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ABSTRACT Edge Computing (EC) has emerged as a pivotal paradigm, offering solutions to address the
challenges posed by latency-sensitive applications and to enhance overall network performance. In EC
environments, efficient task offloading is crucial for minimizing latency and energy consumption while
maximizing resource utilization. In this paper, we propose a hybrid task offloading approach (HybridTO)
integrating Grey Wolf Optimizer and Particle Swarm Optimization. Our approach aims to optimize energy
consumption and fulfil latency constraints in EC environments by taking into account various factors
such as capacity constraints, proximity constraints, and latency requirements. Leveraging the collaborative
capabilities inherent in EC servers, HybridTO offers a comprehensive solution to the task offloading problem.
Through extensive simulations, we evaluate the performance of HybridTO against baseline approaches,
demonstrating its superiority regarding energy usage, offloading utility and response delay, especially under
conditions of limited resources. These results underscore the effectiveness of HybridTO as a promising
solution for energy-efficient task offloading in EC environments, offering valuable insights for further
research and development in this field.

INDEX TERMS Edge computing, task offloading, energy efficiency, optimization, hybrid algorithms.

I. INTRODUCTION
Edge Computing (EC) has emerged as a transformative
paradigm aimed at addressing the escalating challenges posed
by latency-sensitive applications and bolstering network
performance by strategically situating computation and
storage resources closer to the edge of the network [1]. As the
technological landscape witnesses an exponential prolifera-
tion of Internet of Things (IoT) devices and experiences an
escalating demand for real-time applications, the significance
of EC in aligning with modern network requisites has become
increasingly salient [7].

In traditional computing paradigms, tasks sensitive to
delays have traditionally found their execution grounds on
cloud platforms [2]. This convention has often resulted
in significant latency issues arising from the transit of data
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between smart end devices (SEDs) and remote cloud servers
(CSs). However, with the advent of EC, a promising paradigm
that strategically situates computational resources closer to
the network edge, the constraints of cloud-centric architec-
tures are being aptly addressed [3]. This shift in computing
architecture assumes paramount importance given the rapid
proliferation of SEDs, equipped not only with the capacity to
generate requests but also imbued with increasingly sophis-
ticated computational capabilities, courtesy of advances in
hardware technology [4]. Centralized cloud platforms may
boast abundant resources, but their geographical remoteness
from end-users often translates into prolonged transmission
times, rendering them unsuitable for low-latency tasks [5].
Conversely, edge computing alleviates transmission latency
by deploying resources in closer proximity to users, typ-
ically at the network edge. However, despite this inher-
ent advantage, edge computing may lack the expansive
computational prowess synonymous with centralized cloud
environments.
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To optimally harness the benefits encapsulated within EC
and foster efficient collaboration between edge and cloud
resources, researchers have charted innovative paths through
the proposition of cooperative architectures such as the edge-
cloud architecture [6], [7]. This architectural framework
orchestrates the synergistic utilization of each layer’s unique
strengths, facilitating the streamlined processing of a diverse
array of tasks across the network infrastructure. However,
navigating the landscape of executing intelligent tasks
within the purview of the edge-cloud architecture presents
several intricacies. Tasks laden with high resource demands
and stringent latency requisites necessitate sophisticated
offloading strategies to manoeuvre tasks between the edge
and cloud strata effectively. Each SED, whether endowed
with computational capabilities or not [4], finds itself at the
crossroads of deciding whether to process tasks locally or
offload them for remote processing [8].

Effectively managing the inherent complexity entailed
in the execution of intelligent tasks and the subsequent
offloading thereof mandates the adept handling of an array of
constraints [2]. One such constraint stems from the presence
of dependency constraints, which arise from the sequential
nature of characterizing tasks within an intelligent job.
Tasks such as face recognition exemplify this sequentiality,
involving multiple consecutive steps like detecting the face,
its pre-processing, extracting features, and face marking.
The successful execution of specific tasks hinges upon
the output generated by others, thereby complicating the
decision-making process concerning offloading, as tasks may
necessitate distribution across different servers to ensure
seamless execution.

Moreover, service constraints add further complexity to
task execution, as certain tasks depend on specific services
like databases, libraries, or trained models [9]. However,
the finite computational resources available at the edge and
SEDs curtail the deployment of a limited subset of essential
services, thereby exacerbating the complexities inherent
in task-offloading decisions. While extant research has
predominantly honed in on optimizing service deployment,
scant attention has been devoted to the joint optimization of
deployment and task offloading.

Efficient task offloading in EC environments remains a
difficult challenge, particularly in scenarios beset by resource
constraints and exacting latency prerequisites [10]. Task
offloading necessitates intricate decision-making processes
that weigh factors such as resource availability, network
conditions, energy consumption, and application requisites.
The literature abounds with a plethora of approaches aimed at
tackling the task offloading conundrum in EC, spanning the
gamut from heuristic-based methodologies to metaheuristic
optimization techniques [11], [12], [13]. However, existing
approaches often overlook the unique characteristics inherent
to EC environments, such as resource constraints and the
latent potential within multiple ESs.

In a bid to bridge this lacuna, this paper sets out to
introduce an iterative methodology strategically designed

to collectively optimize energy consumption, latency, and
task offloading in EC environments. Acknowledging the
NP-hard nature pervading these challenges [9], our approach
endeavours to elevate the efficiency and efficacy of intel-
ligent task execution within EC frameworks. Embracing
this approach, we endeavour to engender the develop-
ment of more streamlined and resource-efficient computing
paradigms. In furtherance of this objective, we propose
a hybrid task offloading strategy (HybridTO), hewn from
the amalgamation of particle swarm optimization (PSO)
[14] and grey wolf optimizer (GWO) [15], tailored for EC
environments. The crux of our proposed strategy lies in
optimizing energy consumption while seamlessly navigating
latency constraints and resource availability. Unlike extant
approaches, HybridTO meticulously takes into account the
capacity constraints intrinsic to edge servers (ESs) and
deftly harnesses the collaborative capabilities latent within
multiple ES resources. By orchestrating intelligent swarm
optimization techniques, HybridTO adeptly allocates tasks
to EC servers, factoring in their computational prowess and
proximity to end-users.

