surpassing this threshold, it promptly
notifies the central server of the suspected sniffing activity.
This dynamic analysis of network traffic patterns enhances
the method’s capability to identify abnormal behaviour
associated with potential network sniffers. The proposed
approach demonstrates versatility, being effective under both
distributed and centralized management systems. However,
challenges emerge when applying this method to IoT
environments, such as smart homes. Installing agents on

VOLUME 12, 2024 86841

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

IoT devices proves challenging due to the diverse operating
systems employed in these environments. Many IoT devices
rely on lightweight operating systems like Contiki, TinyOS,
and RIOT, which present a unique set of challenges in
adapting the agent installation environment to accommodate
this diversity [13].

Furthermore, the installation of agents on small IoT
devices may encounter resistance or rejection. As mentioned
in [7], the vulnerability of the agent program can be easily
disabled or manipulated by attackers. These challenges
highlight the need for continuous research and robust security
measures to address the evolving threat landscape, especially
in IoT environments where diverse operating systems and
device constraints pose unique difficulties. Efforts to refine
and adapt host-based sniffer detection methods in light
of these challenges remain essential for effective network
security.

B. NETWORK-BASED SNIFFER DETECTION METHODS
The network-based sniffer detection method is a technique
designed to identify suspicious sniffing behaviour across an
entire local network, often monitored remotely [14]. This
method involves intentionally generating packets for passive
sniffing detection and analyzing the responses to identify
potential sniffing systems. It can be broadly categorized
into two subgroups: Challenge-based and Measurement-
based [7].

1) CHALLENGE-BASED APPROACH
In the Challenge-based approach, the method intentionally
provokes a response from a suspected sniffing system by
sending carefully crafted network packets. These packets
may contain forged MAC addresses or specific DNS
messages. Detection occurs when the system under scrutiny
responds. The efficacy of forged MAC address packets is
notable when the Network Interface Controller (NIC) is
in promiscuous mode, allowing the operating system to
interpret the traffic as normal and respond accordingly [15],
[16]. This also involves the use of DNS messages, often
referred to as decoy-based detection. This technique employs
random IP addresses to generate fake traffic within the local
network. Legitimate devices typically ignore this simulated
traffic, while devices equipped with sniffers might initiate
reverse DNS lookup requests. By creating a fake three-
way handshake resembling a genuine TCP connection, the
method monitors DNS lookups to identify potential sniffing
behaviour [14].

However, these detection techniques may encounter chal-
lenges if sniffing devices block network traffic and fail
to respond to ARP, ICMP, and DNS request packets [17].
Additionally, these methods depend on the network card
operating in promiscuous mode, which differs from the
monitoring mode commonly used in Wi-Fi environments.
In Wi-Fi settings, monitoring mode enables the reception
of data without being connected to a network, transmitting

all captured information to the operating system. This mode
is used for Wi-Fi sniffing without requiring an IP address,
making it challenging to detect [18], [19].

2) MEASUREMENT-BASED APPROACH
This approach involves sending network traffic to a system
suspected of being sniffed and observing the system’s
performance degradation in response. The underlying idea
is that when sniffing is in operation, the specific device
causing it will impose a load on the entire system, leading
to performance degradation. The load-measured method
is executed based on two response time measurements,
determining the response time of a system under low and
high network traffic conditions. The measurement method
employs the Round Trip Time (RTT) check, which sends an
ICMP echo request packet and waits for its response packet
to determine the response time.

The z-statistics method was employed by [20] in the
context of a measurement-based sniffing detection approach.
Due to the nature of the sniffing system operating in
promiscuous or monitoring mode, capturing and monitoring
all packets, the RTT measurement value is expected to
increase significantly. Based on this, the detection system
sends demand request packets to the sniffing system and
collects RTT measurements. Training data is then collected,
including RTT average, standard deviation, and change rate.
The z-statistical model is utilized to determine whether
sniffing is occurring. According to [20], the basic principle
of the z-statistical model is as follows:

• There are two populations of round-trip time, and the
population averages are defined as each µ1, µ2. They
cannot be known because their populations are infinite.
The difference between the two population averages is
defined as µ.

µ1 − µ2 = µ (1)

• In this point, the null hypothesis of µ = 0 and the
alternative hypothesis of µ > 0 are defined. The
null hypothesis is tested rather than the alternative
hypothesis, and if the null hypothesis is rejected, the
alternative hypothesis will be accepted. To be specific,
if two random samples of size n1 and n2 are chosen, the
averages of the two RTT samples are displayed as X̄1,
X̄2 and the difference between these two average values
is defined as X̄ , like the next equation.

X̄ = X̄1 − X̄2 =

n1∑
i=0

X1i
n1

−

n2∑
i=0

X2i
n2

(2)

• Moreover, two expected values X̄1, X̄2 are displayed in
the following equation, and they are the same as µ1, µ2:

E(X̄) = E(X̄1 − X̄2) = E(X̄1) − E(X̄2) = µ1 − µ2 = µ

(3)

• As each random sample is independent, the standard
error (SE) of their sum is defined as follows:

86842 VOLUME 12, 2024

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

FIGURE 1. Standard normal curve.

SE(X̄) =

√
SE(X̄1)2 + SE(X̄2)2 (4)

• In addition, two sample’s standard deviations are:

S1 =

√∑n1
i=1

(
X1i − X̄1

)2
n1

(5)

S2 =

√∑n2
i=1

(
X2i − X̄2

)2
n2

(6)

• If the number of two samples is very large, the two
sample standard deviations tend to be close to the
standard deviations of the two populations:

SE(X̄1) ≈
S1

√
n1

, SE(X̄2) ≈
S2

√
n2

(7)

• Then, the standard error is reformulated in the following
manner:

SE(X̄) ≈

√
S21
n1

+
S22
n2

(8)

• Therefore, The Z -statistic can be represented by the
following equation:

Z =
X̄1 − X̄2√
S21
n1

+
S22
n2

(9)

• Under the null hypothesis, the Z value should be
expected as zero. However, if the expected value of Z
is significantly greater than zero, it is appropriate to
use a right-tail z-test and reject the null hypothesis. For
example, the null hypothesis can be rejected when the z
value is over 2.36 (equal to 99%), as shown in Figure 1.

C. SNIFFING DETECTION USING MACHINE LEARNING
The use of machine learning technology to improve a
measurement-based method for detecting sniffing activities
was demonstrated by [7]. The process involved periodically
generating artificial load traffic, measuring response times
through ping and curl commands on the system with sniffing,
and securing this data along with sniffing system details. The
XGBoost method, an ensemble machine learning technique,
was then used to predict the outcomes based on the gathered
dataset. The system diagram used in their experiment is
detailed in the study. The MAC flooding technique served
as the artificial load. This technique floods the local network

TABLE 1. Interpretation of AUC values.

with ARP messages, creating substantial traffic and proving
effective for generating artificial load in confined network
spaces like smart home networks. The impact of MAC
flooding on system resources, especially on a device with an
active sniffer, influenced response times. Machine learning
techniques were then applied to determine the presence of
a sniffer based on the generated data. This innovative use
of machine learning demonstrated significant improvements
in sniffing detection accuracy. The experimental validation
showed that the AUC values exceeded 0.9999 (≈ 1), indi-
cating exceptional model performance. The AUC values,
representing the Area Under the Curve in ROC analysis, serve
as a measure of the model’s ability to distinguish between
classes [21]. Higher AUC values indicate better predictive
accuracy. Swets’ interpretation of AUC values categorizes
them as can be seen in the Table 1:

Despite these achievements, The study highlights a
small gap in response time prediction in a wireless Wi-
Fi environment. Detecting sniffing activities solely through
network-based methods in a Wi-Fi setting is considered
complex. Additionally, the study notes that ICMP responses
operating in NIC kernel mode have minimal impact on the
CPU load of the sniffing system [14]. The innovations in
Wi-Fi technology can require further research to determine
the feasibility of sniffing detection based solely on network
response time under varying loads.

III. METHODOLOGY
This study suggests using a NMS as an effective method
for detecting sniffing activities, applicable across various
IoT infrastructure environments. The NMS serves as a
tool to visualize the network’s real-time state, determining
whether connected devices display normal or abnormal
behaviour [22]. Recent research has also explored lightweight
network monitoring methods designed for IoT environ-
ments [23]. The rationale for adopting this approach lies in
the NMS’s existing connectivity and management of diverse
IoT devices, simplifying the collection of machine learning
data for sniffing detection. Additionally, in this research,
the load-based method proposed by [7] was incorporated.
Given that most sniffing operations are passive, enhancing
the sniffer’s response is expected to facilitate easier sniffing
detection. Furthermore, this paper demonstrates the potential
to detect specific sniffing programs and their operational
states by applying ensemble machine-learning techniques to
data extracted from the NMS.

VOLUME 12, 2024 86843

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

FIGURE 2. Sniffing threat model and proposed architecture for detecting sniffing.

As can be seen in Figure 2(a), a simulated environment was
designed for threat modelling to make a controlled analysis of
sniffing threats on home Wi-Fi networks. This environment
represents a compromised device (Smart Home Controller)
that actively interacts with other devices. A dedicated system,
represented as the sniffer, equipped with popular packet
capture tools like Tcpdump and Wireshark monitors network
traffic for sniffing activity as they are recognized as the most
popular open-source programs globally [10]. The system
also collects data for analysis, enabling the evaluation of
countermeasures against these prevalent sniffing programs.
This threat modelling approach assists us in identifying
potential attackers for our smart home networks and the
potential impact they may have. This also helps us to detect
and examine abnormal data packets and develop strategies
to prevent them. In addition, this aids our ongoing attempts
to mitigate these threats and ensure the security of our smart
home Wi-Fi networks.

A. PROPOSED SNIFFING DETECTION
Detecting passive sniffing within a home Wi-Fi environment
poses a significant challenge. This experiment adopts an
artificial load-based sniffing detection method, as proposed
by [7]. However, a notable modification is made to the
data collection method, switching to an NMS commonly
used in IoT infrastructure environments. Anomaly detection
within an IoT environment through an NMS is a well-
established technology [22]. According to [24], real-time
identification of malicious abnormal traffic can be achieved
through systems that provide various statistical analyses and
graphical visualizations for the collected data. The data
collection methods employed using NMS have the advantage
of gathering hybrid data, combining both network-based
and host-based approaches. This includes the collection of
network-based features such as ICMP response time, real-
time traffic volume, and router performance, along with
host-based elements like CPU, memory, disk, and load
performance. The justification for gathering such different
data comes from the fact that, while sniffing is passive, it can

have a variety of consequences on the target device. The
fundamental purpose is to analyse these effects, document
changes in each effect, and determine ways to identify
sniffing using machine learning technologies. Furthermore,
the proposed architecture for the experiment, as shown in
Figure 2(b), aims to enhance sniffing detection performance
by subjecting the collected data to various machine learning
algorithms, aligning with the approach suggested by [7].
Specifically, measurement-based sniffing detection methods
using artificial loads cause various performance changes
in the target system, and the NMS collects these various
performance changes as real-time data to accurately classify
whether the target system is sniffing through ensemble
learning.

The detailed hardware configuration used in the experi-
ment is as follows:

1) HARDWARE CONFIGURATION
• The experiment utilized specific hardware configura-
tions, including a Raspberry Pi Gen4 as the target device
with a 1.5Ghz 64-bit Quad-core processor, 8GB of
RAM, IEEE 802.11ac WiFi, and a 256GB micro-SDXC
Class 10 for disk storage. Running on Raspibian 9.6d,
the device employed Tcpdump and Wireshark as sniffer
programs, connected to the NMS via SNMP V2C.

• An artificial load generator, implemented as a Virtual
Machine, featured 2 CPUs, 8GB of RAM, IEEE
802.11acWiFi, and a 125GBHDD. Running Kali Linux
6.1.0, the Virtual Machine utilized the macof.py MAC
flooding utility and operated on VirtualBox 7.0.

• The NMS, hosted on a desktop, boasted a 3.4Ghz 64-bit
Quad-core processor, 16GB of RAM, IEEE 802.11ac
WiFi, and a 500GB SSD. Running on Windows 10, the
NMS utilized Paessler PRTG for network monitoring.

2) SOFTWARE DESCRIPTION
• The software components included Tcpdump-4.99.3
[25] and Wireshark-4.0.6 [26] as sniffer programs,
with Tshark-4.0.6 [26] as the command-line version

86844 VOLUME 12, 2024

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

TABLE 2. Situations for the Sniffing detection experiment.

of Wireshark. The artificial load generator employed
macof.py [27] as a MAC address table overflow utility.
The Network Monitoring Software, Paessler PRTG
available at [28], served as a small or midsize network
monitoring solution for Windows systems.