The main contributions of this paper can be distilled as
follows:

1) Introduction of a hybrid model meticulously crafted
to design an energy-efficient task offloading scheme
tailored for EC environments. This model deftly
navigates capacity constraints, proximity constraints,
and latency requirements, all while harnessing the
collaborative potential inherent within EC servers or
between EC servers and the central cloud, thereby
ensuring minimum latency and heightened computing
power.

2) Proposal of a hybrid approach grounded in PSO
and GWO to seamlessly resolve the optimization
problem at hand. This approach optimizes resource
allocation, spanning sub-carriers, power, and band-
width for offloading, with the overarching objective
of minimizing energy consumption while efficaciously
meeting delay requirements.

3) Conducting extensive simulations to evaluate the
performance metrics of the proposed strategy metic-
ulously. By testing across various parameters, our
findings clearly demonstrate the superiority of
HybridTO over baseline approaches, particularly in
terms of energy utilization, response delay, and offload-
ing efficiency, especially in resource-constrained
environments.

The subsequent sections of this paper are organized as
follows: Section II presents a comprehensive review of
pertinent literature, pinpointing areas necessitating further
exploration. Subsequently, Section III delineates the problem
formulation and the foundational models employed in our
investigation. In Section IV, we delve into a comprehensive
exposition of the tailored HybridTO algorithm crafted for
optimizing task offloading efficiency within edge computing
environments. Following that, Section V elucidates the
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experimental configuration, the resultant discoveries, and
their detailed scrutiny. Finally, Section VI encapsulates the
overarching insights gleaned from this research endeavour.

II. RELATED WORK
In EC environments, where the proliferation of SEDs is
increasing, numerous research efforts have addressed the task
offloading challenge to enhance service quality and optimize
resource utilization. For instance, Sang et al. [16] introduced a
heuristic offloading algorithm aimed at fostering cooperation
among EC resources by initially routing tasks to the cloud.
While this approach enhances user satisfaction, it may
inadvertently compromise overall system performance. Sim-
ilarly, Wang et al. [11] proposed the Fastest Response First
(FRFOA) and Load Balance Offloading Algorithm (LBOA),
with FRFOA prioritizing task offloading to ESs with minimal
response time, and LBOA distributing tasks to ESs capable of
accommodating the most significant number of concurrent
tasks. However, these heuristic-based methods often yield
suboptimal solutions due to their reliance on local search
strategies.

To address this limitation, several studies have explored
meta-heuristic approaches endowed with global search capa-
bilities. Wang et al. [17] and Gao et al. [18] employed PSO,
with the latter incorporating Levy Flight movement patterns
to enhance exploration. Additionally,Wang et al. [19] utilized
Genetic Algorithms (GA) to optimize similar objectives.
Chakraborty and Mazumdar [20] leveraged GA to curtail
energy consumption during task executions while adhering to
latency constraints. Furthermore, Yadav et al. [21] employed
a multi-objective Grey Wolf Optimization (MOGWO) tech-
nique to optimize energy consumption and computational
time in fog computing scenarios. Xu et al. [22] proposed
the multiple approaches using a tunicate swarm optimization
algorithm (M-TSA), an improved iteration of TSA that
integrates multiple strategies. This enhanced algorithm aims
to optimize the weighted sum of time delay and energy
consumption in edge-to-cloud systems. Significantly, these
investigations predominantly concentrated on employing
single meta-heuristic approaches, overlooking the potential
synergistic benefits achievable through the combination of
different meta-heuristics to enhance overall performance.

From a system architecture perspective, prior research on
task offloading has predominantly concentrated on single-
layer architectures [2]. Tasks were primarily offloaded
to CSs, with a limited exploration into other offloading
scenarios within EC architectures [23], [24], [25]. These
investigations commonly operated under the assumption that
SEDs lacked computational capabilities, thus necessitating
task processing solely on external servers. For instance,
Chen et al. [24] introduced a novel task offloading framework
tailored for EC within a Software-Defined Ultra-Dense
Network (SD-UDN), where the SD-UDN controller gathered
system data to inform offloading decisions. Similarly,
Qin et al. [25] delved into offloading determinations within
a large-scale CC environment, accounting for the constrained

computational capacity of CSs and exploring task transfers
between servers to enhance response quality. Moreover,
other investigations tackled multi-user multi-CAP EC net-
works, formulating task offloading as a Markov decision
process and devising offloading strategies leveraging deep
Q networks [23].

In recent years, there has been a notable emphasis
on exploring task offloading strategies within a two-layer
architectural framework, mainly focusing on the edge-
cloud architecture [26], [27], [28] and device-edge system
architecture [29], [30]. For instance, Sun et al. [27] proposed
an innovative joint offloading scheme that optimizes resource
usage by predicting resource occupancy, thus determining the
most suitable destination for task offloading, whether to a
remote cloud server or an edge node. This approach becomes
particularly relevant in scenarios where physical devices
are interconnected via various communication channels like
optical fibre or wireless links. Similarly, Shah-Mansouri et al.
[26] introduced a computational offloading game aimed
at enhancing the Quality of Experience (QoE) within an
edge-cloud system. This game-like approach focuses on
strategically offloading tasks to either local edge nodes or
remote cloud servers via access points, depending on factors
such as task requirements, network conditions, and available
resources.

Another noteworthy strategy involves the application of
convex theory, as demonstrated in the work by Ren et al. [28].
By leveraging convex optimization principles, decisions are
made regarding whether a given task should be exclusively
processed at the edge node or if collaboration with the
cloud is necessary to achieve optimal performance and
resource utilization. It’s important to highlight that task
offloading decisions are not exclusively limited to local edge
nodes or remote cloud servers. Edge servers possess the
capability to communicate with each other and exchange
data, enabling tasks to be offloaded to non-local servers when
necessary to optimize resource usage and enhance system
performance. This collaborative nature of EC architectures
allows for dynamic and flexible task-offloading strategies
tailored to the specific requirements and constraints of diverse
applications and network environments. Interestingly, some
studies have begun to consider the computing capacity of
terminals. Kao et al. [30] explored optimal task assignments
to local devices or remote servers, while other research [8],
[29] focused on offloading tasks to local device or edge
computing environments, assuming that devices possessed
the capability to process jobs. However, many of these
studies have assumed uniform strong capacity across all
SEDs and allocated resources solely based on task requests.
There has been relatively less exploration into task offloading
within a three-tier architecture, such as device-edge-cloud
systems [32]. In these architectures, algorithms are developed
to combine convex programs with progressive rounding tech-
niques to offload dependent tasks while incorporating service
caching mechanisms effectively. This approach allows for
more efficient resource utilization and task execution by
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TABLE 1. Comparative Analysis of Task Offloading Approaches in Edge Computing Environments.

considering the interdependencies between tasks and lever-
aging caching to minimize data transmission and processing
overhead.