B. EXPERIMENTAL METHODOLOGY FOR DATA
PREPARATION
Systems, including a target device equipped with a sniffer,
artificial load generator, NMS, and ensemble learner, were
deployed in a home Wi-Fi network environment. Ensuring
time synchronization across all network systems through a
Network Time Protocol (NTP) server was essential. This
synchronization was crucial to align the timelines of the
artificial load system, target device, and NMS, ensuring
accurate data collection corresponding to specific scenarios.
The collected data were then classified based on timestamps,
a necessary step for the application of supervised machine
learning to the gathered data. The artificial load generator
employed the ‘‘Macof’’ tool to transmit 2,000 packets per
second to the target device, regularly applying the load
through the Linux command ‘‘Crontab’’. This value was
determined through experimentation as a load that efficiently
collects data without overloading the home Wi-Fi network.
Therefore, the number of packets per secondmust be adjusted
appropriately depending on network capacity.

Simultaneously, the target device executed each sniffing
program tailored to various situations. The experiment
assumed two situations: one wherein a malicious hacker
utilizes a sniffing program to monitor in real-time, and the
other wherein a sniffer is already installed. Sniffing data was
saved to disk in the background mode. Considering the no-
load test and artificial load test based on the operation of
the artificial load generator, a total of 10 situations were
investigated, each representing a class value for machine
learning, as shown in Table 2.

NMS facilitated the real-time collection of characteristic
data using a Simple NetworkManagement Protocol (SNMP).
The NMS was configured to collect data at 10-second
intervals, minimizing scan time errors for characteristics
such as CPU, Memory, and Disk. Training data for machine
learning purposes were derived from the average data
collected at 1-minute intervals.

In the experiment, the PRTG NMS, utilizing the SNMP
protocol, collects diverse information about the target
device’s condition, including CPU, memory, disk, system
load, ping time, and traffic [29]. These characteristics serve
as potential features for machine learning. Notably, changes
in these features reveal insights into the operating status of
the sniffing program. CPU load changes withmore noticeable
fluctuations under loaded conditions. However, relying only
on the CPU’s performance for sniffing detection is difficult,
especially when the program is running in write mode, which
simulates regular CPU load (NTS) without sniffing. Disk
access values highlight the importance of write features in
detecting sniffing activities. Changes in disk write become
more apparent during sniffing, but discerning these changes
amidst simultaneous normal program activities poses chal-
lenges. The Linux system load reflects CPU usage variations,
especially during the use of Tcpdump verbose mode or
Wireshark. Lower load averages are generally favourable,
and an increase signifies potential issues or an overloaded
system. Memory usage remains relatively stable, yet certain
sniffing programs, such as Wireshark, occupy memory,
presenting a noticeable pattern. Ping response time values
fluctuate notably in a Wi-Fi setting, posing challenges in
reliable sniffing detection. This is even more noticeable when
using artificial load generation. Multiple factors, including
wireless interference, network congestion, Quality of Service
(QoS), channel interference, signal strength fluctuations, and
sporadic packet loss can explain the fluctuation of ping
response times in Wi-Fi configurations. These factors affect
the accuracy of transmission of data throughout the network.
However, distinctions in response time become apparent
based on load and no-load conditions. Network traffic values
demonstrate changes based on load and no-load states.
Identifying sniffing conditions becomes more accurate by
configuring learning data through alterations in this network
monitoring characteristics and applying ensemble machine
learning algorithms.

C. DATASET DESCRIPTION
The dataset obtained from the experiment is designed
for supervised learning, classifying instances to determine
whether a sniffer is active on the target device. After
20 days of data collection, the dataset comprises 12,000
instances with 31 attributes. Each label is represented by
1,200 instances, ensuring data balance. Table 3 provides a
detailed description of the dataset, featuring thirty attributes
and one class. The selected features include channel data from
the six scanners of the NMS.

Examining each feature shows details about the Raspberry
Pi equipment used as the target device. With 4 cores,
it has 5 channels, including CPU load characteristics for
each processor and the average total CPU load, totalling
5 features. Disk characteristics, with a focus on the disk
writing process during background operations like sniffing in
write mode, result in four derived channels as features. Linux

VOLUME 12, 2024 86845

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

FIGURE 3. The Architecture of Ensemble Learning for Sniffing Dataset.

TABLE 3. Dataset details.

system load attributes include average changes over 1minute,
5 minutes, and 15 minutes, contributing three channels as
features. Memory information, displayed as both percentage
and volume (byte) for available memory, physical memory,
swap memory, and total memory, amounts to 8 selected
channels as features.

Ping values are derived from executing 5 pings, and there
are 4 channels, such as the average, maximum, minimum,
and packet loss in the case of no response. Traffic features
consist of input, output, and total traffic volume and speed,
containing six channels with distinct characteristics.

D. ADOPTING ENSEMBLE LEARNING FOR SNIFFING
CLASSIFICATION
Accurate classification of sniffing in the experiment dataset
is crucial, and machine learning technology plays a vital
role in achieving this goal. While there are various machine
learning algorithms available, this study places particular
emphasis on the ensemble learning algorithm. Ensemble
algorithms enhance classification performance and efficiency
by combining diverse algorithms, demonstrating superior
classifier performance compared to other machine learning
approaches [30]. Notably, many winners of global machine
learning competitions, such as Kaggle, have leveraged
ensemble algorithms [31].

Ensemble algorithms offer the advantage of adaptability
to changes in the data stream, a critical feature for dynamic
datasets [32], [33]. Ensemble algorithms are useful because
of their ability to adapt to changes in data streams, which
is especially useful for dynamic datasets. This adaptability
comes from their collaborative nature, as they use the
combined knowledge of several models to create predictions.
Ensemble algorithms may efficiently capture a broader
range of patterns in data by combining predictions from
multiple models, maintaining reliability even as the dataset
evolves over time. Among ensemble learning methods,
bagging and boosting are commonly employed to enhance
accuracy. In this study, three representative ensemble learning
technologies were utilized as sniffing classification models:
Random Forest, based on bagging, and XGBoost and
LightGBM, based on boosting. Additionally, the decision
tree algorithm, though not part of the ensemble learning
method, was employed as a single model for performance
comparison, considering that the three ensemble algorithms
are tree-based machine learning models. Moreover, ensemble
learning improves performance by generating multiple trees,
which complicates interpretation, whereas a decision tree
uses a single tree, simplifying the interpretation based on
features. The evaluation of sniffing classification accuracy
and feature importance was conducted using these four
algorithms. The architecture for Ensemble Learning on the
collected dataset is illustrated in Figure 3.