Cheng et al. [13] introduced a novel approach that
combines offloading and resource provisioning to minimize
overall energy consumption in time-sensitive applications
across multi-mobile EC networks. Wang et al. [33] explored
task offloading in edge computing environments, explicitly
focusing on optimizing both delay and energy consumption

simultaneously. They tackled the problem using mixed
integer nonlinear programming and applied relaxation tech-
niques to solve it effectively. Similarly, Cao et al. [12] put
forward a joint optimization strategy for computation and
communication resource provisioning in EC settings aimed at
reducing energy usage while ensuring latency constraints are
met. Their research highlighted the benefits of a cooperative
approach in improving performance and energy efficiency
compared to non-collaborative designs. Notably, numerous
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prior studies have also proposed energy-efficient methods in
EC contexts.

From the standpoint of task attribution, existing research
has predominantly concentrated on managing wholly indi-
vidual tasks that cannot be divided further [2]. In such
scenarios, the primary objective has been to determine the
optimal execution location for each task based on node
information, primarily to meet task delay requirements.
However, this approach often leads to redundant deployment
of identical services across different nodes, resulting in
inefficient resource utilization.

As Deep Neural Network (DNN) technology has pro-
gressed, tasks have become divisible into segments, offering
opportunities for more detailed task allocation strategies,
whether vertically or horizontally. Consequently, many
recent studies have explored task offloading mechanisms
in scenarios involving task splitting, where tasks are
divided into smaller components to be executed across
multiple nodes or layers. Task splitting introduces addi-
tional complexity due to the need to satisfy precedence
constraints, which dictate the order in which tasks must
be executed and data transfer requirements between task
segments.

Some research efforts have focused explicitly on split-
table and parallel computing task offloading mechanisms,
particularly in the context of horizontally splitting DNN
tasks. These studies aim to determine the optimal execution
ratio and location for each segment of a task, considering
factors such as computational capabilities and network
conditions. As an example, Zhang et al. [29] utilized a
deep reinforcement learning method to dynamically ascer-
tain the offloading ratio for tasks among devices featur-
ing dynamic energy-related capabilities. Similarly, other
researchers [34] have proposed evolutionary algorithms for
task separation in cloud-edge collaboration scenarios, aiming
to maximize resource utilization while minimizing execution
latency.

On the other hand, there is a growing body of literature
addressing splittable and dependent computing task offload-
ing mechanisms, particularly in the context of vertically
splitting DNN tasks. In such scenarios, task offloading deci-
sions must consider dependencies between task segments,
ensuring that tasks are executed in the correct sequence
to maintain integrity and accuracy. Some studies, such as
those conducted by Sundar et al. [31] have modeled task
dependencies using directed acyclic graphs (DAGs), enabling
more sophisticated offloading decisions based on task
interdependencies.

However, despite these advancements, existing research
often overlooks the intricacies of data transmission between
adjacent task segments and the overall architecture within
which task offloading occurs. In particular, numerous inves-
tigations concentrate solely on choosing the edge node
for executing each task segment within the edge layer,
often overlooking the broader architecture encompassing
terminals, edge, and cloud layers. Therefore, there is a need

FIGURE 1. Edge-Cloud Computing Architecture.

for comprehensive investigations that consider the entire task
offloading process within complex multi-layer architectures
to ensure optimal resource utilization and task execution
efficiency.

This study diverges from existing research in several
key aspects. Firstly, while many prior studies overlook
EC-specific characteristics like resource limitations, our
proposed strategy takes into account capacity constraints,
including both computational and transmission limitations,
as well as latency requirements. By doing so, it effectively
allocates EC resources to minimize energy consumption
while ensuring timely task completion. Secondly, while
existing works typically focus on optimizing task offloading
decisions within single-user or multi-user EC environments
or between EC servers and the central cloud, our approach
emphasizes a cooperative strategy among multiple EC
resources or between EC servers and the central cloud. This
cooperative approach enhances overall capacity utilization
and improves system performance. Thirdly, our proposed
strategy leverages intelligent swarm optimization techniques,
requiring minimal information from the EC system. This
makes our approach suitable for decentralized implementa-
tions and ensures scalability and adaptability in various EC
environments.

Table 1 provides an overview of the discussed studies,
outlining their approach, optimization objectives, focus area,
performance metrics, strengths, and limitations.

III. UNDERLYING MODELS AND PROBLEM
FORMULATION
In this section, we provide an overview of the network
architecture and its constituent elements as depicted in
Figure 1.

In the depicted Edge-Cloud environment setup, illustrated
in Figure 1, a dynamic ecosystem unfolds, encompassing
a multitude of SEDs, ESs, and a cloud infrastructure
equipped with a plethora of CSs. Within this ecosystem,
users engage in a diverse range of tasks using their devices.
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While SEDs possess local computational capabilities to
handle specific tasks, they often encounter limitations,
especially those lacking sufficient computing resources, such
as environmental sensors.

As a result, specific tasks are delegated to ESs for
processing, necessitating the transfer of input data from the
SED to the ES. This task offloading process is contingent
upon the existence of a network connection between the
device and the ES. Typically, an ES provides a localized
network, such as 5G or WiFi, limiting its service coverage
to devices within its range.

In scenarios where users generate numerous task requests
that exceed the capacities of both devices and ESs, tasks
with flexible timing requirements can be forwarded to the
cloud. The cloud infrastructure operates over a vast area
network (WAN) and extends coverage to all devices within
the network. Upon receiving offloaded tasks, the cloud
assigns resources in the form of CS to manage the processing
requirements.

Therefore, task offloading entails the crucial task of
determining the appropriate computing node (SED, ES,
or CS) for processing each task based on factors such as
task requirements, device capabilities, network conditions,
and system constraints.

A. SYSTEM MODEL
E2C framework comprises of computing nodes: SED, ES,
and CS, denoted as nodes SED (for devices, 1 ≤ i ≤ SEDs),
ES (for ES, SED + 1 ≤ j ≤ SED + E), and CS (for CS,
SED+ES+1 ≤ i ≤ SED+ES+CS). Each node ni possesses
a processing capacity pi and provides a network bandwidth
rate bwi. Binary constants ai,j, where 1 ≤ i ≤ SED,
SED+ 1 ≤ j ≤ SED+E , are utilized to signify the coverage
of ES. Specifically, ai,j = 1 if device ni is within the coverage
of ES nj, and ai,j = 0 otherwise. As a result, for a given
task ti, the bandwidth rate bwi,j when offloaded to ES nj is
determined by the expression bwi,j = ai,j · bwj, leveraging
the signal power and Gaussian noise characteristics of the
network.

The system receives a total of TS tasks (tk , 1 ≤ k ≤ TS)
from the SEDs. Binary constants mi,k , where 1 ≤ i ≤ SED
and 1 ≤ k ≤ TS, indicate the task-device relationships.
Specifically, mi,k = 1 denotes that tk is initiated by ni, while
mi,k = 0 indicates otherwise. Each task tk is characterized
by its computing size ck , input data volume pk , and a
deadline dk , representing the maximum processing finish
time. This study prioritizes strict deadline requirements,
postponing consideration of soft deadline constraints for
future exploration. Essentially, if a task’s deadline can be
met, it will undergo processing within the E2C framework;
otherwise, it is rejected, as no benefit arises from handling
overdue tasks. Without loss of generality, the paper assumes
dk ≤ dk+1 for 1 ≤ k ≤ TS − 1.
To model the task offloading problem in Edge-Cloud

environment, binary variables xi,k are introduced to denote

offloading decisions, as defined in Equation 1:

xi,k =

{
1, if tk is processed by ni
0, otherwise

(1)

where 1 ≤ i ≤ SED+ ES + CS, 1 ≤ k ≤ TS.

B. MODEL FOR TASK PROCESSING
Tasks undergo three distinct processing scenarios: (i) local
processing utilizing the resources of their respective SED and
(ii) offloading to an ES that covers the device. Subsequently,
this paper delineates the task-processing procedures corre-
sponding to these three scenarios.

1) LOCAL TASK PROCESSING
In the initial scenario, transmission delays are nonexistent
as data remain stored locally upon collection by the SED,
aligning with environmental conditions and user behaviour.
Consequently, the task’s processing time equates to its
computing time. However, task execution commences solely
upon the availability of computing resources, coinciding
with the completion of preceding tasks by the device.
To optimize the acceptance ratio, defined as the ratio between
accepted and total task numbers, the Earliest Deadline First
(EDF) strategy has been demonstrated to offer an optimal
solution. Hence, to formulate the task offloading optimization
problem, this study derives the completion time for each
task by adhering to an EDF order for each device. Hence,
the task completion duration for tasks processed locally can
be calculated using Equation 2, where ck · pi signifies the
processing time of tk handled by ni, and

∑k
k ′=1 xi,k ′ ·

ck′
pi

represents the cumulative processing time of tasks, including
tk , as well as tasks with earlier deadlines within ni. Each
task processed locally is confined to its respective SED,
as indicated by Equation 3.

f SEDk =

SED∑
i=1

mi,k (
k∑

k ′=1

(xi,k ′ ·
ck ′

pi
)), 1 ≤ k ≤ TS (2)

xi,k ≤ mi,k , 1 ≤ i ≤ SED, 1 ≤ k ≤ TS (3) (3)

The energy utilization cost can be obtained as per Eq. 4
[35]

ESED = EN SED (pSED)2 Ck (4)

where EN SED is the energy consumed per CPU cycle and ck
(MIPS) denotes the workload of SED.

2) ES TASK PROCESSING
During transfer of a task to an ES, its processing time
includes both the duration for computing latencies and input
data transmission. In our investigation, we neglect the time
needed for output data transfer, assuming that the output size
resulting from computation is typically smaller compared to
the input data size for a given task.

For task tk offloaded to ES ni (SED+ 1 ≤ i ≤ SED+ES),
the data transfer period is determined by pk/

∑SED
j=1 mj,k ·bwj,i,
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the term
∑SED

j=1 mj,k · bwj,i denotes the data transfer rate
between the ES and the SED initiating tk , and the computing
latency is ck

pi
. To avoid performance conflicts, data transfers

for the tasks offloaded to an ES are executed in sequence.
Thus, following the EDF processing order, the total time for
data transfer for task tk when offloaded to an ES can be
calculated using Equation 5.

f ES_NETk =

SED+ES∑
i=SED+1

(
xi,k ·

k∑
k ′=1

xi,k ′ ·

(
pk∑SED

j=1 mj,k · bwj,i

))
(5)

where1 ≤ k ≤ TS.

Once a task is offloaded to an ES, computing can begin
only after the input data transmission has been completed.
Therefore, the task’s finish time on an ES is determined by
Eq. 6, where max1=k ′<k xi,k ′ · fESk represents the finish time
of tasks processed before tk .

f ESk

=

SED+ES∑
i=SED+1

(
xi,k ·

(
max

(
f ESNETk · max

1=k ′<k
xi,k ′ · f

ES
k

)
+
ck
pi

))
(6)

where 1 ≤ k ≤ TS.
Each task can only be offloaded to an ES that has a network

connection to its corresponding device. Therefore, Equation 7
must be fulfilled.

xi,k =
SED∑
i′=1

mi′,k · ai′,i, SED+ 1 ≤ i ≤ SED+ ES,

1 ≤ k ≤ TS (7)

Energy-Cost computations are performed as follows:
Let C = {c1, c2, . . . , cω, . . . ,C} denotes the set of

manageable sub-carriers (SubC) with respective bandwidth
bwω to transfer task k to an ES. The values of ω ∈ C , k ∈ J ,
s ∈ 8 indicate the offloading points like ωks = 1 shows
that task k is offloaded to an ES s by SubC ω; otherwise,
ωks = 0. In addition, R = {Pωks : Pωks ∈ [0,Pbudget], ω ∈
C, k ∈ J , s ∈ 8} represents power allocation matrix. Here
the term Pωks shows power assigned to task k uploaded to
ES. Therefore, the task uploading strategy must satisfy the
constraint expressed in Eq. 8:∑

s∈8

∑
ω∈C

�ωks ≤ 1, k ∈ J (8)

Let PSED,ES denote the power required for transferring a
job k to ES, in Watts, and Ps,j represent the power needed for
communication burden between ESs. The energy consumed
for transmiting (ESED,ES ) is calculated asESED,ES = PSED,ES ·

DSED,ES = PSED,ES ·
sk
R · η. Similarly, the energy consumed

for communication burden between ECs can be expressed as
EES,j = PES,j ·

sk
Rs
. If the task is not forwarded to other nearby

servers, then PES,j = 0. Additionally, the execution energy
cost for tasks that get offloaded to a specific server is denoted

as Ee, which can be calculated by Ee = Eser ·(fser)2 ·ck , where
Eser represents the energy cost/CPU cycle. Hence, the total
energy cost (Eoff) for the offloaded task can be determined
using Equation 9.