E. INTEGRATED DATA PRE-PROCESSING AND
EXPLORATORY DATA ANALYSIS (EDA)
The effectiveness of machine learning algorithms is
notably influenced by data pre-processing and Exploratory
Data Analysis (EDA). Pre-processing activities encompass
addressing issues such as missing values, outliers, and
feature correlations, which are critical for achieving optimal
predictive performance. It is important to highlight that for
tree-based algorithms such as random forest and XGBoost,
the process of feature scaling is considered unnecessary.
On the other hand, EDA involves a thorough examination
of data through the use of graphical tools and descriptive

86846 VOLUME 12, 2024

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

FIGURE 4. The results of the outlier detection using the LOF algorithm.

statistics, improving comprehension overall.In the final stage
of pre-processing, the dataset is divided into training and
testing subsets in a proportion of 80 to 20 to support ensemble
learning.

1) DATA CLEANING AND INVESTIGATION
The original dataset indicated no missing values. The outliers
detected by the Local Outlier Factor (LOF) algorithm were
replaced to prevent accuracy loss. Features with a standard
deviation of zero were eliminated. Correlation analysis helps
to reduce multicollinearity. Figure 4 shows the results of
the investigation of outliers. The yellow spots displayed on
the screen represent outliers. For correction, outlier data was
replaced with the minimum value of the inlier if it was lower
than the minimum value and the maximum value of the inlier
if it was higher than the maximum value. This was adjusted to
find outliers in a range of 4 neighbours (k = 4) and 2% of the
total data, and as a result, most outliers were taken to address.

EDA included multicollinearity detection and feature
correlation analysis. A heatmap displayed closely related fea-
tures that required their reduction to solve multicollinearity.
Two final datasets, ‘‘modified_18f’’ and ‘‘modified_28f,’’
were generated.

2) SEPARATION OF DATA INTO TESTING AND TRAINING
The data was split into training and testing sets (80:20). The
files ‘‘train_18f,’’ ‘‘test_18f,’’ ‘‘train_28f,’’ and ‘‘test_28f’’

were created, each containing 9,600 training and 2,400 test
data instances.

F. ENSEMBLE LEARNING ALGORITHMS
The ensemble algorithm operates by enhancing the perfor-
mance derived from a single tree. Thus, a fundamental grasp
of the single tree principle, the basic structure of ensemble
algorithms, and the principles of ensemble through bagging
and boosting is crucial.

1) SINGLE TREE ALGORITHM: DECISION TREE
Decision Tree serves as a single tree algorithm, utilizing a
tree-like structure to partition data. It starts from the root and
undergoes splits until reaching a terminal leaf node, providing
accurate solutions. Decision trees are used in data mining for
classifying large datasets. The informativeness of attribute
features is crucial, assessed through ‘‘information gain’’ and
computed as the entropy of the dataset. Entropy acts as a
metric for evaluating the randomness or impurity present in
a dataset, with values ranging from 0 to 1. Lower entropy
values indicate enhanced performance, while higher values
suggest increased impurity. If the target has different attribute
values denoted as c, the classification entropy of set S for c is
determined by the following equation:

Entropy(S) =

c∑
i=1

−pi log2(pi) (10)

VOLUME 12, 2024 86847

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

TABLE 4. The learning result (%) of 28 features.

TABLE 5. The learning result (%) of 18 features.

The information gain, denoted asGain(S,A), is defined by
the following equation, where V (A) represents the range of
attribute A, and Sv is a subset of set S equal to the value of
attribute v:

Gain(S,A) =

∑
v∈V (A)

|Sv|
|S|

Entropy(Sv) (11)

2) RANDOM FOREST (BAGGING ALGORITHM)
Random Forest is an algorithm designed to address over-
fitting, a common issue with decision trees, using a
bagging method. It performs effectively for both regression
and classification tasks. RF leverages ensemble learning
principles, employing a bootstrap method to create multiple
subsets of samples. It creates decision trees for each subset
and aggregates them into a random forest. The algorithm
generates predictions through majority voting or averaging
across decision trees. Bagging involves creating and learning
individual decision trees from the dataset, contributing to the
overall performance. Random Forest significantly reduces
overfitting.

3) XGBOOST AND LIGHTGBM (BOOSTING ALGORITHM)
While Random Forest utilizes bagging, XGBoost (eXtreem
Gradient Boosting, XGB) and LightGBM (Light Gradient
Boosting Machine, LGB) enhance performance through
boosting techniques. Based on Gradient Boosting (GB),
XGBoost and LightGBM sequentially train numerous weak
learners, each focusing on misclassified samples from the
preceding learner. The objective is to minimize the cost
function associated with the disparity between the actual
value and its approximation, optimized using gradient
descent. XGBoost combines cause-based decision trees and
gradient boosting machines, improving accuracy and speed
through parallel processing techniques. It efficiently handles
large datasets with numerous attributes and classifications,
providing an optimized solution. LightGBM, developed later
than XGBoost, employs a leaf-wise algorithm, ensuring high
parallel training efficiency, reduced memory consumption,
and support for distributed computing.

IV. RESULTS
After preprocessing and formatting the datasets, an ensemble
of classification algorithms. Initial training involved a dataset
with all 28 features, followed by training with a reduced
dataset containing 18 features. The 10-fold cross-validation
method was applied during training, and metrics like Accu-
racy, F1-score, Precision, and Recall were computed. Feature
importance analysis was conducted to identify the features
most affected by sniffing. As can be seen in Algorithm 1,
which is the pseudo-code to show how the evaluation and
comparison process of the ensemble learning for detecting
sniffing attack works. It starts after the data collection process
by loading training and testing data from CSV files specified
by train_path and test_path, with options to drop specified
labels (labels_to_drop) and features (features_to_drop) that
are determined in the preprocessing stage. After splitting
the data into training and testing sets, it initializes Decision
Tree, Random Forest, XGBoost, and LightGBM. By defining
performance metrics such as accuracy, precision, recall, and
F1-score, it evaluates each model through cross-validation
of the training data. Then it assesses model performance on
the test data and generates confusion matrices for analysis.
Ultimately, it provides us with the model metrics and
confusion matrices for comparison and evaluation.

A. COMPARISON OF 28 FEATURES AND 18 FEATURES
LEARNING RESULTS
Two training datasets with 28 features and 18 features were
created through an ensemble algorithm. The models utilized
Scikit-Learn which is a Python-based machine-learning tool.
All models underwent a 10-fold cross-validation process,
and after training, each model was tested using a separate
dataset. Tables 4 and 5 present the accuracy, precision,
recall, and F-score for Cross-Validation and Test results. The
obtained results reveal that both 28 features and 18 features
achieved an accuracy of over 99%, with precision and
recall performances surpassing 99%. This highlights the
successful use of machine learning in sniffing detection.
Notably, features with a correlation coefficient of 1 had

86848 VOLUME 12, 2024

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

Algorithm 1Model Evaluation and Comparison
Require: train_path (str), test_path (str), labels_to_drop

(list), features_to_drop (list)
Ensure: model_metrics (dict), confusion_matrices (dict)

train_data = LoadCSV(train_path)
test_data = LoadCSV(test_path)
if labels_to_drop is not None then
train_data = RemoveRows(train_data, labels_to_drop)

end if
if features_to_drop is not None then
train_data, test_data = RemoveFeatures(train_data,
test_data, features_to_drop)

end if
X_train, y_train = SplitData(train_data)
X_test, y_test = SplitData(test_data)
models = InitializeModels(DecisionTree, RandomForest,
XGBoost, LightGBM)
metrics = Accuracy, Precision, Recall, F1Score
model_metrics = []
for all model in models do
model_metrics[model.name] =
PerformCrossValidation(model, X_train, y_train)

end for
model_metrics = EvaluateOnTest(models, X_train,
y_train, X_test, y_test)
confusion_matrices = GenerateConfusionMatri-
ces(models, X_test, y_test)
return model_metrics, confusion_matrices

FIGURE 5. The multi-label confusion matrix heatmap using random
forest.

no impact on performance. Parameters were consistently
set (max_depth=7, random_state=42) to prevent overfitting.
Upon examination, Random Forest exhibited superior test
performance, while the Single Tree Structure showed less
helpful outcomes, though without significant differences.

TABLE 6. Comparison of accuracy and training time.

The multi-label confusion matrix heatmap in Figure 5
shows an almost perfect match between vertical predicted
values and horizontal true values. This alignment indicates
very accurate classification, highlighting the model’s ability
to predict and assign labels across several classes.

B. FEATURE IMPORTANCE
The experimental results show no significant difference in test
accuracy between models with 28 features and those with
a reduced set of 18 features. This suggests that removing
collinear features (correlation coefficient of 1) doesn’t lead
to accuracy loss, indicating potential resource efficiency.
Furthermore, it is essential to analyze the feature importance
to identify which characteristics of the system are affected
by the sniffing program. As a result, seven important features
were found in memory, disk, traffic, and CPU. Among them,
the operating status and type of the sniffing program have the
greatest impact onmemory capacity. In addition, the accuracy
did not change significantly after learning after removing the
remaining 11 features except for these 7 features. Comparing
the test accuracy and training time of the 18 and 7 feature
models, as shown in Table 6, the learning speed is improved
without decreasing accuracy. In terms of speed, the decision
tree is naturally the fastest because it is a single tree, while
the LightGBM stands out among ensemble models.

C. THE LABEL ANALYSIS THROUGH TREE GRAPH
To analyze the predominant characteristics of each label
within the 7-feature model, an examination of the decision
tree model’s tree graph is necessary. The ensemble model
creates numerous trees to enhance learning performance,
making interpretation challenging. To simplify interpretation,
the maximum tree depth was adjusted by 5 without signifi-
cantly reducing accuracy. Figure 6 illustrates the decision tree
graph, where the blue ovals represent leaf nodes containing
the highest sample counts among nodes classified by the final
labels.

In the tree graph, memory usage serves as the root node
for the initial decision, withWireshark (WSK) consuming the
most memory. Tshark (TSK), a related program, also exhibits
notable memory usage. Furthermore, the decision on whether
to use artificial load is determined by the input/output
traffic volume. The difference between Tcpdump’s verbose
mode (TVM) and Not to sniffing (NTS) hinges on CPU
usage, while the size of the disk usage determines the
distinction from Tcpdump’s write mode (TWM). Utilizing
machine learning enables the identification of distinctive

VOLUME 12, 2024 86849

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

FIGURE 6. Tree graph of decision tree model.

attributes associated with each sniffing program. This process
substantiates the effective detection of sniffing activities by
employing a NMS coupled with ensemble machine learning
technologies.

D. THE SNIFFING DETECTION PERFORMANCE OF THE
PING FACTOR
An experiment was conducted, focusing purely on the
ping factor, to assess the feasibility of RTT-based sniffing
detection in IoT home Wi-Fi environments. The results
revealed low accuracy, approximately 40%, indicating that
the RTT-based method struggled to detect sniffing program
characteristics. However, in binary classification between
the operational states of each sniffing program (TVM,
TWM, WSK, TSK) and the non-operational state (NTS), the
performance averaged over 70%, with all labels displaying
accuracy over 65%.

Table 7 presents the results of the binary classification
experiment for each label. Notably, TCPdump demonstrated
high classification accuracy, exceeding 85%, even with ping
characteristics. This suggests that the RTT values of devices
running the TCPdump sniffing program undergo significant
changes. The accuracy of TCPdump sniffing detection
decreased when using artificial loads, while the accuracy of
Wireshark-based sniffing programs slightly improved under
the same conditions.

Figure 7 shows the ROC curve and AUC values with
and without artificial load. Using artificial load does not
necessarily improve sniffing detection performance. In other

TABLE 7. The test accuracy (%) of the binary classification experiment for
each label.

words, it can be seen that the impact of artificial load varies
depending on the characteristics of the sniffing program.
Therefore, additional research on remote sniffing detection
using artificial load and Ping in a home network Wi-Fi
environment is needed.

E. THEORETICAL JUSTIFICATION
The suggested ensemble learning strategy is confirmed by
ensemble learning theory in [34], which suggests combining
multiple weak classifiers can result in a stronger classifier
with a greater success rate. Our findings show that ensemble
models including Random Forest surpassed single tree
models, proving the benefits of this approach. Furthermore,
feature selection in [35] highlights selecting features which
have the largest impact on the predictions made by the
model, which is similar to our focus on essential features
such as memory usage and program type. Additionally,
removing features with a small impact on accuracy increases
the efficiency, which is aligned with anomaly detection
principles, that indicate efficient resource allocation for

86850 VOLUME 12, 2024

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

FIGURE 7. The ROC curve and AUC values with and without artificial load.

FIGURE 8. The test result for heterogeneous device data using random
forest.

detecting anomalies from normal network behaviour. It is
important to acknowledge that our findings suggest the need
for adapting the model to specific device characteristics for
optimal performance.

F. EFFECTIVENESS OF ENSEMBLE LEARNING SNIFFING
DETECTION
To confirm the efficiency of the NMS and sniffing detection
technology based on ensemble learning, it is crucial to
conduct tests with data from diverse devices. An additional
Linux-based virtual system was configured for this purpose,
utilizing the following specifications for the extra test device
(Virtual Machine):

• Hardware: Virtual Machine with 2 CPUs, 8GB RAM,
IEEE 802.11ac WiFi, 125GB HDD

• OS: Kali Linux 6.1.0 (Debian 6.1.20)
• Virtual machine program: VirtualBox 7.0
• Link protocol to NMS: SNMP V2C

The collected extra test dataset, comprising 3,000 instances
(300 per label), was tested using 7 features after removing
unnecessary ones. Figure 8 illustrates the confusion matrix
results for both the training dataset from the experiment and
the extra test dataset from heterogeneous devices.