Eoff = ESED,ES + EES,j + Ee (9)

C. PROBLEM FORMULATION
This research aims to discover a design that optimizes
energy efficiency by reducing the system’s overall energy
expenditure, all while ensuring adherence to capacity and
delay limitations. This objective is formally expressed in
Eq. 10.

min
xk ,yk

N∑
k=1

 Q∑
i=1

xkEL +
S∑
s=1

ykEoff

 (10)

Here, N variable represents the total number of tasks within
the system that need to be processed. Q and S variables
represent the number of local execution resources and
offloaded resources, respectively. These resources could be
processing units (CPUs, GPUs) or memory units, depending
on the specific system being analyzed. The equation iterates
through each task (k) from 1 to N. Each task considers two
options: local execution or offloading. The decision variables
xk and yk determine which option is chosen for each task.

The decision variables are xk and yk , which determine
whether a task is executed locally or offloaded to an edge
server, respectively. Below are the typical constraints that
might be associated with these variables in the context of
capacity and delay limitations:

xk , yk ∈ {0, 1} ∀k ∈ {1, 2, . . . ,N } (11)

This constraint ensures that each task k is either executed
locally (xk = 1) or offloaded (yk = 1), but not both.

xk + yk = 1 ∀k ∈ {1, 2, . . . ,N } (12)

This ensures that each task k is either assigned to local
execution or offloaded, but not both.

N∑
k=1

xk ≤ Clocal (13)

This limits the total number of tasks that can be processed
locally to the local processing capacity Clocal.

N∑
k=1

yk ≤ Coffload (14)

This limits the total number of tasks that can be offloaded to
the edge servers’ processing capacity Coffload.

Tlocal,kxk ≤ Dk ∀k ∈ {1, 2, . . . ,N } (15)

This ensures that the processing time for tasks executed
locally does not exceed their respective deadlines Dk .

Toffload,kyk ≤ Dk ∀k ∈ {1, 2, . . . ,N } (16)
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This ensures that the processing time for tasks offloaded to
edge servers does not exceed their respective deadlines Dk .

N∑
k=1

xkRlocal,k ≤ Rlocal,max (17)

This ensures that the total resource consumption of tasks
executed locally does not exceed the maximum available
local resources Rlocal,max.

N∑
k=1

ykRoffload,k ≤ Roffload,max (18)

This ensures that the total resource consumption of tasks
offloaded to edge servers does not exceed the maximum
available offload resources Roffload,max.
These constraints collectively ensure that the optimization

problem respects the limitations on capacity and delay, while
striving to minimize the overall energy consumption of the
system.

IV. THE PROPOSED TASK OFFLOADING ALGORITHM
The optimization problem defined in Eq. 10 presents
a formidable challenge due to its nonlinear nature and
NP-hard complexity. Finding the optimal solution to such a
problem is notoriously difficult and time-consuming. Hence,
it becomes imperative to devise an efficient method to address
this challenge effectively.

Several methodologies have been devised to address
NP-hard problems, encompassing techniques like PSO, GA,
ACO, and GWO. Among these, PSO stands out for its
widespread use in hybrid algorithms, thanks to its efficient
global optimization capabilities, rapid convergence rate, and
ease of implementation. On the other hand, GWO has
proven to be effective in solving diverse real-world problems,
including resource allocation and scheduling.

In our study, we propose the Hybrid Task Offloading
(HybridTO) approach to tackle the optimization problem
at hand. HybridTO is a hybrid method that synergistically
combines the strengths of PSO and GWO. By combining
the unique attributes of these methods, HybridTO seeks to
augment the exploration capabilities across the solution space
and enhance convergence rates towards optimal solutions.

The PSO algorithm is renowned for its efficiency in
global optimization and straightforward implementation [14].
Meanwhile, GWO excels in exploring the search space by
emulating the leadership hierarchy observed in grey wolf
packs [15]. By integrating these methods, our goal is to
leverage their combined strengths to achieve superior results,
faster convergence, and more comprehensive exploration of
the global optimum.

The PSO algorithm, as a stochastic swarm technique,
derives inspiration from animal behaviours, especially in
search and hunting, to solve global optimization problems.
In our context, we apply this algorithm within an edge
computing environment, where we aim to offload N tasks
having the requirement of low latency and resources to

Algorithm 1 Particle Swarm Optimization (PSO)
1: Initialize population of particles randomly within search

space
2: Initialize velocity of particles randomly within prede-

fined range
3: Set individual best position (pbest) of each particle to its

initial position
4: Set global best position (gbest) to the position of the

particle with the best fitness value
5: while termination condition not met do
6: for each particle do
7: Update velocity using:
8: velocity = w · velocity + c1 · rand() · (pbest −

position)+ c2 · rand() · (gbest − position)
9: Update position using:
10: position = position+ velocity
11: if fitness of new position is better than pbest then
12: Update pbest to new position
13: end if
14: if fitness of new position is better than gbest then
15: Update gbest to new position
16: end if
17: end for
18: end while
19: return gbest as the solution

ESs for processing. Here, each SED is conceptualized as
a particle, leading to the representation of the problem as
N-dimensional vectors.

The pseudo-code of the PSO algorithm used in our study
is outlined in Algorithm 1. This algorithm iteratively updates
the positions of particles in the search space based on their
individual and collective experiences, gradually converging
towards optimal solutions.

The GWO algorithm is a sophisticated optimization
technique inspired by the social structure and hunting
behaviour observed in grey wolf packs. By emulating the
hierarchical organization and cooperative hunting strategies
of these animals, the GWO algorithm seeks to navigate
complex search spaces and find optimal solutions efficiently.