From Figure 8, the classification results between
heterogeneous devices indicate challenges in completely

distinguishing the characteristics of sniffing programs.
However, the classification performance for the normal
state without sniffing operations is approximately 80%.
Additionally, introducing artificial loading increased the
standard deviation, enhancing the classification performance
of sniffing program features. This suggests that threshold
characteristics for classification may vary based on device
characteristics. Moreover, the use of artificial loads might
slightly improve classification performance by increasing
variance. Therefore, achieving more accurate classification
requires adapting the learning model based on the specific
device. In essence, prior training of IoT devices in the existing
network environment is necessary for effective sniffing
program detection using the proposed method.

V. DISCUSSION AND LIMITATIONS
This research created an ensemble machine learning model
to address the challenges of detecting sniffing behaviour in
home IoT Wi-Fi setups. Unlike usual methods that rely on
network or host-based approaches, we took a new approach
by using a specially designed NMS for small IoT devices.
Our main goal is not only to find sniffing programs but
also to carefully examine how these programs affect device
characteristics. Additionally, we’re looking into how quickly
and accurately we can classify sniffing program behaviour in
this complex setting. The experiment happens in a simulated
IoT home network, mimicking real-world situations. In this
controlled setup, we have essential components like a NMS,
an artificial load generator, and simulations of ten different
sniffing conditions. Using machine learning pre-processing,
we distilled a comprehensive dataset of 31 features into
two subsets—28 datasets and 18 datasets—for detailed
analysis. We thoroughly assessed the performance of four
machine learning algorithms, including a single tree and
three ensemble algorithms. The results show an exceptional
accuracy level, exceeding 99%, proving the effectiveness of
our machine learning approach. We identified seven crucial
features such as CPU, disk, memory, and traffic information
that play a vital role in distinguishing the characteristics of
sniffing programs. This simplified approach not only makes
the detection process easier but also makes it clearer to
understand the machine learning models. The interaction
between these key characteristics provides insights into how
sniffing programs impact devices within the IoT network. For
example, the allocation of data to the hard disk is a crucial
factor, significantly affecting disk write capacity. Similarly,
the memory-intensive nature of Wireshark becomes evident,
explaining the varied operational characteristics of these
programs.

However, our study acknowledges its limitations, espe-
cially in applying findings to diverse IoT settings beyond
smart home Wi-Fi networks. Questions arise about how
well the proposed technology adapts to environments with
complex traffic patterns, like offices. We focused on two
specific sniffing programs, raising questions about gen-
eralizing observed characteristics to a broader range of

VOLUME 12, 2024 86851

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

malicious hackers. The study emphasizes the need for a
specific monitoring system in managed devices, clear TCP/IP
communication, and the importance of prior ensemble
learning to effectively determine sniffing behaviour. Ethical
considerations add complexity to our research, highlighting
the importance of careful tool deployment. A cautious note
about the Macof tool, often associated with cyber attacks,
underscores potential legal consequences and the need for
careful usage. Ethical considerations also extend to the
use of artificial load generators, urging a careful approach
within established parameters and explicit administrator
permission to avoid potential network damage. In essence,
our research not only provides valuable insights into detecting
sniffing behaviour in IoT environments but also navigates the
ethical considerations inherent in experimental cyber security
research.

VI. CONCLUSION AND FUTURE WORK
In conclusion, this research aimed to create a robust method
for detecting potential sniffing attacks in the complex realm
of IoT home Wi-Fi setups, utilizing ensemble machine
learning. The approach involved collecting data from an
NMS, using ensemble learning to analyze the impact of
sniffing, and then identifying and categorizing the types
of program operations involved in sniffing attacks. The
simulated home Wi-Fi environment was carefully crafted,
and after extensive experimentation and data preprocessing,
fourmachine learning technologies demonstrated exceptional
classification performance, exceeding 99%. The study also
explored the operational characteristics of each sniffing
program that aimed to identify the factors influencing the
system. By simulating IoT devices’ actions through sniffing,
the research effectively demonstrated the efficient detection
of malicious programs. This breakthrough technology not
only promises quick detection of sniffing attacks in homeWi-
Fi setups but also has the potential to thwart hacking and the
exposure of sensitive information. Its versatility extends to
use in IDS or IPS, providing a robust defence against passive
attacks orchestrated by malicious actors.

In the future, the next step involves assessing the perfor-
mance of this technology in more complex wireless network
environments, such as corporate settings, and large scale IoT
setups with high traffic. Moreover, future work will focus
on exploring the practical applications of integrating this
technology into the latest security mechanisms.

APPENDIX A
DATASET
Readers and researchers interested in replicating or further
examining our findings can refer to this dataset by clicking
here.

APPENDIX B
PICTURES
The visual representations presented here complement the
main pictures in this paper. Each picture is accompanied by a

caption providing context or additional information. Readers
can refer to these visual aids to better understand the study’s
results.

APPENDIX C
PYTHON CODES FOR ENSEMBLE LEARNING
We make available the Python codes used to implement
the ensemble learning approach in our analysis for repro-
ducibility and accessibility. To help readers in learning,
the code comes with descriptions, pictures, and references.
Researchers interested in reproducing or improving our
methods can find the detailed implementation here.

REFERENCES
[1] S. R. Pokhrel, H. L. Vu, and A. L. Cricenti, ‘‘Adaptive admission

control for IoT applications in home WiFi networks,’’ IEEE Trans.
Mobile Comput., vol. 19, no. 12, pp. 2731–2742, Dec. 2020, doi:
10.1109/TMC.2019.2935719.

[2] Statista. (2023). Smart Home—United Kingdom | Statista Market
Forecast. Accessed: Feb. 7, 2024. [Online]. Available: https://www.
statista.com/outlook/dmo/smart-home/united-kingdom

[3] S. Ramapatruni, S. N. Narayanan, S. Mittal, A. Joshi, and K. Joshi,
‘‘Anomaly detection models for smart home security,’’ in Proc. IEEE
5th Int. Conf. Big Data Secur. Cloud (BigDataSecurity) Int. Conf.
High Perform. Smart Comput., (HPSC) IEEE Int. Conf. Intell. Data
Secur. (IDS), May 2019, pp. 19–24, doi: 10.1109/BigDataSecurity-HPSC-
IDS.2019.00015.

[4] L. Mathews. Hackers Use DDoS Attack to Cut Heat to Apartments.
Forbes. Accessed: Feb. 7, 2024. [Online]. Available: https://www.forbes.
com/sites/leemathews/2016/11/07/ddos-attack-leaves-finnish-apartments-
without-heat/

[5] S. K. Viswanath, C. Yuen,W. Tushar,W.-T. Li, C.-K.Wen, K. Hu, C. Chen,
and X. Liu, ‘‘System design of the Internet of Things for residential smart
grid,’’ IEEE Wireless Commun., vol. 23, no. 5, pp. 90–98, Oct. 2016, doi:
10.1109/MWC.2016.7721747.

[6] Y. Li, J. Barthelemy, S. Sun, P. Perez, and B. Moran, ‘‘A case
study of WiFi sniffing performance evaluation,’’ IEEE Access, vol. 8,
pp. 129224–129235, 2020, doi: 10.1109/access.2020.3008533.

[7] M. Gregorczyk, P. Zórawski, P. Nowakowski, K. Cabaj, and
W. Mazurczyk, ‘‘Sniffing detection based on network traffic probing
and machine learning,’’ IEEE Access, vol. 8, pp. 149255–149269, 2020,
doi: 10.1109/ACCESS.2020.3016076.

[8] L. Yang, A. Moubayed, and A. Shami, ‘‘MTH-IDS: A multitiered hybrid
intrusion detection system for Internet of Vehicles,’’ IEEE Internet Things
J., vol. 9, no. 1, pp. 616–632, Jan. 2022, doi: 10.1109/JIOT.2021.3084796.

[9] R. Spangler, ‘‘Packet sniffing on layer 2 switched local area networks,’’
Packetwatch Res., 2003, pp. 1–5.

[10] P. Goyal and A. Goyal, ‘‘Comparative study of two most popular
packet sniffing tools-tcpdump and wireshark,’’ in Proc. 9th Int. Conf.
Comput. Intell. Commun. Netw. (CICN), Sep. 2017, pp. 77–81, doi:
10.1109/CICN.2017.8319360.

[11] N. Patel, R. Patel, and D. Patel, ‘‘Packet sniffing: Network wiretapping,’’ in
Proc. IEEE Int. Advance Comput. Conf., Patiala, India, Jul. 2009, pp. 6–7.

[12] A. Mishra, R. S. Chowhan, and A. Mathur, ‘‘Sniffer detection and load
balancing using aglets in a cluster of heterogeneous distributed system
environment,’’ in Proc. IEEE 7th Power India Int. Conf. (PIICON),
Nov. 2016, pp. 1–6, doi: 10.1109/POWERI.2016.8077340.

[13] N. Al-Taleb and N. Min-Allah, ‘‘A study on Internet of Things operating
systems,’’ in Proc. IEEE Int. Conf. Electr., Comput. Commun. Technol.
(ICECCT), Feb. 2019, pp. 1–7, doi: 10.1109/ICECCT.2019.8869062.

[14] H. A. Elhadj, H. M. Khelalfa, and H. M. Kortebi, ‘‘An experimental sniffer
detector: SnifferWall,’’ in Proc. Atelier Securitédes Communications
Internet, 2002, p. 69.

[15] D. Sanai. Detection of Promiscuous Nodes Using ARP Packets. Accessed:
Oct. 9, 2023. [Online]. Available: http://www.securityfriday.com

[16] D. Susid, ‘‘An evaluation of network-based sniffer detection: Sentinel,’’
Dept. Informatics, Göteborg Univ., Göteborg, Sweden, Tech. Rep., 2004,
pp. 11–22.

86852 VOLUME 12, 2024

https://github.com/nat213h/research/tree/user/Dataset
https://github.com/nat213h/research/tree/user/pictures
https://github.com/nat213h/research/blob/user/Enhancing_Sniffing_Detection.ipynb
http://dx.doi.org/10.1109/TMC.2019.2935719
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00015
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00015
http://dx.doi.org/10.1109/MWC.2016.7721747
http://dx.doi.org/10.1109/access.2020.3008533
http://dx.doi.org/10.1109/ACCESS.2020.3016076
http://dx.doi.org/10.1109/JIOT.2021.3084796
http://dx.doi.org/10.1109/CICN.2017.8319360
http://dx.doi.org/10.1109/POWERI.2016.8077340
http://dx.doi.org/10.1109/ICECCT.2019.8869062

H. J. Jin et al.: Enhancing Sniffing Detection in IoT Home Wi-Fi Networks

[17] A. N. Khan, K. Qureshi, and S. Khan, ‘‘An intelligent approach of sniffer
detection,’’ Int. Arab J. Inf. Technol., vol. 9, no. 1, pp. 9–15, 2012.

[18] A. Ismukhamedova, Y. Satimova, A. Nikiforov, and N. Miloslavskaya,
‘‘Practical studying of Wi-Fi network vulnerabilities,’’ in Proc. 3rd Int.
Conf. Digit. Inf. Process., Data Mining, Wireless Commun. (DIPDMWC),
Jul. 2016, pp. 227–232, doi: 10.1109/DIPDMWC.2016.7529394.

[19] Z. Akram, M. A. Saeed, and M. Daud, ‘‘Real time exploitation of
security mechanisms of residential WLAN access points,’’ in Proc. Int.
Conf. Comput., Math. Eng. Technol. (iCoMET), Mar. 2018, pp. 1–5, doi:
10.1109/ICOMET.2018.8346378.

[20] Z. Trabelsi, H. Rahmani, K. Kaouech, and M. Frikha, ‘‘Malicious
sniffing systems detection platform,’’ in Proc. Can. Conf. Electr. Com-
put. Eng., Toward Caring Humane Technol., 2004, pp. 201–207, doi:
10.1109/saint.2004.1266117.

[21] J. Jiang, F. Liu, W. W. Y. Ng, Q. Tang, W. Wang, and Q.-V. Pham,
‘‘Dynamic incremental ensemble fuzzy classifier for data streams in green
Internet of Things,’’ IEEE Trans. Green Commun. Netw., vol. 6, no. 3,
pp. 1316–1329, Sep. 2022, doi: 10.1109/TGCN.2022.3151716.

[22] D. Stiawan, Mohd. Y. Idris, R. F. Malik, S. Nurmaini, and R. Budiarto,
‘‘Anomaly detection and monitoring in Internet of Things communica-
tion,’’ in Proc. 8th Int. Conf. Inf. Technol. Electr. Eng. (ICITEE), Oct. 2016,
pp. 1–4, doi: 10.1109/ICITEED.2016.7863271.