In the GWO algorithm, the population is divided into
four distinct groups, each representing a different level of
leadership within the pack. These groups are denoted as α,
β, δ, and ω, mirroring the hierarchical structure observed in
wolf packs.

At the top of the hierarchy is the α wolf, which assumes the
role of the leader responsible for making overarching deci-
sions for the pack. The β wolves occupy the second-highest
position in the hierarchy, acting as assistants to the alpha
and providing guidance to lower-ranking members. The δ

wolves hold the third rank and support the higher-ranking
wolves by assisting in boundary observation, group defence,
and hunting activities. Finally, the omega wolf occupies the
lowest position in the hierarchy and is required to follow the
directives of higher-ranking members.
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Algorithm 2 Grey Wolf Optimization (GWO)

1: Initialize grey wolf population X∗, X alpha, Xbeta, Xdelta

within search space
2: Initialize positions of grey wolves randomly
3: Evaluate fitness of each grey wolf
4: while termination criterion not met do
5: for all grey wolves Xi do
6: if fitness(Xi) < fitness(X alpha) then
7: X alpha

← Xi
8: end if
9: if fitness(Xi) > fitness(X alpha) and fitness(Xi) <

fitness(Xbeta) then
10: Xbeta

← Xi
11: end if
12: if fitness(Xi) > fitness(X alpha),

fitness(Xi) > fitness(Xbeta), and
fitness(Xi) < fitness(Xdelta) then

13: Xdelta
← Xi

14: end if
15: end for
16: for all grey wolves Xi do
17: for each dimension d do
18: Update position using equation:
19: Xi[d]← X alpha[d]−ahowl·rand()·|X alpha[d]−

2 · Xi[d]|
20: Xi[d]← (Xi[d]+ Xbeta[d])/2
21: Xi[d]← (Xi[d]+ X alpha[d])/2
22: Xi[d]← (Xi[d]+ Xdelta[d])/2
23: end for
24: end for
25: Evaluate fitness of each updated grey wolf
26: end while
27: return Position of the alpha grey wolf X alpha as the

solution

The GWO algorithm employs three primary hunting
strategies - searching, encircling, and attacking - to explore
and exploit the search space effectively. These strategies
enable the greywolf pack to collaboratively navigate the envi-
ronment, identify promising regions, and converge towards
optimal solutions. Through the coordinated efforts of the α,
β, δ, and ω, wolves, the GWO algorithm iteratively refines its
search and converges towards high-quality solutions.

In this work, we propose HybridTO, a novel hybrid algo-
rithm combining PSO and GWO to optimize task offloading
strategies in energy-constrained edge computing environ-
ments. HybridTO leverages the complementary strengths
of PSO and GWO to enhance optimization performance.
PSO is renowned for its robust global search capabilities,
which allow it to efficiently explore the search space to
avoid local optima. At the same time, GWO excels in local
search, providing robust exploitation to fine-tune solutions.
By integrating these two methods, HybridTO effectively
balances exploration and exploitation, potentially leading to
superior optimization performance. This hybrid approach

often achieves faster convergence and higher-quality solu-
tions, particularly in complex and multimodal optimization
problems. However, this performance enhancement comes
with increased complexity. HybridTO requires additional
mechanisms to coordinate PSO and GWO, resulting in
higher computational costs and more intricate parameter
tuning. Despite these challenges, the improvement in solution
quality and convergence speed justifies the added complexity,
making HybridTO a powerful tool for optimization in
energy-constrained edge computing environments.

The HybridTO algorithm, as outlined in Algorithm 3,
orchestrates the process of optimizing energy consumption
and resource allocation for efficient task offloading. Let’s
delve into the details of each step:
1) Initialization: The algorithm starts by gathering all

necessary information and setting the required param-
eters. It initializes the sub-carrier assignment during
the first iteration, assigns random initial velocities and
locations to each particle/device, and evaluates their
corresponding fitness values. Moreover, it keeps track
of a vector, pBesti, to monitor each particle’s best
locations individually, along with a gBest vector to
record the best result in the current population. The
decision regarding offloading is subsequently made
by assessing the task processing costs and taking into
account energy preferences and delay.

2) Iterative Execution Loop: The algorithm enters an
iterative loop, continuing until the termination criteria
are met. During each iteration of the loop, the global
best and individual best values for every particle are
adjusted. Moreover, it updates the velocity Vi(t + 1)
and location λi(t + 1) for each particle based on their
previous values and the best values found so far.

3) Return Optimized Results: Upon completion of
the iterative loop, the algorithm provides energy
usage results. These results provide valuable insights
required for efficiently allocating resources, including
sub-carriers and power consumption, for the offloading
process.

4) Resource Allocation and Offloading Decision: The
controller server responds to the service requester
(end-user) based on the optimized results obtained
from the algorithm. The SED owning the task deter-
mines whether the task must be calculated locally or
offloaded to ES. Afterwards, the SEDs request the
necessary resources from the controller server, which
oversees the resource allocation table and handles task
scheduling. Upon receiving the request, the controller
server assigns the optimal ES within the collaborative
environment. Subsequently, the SEDs transfer the task
to the chosen ES for execution.

5) Optimization Phases: The algorithm improves resource
allocation and energy consumption through two main
steps. Initially, it sets up the locations of the SEDs,
which are depicted as a vector with a dimensionality
of size N .
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Algorithm 3 HybridTO Algorithm
1: Initialize: Set required parameters, determine prelimi-

nary sub-carrier assignment.
2: Randomly initialize velocities and locations for each

particle/device.
3: Evaluate fitness values for each particle/device.
4: Initialize pBesti vector to track individual particles’ best

locations.
5: Initialize gBest vector to track particle with best result.
6: Make offloading decision based on task processing costs.
7: while Termination criteria not met do
8: for Each particle/device do
9: Update each and global best values.
10: Update velocity Vi(t + 1) and location λi(t + 1).
11: end for
12: end while
13: Return: Optimized energy utilization results.