[23] W. Yahya, A. Basuki, P. E. Sakti, and F. F. Fernanda, ‘‘Lightweight
monitoring system for IoT devices,’’ in Proc. 11th Int. Conf.
Telecommun. Syst. Services Appl. (TSSA), Oct. 2017, pp. 1–4, doi:
10.1109/TSSA.2017.8272897.

[24] M. A. Mikki, A. A. Samra, and A. A. Bader, ‘‘Network monitoring system
(NMS),’’ Int. J. Res. Appl. Sci. Eng. Technol., vol. 5, pp. 87–104, Jun. 2017.

[25] The-TCPDUMP-Group. The-TCPDUMP-Group/TCPDUMP: The TCP-
DUMP Network Dissector. GitHub. Accessed: Feb. 7, 2024. [Online].
Available: https://github.com/the-tcpdump-group/tcpdump

[26] GitLab. (2024). Wireshark Foundation/Wireshark · GITLAB. Accessed:
Feb. 7, 2024. [Online]. Available: https://gitlab.com/wireshark/wireshark

[27] WhiteWinterWolf. WhiteWinterWolf/macof.py:Macof.py, a MAC Address
Table Overflow Utility. GitHub. Accessed: Feb. 7, 2024. [Online].
Available: https://github.com/WhiteWinterWolf/macof.py

[28] Home PRTG 500. Discover the 3 Paessler PRTG Monitoring Solu-
tions. Accessed: Feb. 7, 2024. [Online]. Available: https://www.paessler.
com/prtg

[29] A. S. Shaffi and M. Al-Obaidy, ‘‘Managing network components using
SNMP,’’ Int. J., vol. 2, no. 3, pp. 1493–2305, 2013.

[30] I. Syarif, E. Zaluska, A. Prugel-Bennett, and G. Wills, ‘‘Application
of bagging, boosting and stacking to intrusion detection,’’ in Machine
Learning and Data Mining in Pattern Recognition. Springer, 2012,
pp. 593–602, doi: 10.1007/978-3-642-31537-4.

[31] T. Chen and C. Guestrin, ‘‘XGBoost,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2016, pp. 785–794, doi:
10.1145/2939672.2939785.

[32] A. Das, ‘‘Anomaly-based network intrusion detection using ensemble
machine learning approach,’’ Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2,
2022, doi: 10.14569/ijacsa.2022.0130275.

[33] J. Jiang, F. Liu, Y. Liu, Q. Tang, B. Wang, G. Zhong, and W. Wang,
‘‘A dynamic ensemble algorithm for anomaly detection in IoT imbalanced
data streams,’’ Comput. Commun., vol. 194, pp. 250–257, Oct. 2022, doi:
10.1016/j.comcom.2022.07.034.

[34] R. P. Sari, F. Febriyanto, and A. C. Adi, ‘‘Analysis implementation
of the ensemble algorithm in predicting customer churn in Telco data:
A comparative study,’’ Informatica, vol. 47, no. 7, Jul. 2023, doi:
10.31449/inf.v47i7.4797.

[35] L. Ladha and T. Deepa, ‘‘Feature selection methods and algorithms,’’ Int.
J. Comput. Sci. Eng., vol. 3, no. 5, pp. 1787–1797, 2011.

HYO JUNG JIN received the master’s degree
in electronic engineering from the University of
Seoul, South Korea. He is currently pursuing the
M.Sc. degree in cyber security with Birmingham
City University, where his research interests
include cyber security applications of machine
learning techniques. He is a cyber security and
network project manager with over 17 years of
work experience in the ICT field.

FARSHAD RAHIMI GHASHGHAEI received the
B.Eng. degree in computer engineering from the
Institute for Higher Education ACECR Khouzes-
tan, Ahvaz, Iran, and the M.Sc. degree in cyber
security from Birmingham City University. He is
a motivated researcher with expertise in quantum
computing. He has a strong interest in quan-
tum cryptography. His research interests include
quantum computing, cryptography, and machine
learning, driven by a passion to enhance innovation
and secure communication.

NEBRASE ELMRABIT received the B.Sc. degree
in computer engineering from Tripoli University,
Libya, in 2006, the M.Sc. degree in computer
and network security from Middlesex University,
in 2007, and the Ph.D. degree in cyber security
from Loughborough University, in 2019. With
over a decade of teaching and industry experience
in U.K. and Libya, he has lectured on digital foren-
sics, security, operating systems, and computer
architecture. He also contributed to research in

peer-to-peer (P2P) energy trading in the smart grid during his time at the
University of Leicester, in 2018. He has been a Lecturer in cyber security
and networks with Glasgow Caledonian University, since 2020. His research
interests encompass insider threats, anomaly detection, artificial intelligence,
penetration testing, digital forensics, and smart grid cyber security.

YUSSUF AHMED received the B.Sc. degree
(Hons) in computer systems from the University
of Northampton, the M.Sc. degree in information
security and computer forensics from the Univer-
sity of East London, and the Ph.D. degree in cyber
security from Birmingham City University. He is
currently a Senior Lecturer in cyber security and
the Director of the B.Sc. Cyber Security Program,
Birmingham City University. He has more than
20 years of experience spanning both industry and

academia, specializing in information security, cyber assurance, and security
governance. His research interests include cyber risk, IoT security, intrusion
detection, machine learning applications in cyber security, data security
and privacy, and healthcare security. He is a Senior Fellow of the Higher
Education Academy (SFHEA).

MEHDI YOUSEFI received the B.Sc. degree in
software engineering, the M.Sc. degree in network
security, and the Ph.D. degree in cyber security.
He specializes in cyber security, information
security, network security, computer networking,
and machine learning. He is an experienced
academician in cyber security and networkingwith
seven years of experience. He has more than seven
years of industry experience in networking and
cyber security in the financial sector.

VOLUME 12, 2024 86853

http://dx.doi.org/10.1109/DIPDMWC.2016.7529394
http://dx.doi.org/10.1109/ICOMET.2018.8346378
http://dx.doi.org/10.1109/saint.2004.1266117
http://dx.doi.org/10.1109/TGCN.2022.3151716
http://dx.doi.org/10.1109/ICITEED.2016.7863271
http://dx.doi.org/10.1109/TSSA.2017.8272897
http://dx.doi.org/10.1007/978-3-642-31537-4
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.14569/ijacsa.2022.0130275
http://dx.doi.org/10.1016/j.comcom.2022.07.034
http://dx.doi.org/10.31449/inf.v47i7.4797