Analyzing the time complexity of a hybrid PSO-GWO
algorithm for task offloading in edge computing involves
considering the individual complexities of PSO and GWO,
along with the overhead introduced by combining them.
PSO’s complexity primarily depends on the number of
particles (N ) and the number of iterations (T ), resulting in a
complexity of O(N ×T ) due to position and velocity updates
for each particle. Similarly, GWO’s complexity, determined
by the population size (N ) and iterations (T ), also stands at
O(N × T ) due to the calculations in its hunting, encircling,
attacking, and fleeing phases. When combined, the hybrid
algorithm’s complexity depends on the integration method:
sequential execution results in an additive complexity of
O(N × T ), while interleaved execution, involving additional
overhead, maintains the same order of magnitude. Additional
factors such as specific implementation details and the
complexity of fitness function evaluations might slightly
vary the overall complexity. However, the hybrid PSO-GWO
algorithm is typically considered to have a time complexity
of O(N × T ), where N is the population size and T is the
number of iterations.

By following this comprehensive process, the HybridTO
algorithm efficiently manages task offloading in edge com-
puting environments, leading to enhanced energy efficiency
and resource utilization.

Combining PSO and GWO for task offloading in edge
cloud environments offers distinct advantages over using
either method alone. The hybrid approach leverages PSO’s
strong global exploration capabilities and GWO’s efficient
local exploitation, resulting in a more balanced search
process that improves the likelihood of finding optimal
solutions. This combination enhances convergence speed,
as PSO’s rapid initial exploration helps quickly identify
promising regions, while GWO’s precise local search refines
these solutions more effectively. Additionally, the hybrid
method mitigates the risk of getting trapped in local

optima, a common issue with individual algorithms, thereby
increasing robustness and reliability in complex, multimodal
optimization landscapes. The integration of these algorithms
also adapts better to the intricate and dynamic scenarios
typical of edge cloud environments, where tasks, resource
constraints, and network conditions are highly variable. This
adaptability leads to more efficient resource utilization and
energy savings, which are critical in energy-constrained edge
devices. Overall, the combined PSO and GWO approach
provides superior performance in terms of solution quality,
convergence speed, and robustness, making it a more robust
and versatile tool for optimizing task offloading in edge cloud
environments.

V. EXPERIMENT AND RESULTS
In this section, we delve into a comprehensive evaluation
of the effectiveness of our proposed HybridTO approach
through a series of meticulously designed experiments.
We kick-start by elucidating the intricate details of the
experimental setup meticulously crafted for these assess-
ments. Following this, we introduce and expound upon the
metrics meticulously chosen to gauge and scrutinize the
performance of our proposition. Lastly, we meticulously
present and dissect the experimental results, unravelling
invaluable insights and noteworthy observations gleaned
during the rigorous evaluation phase.

A. EXPERIMENTAL SETUP AND PERFORMANCE METRICS
The table outlines the critical parameters employed in the
experimental setup to evaluate the performance of the
proposed approach, as depicted in Table 2. These parameters
provide crucial insights into the configuration and character-
istics of the environment under investigation.

Included in the table are essential specifications such as
the number of ESs, the uplink transmission power (PSED,ES ),
system bandwidth (bw), ES execution rate (fser ), SEDs
execution rate (fdev), input data size (SZk ), workload (Wk ),
and the average bandwidth of sub-carriers.

For instance, the experimental setup considers 15 ESs, each
operating with an uplink transmission power of 20 dBm.
The system bandwidth is set at 20 MHz to facilitate data
transmission and processing. The ES execution rate varies
within the range of 2 to 5 GHz, while SEDs execute
tasks at a fixed rate of 1 GHz. The input data size ranges
from 20 to 100 MB, indicating the volume of data processed
by the system. Additionally, the workload, measured in CPU
cycles, spans from 1 × 107 to 2.5 × 107, representing
the computational demand imposed by the tasks. Lastly,
the sub-carrier average bandwidth is determined to be
15 kHz, providing a crucial parameter for communication and
resource allocation.

These meticulously defined parameters collectively estab-
lish the experimental framework and conditions necessary
to evaluate the efficacy and performance of the proposed
approach under various scenarios and configurations.

The evaluation of the proposed HybridTO approach
involved a comprehensive analysis of multiple parameters
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TABLE 2. Experimental Setup Parameters.

critical to the performance of task offloading in edge
computing environments. Key metrics such as processing
time, energy consumption, and offloading utilization were
meticulously scrutinized across varying task characteristics,
including the number of tasks, task size, and transmis-
sion rate. These metrics were assessed using simulation
results obtained through rigorous experimentation, with a
comparative analysis conducted against established baseline
approaches to provide a meaningful assessment of the
proposed methodology’s effectiveness.

In particular, the proposed HybridTO approach was
subjected to evaluation alongside several baseline methods,
each representing different offloading strategies commonly
employed in edge computing scenarios. The baseline studies
encompassed an optimal enumeration offloading strategy
(referred to as Base_OES) [36], a random offloading
technique grounded in dynamic programming with hamming
distance termination (referred to as Base_DPH) [37], and a
local execution strategy at the SED.

Base_DPH operates by making offloading decisions ran-
domly based on resource availability, utilizing hamming-
distance termination to guide the offloading process. On the
other hand, Base_OES adopts an exhaustive enumeration
approach, systematically exploring all potential offloading
solutions to identify the optimal server for task offloading.
These baseline methods serve as benchmarks against which
the performance of the proposed HybridTO algorithm is
assessed, facilitating a comprehensive understanding of its
relative strengths and weaknesses.

B. RESULTS AND ANALYSIS
In this section, we thoroughly examine the simulation results
to evaluate the advantages provided by the proposed approach
across various parameters. These parameters include input
data size, the number of ESs, processing capacity, and data
uploading rate.

Fig. 2 presents a comparative analysis of the computational
complexity between the proposed HybridTO and Base_OES
concerning varying numbers of tasks while maintaining
a constant task-input size. Base_OES, although capable
of providing an optimal solution for offloading decisions,
suffers from an exponential time complexity of O(3n), where

FIGURE 2. Processing Time Vs. Number of Tasks.

FIGURE 3. Energy Consumption Vs. Number of Iterations.

n represents the number of tasks. Consequently, Base_OES
becomes impractical in scenarios involving a large number
of tasks due to its substantial computational requirements.
As such, in this study, we leverage Base_OES as a benchmark
algorithm for comparison with the proposed HybridTO.

Simulation results demonstrate that the proposedHybridTO
algorithm outperforms Base_OES regarding execution speed
when the task-input size is set to 25 MB and 50 MB.
Initially, for task counts ranging from 3 to 12, both Base_OES
and HybridTO exhibit nearly identical execution times.
However, as the number of tasks escalates, the proposed
HybridTO begins to showcase significantly faster execution
speeds compared to Base_OES, with the performance
disparity widening considerably. This highlights the better
performance of the proposed HybridTO over Base_OES,
particularly in scenarios with numerous tasks.

In Figure 3, the evaluation of performance juxtaposes the
proposed HybridTO algorithm with benchmark algorithms
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regarding optimal energy usage, and statistical output for
executing user tasks. A notable observation is that in
comparison to the Base_DPH methods, the HybridTO
algorithm exhibits results closely resembling those of the
optimal Base_OES approach while showcasing superior
energy utilization within fewer iterations, particularly up
to 100 iterations. This achievement stems from the incor-
poration of a penalty function within the fitness function,
which facilitates the identification of the optimal solution
by simultaneously considering resource availability and task
computation costs. Moreover, the inclusion of the penalty
function expedites iterative convergence and enhances result
accuracy, contributing to the algorithm’s effectiveness in
achieving optimal energy consumption levels.

In Figure 4, the influence of task size on energy consump-
tion is illustrated. As the task size increases, the difference
in energy consumption ratio decreases. This phenomenon
occurs because more extensive input data requires more
resources for both uploading and processing tasks, resulting
in higher energy consumption compared to smaller tasks.
However, all methods demonstrate a comparable trend of
decreasing disparities in energy consumption ratio with an
increase in task size. The HybridTO approach closely aligns
with Base_OES while outperforming the baseline scheme
Base_DPH. This underscores the significance of efficient
energy utilization achieved by the proposed strategy, leading
to enhanced data uploading rates and optimized energy
savings for the system.

Figure 5 illustrates the relationship between the processing
capacity required and total energy utilization for task
completion. It is clear that as the processing capacity
requirement increases, total energy utilization also increases
across all approaches. Local execution shows higher energy
usage in comparison to other methods, primarily due to
the limitations in computing and energy resources at the
SEDs. Transferring resource-intensive tasks to ESs presents
a promising approach to conserving energy at the SEDs.
In the proposed HybridTO approach, total energy utilization
closely aligns with Base_OES and is lower than Base_DPH
and Local Execution. Tasks are offloaded to ESs that utilize
cooperative task processing and maximize resource usage
at the network edge. This conserves energy that would
otherwise be spent on transmitting jobs through the backhaul
link to remote servers.

Moreover, the offloading decision takes into account
capacity constraints, proximity, and time constraints, effec-
tively minimizing transmission energy over long distances
and enhancing overall energy efficiency. By intelligently
allocating tasks based on these considerations, the HybridTO
approach optimizes energy consumption while ensuring
timely task completion and resource utilization.

Figure 6 illustrates a comparison between the HybridTO
approach and two baseline methods, Base_OES, and
Base_DPH, regarding offloading utility across different
data transmission rates. Significantly, the offloading utility
exhibits an upward trend as the transmission rate increases

FIGURE 4. Energy Consumption Rate Vs. Task Size.

FIGURE 5. Energy Consumption Vs. Processing Power.

FIGURE 6. Offloading Usage Vs. Transmission Rate.

across all approaches, although nuanced differences are
noticeable, particularly at lower transmission rates.
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In each scenario, HybridTO matches the performance
of Base_OES and outperforms other baseline methods like
Base_DPH regarding offloading utility. This advantage stems
from HybridTO’s optimization strategy, which strategically
utilizes ESs situated closer to end users for task execution.
By reducing latency and resource consumption, such as
energy and bandwidth, compared to remote cloud servers,
HybridTO boosts the uploading rate of SEDs, ultimately
enhancing the offloading utility. Furthermore, the cooperative
capabilities inherent in ESs play a pivotal role in this context.
These capabilities ensure the availability of ample resources
at the edge, facilitating more efficient task offloading to
ESs and minimizing resource consumption by SEDs. As a
result, the HybridTO approach optimizes offloading utility by
intelligently distributing tasks across the network infrastruc-
ture, leveraging both proximity and resource availability to
enhance overall system performance.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this study, we conducted a thorough exploration of
energy-efficient task offloading strategies within EC envi-
ronments. Through extensive experimentation and anal-
ysis, we scrutinized the performance of the proposed
HybridTO approach against several baseline methods,
namely Base_DPH, Base_OES, and Local Execution. Our
comprehensive evaluation revealed that HybridTO offers
substantial improvements over these baseline methods across
various metrics, including energy utilization, response delay,
and offloading utility. Particularly noteworthy is HybridTO’s
superiority in scenarios characterized by a large number of
tasks or diverse task sizes.

One key finding of our analysis is the importance of lever-
aging ESs located closer to end users to minimize latency
and resource consumption while maximizing offloading
utility. By strategically distributing tasks across the network
infrastructure and capitalizing on the proximity of ESs to end
users, HybridTO demonstrates remarkable efficiency gains
compared to traditional offloading approaches.

Overall, our results underscore HybridTO’s potential as a
highly effective solution for energy-efficient task offloading
in EC environments. The implications of our findings extend
to future research and development efforts in this domain,
promising advancements in optimizing resource utilization
and enhancing system performance.

Looking ahead, our focus will be on extending the
applicability of HybridTO for energy-efficient task offload-
ing in edge computing. This includes expanding network
traffic datasets and using network emulation tools to create
more realistic testing conditions, along with evaluating
HybridTO’s performance on diverse hardware platforms to
ensure its scalability and efficiency across various edge
computing environments. One critical extension of this work
could involve exploring the integration of HybridTO with
emerging technologies like Stacked Intelligent Metasur-
faces (SIM) [38]. SIM utilizes intelligent metasurfaces to
manipulate electromagnetic waves dynamically. While this

technology is currently not directly applicable to network
traffic classification, its potential for Over-The-Air (OTA)
computing holds promise for future advancements in edge
computing frameworks. By incorporating SIM capabilities,
HybridTO could potentially offload specific computational
tasks to the intelligent metasurfaces as data propagates
through them. This could lead to benefits such as reduced
energy consumption on traditional servers, improved task
processing efficiency at the edge, and, ultimately, a more
robust and efficient edge computing environment. Further
research is needed to explore the feasibility and potential
benefits of integrating SIMwithHybridTO for network traffic
classification tasks.
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